Agilent 1290 Infinity II 2D-LC Solution

User Guide
Notices

Document Information
Document No: SD-29000383 Rev. B
Part No: G2198-90001 Rev. B
EDITION 02/2020

Copyright
© Agilent Technologies, Inc. 2012-2020
No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.
Agilent Technologies
Hewlett-Packard-Strasse 8
76337 Waldbronn

Warranty
The material contained in this document is provided “as is,” and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses
The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend
U.S. Government Restricted Rights. Software and technical data rights granted to the federal government include only those rights customarily provided to end user customers. Agilent provides this customary commercial license in Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212 (Computer Software) and, for the Department of Defense, DFARS 252.227-7015 (Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial Computer Software or Computer Software Documentation).

Safety Notices

CAUTION
A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

WARNING
A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

2D-LC - User Guide
In This Book

This manual covers the Agilent 1290 Infinity II 2D-LC Solution and 2D-LC Acquisition software (G2198AA).

1 Introduction
This chapter describes the product of Agilent 1290 Infinity II 2D-LC Solution.

2 Concepts of 2D-LC
This chapter describes the concepts of Agilent 1290 Infinity II 2D-LC Solution.

3 Compatibility Matrix
The compatibility matrix provides information about installation and execution prerequisites with respect to hardware, firmware and the operating system. Agilent 2D-LC Software is an OpenLAB CDS ChemStation Edition plug-in.

4 Installation
This chapter describes the installation of the Agilent 1290 Infinity II 2D-LC Solution. These installation instructions are valid for the modes standard heart-cutting, multiple heart-cutting, high resolution sampling and comprehensive 2D-LC except the connections to the 2D-LC valve. These connections depend on the method, see chapter "Run the System for detailed information.

5 Method Parameters
This chapter provides background information on method parameters. It helps to optimize methods in Agilent 1290 Infinity II 2D-LC Solution in the modes standard heart-cutting, multiple heart-cutting, high resolution sampling and comprehensive 2D-LC.

6 Run the System
This chapter describes how to run the Agilent 1290 Infinity II 2D-LC Solution in the modes standard heart-cutting, multiple heart-cutting, high resolution sampling and comprehensive 2D-LC.
7 Investigate the effects of using different gradients in the 2Dimension

This chapter describes, how shifted gradients in the second dimension can be used to enlarge the accessible two-dimensional separation space.

8 Data Analysis

This chapter describes the analyzation of data in 2D-LC and is separated in a section heart-cutting 2D-LC and a section comprehensive 2D-LC.

9 Troubleshooting and Diagnostics

This chapter gives an overview about the troubleshooting and diagnostic features and the different user interfaces.

10 Error Information

This chapter describes the meaning of error messages, and provides information on probable causes and suggested actions how to recover from error conditions.

11 Maintenance

This chapter describes the maintenance of the 2D-LC Solution.

12 Parts for Maintenance

This chapter provides information on parts material required for the solution.

13 Alternative ways to install the System

This chapter describes alternative ways to install and setup the system.

14 Agilent 2D-LC Solution with the selectivity of mass selective detection (MSD)

This chapter describes the different options to use the Agilent 2D-LC Solution with mass selective detection (MSD).
15 Theoretical Background

This chapter gives the theoretical background of 2D-LC and describes the system components (soft- and hardware) of the Agilent 1290 Infinity II 2D-LC Solution.

16 Appendix

This chapter provides additional information on safety, legal and web.
Contents

1 Introduction 10
 Product Description 11
 Features 13

2 Concepts of 2D-LC 14
 Concepts of 2D-LC 15
 Heart-Cutting 2D-LC (LC-LC) 16
 Multiple Heart-Cutting and High Resolution Sampling 2D-LC 17
 Comprehensive 2D-LC (LCxLC) 29
 Triggering of 2D-LC 31
 Active solvent Modulation (ASM) 35

3 Compatibility Matrix 45
 Supported Chromatographic Data Systems 46
 Supported Drivers 47
 Supported Operating Systems 48
 Supported Firmware 49
 Available Languages 50
 PC Requirements 51

4 Installation 52
 Delivery checklist 53
 Options 54
 Recommendations for instrument setup 58
 Installation of the 2D-Valves 75
 2D-LC Software Configuration 84
 Installation of Active Solvent Modulation (ASM) 86
11 Maintenance 258

Introduction to Maintenance 259
Warnings and Cautions 260
Overview of Maintenance 262
Cleaning the Module 263
Correcting Leaks 264
Replace Valve Heads 266
Replacing Parts of the Valve Head 272
Replacing the Fuses of the Infinity Valve Drive 274
Replace the Module Firmware 276

12 Parts for Maintenance 277

2D-LC Loops 278
2D-LC Capillaries 279
ASM Capillaries 280
Pressure Release Kit 281
2D-LC Easy Starter Kit 282
Valve Drive Parts 283
Valve Driver Parts Infinity II 284
Valve Head Parts 285
Vale Options Overview (for 2D-LC) 287
MS Diverter Valve 291
Valve Options Overview (for G7116B) 293
Additional Heater Devices 295
Accessories and Consumables (for G7116B) 297
InfinityLab Quick Connect and Quick Turn Fittings 299
Capillary Kits 303
Important Customer Web Links 304

13 Alternative ways to install the System 305

Legacy Stack Configuration 306
14 **Agilent 2D-LC Solution with the selectivity of mass selective detection (MSD)** 311
 - Agilent 2D-LC Solution with an Agilent Single Quadrupole Detector 312
 - Agilent 2D-LC Solution with high-end MS detection 318

15 **Theoretical Background** 322
 - Theoretical basis of 2D-LC 323
 - 2nd dimension as detector 331
 - Successful Mode Combinations 333
 - Solvent Elution Modes 334
 - Practical Issues 340

16 **Appendix** 342
 - General Safety Information 343
 - Waste Electrical and Electronic Equipment (WEEE) Directive 350
 - Radio Interference 351
 - Sound Emission 352
 - Solvent Information 353
 - Further Information 354
 - Agilent Technologies on Internet 355
Chapter 1

Introduction

Product Description 11
Features 13

This chapter describes the product of Agilent 1290 Infinity II 2D-LC Solution.
Product Description

2D-LC offers great improvements in resolving power over conventional 1D-LC. The advantages are as follows:

- Further resolution of a complex mixture that cannot be separated on a single column
- Increased peak capacity
- Sample cleanup by removing matrix or interfering compounds
- Increase sample throughput (two separations going on at once)

Pre-configured systems and a dedicated 2D-LC training allow an easy start into 2D-LC.

