Bayard-Alpert Pirani Gauge FRG-720

Short Operating Instructions
Bayard-Alpert Pirani Gauge
FRG-720
We
Wir
Nous
Nosotros
Wij
Noi
我们
私たち
우리는

declare under our sole responsibility that the product,
erklären, in alleiniger Verantwortung, daß dieses Produkt,
déclarams sous notre seule responsabilité que le produit,
declaramos bajo nuestra sola responsabilidad, que el producto,
verklaaren onder onze verantwoordelijkheid, dat het product,
dichiamo sotto nostra unica responsabilità, che il prodotto,

Bayard-Alpert Pirani Gauge FRG-720

to which this declaration relates is in conformity with the following standard(s) or other normative documents.
auf das sich diese Erklärung bezieht, mit der/den folgenden Norm(en) oder Richtlinie(n) übereinstimmung.
auquel se réfère cette déclaration est conforme à la (aux) norme(s) ou au(x) document(s) normatif(s).
al que se refiere esta declaración es conforme a la(s) norma(s) u otro(s) documento(s) normativo(s).
waarnaar deze verklaring verwijst, aan de volgende norm(en) of richtlijn(en) beantwoordt.
a cui se riferisce questa dichiarazione è conforme alla/e sequite/l norma/o documento/l normativo/i.

EN 61000 6 2:2005 (EMC: generic immunity standard)
EN 61000 6 3:2007 (EMC: generic emission standard)
EN 61010 1:2001 (Safety requirements for electrical equipment for measurement, control and laboratory use)
EN 61326:2006 (EMC requirements for electrical equipment for measurement, control and laboratory use)

John Ehmann
Operations Manger
Agilent, Inc.
Vacuum products Division
Lexington, MA USA
For cross-references within this document, the symbol (→ XY) is used, for cross-references to further documents, listed under further information, the symbol (→ [Z]).
Product Identification

In all communications with Agilent, please specify the information on the product nameplate. For convenient reference copy that information into the space provided below.

![Image of gauge]

Validity

This document applies to products with part numbers

Without display

FRG720KF25 (DN 25 ISO-KF)
FRG720CF35 (DN 40 CF-R)

With display

FRG720KF25D (DN 25 ISO-KF)
FRG720CF35D (DN 40 CF-R)

With Profibus interface and 2 switching functions

FRG720KF25SP (DN 25 ISO-KF)
FRG720CF35SP (DN 40 CF-R)

The part number (PN) can be taken from the product nameplate.

If not indicated otherwise in the legends, the illustrations in this document correspond to the gauge with part number FRG720KF25D. They apply to the other gauges by analogy.
We reserve the right to make technical changes without prior notice.
All dimensions in mm.

Intended Use

The FRG-720 gauge has been designed for vacuum measurement of gases in the pressure range of $5 \times 10^{-10} \ldots 1000$ mbar.

It must not be used for measuring flammable or combustible gases in mixtures containing oxidants (e.g. atmospheric oxygen) within the explosion range.

The gauge can be operated in connection with an Agilent AGC-100 Vacuum Gauge Controller, an Agilent Turbo AG Rack Controller, or with another controller.

Functional Principle

Standard Gauge

Over the whole measuring range, the gauge has a continuous characteristic curve and its measuring signal is output as logarithm of the pressure.

The gauge functions with a Bayard-Alpert hot cathode ionization measurement system (for $p < 2.0 \times 10^{-2}$ mbar) and a Pirani measurement system (for $p > 5.5 \times 10^{-3}$ mbar). In the overlapping pressure range of $2.0 \times 10^{-2} \ldots 5.5 \times 10^{-3}$ mbar, a mixed signal of the two measurement systems is output. The hot cathode is switched on by the Pirani measurement system only below the switching threshold of 2.4×10^{-2} mbar (to prevent filament burn-out). It is switched off when the pressure exceeds 3.2×10^{-2} mbar.
Profibus Gauge

The Profibus gauge has a fieldbus interface that conforms to the Profibus DPV1 standard ([5]). Two adjustable switching functions are integrated in the gauges. The corresponding relay contacts are available at the sensor cable connector.

The basic sensor and sensor electronics of the Profibus gauge are the same as in the standard FRG-720.
1 Safety

1.1 Symbols Used

DANGER
Information on preventing any kind of physical injury.

WARNING
Information on preventing extensive equipment and environmental damage.

Caution
Information on correct handling or use. Disregard can lead to malfunctions or minor equipment damage.

1.2 Personnel Qualifications

Skilled personnel
All work described in this document may only be carried out by persons who have suitable technical training and the necessary experience or who have been instructed by the end-user of the product.
1.3 General Safety Instructions

- Adhere to the applicable regulations and take the necessary precautions for the process media used.
 Consider possible reactions between the materials and the process media.
 Consider possible reactions (e.g. explosion) of the process media due to the heat generated by the product.