The Agilent 1290 Infinity II 2D-LC Solution can switch to 1D-UHPLC and all the different 2D-LC techniques easily. The easy-to-use software of the Agilent 1290 Infinity II 2D-LC Solution is designed for fasted method setup in all available modes:

- Comprehensive
- Heart-cutting
- Multiple heart-cutting
- High resolution sampling
Figure 1 Dual Stack Configuration
Introduction

Features

- Boosts performance through ultrahigh peak capacity in excess of 1000 – for unmatched power to separate most complex samples
- Saves time through trouble-free instrument setup – with easy starter kit to enable fastest familiarization
- Reduces costs through single-vendor solution – higher returns on investment with one system for both 1D-LC and 2D-LC
- Supports comprehensive, heart-cutting and multiple heart-cutting 2D-LC – for any kind of 2D-LC operation ("Comprehensive 2D-LC (LCxLC)" on page 29, "Heart-Cutting 2D-LC (LC-LC)" on page 16, "Multiple Heart-Cutting and High Resolution Sampling 2D-LC" on page 17)
- Utilizes the powerful 1290 Infinity Binary Pump in the second dimension – for highest speed, accuracy, precision and resolution
- Highly flexible in the first dimension – even older Agilent LC systems can be upgraded for a very cost-effective access to the power of 2D-LC
- Allows fully symmetric flow path for comprehensive 2D-LC and matched loops – using innovative and unique 1290 Infinity Valve Drive
- New Heart-Cut Viewer software – for unmatched usability in multiple heart-cutting data analysis
- Easy-to-use 2D-LC acquisition software - for fastest and most easy system and method set-up
- Powerful comprehensive 2D-LC data analysis - using LC Image Software from GC Image LLC, USA
2 Concepts of 2D-LC

This chapter describes the concepts of Agilent 1290 Infinity II 2D-LC Solution.
In a 2D-LC-System, Pump 1 generates the first dimension gradient. An autosampler injects the sample and separates it by column 1. A 2D-LC Valve (Injector) connects the first dimension to the second dimension and stores sample peaks intermediately. These sample peaks are re-injected to the second dimension, separated by a second column and measured by Detector 2.

![Diagram of a 2D-LC-System](image)

Concepts of 2D-LC

In 2D-LC the following concepts exist:

- Comprehensive 2D-LC (LC×LC)

 In LC×LC, the total eluent from the first dimension is injected on to the column in the second dimension.

- Heart-cutting 2D-LC (LC-LC)

 In LC-LC only parts of the eluent from the first dimension are injected on to the column in the second dimension.
Heart-Cutting 2D-LC (LC-LC)

The following items are characteristic for LC-LC:

- Only parts of the effluent of the first column - only the peaks of interest eluted from the 1st dimension column - are injected to the second column.

- A peak from the 1st dimension is sampled as a whole and a method with a lower flow rate and a gradient typically with a longer run time than the collection time is used to improve separation efficiency.

- Typically longer columns with higher separation efficiency are used in 2nd dimension column.

NOTE

Heart-Cutting 2D-LC (LC-LC) is the method of choice if the samples to analyze are known or to improve confidence of an experiment (pharma, method development and so on).

NOTE

Multiple peaks eluted from the first dimension column can be sampled and analyzed in the second dimension but the run time of the second dimension must match the retention time between two first dimension peaks. A started second dimension analysis will always be finished! Thus, a second peak being eluted from the first dimension might be lost, if sampled while the second dimension analysis is still running.

There are two modes of LC-LC:

- Time-triggered LC-LC
- Peak-triggered LC-LC
Typically, the gradient time in the second dimension is much longer for heart-cutting than with the comprehensive technique. The disadvantage of the standard heart-cutting techniques is that peaks cannot be sampled while a second dimension gradient is still running. In the examples shown here, the gradient from the second dimension is analyzing the first peak (purple), while the second and third peak (gray and yellow) elute from the first dimension column. The second dimension is ready when the 4th peak (green) elutes from the first dimension; this peak can be analyzed. As the second dimension is occupied again, the fifth peak (blue) cannot be analyzed.
This problem is addressed using a setup called **multiple heart-cutting 2D-LC**. Here, the sampling loops on the 2D-LC valve are exchanged with 6-position/14-port selection valves, which are equipped with six loops each. In this configuration, a peak can be cut out and stored, then analyzed as soon as the second dimension is free.
Peaks that are cut out and stored during a run are analyzed consecutively in the second dimension, even when the first dimension is still running. To avoid carry-over the peaks are analyzed in reverse order of storage in a single Multiple Heart-Cutting Valve.
2D-LC - User Guide 20

Concepts of 2D-LC
Multiple Heart-Cutting and High Resolution Sampling 2D-LC

Principles of Heart-cutting 2D-LC

Multiple Heart-Cutting - Principles

Multiple Heart-Cutting 2D-LC is a complex workflow, working on a special algorithm for filling the sample loops and analyzing the stored cuts, based on different criteria. "Multiple Heart-Cutting - Principles" on page 20 illustrates the principles of the Multiple Heart-Cutting algorithm, following these principles:

- 2D analysis is done as soon as possible. As long as the 2nd dimension is free, any next cut from the 1st dimension will be always directly transferred to the 2nd dimension and analysed. This means:
 - The first 1D cut will be always directly analysed in the 2nd dimension.
 - If the 2nd dimension is free, when the next 1D cut is taken, it will also be directly analysed.
- If the 2nd dimension is occupied, the next 1D cut will be stored in the next sample loop.
- If all sample loops in the 1st dimension are occupied, the peak is lost.
- A peak parking deck will always be completely analysed, before switching to the other parking deck.
- Before analyzing a new parking deck, a flush gradient is run to avoid contamination.
- Stored cuts are analysed in backwards order to avoid contamination.
Concepts of 2D-LC

Multiple Heart-Cutting and High Resolution Sampling 2D-LC

Peak-based mode in multiple heart-cutting

Figure 3 Peak-based mode

In peak based mode, three parameters determine how peaks are parked:

1. A trigger marked by a black triangle indicates, if a peak has been detected, e.g. because a reference signal (if available) exceeds the threshold or the slope as defined in advanced settings.

2. The cut is parked by switching the valve. This happens either if the peak end is detected (signal falls below threshold or slope) or if the settable sampling time has been exceeded, whatever comes first. The purpose of the sampling time is delaying the parking such that a defined part of the peak, typically its center, is parked.

3. The width t of the green area, which is used for parking a peak fix and calculated from the loop volume V and flow rate F in the first dimension by t = V/F.

NOTE

Please note that the peak parking may start even before the peak trigger if the sampling time is shorter than the time corresponding to the loop volume. In this case, the green area will start left to the trigger triangle.
In time-based mode, the time given in the sampling table corresponds to the beginning of the cut parking. The sampling time is usually fixed in this case and is given by \(t = V/F \). The cut is parked by switching the valve at the time “cut end”. Ultimately, only the cut end has relevance for the method and instrument control. The cut end is displayed in an optional column, which needs to be configured by a right-click on sampling table column headers choosing option “Columns”.

For backward compatibility, adjacent cuts can be parked in the multiple heart-cutting mode. In such cases, the sampling time can be lower than a value corresponding to the normal loop fill time, which is also indicated by loop filling values below 100%. In multiple heart-cutting, loops should be overfilled (> 100%). For the second and later cuts in a series of adjacent cuts, short cuts can be created by editing the cut end (which is in an optional table column) or by moving the corresponding area in the preview window. High-Resolution Sampling should be preferred for adjacent cuts.

NOTE

Previous revisions of the 2D-LC software used same settings for peak-based versus time-based modes, which could result in start times before the beginning of peak parking in time-based mode. Loop fill time/sampling time could be set manually, which is practically not possible (see above).

If such methods are loaded to software A.01.03 and above, this will not change the behavior of such methods, as the valve switching times (cut ends) are not changed. However the start times will be corrected automatically in order to reflect the physical reality, which may look as it would be a method change.

Please also note the sampling time is related to the flow rate. If the 1D flow rate is changed, valve switch times are kept constant and the peak start time changes. Please note that the reference signal becomes invalid for a changed flow rate.
High Resolution Sampling - Peak Parking Principles

In the HiRes sampling mode, the multiple heart-cutting (MHC) valve is switched before and after parking the peak. This has the following consequences:

- Each loop for consecutive snips stores the same sample volume.
- First and last loop cannot be used for parking.
- Solvent transfer from 1D to 2D can be reduced.
- Cut number 5 cannot be parked entirely in the sample loop. Otherwise cut 6 would got partially to the transfer capillary and would therefore be lost or spoil cut 5.

Cut 5 stays partially in the transfer line and is immediately being analyzed in 2D.

- For parking cut 6 in the sample loop, the cut first needs to be moved from the 2D-LC valve to the deck valve.

Peak parking example for HiRes sampling

- In High-Resolution sampling, the first loop is a bypass position. When switching to the second loop for the first cut, unknown content may be parked in the first loop, which must be flushed at the end of the unparking procedure.
Concepts of 2D-LC
Multiple Heart-Cutting and High Resolution Sampling 2D-LC

- MHC valve switches right before parking cut 1, 2, 3, 4, 5
- Cut number 5 cannot be parked entirely in the sample loop, otherwise cut 6 would go partially to the transfer capillary and would therefore be lost or spoil cut 5

![Diagram showing sample cuts and valve status](image-url)
2D-LC - User Guide

Concepts of 2D-LC
Multiple Heart-Cutting and High Resolution Sampling 2D-LC

- Cut 5 stays partially in transfer line and is immediately analyzed in 2D

![Diagram showing cut 6's movement and valve switching](image)

- cut 6 is on its way to loop B1
- cut 5 stays partially in transfer line and is immediately being analyzed in 2D
Concepts of 2D-LC
Multiple Heart-Cutting and High Resolution Sampling 2D-LC

- For parking cut 6 into the sample loop, the cut first needs to be moved from the 2D-LC Valve to the deck valve.

![Diagram showing the process of cutting and analyzing in 2D-LC](image)
Concepts of 2D-LC
Multiple Heart-Cutting and High Resolution Sampling 2D-LC

- Cut 7 will be parked in loop B2

Last loop is required for flow-through while other deck runs analysis. During analysis, loops are filled with solvent of 2D gradient base.
High-resolution sampling (time-based mode)

For high-resolution sampling, a (start) time can be set, the sampling time and the number of cuts for a peak or range. The sampling time should be less than the time which is needed for filling one sample loop corresponding to a loop filling below 80%. Because of the parabolic flow profile, a filling greater than 80% will cause samples going to waste.

The minimum sampling time/volume is given by the transfer volume between the 2D-LC valve and the deck valve. The last cut of a deck is stored in the transfer capillary such that switching to the second deck will bring that peak to the second dimension. If a volume smaller than that transfer volume would be chosen, two cuts would be in the same capillary resulting in a loss of resolution and reproducibility.
Comprehensive 2D-LC (LCxLC)

In comprehensive 2D-LC (also known as LCxLC), the total eluent from the first dimension is injected onto the column in the second dimension using two equal-sized sampling loops that are alternated by a switching valve. While the first loop is being filled in the first dimension, the contents of the second loop is analyzed in the second dimension; the switching valve then switches the second loop into the first dimension for sampling and the first loop into the second dimension for analysis.

The gradient analysis in the second dimension is less than or equal to the sampling time in the first dimension:

![Characteristics of LCxLC](image-url)

Figure 5 Characteristics of LCxLC
2 Concepts of 2D-LC
Comprehensive 2D-LC (LCxLC)

Standard LCxLC

In standard LCxLC the total eluent of the 1st dimension is injected onto the column in the 2nd dimension using two sampling loops alternatingly by switching a modulation valve. This will be repeated from the start to the end of the first dimension separation.

Figure 6 Principle of standard LCxLC
Triggering of 2D-LC

Concept of Peak Triggering

Peak-triggered LC-LC

One or more peaks of the 1st dimension exceeding a given level are injected onto the 2D-column. Further peaks eluted from the 1D-column during the 2nd dimension gradient time are ignored.

In peak-triggered LCxLC only peaks in the first dimension that exceed a given level at a peak detector placed between the first dimension column and the modulation valve will be injected onto the column in the 2nd dimension. At the beginning of a peak triggered segment the flow will be increased from an set idle flow rate value to the method flow rate. After the time resulting from the delay volume between the peak detector and the loop (to be specified in the configuration screen of the 2D-LC Acquisition software) the sampling and the second dimension analysis will start. As soon as the peak parameters are below the set limits, sampling and second dimension analysis will stop (again, under consideration of the delay volume). The flow rate will return to its idle flow rate, if set, at the end of a defined peak triggered segment. An increase in peak dispersion might occur depending on the cell characteristics, the first dimension set-up and the used second dimension separation mode (for example large flow...
2D-LC User Guide

2 Concepts of 2D-LC

Triggering of 2D-LC

cell volume, small first dimension peak volumes and isocratic second dimension separation).

![Figure 8 Principle of peak-triggered LCxLC](image)

Relevant parameters for peak triggering

Concept of Peak Triggering

Triggering is done in advanced settings similar to integrator settings by threshold and/or slope, see **Figure 9 on page 32**.

![Figure 9 Peak triggering](image)
Concepts of 2D-LC
Triggering of 2D-LC

The valve switches under the following conditions (whichever comes first):

- If the **Sampling time** has elapsed, or

![Diagram showing peak triggering concept (elapsed sampling time)]

- If the signal falls below threshold or slope.

![Diagram showing peak triggering concept (signal falls below threshold or slope)]
Concept of Time Triggering

Time-triggered LC-LC

One or more parts of the 1st dimension in given time frames are directly injected onto the 2D-column.

![Figure 12 Principles of time-triggered LC-LC](image)

Time triggered LCxLC

In time-triggered LCxLC the user can set start and end-times of second dimension sampling in the software, multiple time segments can be used. This can be used for example if the samples are known with known areas without peaks being eluted from the first dimension. Or, to save solvent and reduce valve wear for the time before the first peak is eluted from the first dimension column or during its wash-out or re-equilibration time. The software allows to set an idle flow rate for these times.

![Figure 13 Principle of time-triggered LCxLC](image)
Active solvent Modulation (ASM)

Introduction to Active Solvent Modulation (ASM)

In conventional 2D-LC, 1D solvent in the sample loop is injected to the second dimension column. If the 1D solvent has high elution strength in respect to the 2D column, it impairs separation in the second dimension. This results in unretained elution, broad and distorted peaks, and loss of separation (see Figure 15 on page 36).

Active Solvent Modulation (ASM) dilutes the content of the sampling loop (sample and 1D solvent) with weak 2D solvent before it reaches the 2D column and therefore improves the separation in the second dimension (see Figure 16 on page 36).

Different ASM capillaries allow optimizing the dilution for different applications (see "Understanding the ASM factor" on page 41).

The ASM solution is primarily designed for 2D-LC modes multiple heart-cutting and high-resolution sampling. The 2D-LC Valve ASM is backward compatible to the standard 2D-LC valve G4236A. If ASM is not needed or for use in comprehensive 2D-LC, the ASM functionality can be disabled.

ASM is based on the 2D-LC Valve ASM G4243A and requires the InfinityLab 2D-LC solution and 2D-LC Software A.01.04 or later.
2 Concepts of 2D-LC
Active solvent Modulation (ASM)

Example: ASM with HILIC in 1D and reversed phase in 2D

In this example, a HILIC separation was run in the first dimension and a reversed phase separation in the second dimension. If sample cuts are transferred to the second dimension, 40 µL of high organic solvent are brought to a reversed phase column.\(^1\)

![1D Chromatogram(s)](image_url)

Figure 14 Analysis of pesticides using a HILIC separation with high organic solvent composition in 1D

2D resolution with conventional valve
The high elution strength of 1D solvent causes bad separation with broad and distorted peaks in the left 2D chromatogram.