- Adhere to the applicable regulations and take the necessary precautions for all work you are going to do and consider the safety instructions in this document.

- Before beginning to work, find out whether any vacuum components are contaminated. Adhere to the relevant regulations and take the necessary precautions when handling contaminated parts.

Communicate the safety instructions to all other users.

1.4 Liability and Warranty

Agilent assumes no liability and the warranty becomes null and void if the end-user or third parties

- disregard the information in this document
- use the product in a non-conforming manner
- make any kind of interventions (modifications, alterations etc.) on the product
- use the product with accessories, not listed in the corresponding product documentation.

The end-user assumes the responsibility in conjunction with the process media used.

Gauge failures due to contamination or wear and tear as well as expendable parts (e.g. filament) are not covered by the warranty.
Technical Data

Measurement

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement range</td>
<td>$5 \times 10^{-10} \ldots 1000$ mbar continuous</td>
</tr>
<tr>
<td>(air, O$_2$, CO, N$_2$)</td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>15% of reading in the range</td>
</tr>
<tr>
<td>(after 5 min. stabilization)</td>
<td>$1 \times 10^{-8} \ldots 10^{-2}$ mbar</td>
</tr>
<tr>
<td>Repeatability</td>
<td>5% of reading in the range</td>
</tr>
<tr>
<td>(after 5 min. stabilization)</td>
<td>$1 \times 10^{-8} \ldots 10^{-2}$ mbar</td>
</tr>
</tbody>
</table>

Emission

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching on threshold</td>
<td>2.4×10^{-2} mbar</td>
</tr>
<tr>
<td>Switching off threshold</td>
<td>3.2×10^{-2} mbar</td>
</tr>
<tr>
<td>Emission current</td>
<td></td>
</tr>
<tr>
<td>$p \leq 7.2 \times 10^{-6}$ mbar</td>
<td>5 mA</td>
</tr>
<tr>
<td>7.2×10^{-6} mbar $< p$</td>
<td></td>
</tr>
<tr>
<td>$< 3.2 \times 10^{-2}$ mbar</td>
<td>25 μA</td>
</tr>
<tr>
<td>Emission current switching</td>
<td></td>
</tr>
<tr>
<td>25 μA \Rightarrow 5 mA</td>
<td>7.2×10^{-6} mbar</td>
</tr>
<tr>
<td>5 mA \Rightarrow 25 μA</td>
<td>3.0×10^{-5} mbar</td>
</tr>
</tbody>
</table>

Degas

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current ($p < 7.2 \times 10^{-6}$ mbar)</td>
<td>≈ 16 mA ($P_{\text{degas}} \approx 4.0$ W)</td>
</tr>
<tr>
<td>Control input signal</td>
<td>0 V/+24 VDC, high active</td>
</tr>
<tr>
<td>Duration</td>
<td>$<$3 min. followed by automatic deactivation.</td>
</tr>
</tbody>
</table>

In degas mode, the gauge keeps supplying pressure readings, the tolerances of which can be higher than during normal operation.
Output signal

Output signal (measuring signal)
0 ... +10 V
Measuring range
+0.774 ... +10 V
(5×10⁻¹⁰ ... 1000 mbar)
Voltage vs. pressure
logarithmic, 0.75 V/decade
Error signal (→ [1])
Hot cathode error
≈+0.3 VDC
Pirani error
≈+0.5 VDC
Minimum loaded impedance
10 kΩ

Identification

Gauge identification
42 kΩ between Pin 10 and Pin 5 (sensor cable)

Switching Functions (Profibus gauge only)

Number
2 (setpoints A and B)
Adjustment range
1×10⁻⁹ ... 100 mbar
adjustable via potentiometers, one floating, normally open relay contact per setpoint
Hysteresis
10% of the threshold value
Relay contact rating
Voltage
≤60 VDC
Current
≤0.5 ADC

RS232C Interface

Data rate
9600 Baud
Data format
binary, 8 data bits, one stop bit, no parity bit, no handshake
Connector
Standard gauge
→ [23]
Profibus gauge
→ [24]
Further information on the RS232C interface → [1].
Bayard-Alpert Pirani Gauge FRG-720

Profibus Interface
(Profibus gauges only)

- Standard applied → [5]
- Communication protocol, Data format → [2], [5]
- Interface, physical: RS485
- Data rate: ≤12 MBaud, → [2], [5]
- Node address: 00 ... 7D_{hex} (0 ... 125_{dec})

Connection
- Cable: D-Sub, 9-pin, female, → 26
- Shielded, special Profibus cable, → [3], [5]
- Cable length, system wiring: according to Profibus specifications, → [3], [5]