![Conventional analysis of Cut#3 using a reversed phase separation in 2D](image_url)

Figure 15 Conventional analysis of Cut#3 using a reversed phase separation in 2D

2D resolution with ASM valve
In the right 2D chromatogram a 2D-LC Valve ASM was used instead of a conventional 2D-LC valve. Peaks are resolved and the sensitivity is increased.

![ASM analysis of Cut#3 using a reversed phase separation in 2D](image_url)

Figure 16 ASM analysis of Cut#3 using a reversed phase separation in 2D

\(^1\) 1D analysis of pesticides using: 1D: Zorbax RX-SIL (150 x 2.1 mm ID, 5 µm), A = 10 mM NH₄Ac in H₂O; B = ACN, Gradient: 100 to 95% acetonitrile in 5 min, 500 µL/min. MHC with 40 µL loops. 2D: Bonus RP (50 x 2.1 mm, 1.8 µm), H₂O/acetonitrile gradient (0.2% formic acid), weak solvent 3% acetonitrile, 400 µL/min, EICs from conventional 2D-LC (undiluted)
Concepts of 2D-LC
Active solvent Modulation (ASM)

Operating Principle

1D Solvent in the sample loop is partially diluted by 2D solvent from the 2D pump. *Introducing a parallel flow through an ASM capillary strongly dilutes 1D solvent with weaker 2D solvent. These solvent conditions focus the sample on the head of the 2D column and therefore enable a good separation.*

*red: 2D solvent from 2D pump, blue: sample with 1D solvent in sample loop

Figure 17 Operating principle with sample loop in flow path (schematic view)

Figure 18 Operating principle with sample loop and ASM capillary in parallel flow path (schematic view)

Figure 19 Operating principle with sample loop and ASM capillary in parallel flow path
Concepts of 2D-LC
Active solvent Modulation (ASM)

This is how the same flow path looks inside the 2D-LC valve ASM. The flow coming from the 2D pump splits up at valve port 10. One part goes through the sample loop in deck A and carries parked sample cuts and 1D solvent. The other part of 2D solvent goes through the ASM capillary between valve ports 9 and 6. Flows unite at port 5 and 1D solvent is diluted before it arrives at the 2D column head.

Once the ASM phase has finished, which is a settable method parameter, the analytical gradient starts. As opposed to a dilution with a permanent by-pass, the ASM capillary is no longer in the flow path, such that fast 2D gradients are possible through the sample loop only.
Concepts of 2D-LC
Active solvent Modulation (ASM)

Figure 21 Switching cycle of the ASM valve (countercurrent mode)

1. Cuts are parked in deck A.
2. 2D solvent flows through deck A and the ASM capillary.
3. ASM capillary leaves flow path, normal analysis with flow passing deck A. Further cuts are meanwhile parked in deck B.
4. Cuts in deck B are analyzed with ASM.
5. = 1. Cuts in deck B are further analyzed without ASM, new cuts are parked in deck A.
Concepts of 2D-LC
Active solvent Modulation (ASM)

A full switching cycle of the ASM valve has 4 positions. Positions 1 and 3 are the same as for the standard 2D-LC valve G4236A. The ASM valve has two additional positions in step 2 and 4. In both steps, the ASM capillary is in the second dimension and dilutes solvent in deck A and B, respectively.
Understanding the ASM factor

The principle of ASM is diluting 1D sample loop solvent with 2D solvent. The ASM solution achieves this dilution by a parallel flow of solvents via sample loop and ASM capillary.

![Principle of active solvent modulation (schematic view)](image)

The flow rates F through these parallel capillaries depend on the different backpressures p of the capillaries in use. The backpressure of a capillary depends on the capillary length l, radius r to the power of 4, and the viscosity η of the solvent.

$$p = \frac{8\eta l F}{\pi r^4}$$

Hagen-Poiseuille equation

The Hagen-Poiseuille equation describes the relation of these parameters.

Different ASM capillary lengths have an effect on the following parameters:

- Capillary back pressure
- Dilution factor
- Optimum dilution for different applications
Concepts of 2D-LC
Active solvent Modulation (ASM)

Example for calculation of split ratio and ASM factor.

Figure 23 Backpressure of two flow paths in ASM

A longer capillary results in higher backpressure and therefore lower flow compared to a short capillary.
Concepts of 2D-LC
Active solvent Modulation (ASM)

Example:
If the back pressure of the capillaries between ports 7 and 3 (2D-LC valve to sample loop and back) is twice as high as the back pressure of the ASM capillary between ports 9 and 6, twice as much solvent will run through the ASM capillary.

This will dilute 1D solvent in the sample loop by a factor of about 3, which is called the ASM factor.

Usage of the ASM capillary kit results in the following situation:
• The capillaries in ASM branch and transfer branch have the same inner diameter.
• The two transfer capillaries are equally long.
• The difference between $ID_{loop} = 0.35$ mm and $ID_{capillaries} = 0.12$ mm is large. Therefore the backpressure of the loops is negligible (this is, because the radius enters the Hagen-Poiseuille-Equation with the power of 4).
• Solvent composition and their viscosity in the parallel flowpaths are not predictable.

In the recommended configuration with the ASM capillary kit (see note above) one can simplify the formulae for the calculation of split ratio and ASM factor as follows:

$$Split\ ratio = \frac{l_{ASM}}{2l_{tc1,2}}$$

\[l_{ASM} = \text{Length of ASM capillary} \]
\[l_{tc1,2} = \text{Length of transfer capillary 1 or 2} \]

$$ASM\ factor = 1 + \left(\frac{1}{Split\ ratio} \right)$$

NOTE
The ASM factor calculated by the software should not be considered to be a fix number but as a guiding value which is subject to method development.
Comprehensive 2D-LC and Active Solvent Modulation

The ASM Valve can also be used for improving comprehensive 2D-LC measurements, but it is primarily optimized for multiple heart-cutting and high-resolution sampling measurements.

The ASM phase contributes to the modulation cycle. When keeping the modulation time constant, this reduces available time for the separation phase of the cycle. Otherwise, increasing the modulation time may require reducing the 1D flow rate to fill the same sample loop volume. This would change 1D chromatography.

The ASM solution requires back pressure from capillaries between the 2D-LC valve to multiple heart-cutting valves. Therefore, comprehensive 2D-LC sample loops cannot be installed directly at the ASM valve. In addition, comprehensive 2D-LC sample loops have standard fittings, which do not fit to the M4 ports of the ASM valve.

Please note that ASM valves require twice as many switches as a standard 2D-LC valve. Comprehensive 2D-LC uses many valve switches and in combination with ASM, this may reduce the maintenance interval of the valve.
3 Compatibility Matrix

Supported Chromatographic Data Systems 46
Supported Drivers 47
Supported Operating Systems 48
Supported Firmware 49
Available Languages 50
PC Requirements 51

The compatibility matrix provides information about installation and execution prerequisites with respect to hardware, firmware and the operating system. Agilent 2D-LC Software is an OpenLAB CDS ChemStation Edition plug-in.
Supported Chromatographic Data Systems

Following revision of OpenLab CDS ChemStation Edition is recommended:

- OpenLab CDS ChemStation Edition C.01.10 (or higher)

Using the Single Quadrupole functionality of the Agilent 1290 Infinity II 2D-LC Solution requires a MS license for OpenLab CDS ChemStation Edition M8362AA, which further requires license M8360AA for spectral data evaluation.

The Secured File System feature in OpenLab CDS ChemStation Edition is not supported.

This software has been tested successfully with 12 LC modules. Please note that complex systems increase memory consumption in ChemStation, which may decrease system stability. In order to reduce the likelihood of issues, please:

- Restart ChemStation from time to time, e.g. once per week or more often for complex systems
- Perform data analysis, reporting, online help reading in an off-line copy of the ChemStation instrument
- Save data before starting new tasks
- Avoid high levels of interactivity during runs by editing methods, changing signal plots settings, etc.
Compatibility Matrix
Supported Drivers

For software compatibility, see table below.

<table>
<thead>
<tr>
<th>Add on SW 2D-LC</th>
<th>ChemStation Version</th>
<th>LC & CE Driver Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.01.04 SR3</td>
<td>C.01.10 (or higher)</td>
<td>3.0/3.1 (or higher)</td>
</tr>
<tr>
<td>A.01.04 SR2/SR3</td>
<td>C.01.09/Update 1</td>
<td>A.02.19 SR3</td>
</tr>
</tbody>
</table>
3 Compatibility Matrix
Supported Operating Systems

Supported Operating Systems

Supported operating systems are the same as for the corresponding CDS revision, which are

- Windows 7 SP1 (64 Bit)
- Windows 8.1 (64 Bit)
- Windows Server 2012 R2 (64 Bit)
- Windows 10 (64-Bit)

For details, please refer to the documentation of your OpenLab CDS ChemStation edition.
Supported Firmware

Please use the firmware which is included to the DVD with Agilent 2D-LC Software in folder Firmware.

Agilent 2D-LC Software has been tested with following firmware revisions:

<table>
<thead>
<tr>
<th>Device</th>
<th>Firmware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agilent 1100 Series, 1200 Series and 1200 Infinity</td>
<td>A.07.01</td>
</tr>
<tr>
<td>Agilent 1200 Series, 1200 Infinity and 1120 Compact LC</td>
<td>B.07.27</td>
</tr>
<tr>
<td>Agilent 1200 Infinity Hosted Modules</td>
<td>C.07.20</td>
</tr>
<tr>
<td>Agilent 1290 Infinity II Modules</td>
<td>D.07.27</td>
</tr>
</tbody>
</table>

NOTE

- Agilent releases LC firmware updates for so-called "firmware sets."
- All Agilent LC instrument firmware sets have been designed and tested to be truly and strictly backwards compatible for the installed software base (CDS).
- The latest module firmware contained in each set is fully compatible and interoperable with all other module firmware of the same set.
- Agilent always recommends using the latest module firmware revision of a firmware set to avoid interoperability issues.
- Generally Agilent always recommends keeping the LC instrument firmware current.
- Do not mix firmware revisions between different sets. Agilent does not guarantee operation of mixed firmware revisions from older or newer sets.
Available Languages

Language settings: Agilent 2D-LC Software is available in English and has been tested with English versions of operating systems and CDSs.

It has also been tested successfully on a Chinese operating (Windows 7 64-Bit SP1) and chromatographic data system.
See requirements for the OpenLAB CDS ChemStation edition. A minimum RAM of 8 GB is strongly recommended.
This chapter describes the installation of the Agilent 1290 Infinity II 2D-LC Solution. These installation instructions are valid for the modes standard heart-cutting, multiple heart-cutting, high resolution sampling and comprehensive 2D-LC except the connections to the 2D-LC valve. These connections depend on the method, see chapter “Run the System” for detailed information.
Delivery checklist

The Capillary Kit 2D-LC, 1290 Infinity II contains the following parts:

<table>
<thead>
<tr>
<th>#</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5043-0269</td>
<td>Adapter-profile for Agilent 1290 Valve Drive (G1170A)</td>
</tr>
<tr>
<td>1</td>
<td>5067-4608</td>
<td>Capillary ST 0.17 mm x 280 mm SX/S</td>
</tr>
<tr>
<td>2</td>
<td>5067-4651</td>
<td>Capillary ST 0.12 mm x 280 mm SL/SX</td>
</tr>
<tr>
<td>1</td>
<td>5067-4669</td>
<td>Capillary ST 0.12 mm x 600 mm S/SL</td>
</tr>
<tr>
<td>1</td>
<td>5067-4670</td>
<td>Capillary ST 0.17 mm ID 600 mm pre-swaged</td>
</tr>
<tr>
<td>1</td>
<td>5500-1217</td>
<td>Capillary, ST, 0.17 mm x 900 mm SI/SX</td>
</tr>
<tr>
<td>1</td>
<td>5500-1227</td>
<td>Capillary ST 0.17 mm x 150 mm SL-SL</td>
</tr>
<tr>
<td>1</td>
<td>5500-1240</td>
<td>Capillary ST 0.17 mm x 105 mm SL-SL</td>
</tr>
<tr>
<td>2</td>
<td>5500-1245</td>
<td>Capillary ST 0.17 mm x 400 mm SI/SI</td>
</tr>
<tr>
<td>2</td>
<td>5500-1251</td>
<td>Capillary ST 0.12 mmX 400 mm SL-SL</td>
</tr>
</tbody>
</table>

NOTE Depending on the set up of your instrument, extra parts and capillaries might be required for instrument set up. Those parts are ordered separately or are shipped with other components, for example the 2D-LC or MHC valves. Their origin as well as their function is described in the instrument setup section below.
NOTE

The Agilent 1290 Infinity II 2D-LC Solution must contain an Agilent Infinity II High Speed Pump G7120A or Agilent 1290 Infinity Binary Pump G4220A as 2nd dimension pump.

This is necessary to achieve the following:

- Synchronize valve switches
- Run fast gradients on the 2nd dimension column
Installation Options