Display (part no. FRG720KF25D and FRG720CF35D only)

- Display panel: LCD matrix, 32×16 pixels, with background illumination
- Dimensions: 16.0 mm × 11.2 mm
- Pressure unit: mbar (default), Torr, Pa
- Changing the pressure unit: via RS232C, → [1]

Supply

DANGER

The gauge may only be connected to power supplies, instruments or control devices that conform to the requirements of a grounded extra low voltage (SELV). The connection to the gauge has to be fused. ¹)

¹) Agilent controllers fulfill these requirements.
Bayard-Alpert Pirani Gauge FRG-720

<table>
<thead>
<tr>
<th>Voltage at the gauge</th>
<th>+24 VDC (+20 … +28 VDC), (Ripple ≤2 V<sub>pp</sub>)<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Power consumption</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>≤0.5 A</td>
</tr>
<tr>
<td>Degas</td>
<td>≤0.8 A</td>
</tr>
<tr>
<td>Emission start (200 ms)</td>
<td>≤1.4 A</td>
</tr>
<tr>
<td>Fuse required<sup>1</sup></td>
<td>1.25 AT</td>
</tr>
<tr>
<td>Power consumption</td>
<td></td>
</tr>
<tr>
<td>Standard gauge</td>
<td>≤16 W</td>
</tr>
<tr>
<td>Profibus gauge</td>
<td>≤18 W</td>
</tr>
</tbody>
</table>

Electrical Connection

<table>
<thead>
<tr>
<th>Connection</th>
<th>D-Sub, 15-pin, male</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard gauge</td>
<td>→ § 23</td>
</tr>
<tr>
<td>Profibus gauge</td>
<td>→ § 24</td>
</tr>
</tbody>
</table>

Sensor cable	
For analog values only,	4 conductors plus shielding
without degas function	
For analog values,	5 conductors plus shielding
with degas function	
All functions,	7 conductors plus shielding
incl. RS232C interface	depending on the functions used, max. 15 conductors plus shielding
Profibus gauge	

Cable length (24 VDC)	≤35 m (0.25 mm²/ conductor)
For RS232C operation	≤50 m (0.34 mm²/ conductor)
	≤100 m (1.0 mm²/ conductor)

Grounding concept	
Standard gauge	→ § 23
Profibus gauge	→ § 24

<sup>2</sup): Consider the voltage drop as function of the sensor cable length.
Bayard-Alpert Pirani Gauge FRG-720

Materials Exposed to Vacuum

<table>
<thead>
<tr>
<th>Component</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing, supports, screens</td>
<td>stainless steel</td>
</tr>
<tr>
<td>Feedthroughs</td>
<td>NiFe, nickel plated</td>
</tr>
<tr>
<td>Insulator</td>
<td>glass</td>
</tr>
<tr>
<td>Cathode</td>
<td>iridium, yttrium oxide (Y₂O₃)</td>
</tr>
<tr>
<td>Cathode holder</td>
<td>molybdenum, platinum</td>
</tr>
<tr>
<td>Pirani element</td>
<td>tungsten, copper</td>
</tr>
</tbody>
</table>

Internal volume

- DN 25 ISO-KF: ≈24 cm³
- DN 40 CF-R: ≈34 cm³

Admissible pressure max.: 2 bar (absolute)

Ambient

Admissible temperatures

- Storage: -20 ... +70 °C
- Operation: 0 ... +50 °C
- Bakeout: +80 °C ³)
- Tube extension: +150 °C ³)

Relative humidity

- Year's mean: ≤65% (no condensation)
- During 60 days: ≤85% (no condensation)

Use

- Indoors only
- Altitude up to 2000 m NN

Mounting orientation

- Any

Degree of protection

- IP 30

³) Flange temperature, horizontally mounted, without electronics.
Bayard-Alpert Pirani Gauge FRG-720

Dimensions [mm]

4-40UNC 2B

![Diagram of dimensions](image)

Weight

<table>
<thead>
<tr>
<th>Model</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRG720KF25, FRG720KF25D</td>
<td>≈285 g</td>
</tr>
<tr>
<td>FRG720CF35, FRG720CF35D</td>
<td>≈550 g</td>
</tr>
<tr>
<td>FRG720KF25SP</td>
<td>≈430 g</td>
</tr>
<tr>
<td>FRG720CF35SP</td>
<td>≈695 g</td>
</tr>
</tbody>
</table>
Measurement Signal vs. Pressure

\[p = 10^{\frac{(U-7.75)}{0.75}+c} \]

<table>
<thead>
<tr>
<th>U</th>
<th>p</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>[V]</td>
<td>[mbar]</td>
<td>0</td>
</tr>
<tr>
<td>[V]</td>
<td>[Pa]</td>
<td>2</td>
</tr>
<tr>
<td>[V]</td>
<td>[Torr]</td>
<td>-0.125</td>
</tr>
</tbody>
</table>

where
- \(p \) pressure
- \(U \) measurement signal
- \(c \) constant (depending on pressure unit)
Gas Type Dependence

For gases other than air, the pressure reading in the range \(p < 10^{-3} \) mbar can be converted by means of the following formula:

\[
p_{\text{eff}} = C \times \text{pressure reading}
\]

<table>
<thead>
<tr>
<th>Gas type</th>
<th>Calibration factor (C)</th>
<th>Gas type</th>
<th>Calibration factor (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>5.9</td>
<td>air, (O_2), CO, (N_2)</td>
<td>1.0</td>
</tr>
<tr>
<td>Ne</td>
<td>4.1</td>
<td>(H_2)</td>
<td>2.4</td>
</tr>
<tr>
<td>Kr</td>
<td>0.5</td>
<td>(Xe)</td>
<td>0.4</td>
</tr>
<tr>
<td>Ar</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3 Installation

3.1 Vacuum Connection

DANGER

DANGER: overpressure in the vacuum system >1 bar
Injury caused by released parts and harm caused by escaping process gases can result if clamps are opened while the vacuum system is pressurized.
Do not open any clamps while the vacuum system is pressurized. Use the type of clamps which are suited to overpressure.

DANGER

DANGER: line voltage
Products that are not professionally connected to ground can be extremely hazardous in the event of a fault.
The gauge must be electrically connected to the grounded vacuum chamber. This connection must conform to the requirements of a protective connection according to EN 61010:
• CF connections fulfill this requirement.
• For gauges with KF connection, use a conductive metallic clamping ring.
Caution: vacuum component
Dirt and damages impair the function of the vacuum component.
When handling vacuum components, take appropriate measures to ensure cleanliness and prevent damages.

Caution: dirt sensitive area
Touching the product or parts thereof with bare hands increases the desorption rate.
Always wear clean, lint-free gloves and use clean tools when working in this area.

The gauge may be mounted in any orientation. To keep condensates and particles from getting into the measuring chamber preferably choose a horizontal to upright position.
The gauge is supplied with a built-in grid. For potentially contaminating applications and to protect the electrodes against light and fast charged particles, installation of the optional baffle is recommended (→ [1]).

Vacuum connection must be free of grease.
Remove the protective lid and install the product to the vacuum system.

Seal with centering ring

Clamp

Keep the protective lid
3.2 **Power Connection**

Make sure the vacuum connection is properly made (→ §20).

If no sensor cable is available, make one according to the following diagram.

![Diagram of FRG-720 without Profibus](image)

Electrical connection

- Pin 2: Signal output (measuring signal) 0 ... +10 V
- Pin 5: Supply common, GND
- Pin 7: Degas on, active high +24 VDC
- Pin 8: Supply +24 VDC
- Pin 10: Gauge identification
- Pin 12: Signal common, GND
- Pin 13: RS232C, TxD
- Pin 14: RS232C, RxD
- Pin 15: Shielding, housing, GND

Pins 1, 3, 4, 6, 9 and 11 are not connected internally.
Electrical connection

Pin 1 Relay Switching function A, COM contact
Pin 2 Signal output (measuring signal) 0 ... +10 V
Pin 3 Threshold value (Setpoint) A, 0 ... +10 V
Pin 4 Relay Switching function A, N.O. contact
Pin 5 Supply common, GND
Pin 6 Threshold value (Setpoint) B, 0 ... +10 V
Pin 7 Degas on, active high +24 V
Pin 8 Supply voltage +24 V
Pin 9 Relay Switching function B, COM contact
Pin 10 Gauge identification
Pin 11 Relay Switching function B, N.O. contact
Pin 12 Signal common GND
Pin 13 RS232, TxD
Pin 14 RS232, RxD
Pin 15 Shielding, housing GND

2 Connect the sensor cable to the gauge.

3 Secure the cable connector with the lock screws and connect the sensor cable to the controller.
3.3 **Profibus Cable Connection**

1. If no Profibus cable is available, make one according to the following indications:

 ![D-Sub, 9-pin, male, soldering side]

 Pin 1 Do not connect
 Pin 2 Do not connect
 Pin 3 RxD/TxD-P
 Pin 4 CNTR-P \(^4\)
 Pin 5 DGND \(^5\)
 Pin 6 VP \(^5\)
 Pin 7 Do not connect
 Pin 8 RxD/TxD-N
 Pin 9 Do not connect

2. Connect the Profibus cable to the gauge and secure the cable socket to the gauge with the lock screws.

\(^4\) Only to be connected if an *optical link* module is used.