<table>
<thead>
<tr>
<th>Function in 2D</th>
<th>Functional Element</th>
<th>Part Number</th>
<th>Module</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump</td>
<td></td>
<td>G7120A</td>
<td>1290 Infinity II High Speed Pump</td>
<td></td>
</tr>
<tr>
<td>Pump</td>
<td></td>
<td>G7112B</td>
<td>1260 Infinity II Binary Pump</td>
<td></td>
</tr>
<tr>
<td>Pump</td>
<td></td>
<td>G7111B</td>
<td>1290 Infinity II Quaternary Pump</td>
<td></td>
</tr>
<tr>
<td>Pump</td>
<td></td>
<td>G7104A</td>
<td>1290 Infinity II Flexible Pump</td>
<td></td>
</tr>
<tr>
<td>Pump</td>
<td></td>
<td>G7104C</td>
<td>1260 Infinity II Flexible Pump</td>
<td></td>
</tr>
<tr>
<td>Pump</td>
<td></td>
<td>G4220A/B</td>
<td>1290 Infinity Binary Pump</td>
<td></td>
</tr>
<tr>
<td>Pump</td>
<td></td>
<td>G4204A</td>
<td>1290 Infinity Quaternary Pump</td>
<td></td>
</tr>
<tr>
<td>Pump</td>
<td></td>
<td>G1312B</td>
<td>1260 Infinity Binary Pump</td>
<td></td>
</tr>
<tr>
<td>1st dimension</td>
<td>Sampler</td>
<td>G7129B</td>
<td>1290 Infinity II Vialsampler</td>
<td></td>
</tr>
<tr>
<td>1st dimension</td>
<td>Sampler</td>
<td>G7167B</td>
<td>1290 Infinity II Multisampler</td>
<td></td>
</tr>
<tr>
<td>1st dimension</td>
<td>Column Compartment</td>
<td>G7116B</td>
<td>1290 Infinity II Multicolumn Thermostat</td>
<td></td>
</tr>
<tr>
<td>1st dimension</td>
<td>Column Compartment</td>
<td>G1316C</td>
<td>1290 Infinity Thermostatted Column Compartment</td>
<td></td>
</tr>
<tr>
<td>Detector</td>
<td>Detector</td>
<td>G7117A/B/C</td>
<td>1260/1290 Infinity II Diode Array Detector</td>
<td>Recommended for multiple heart-cutting and high-resolution sampling as a peak trigger or for monitoring. Optional for comprehensive 2D-LC. 1D flow cells require a minimum pressure stability of 60 bar (which excludes FLD and RID detectors).</td>
</tr>
<tr>
<td>Detector</td>
<td>Detector</td>
<td>G7114A/B</td>
<td>1260/1290 Infinity II Variable Wavelength Detector</td>
<td></td>
</tr>
<tr>
<td>Detector</td>
<td>Detector</td>
<td>G7115A</td>
<td>1260 Infinity II Diode Array Detector WR</td>
<td></td>
</tr>
<tr>
<td>Detector</td>
<td>Detector</td>
<td>G7165A</td>
<td>1260 Infinity II Multiple Wavelength Detector</td>
<td></td>
</tr>
</tbody>
</table>
Installation Options

<table>
<thead>
<tr>
<th>Function in 2D</th>
<th>Functional Element</th>
<th>Part Number</th>
<th>Module</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve drive</td>
<td>G1170A</td>
<td>1290 Infinity Valve Drive</td>
<td>1x for SHC, LCxLC 3x for MHC, HighRes Sampling</td>
<td></td>
</tr>
<tr>
<td>2D-LC Valve</td>
<td>G4236A</td>
<td>2D-LC valve kit, Standard</td>
<td>Contains the 2D-LC valve head</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G4243A</td>
<td>2D-LC valve kit, ASM</td>
<td>Contains the 2D-LC valve head with Active Solvent Modulation (ASM) functionality</td>
<td></td>
</tr>
<tr>
<td>MHC Valves</td>
<td>G4236A#007</td>
<td>Multiple Heart-Cutting Kit</td>
<td>Contains two MHC valve heads</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G4243A#007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G4242A</td>
<td>2D-LC Multiple Heart-Cutting Upgrade Kit</td>
<td>Kit to upgrade MHC valves to an existing 2D-LC system</td>
<td></td>
</tr>
<tr>
<td>Pressure Relief Kit (PRK)</td>
<td>G4236-60010</td>
<td>Pressure Relief Kit</td>
<td>Mandatory if a 1D detector is used. The kit prevents pressure pulses and protects detector flow cells!</td>
<td></td>
</tr>
</tbody>
</table>
Installation Options

Table 1 Overview of recommended hardware configurations

<table>
<thead>
<tr>
<th>Function in 2D</th>
<th>Functional Element</th>
<th>Part Number</th>
<th>Module</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump</td>
<td></td>
<td>G7120A</td>
<td>1290 Infinity II High Speed Pump</td>
<td>1290 Infinity or Infinity II Binary Pump required.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G4220A/B</td>
<td>Infinity 1290 Binary Pump</td>
<td></td>
</tr>
<tr>
<td>Column Compart</td>
<td></td>
<td>G7116B</td>
<td>1290 Infinity II Multicolumn Thermostat</td>
<td>Optional: A second column compartment is optional for large temperature differences between 1st and 2nd dimension. Any of these are supported as well as others or older modules.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1316C</td>
<td>1290 Infinity Thermostatted Column Compartment</td>
<td></td>
</tr>
<tr>
<td>2nd dimension</td>
<td>Detector</td>
<td>G7117A/B/C</td>
<td>1260/1290 Infinity II Diode Array Detector</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G7114A/B</td>
<td>1260/1290 Infinity II Variable Wavelength Detector</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G7115A</td>
<td>1260 Infinity II Diode Array Detector WR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G7165A</td>
<td>1260 Infinity II Multiple Wavelength Detector</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1321B</td>
<td>1260 Infinity FLD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G4260A</td>
<td>1260 Infinity ELSD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G6125B</td>
<td>Agilent Single Quadrupole Detector LC/MSD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G6135B</td>
<td>Agilent Single Quadrupole Detector LC/MSD XT</td>
<td></td>
</tr>
</tbody>
</table>
Recommendations for instrument setup

General Information

InfinityLab 2D-LC Solutions come in several flavors, still allowing flexible combination of InfinityLab Series and 1200 Series Infinity modules. For 2D-LC, a two-stack configuration is necessary. On the left stack, the order of the modules from bottom to top is: pumps for both dimensions, then Vial- or Multisampler. The sampler must be placed on top of the pumps. The right stack consists of one or two column compartments and one or two detectors. When using multiple detectors at different positions of the system, it is recommended to use the same detector type. Depending on the number of solvents used, both stacks offer the possibility to place a solvent cabinet on top.

Figure 24 Left: Recommended stack configuration for the 1290 Infinity II 2D-LC System. Right: Bench space requirements of the 1290 Infinity II 2D-LC System.

NOTE The dual stack configuration for 2D-LC requires at least 97 x 62 cm (24.4 x 38.2 inches) free, vertical bench space. 2.5 cm (1.0 inches) of space on either side and approximately 8 cm (3.1 inches) in the rear is reserved for air circulation and electric connections.
Agilent InfinityLab 2D-LC Solutions offer two general valve configurations that decide which of the 2D-LC modes that can be used with the instrument. While the Single Heart-Cutting (SHC) configuration offers access to Single Heart-Cutting and Comprehensive 2D-LC, the Multiple Heart-Cutting (MHC) configurations additionally gives access to Multiple Heart-Cutting and High-Resolution Sampling 2D-LC. In addition, the Active Solvent Modulation valve (G4243A) is only available for the MHC configuration. An overview of all available 2D-LC modes can be found in Optional hardware configurations (Table 1 on page 55).

Stack setups of all other LC modules (reference) remain valid since those setups are independent of the valve configuration.

Table 2 Overview of 2D-LC modes dependent on valve configuration of the 2D-LC system

<table>
<thead>
<tr>
<th>Valves</th>
<th>SHC Configuration</th>
<th>MHC Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D-LC Valve, Standard</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2D-LC Valve, Active Solvent Modulation (ASM)</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>Operation Modes</td>
<td>SHC Configuration</td>
<td>MHC Configuration</td>
</tr>
<tr>
<td>Comprehensive (LCxLC)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Single Heart-Cutting</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Multiple Heart-Cutting</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>High Resolution Sampling</td>
<td>X</td>
<td>✓</td>
</tr>
</tbody>
</table>
Single Heart-Cutting Configuration

2D-LC instruments that are exclusively used for Single Heart-Cutting and Comprehensive 2D-LC experiments only require the standard 2D-LC valve (G4236A). The valve can be conveniently attached to any Infinity II pump that is installed. For a SHC configuration, transfer capillaries (6a/6b) are not necessary since MHC decks are not installed.