\(^5\) Only required as line termination for devices at the ends of bus system (→ [5]).
4 Operation

When the supply voltage is applied, the measurement signal is available between pins 2 (+) and 12 (−) (relationship between measurement signal and pressure → 18 and 1 [1]).

The Profibus gauge can also be operated via the corresponding fieldbus interface (Profibus) (→ 1 [1] for details and further functions).

Allow for a stabilizing time of ≈10 minutes. Once the gauge has been switched on, permanently leave it on irrespective of the pressure.

4.1 Gas Type Dependence

The measurement value is gas type dependent. The pressure reading applies to dry air, O₂, CO and N₂. For other gases, it has to be converted (→ 19 and 1 [1]).
4.2 **Display**

(part no. FRG720KF25D and FRG720CF35D only)

- **Pressure reading**
- **Pressure unit**

Function display
- (non) Pirani operation
- E Emission 25 \(\mu \)A
- E. Emission 5 mA
- D Degas
- A 1000 mbar adjustment (Pirani)

Error Display
- ok no error (green background illumination)
- 5 Pirani sensor warning (red background illumination)
- 9 Pirani sensor error (red background illumination)
- 8 BA sensor error (red background illumination)

- Internal data connection failure (red background illumination)
4.3 **Profibus Interface**
(part no. FRG720KF25SP and FRG720CF35SP only)

![Caution]

Caution: data transmission errors
If the gauge is operated with the RS232 and Profibus interfaces at the same time, data transmission errors may occur.
The gauge must not be operated with the RS232 and the Profibus interfaces at the same time.

Operating Software

For operating the gauge via Profibus, prior installation of the gauge specific GSD file is required on the bus master side (controller, PLC). This file can be downloaded under www.agilent.com.

Setting the Device Address "ADDRESS"

The node address ($0 \ldots 125_{\text{dec}}$) is set in hexadecimal form ($00 \ldots 7D_{\text{hex}}$) via the "ADDRESS" switches. The "MSD" switch is used for setting the high-order address nibble and the "LSD" switch for defining the low-order address nibble.

Example: Node address $= 7D_{\text{hex}}$.
Default address setting is $5C_{\text{hex}}$.

The device address setting can also be made via Profibus (→ [2]).
The node address is polled by the firmware when the gauge is switched on. If the setting deviates from the stored value, the new value is taken over into the NVRAM. If a value $>125_{dec}$ ($>7D_{hex}$) is entered, the node address setting currently stored in the device remains valid. However, the address can be set via the Profibus master with the "Set Slave Address" service ($\rightarrow \square [2]$). This address setting will be stored in the EEPROM of the gauge.

4.4 Switching Function Profibus Gauge

The threshold values of switching functions A and B can be set within the pressure range 1×10^{-9} mbar ... 100 mbar via potentiometers "SP A" and "SP B". For the corresponding threshold voltages $U_{\text{Threshold}}$, the following equation applies:

$$U_{\text{Threshold}} = 0.8129401 \times (\log p_{\text{Setpoint}} - c + 9.30102999)$$

Constant c depends on the pressure unit ($\rightarrow \square 18$ and $\rightarrow \square [1]$).

The hysteresis of the switching functions is 10% of the threshold setting.
1. Put the gauge into operation.

2. Connect the +-lead of a voltmeter to the threshold measurement point of the selected switching function ("SP A" Pin 3, "SP B" Pin 6) and its –-lead to Pin 5.

3. Using a screwdriver (max. ø2.5 mm), set the threshold of the selected switching function (SP A, SP B) to the desired value $U_{\text{Threshold}}$.

A functional check of the switching functions (On/Off) is only possible via fieldbus interface (→ [2] for Profibus gauge) or by measuring the relay contacts with a continuity checker/ohmmeter (→ "Power Connection", sensor cable connector).
5 Deinstallation

DANGER

DANGER: contaminated parts
Contaminated parts can be detrimental to health and environment.
Before beginning to work, find out whether any parts are contaminated. Adhere to the relevant regulations and take the necessary precautions when handling contaminated parts.

Caution

Caution: vacuum component
Dirt and damages impair the function of the vacuum component.
When handling vacuum components, take appropriate measures to ensure cleanliness and prevent damages.

Caution

Caution: dirt sensitive area
Touching the product or parts thereof with bare hands increases the desorption rate.
Always wear clean, lint-free gloves and use clean tools when working in this area.

1 Vent the vacuum system.
2 Put the gauge out of operation.
3 Unfasten the lock screws and unplug the cable socket (and also the interface cable at Profibus gauge).

4 Remove the gauge from the vacuum system and put the protective lid in place.
6 Maintenance, Repair

In case of severe contamination or a malfunction, the sensor can be replaced (→ [1]).