Figure 25 Schematics of a Single Heart-Cutting (SHC) Configuration with supported valves. For technical reasons, the ASM valve (G4243A) is not supported in Single Heart-Cutting setups.
Installation
Recommendations for instrument setup

Multiple Heart-Cutting Configuration

2D-LC instruments that are used for Multiple Heart-Cutting or High-Resolution Sampling 2D-LC require additional MHC decks. For MHC configurations, both the standard 2D-LC valve (G4236A) and the ASM valve head (G4243A) are supported. The valves can be conveniently attached to any Infinity II pump in the stack. Depending on the valve head that is used, different transfer capillaries (6a/6b) must be installed. For installation, please follow the guidance below.

![Schematics of a Multiple Heart-Cutting (MHC) Configuration with supported valves and transfer capillaries.](image)

Supported:

- **2D-LC valve, Standard (G4236A)**

 Transfer capillaries: 6a

- **2D-LC valve, ASM (G4243A)**

 Transfer capillaries: 6b
Recommended stack setups

InfinityLab 2D-LC Solutions allow three basic stack setups in three variations depending on the column compartment concept that is used. The basic stack configurations are distinguished by the pump used for the first and second dimension. In the second dimension a 1290 Infinity or 1290 Infinity II High-Speed Pump is mandatory. Agilent 1290 Infinity pumps are always based on the bottom. The capillary kit covers all recommended configurations. The following configurations optimize the system flow path, ensuring minimum delay and dispersion volumes:

Table 3 Supported instrument configurations with a list of supported LC pumps. Numbers refer to the stack setup that is recommended.

<table>
<thead>
<tr>
<th>#</th>
<th>1D pump</th>
<th>supported 2D pumps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1290 Infinity II / 1260 Infinity II Prime LC 1290 Infinity II Flexible Pump (G7104C) 1290 Infinity II Flexible Pump (G7104A) 1290 Infinity II High-Speed Pump (G7120A)</td>
<td>1290 Infinity / 1290 Infinity II 1290 Infinity II High-Speed Pump (G7120A) 1290 Infinity Binary Pump (G4220A)</td>
</tr>
<tr>
<td>2</td>
<td>1290 Infinity 1290 Infinity Quaternary Pump (G4204A) 1290 Infinity Binary Pump (G4220A)</td>
<td>1290 Infinity II 1290 Infinity II High-Speed Pump (G7120A)</td>
</tr>
<tr>
<td>3</td>
<td>1260 Infinity Binary / 1260 Infinity II Binary 1260 Infinity II Binary Pump (G7112B) 1260 Infinity II Binary Pump (G1312B)</td>
<td>1290 Infinity II 1290 Infinity II High-Speed Pump (G7120A)</td>
</tr>
</tbody>
</table>

NOTE This guide only covers setups that contain at least one Infinity II pump module! Setups that contain exclusively 1200 Infinity Series modules must be installed with the corresponding capillary kit. Connections mentioned in this setup are concurrent direction for the Standard 2D-LC Valve (G4236A) and countercurrent for the ASM 2D-LC Valve (G4243A). To connect the 2D-LC Valve, Standard in countercurrent direction, please follow the schematics shown in the 2D-LC Software Configuration screen. For more information, please read the 2D-LC Software Configuration section below. Connection to valve port are mentioned in brackets, for example. ASM Valve (2) = ASM Valve, Port 2.
Installation

Recommendations for instrument setup

Figure 27 Stack Setup #1. Recommended setup if both pumps are Infinity II modules or the 2D pump is a 1290 Infinity Binary pump.

<table>
<thead>
<tr>
<th>Number of Capillary</th>
<th>#</th>
<th>Connection</th>
<th>L x ID [mm]</th>
<th>P/N</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>1</td>
<td>1D pump (top) to autosampler</td>
<td>400 x 0.17</td>
<td>5500-1245</td>
<td>Capillary ST 0.17x400 SI/SI</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Autosampler to 1D column (in MCT)</td>
<td>600 x 0.12</td>
<td>5067-4669</td>
<td>Capillary ST 0.12x600 S/SL</td>
</tr>
<tr>
<td>3a</td>
<td>1</td>
<td>1D column to 1D DAD</td>
<td>400 x 0.12</td>
<td>5500-1251</td>
<td>Capillary ST 0.12x400 SL/SL</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1D DAD to T-piece of PRK</td>
<td>400 x 0.17</td>
<td>5500-1245</td>
<td>Capillary ST 0.17x400 SI/SI</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>T-piece of PRK to Standard 2D-LC Valve (Port 3) / ASM Valve (Port 4)</td>
<td>105 x 0.17</td>
<td>5500-1240</td>
<td>Capillary ST 0.17x105 SL/SL</td>
</tr>
<tr>
<td>6a</td>
<td>4</td>
<td>2D-LC Valve (1) - Deck (IN) – Deck (OUT) - 2D-LC Valve (8) 2D-LC Valve (5) - Deck (IN) – Deck (OUT) - 2D-LC Valve (4)</td>
<td>170 x 0.12</td>
<td>5500-1270</td>
<td>Capillary ST 0.12x170 S/M</td>
</tr>
<tr>
<td>6b</td>
<td>4</td>
<td>ASM Valve (7) - Deck (IN) – Deck (OUT) - ASM Valve (3) ASM Valve (2) - Deck (IN) – Deck (OUT) - ASM Valve (8)</td>
<td>170 x 0.12</td>
<td>5500-1376</td>
<td>Capillary ST 0.12x170 M/M (delivered with 2D-LC Valve Kit, ASM)</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2D-LC valve (6) / ASM valve (10) to 2D column (in MCT)</td>
<td>400 x 0.12</td>
<td>5500-1251</td>
<td>Capillary ST 0.12x400 SL/SL</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2D column (in MCT) to 2D DAD</td>
<td>280 x 0.12</td>
<td>5067-4651</td>
<td>Capillary ST 0.12x280 SL/SX</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>2D pump to 2D-LC Valve (7) / ASM Valve (5)</td>
<td>280 x 0.17</td>
<td>5067-4608</td>
<td>Capillary ST 0.17x280 SX/S</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>T-piece of PRK to damper capillary</td>
<td>150 x 0.17</td>
<td>5500-1227</td>
<td>Capillary ST 0.17x150 SL/SL</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>waste line</td>
<td>self-cut x 0.7</td>
<td>0890-1713</td>
<td>Tubing-flexible 0.8/1.61mm PTFE WT (delivered with UV detector)</td>
</tr>
</tbody>
</table>
#2

Autosampler

2D Pump
- 1290 Infinity II High-Speed Pump
- 1290 Infinity Quaternary Pump
- 1290 Infinity Binary Pump

1D Pump

Figure 28 Stack Setup #2. Recommended setup if the 1D pump is a 1290 Infinity Binary Pump or a 1290 Infinity Quaternary Pump.