Gauge failures due to contamination or wear and tear as well as expendable parts (e.g. filaments) are not covered by the warranty.

6.1 Adjustment at Atmospheric Pressure

The gauge is factory calibrated. If used under different climatic conditions, at extreme temperatures, through aging or contamination and after exchanging the sensor, the characteristic curve can be offset and readjustment can become necessary. Only the Pirani element can be adjusted and only at atmosphere.

Readjustment becomes necessary if

- at atmospheric pressure, the output voltage is <+10 V
- the display reads < atmospheric pressure (if the gauge has a display)
- at atmosphere, the digital value at the RS232C interface is < atmospheric pressure
- at atmosphere, the digital value received by the bus controller of the fieldbus gauges (Profibus) is < atmospheric pressure
- when venting the vacuum system, the output voltage reaches 10 V before the measured pressure has reached atmosphere (gauges with display will show the error "5" at atmosphere (Pirani sensor warning)).
- when the vacuum system is vented, the digital value of the RS232C interface reaches its maximum before the measured pressure has reached atmosphere
- when the vacuum system is vented, the digital value received by the bus controller of the Profibus reaches its maximum before the measured pressure has reached atmosphere.
Standard Gauge

1. If you are using a seal with centering ring and filter, check that they are clean or replace them if necessary (→ [1] "Deinstallation").

2. Put the gauge into operation.

 ![Operate the gauge for ≈10 minutes at atmospheric pressure. If the gauge was operated within the BA range, a cooling-down time of ≈30 minutes is to be expected (gauge temperature = environmental temperature).](image)

3. Adjusting the gauge

<table>
<thead>
<tr>
<th>Gauge without display</th>
<th>Gauge with display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert a pin (≈Ø1.3×50mm) through the opening marked <FULL SCALE> and push the button for at least 5 seconds.</td>
<td></td>
</tr>
</tbody>
</table>
Profibus Gauge

1. If you are using a seal with centering ring and filter, check that they are clean or replace them if necessary (→ [1] "Deinstallation").

2. Put the gauge into operation.

Operate the gauge for ≈10 minutes at atmospheric pressure. If the gauge was operated within the Ioni range, a cooling-down time of ≈30 minutes is to be expected (gauge temperature = environmental temperature).
6.2 Zero Point Adjustment

A zero point adjustment is recommended
- after the sensor has been exchanged
- if display shows "FAIL 5"
- as part of the usual maintenance work for quality assurance

The push button used for the adjustment at atmospheric pressure is also used for the zero point adjustment

1. Operate gauge for approx. 10 minutes at a pressure of $\leq 1 \times 10^{-4}$ mbar.

3. Push the button for at least 2 seconds.

The adjustment is done automatically and ends after 2 minutes.
Returning the Product

WARNING

WARNING: forwarding contaminated products

Contaminated products (e.g. radioactive, toxic, caustic or biological hazard) can be detrimental to health and environment.

Products returned to Agilent should preferably be free of harmful substances. Adhere to the forwarding regulations of all involved countries and forwarding companies and enclose a duly completed declaration of contamination.

Products that are not clearly declared as "free of harmful substances" are decontaminated at the expense of the customer.

Products not accompanied by a duly completed declaration of contamination are returned to the sender at his own expense.
8 Disposal

STOP DANGER

DANGER: contaminated parts
Contaminated parts can be detrimental to health and environment.
Before beginning to work, find out whether any parts are contaminated. Adhere to the relevant regulations and take the necessary precautions when handling contaminated parts.

WARNING

WARNING: substances detrimental to the environment
Products or parts thereof (mechanical and electric components, operating fluids etc.) can be detrimental to the environment.
Dispose of such substances in accordance with the relevant local regulations.

Separating the Components

After disassembling the product, separate its components according to the following criteria:

- Contaminated components
 Contaminated components (radioactive, toxic, caustic or biological hazard etc.) must be decontaminated in accordance with the relevant national regulations, separated according to their materials, and disposed of.

- Other components
 Such components must be separated according to their materials and recycled.
Further Information

Operating Manual
Bayard-Alpert Pirani Gauge FRG-720
tqna70e1
Agilent Technologies, Lexington, MA 02421, USA

Communication Protocol
Profibus FRG-720
tqra71e1
Agilent Technologies, Lexington, MA 02421, USA

Profibus User Organization

Profibus Profile Guidelines
Part 1 - Identification & Maintenance Functions

[5] IEC 61158 Type 3 elements: Industrial communication networks – Fieldbus specifications
IEC 61784: Industrial communication networks – Fieldbus profiles

Operating Manual
AGC-100 Vacuum Gauge Controller
tqnb15e1
Agilent Technologies, Lexington, MA 02421, USA
Notes
Vacuum Products Division
Instructions for returning products

Dear Customer:

Please follow these instructions whenever one of our products needs to be returned.

1) Complete the attached Request for Return form and send it to Agilent Technologies (see below), taking particular care to identify all products that have pumped or been exposed to any toxic or hazardous materials.

2) After evaluating the information, Agilent Technologies will provide you with a Return Authorization (RA) number via email or fax, as requested.

Note: Depending on the type of return, a Purchase Order may be required at the time the Request for Return is submitted. We will quote any necessary services (evaluation, repair, special cleaning, etc).

3) Important steps for the shipment of returning product:
 • Remove all accessories from the core product (e.g. inlet screens, vent valves).
 • Prior to shipment, drain any oils or other liquids, purge or flush all gasses, and wipe off any excess residue.
 • If ordering an Advance Exchange product, please use the packaging from the Advance Exchange to return the defective product.
 • Seal the product in a plastic bag, and package product carefully to avoid damage in transit. You are responsible for loss or damage in transit.
 • Agilent Technologies is not responsible for returning customer provided packaging or containers.
 • Clearly label package with RA number. Using the shipping label provided will ensure the proper address and RA number are on the package. Packages shipped to Agilent without a RA clearly written on the outside cannot be accepted and will be returned.

4) Return only products for which the RA was issued.

5) Product being returned under a RA must be received within 15 business days.

6) Ship to the location specified on the printable label, which will be sent, along with the RA number, as soon as we have received all of the required information. Customer is responsible for freight charges on returning product.

7) Return shipments must comply with all applicable Shipping Regulations (IATA, DOT, etc.) and carrier requirements.

RETURN THE COMPLETED REQUEST FOR RETURN FORM TO YOUR NEAREST LOCATION:

<table>
<thead>
<tr>
<th>EUROPE:</th>
<th>NORTH AMERICA:</th>
<th>PACIFIC RIM:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fax: 00 39 011 8979 330</td>
<td>Fax: 1 781 860 9252</td>
<td>please visit our website for individual</td>
</tr>
<tr>
<td>Fax Free: 00 800 345 345 00</td>
<td>Toll Free: 800 882 7426, Option 3</td>
<td>office information</td>
</tr>
<tr>
<td>Toll Free: 00 800 234 234 00</td>
<td>Toll Free: vpl-ra@agilent.com</td>
<td>http://www.agilent.com</td>
</tr>
</tbody>
</table>

Pg1/3
Agilent Technologies

Vacuum Products Division

Request for Return Form

(Health and Safety Certification)

Please read important policy information on Page 3 that applies to all returns.

1) CUSTOMER INFORMATION

<table>
<thead>
<tr>
<th>Company Name:</th>
<th>Contact Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tel:</td>
<td>Email:</td>
</tr>
<tr>
<td>Fax:</td>
<td></td>
</tr>
</tbody>
</table>

Customer Ship To:

Customer Bill To:

Europe only: VAT reg. Number:
USA/Canada only: [] Taxable [] Non-taxable

2) PRODUCT IDENTIFICATION

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Agilent P/N</th>
<th>Agilent S/N</th>
<th>Original Purchasing Reference</th>
</tr>
</thead>
</table>

3) TYPE OF RETURN (Choose one from each row and supply Purchase Order if requesting a billable service)

3A. [] Non-Billable [] Billable **New PO #** (hard copy must be submitted with this form):

3B. [] Exchange [] Repair [] Upgrade [] Consignment/Demo [] Calibration [] Evaluation [] Return for Credit

4) HEALTH and SAFETY CERTIFICATION

AGILENT TECHNOLOGIES CANNOT ACCEPT ANY PRODUCTS CONTAMINATED WITH BIOLOGICAL OR EXPLOSIVE HAZARDS, RADIOACTIVE MATERIAL, OR MERCURY AT ITS FACILITY.

Call Agilent Technologies to discuss alternatives if this requirement presents a problem.

The equipment listed above (check one):

- [] HAS NOT pumped or been exposed to any toxic or hazardous materials. OR
- [] HAS pumped or been exposed to the following toxic or hazardous materials. If this box is checked, the following information must also be filled out. Check boxes for all materials to which product(s) pumped or was exposed:

 - [] Toxic
 - [] Corrosive
 - [] Reactive
 - [] Flammable
 - [] Explosive
 - [] Biological
 - [] Radioactive

List all toxic/hazardous materials. Include product name, chemical name, and chemical symbol or formula:

NOTE: If a product is received at Agilent which is contaminated with a toxic or hazardous material that was not disclosed, the customer will be held responsible for all costs incurred to ensure the safe handling of the product, and liable for any harm or injury to Agilent employees as well as to any third party occurring as a result of exposure to toxic or hazardous materials present in the product.

Print Name:
Authorized Signature:
Date:

5) FAILURE INFORMATION:

Failure Mode (REQUIRED FIELD. See next page for suggestions of failure terms):

Detailed Description of Malfunction: (Please provide the error message)

Application (system and model):

I understand and agree to the terms of Section 6, Page 3/3.

Print Name:
Authorized Signature:
Date:

Pg 2/3
Agilent Technologies

Vacuum Products Division
Request for Return Form
(Health and Safety Certification)

Please use these Failure Mode to describe the concern about the product on Page 2.

<table>
<thead>
<tr>
<th>TURBO PUMPS and TURBO CONTROLLERS</th>
<th>PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPARENT DEFECT/MALFUNCTION</td>
<td>POSITION</td>
</tr>
<tr>
<td>Does not start</td>
<td>Vertical</td>
</tr>
<tr>
<td>Does not spin freely</td>
<td>Horizontal</td>
</tr>
<tr>
<td>Does not reach full speed</td>
<td>Upside down</td>
</tr>
<tr>
<td>Mechanical Contact</td>
<td>Other:</td>
</tr>
<tr>
<td>Cooling defective</td>
<td>Operating Time:</td>
</tr>
<tr>
<td>Noise</td>
<td>Power:</td>
</tr>
<tr>
<td>Vibrations</td>
<td>Inlet Pressure:</td>
</tr>
<tr>
<td>Leaks</td>
<td>Temp 1:</td>
</tr>
<tr>
<td>Overtemperature</td>
<td>Temp 2:</td>
</tr>
<tr>
<td>Clogging</td>
<td>Purge Flow:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ION PUMPS/CONTROLLERS</th>
<th>VALVES/COMPONENTS</th>
<th>INSTRUMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bad feedthrough</td>
<td>Main seal leak</td>
<td>Gauge tube not working</td>
</tr>
<tr>
<td>Poor vacuum</td>
<td>Bellows leak</td>
<td>Display problem</td>
</tr>
<tr>
<td>Vacuum leak</td>
<td>High voltage problem</td>
<td>Communication failure</td>
</tr>
<tr>
<td>Error code on display</td>
<td>Solenoid failure</td>
<td>Dogas not working</td>
</tr>
<tr>
<td></td>
<td>Damaged flange</td>
<td>Error code on display</td>
</tr>
<tr>
<td></td>
<td>Damaged sealing area</td>
<td>Other</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>Other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEAK DETECTORS</th>
<th>INSTRUMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot calibrate</td>
<td>Heater failure</td>
</tr>
<tr>
<td>No zero/high background</td>
<td>Electrical problem</td>
</tr>
<tr>
<td>Vacuum system unstable</td>
<td>Does not reach vacuum</td>
</tr>
<tr>
<td>Cannot reach test mode</td>
<td>Over temperature</td>
</tr>
<tr>
<td>Failed to start</td>
<td>Other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SCROLL AND ROTARY VAPE PUMPS</th>
<th>DIFFUSION PUMPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump doesn’t start</td>
<td>Heater failure</td>
</tr>
<tr>
<td>Noisy pump (describe)</td>
<td>Electrical problem</td>
</tr>
<tr>
<td>Doesn’t reach vacuum</td>
<td>Doesn’t reach vacuum</td>
</tr>
<tr>
<td>Over temperature</td>
<td>Cooling coil damage</td>
</tr>
<tr>
<td>Pump seized</td>
<td>Vacuum leak</td>
</tr>
<tr>
<td>Other</td>
<td>Other</td>
</tr>
</tbody>
</table>

Section 6) ADDITIONAL TERMS

Please read the terms and conditions below as they apply to all returns and are in addition to the Agilent Technologies Vacuum Product Division – Products and Services Terms of Sale.

- Customer is responsible for the freight charges for the returning product. Return shipments must comply with all applicable Shipping Regulations (IATA, DOT, etc.) and carrier requirements.
- Customers receiving an Advance Exchange product agree to return the defective, rebuildable part to Agilent Technologies within 15 business days. Failure to do so, or returning a non-rebuildable part (crashed), will result in an invoice for the non-returned/non-rebuildable part.
- Returns for credit toward the purchase of new or refurbished Products are subject to prior Agilent approval and may incur a restocking fee. Please reference the original purchase order number.
- Units returned for evaluation will be evaluated, and a quote for repair will be issued. If you choose to have the unit repaired, the cost of the evaluation will be deducted from the final repair pricing. A Purchase Order for the final repair price should be issued within 3 weeks of quotation date. Units without a Purchase Order for repair will be returned to the customer, and the evaluation fee will be invoiced.
- A Special Cleaning fee will apply to all exposed products per Section 4 of this document.
- If requesting a calibration service, units must be functionally capable of being calibrated.