<table>
<thead>
<tr>
<th>Number of Capillary</th>
<th>#</th>
<th>Connection</th>
<th>L x ID [mm]</th>
<th>P/N</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>1</td>
<td>1D pump (bottom) to sampler</td>
<td>600 x 0.17</td>
<td>5067-4670</td>
<td>Capillary ST 0.17x600 S/SH</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Autosampler to 1D column (in MCT)</td>
<td>600 x 0.12</td>
<td>5067-4669</td>
<td>Capillary ST 0.12x600 S/SL</td>
</tr>
<tr>
<td>3a</td>
<td>1</td>
<td>1D column to 1D DAD</td>
<td>400 x 0.12</td>
<td>5500-1251</td>
<td>Capillary ST 0.12x400 SL/SL</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1D DAD to T-piece of PRK</td>
<td>400 x 0.17</td>
<td>5500-1245</td>
<td>Capillary ST 0.17x400 SI/Sl</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>T-piece of PRK to Standard 2D-LC Valve (Port 3) / ASM Valve (Port 4)</td>
<td>105 x 0.17</td>
<td>5500-1240</td>
<td>Capillary ST 0.17x105 SL/SL</td>
</tr>
<tr>
<td>6a</td>
<td>4</td>
<td>2D-LC Valve (1) - Deck (IN) - Deck (OUT) - 2D-LC Valve (5) - Deck (IN) - Deck (OUT) - 2D-LC Valve (4)</td>
<td>170 x 0.12</td>
<td>5500-1270</td>
<td>Capillary ST 0.12x170 S/M</td>
</tr>
<tr>
<td>6b</td>
<td>4</td>
<td>ASM Valve (7) - Deck (IN) - Deck (OUT) - ASM Valve (3) ASM Valve (2) - Deck (IN) - ASM Valve (8)</td>
<td>170 x 0.12</td>
<td>5500-1376</td>
<td>Capillary ST 0.12x170 M/M (delivered with 2D-LC Valve Kit, ASM)</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2D-LC valve (6) / ASM valve (10) to 2D column (in MCT)</td>
<td>400 x 0.12</td>
<td>5500-1251</td>
<td>Capillary ST 0.12x400 SL/SL</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2D column (in MCT) to 2D DAD</td>
<td>280 x 0.12</td>
<td>5067-4651</td>
<td>Capillary ST 0.12x280 SL/SX</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>2D pump to 2D-LC Valve (7) / ASM Valve (5)</td>
<td>280 x 0.17</td>
<td>5067-4608</td>
<td>Capillary ST 0.17x280 SX/S</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>T-piece of PRK to damper capillary</td>
<td>150 x 0.17</td>
<td>5500-1227</td>
<td>Capillary ST 0.17x150 SL/SL</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>waste line</td>
<td>self-cut x 0.7</td>
<td>0890-1713</td>
<td>Tubing-flexible 0.8/1.61mm PTFE WT (delivered with UV detector)</td>
</tr>
</tbody>
</table>
Installation

Recommendations for instrument setup

Figure 29 Stack Setup #3. Recommended setup if the 1D pump is a 1260 Infinity or 1260 Infinity II Binary Pump.

<table>
<thead>
<tr>
<th>Number of Capillary</th>
<th>#</th>
<th>Connection</th>
<th>L x ID [mm]</th>
<th>P/N</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1c</td>
<td>1</td>
<td>1D pump (bottom) to sampler</td>
<td>900 x 0.17</td>
<td>5500-1217</td>
<td>Capillary ST 0.17x900 SI/SX</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Autosampler to 1D column (in MCT)</td>
<td>600 x 0.12</td>
<td>5067-4669</td>
<td>Capillary ST 0.12x600 S/SL</td>
</tr>
<tr>
<td>3a</td>
<td>1</td>
<td>1D column to 1D DAD</td>
<td>400 x 0.12</td>
<td>5500-1251</td>
<td>Capillary ST 0.12x400 SL/SL</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1D DAD to T-piece of PRK</td>
<td>400 x 0.17</td>
<td>5500-1245</td>
<td>Capillary ST 0.17x400 SI/SL</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>T-piece of PRK to Standard 2D-LC Valve (Port 3) / ASM Valve (Port 4)</td>
<td>105 x 0.17</td>
<td>5500-1240</td>
<td>Capillary ST 0.17x105 SL/SL</td>
</tr>
<tr>
<td>6a</td>
<td>4</td>
<td>2D-LC Valve (1) - Deck (IN) – Deck (OUT) - 2D-LC Valve (6) 2D-LC Valve (5) - Deck (IN) – Deck (OUT) - 2D-LC Valve (4)</td>
<td>170 x 0.12</td>
<td>5500-1270</td>
<td>Capillary ST 0.12x170 S/M</td>
</tr>
<tr>
<td>6b</td>
<td>4</td>
<td>ASM Valve (7) - Deck (IN) – Deck (OUT) - ASM Valve (3) ASM Valve (2) - Deck (IN) – Deck (OUT) - ASM Valve (8)</td>
<td>170 x 0.12</td>
<td>5500-1376</td>
<td>Capillary ST 0.12x170 M/M (delivered with 2D-LC Valve Kit, ASM)</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2D-LC valve (6) / ASM valve (10) to 2D column (in MCT)</td>
<td>400 x 0.12</td>
<td>5500-1251</td>
<td>Capillary ST 0.12x400 SL/SL</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2D column (in MCT) to 2D DAD</td>
<td>280 x 0.12</td>
<td>5067-4651</td>
<td>Capillary ST 0.12x280 SL/SX</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>2D pump to 2D-LC Valve (7) / ASM Valve (5)</td>
<td>280 x 0.17</td>
<td>5067-4608</td>
<td>Capillary ST 0.17x280 SX/S/</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>T-piece of PRK to damper capillary</td>
<td>150 x 0.17</td>
<td>5500-1227</td>
<td>Capillary ST 0.17x150 SL/SL</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>waste line</td>
<td>self-cut x 0.7</td>
<td>0890-1713</td>
<td>Tubing-flexible 0.8/1.61mm PTFE WT (delivered with UV detector)</td>
</tr>
</tbody>
</table>
Alternative instrument setups for additional functionality

The standard stack setups can be upgraded with additional valves to add additional functionality. Table 2 gives an overview of all supported modifications of a standard 2D-LC instrument. At a time, only one modification is recommended to ensure correct operation of the instrument. The standard stack setup uses one column compartment that hosts both the 1D and 2D column.

Table 4 List up supported modifications of a standard 2D-LC instrument configuration.

<table>
<thead>
<tr>
<th>Alternative column compartment concepts</th>
<th>Comment</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1D MCT/TCC hosts column switching valve</td>
<td>If a 6-position/14-port or 8-position/18-port InfinityLab Quick Change Valve is used, additional two adapters necessary (2xG1316-87326, must be purchased separately)</td>
<td>See Figure 30 on page 67</td>
</tr>
<tr>
<td>B Setups that contain separate 1D and 2D MCTs/TCCs</td>
<td></td>
<td>See Figure 31 on page 68</td>
</tr>
<tr>
<td>C Setups in which the 1D column is hosted in an Integrated Column Compartment (ICC)</td>
<td>Longer capillary (5500-1170) for Quick Connect Fitting at column inlet or new 0.12x280mm Quick Connect Fitting assembly (5067-5960) necessary (must be purchased separately)</td>
<td>See Figure 32 on page 69</td>
</tr>
<tr>
<td>D Setup with a MS diverter valve</td>
<td></td>
<td>See Figure 33 on page 71</td>
</tr>
<tr>
<td>E Setup of a 1D/2D Switching Valve</td>
<td>If a 1D and 2D detector is used; not supported with modifications A-C</td>
<td>See Figure 34 on page 73</td>
</tr>
<tr>
<td>F 1D/2D Switching Valve w/o 1D detector</td>
<td>For setups that do not have a 1D detector, e.g. for certain LCxLC setups or setups with a QQQ mass spectrometer as a 2D detector, not supported with modifications A-C</td>
<td>See Figure 35 on page 74</td>
</tr>
</tbody>
</table>
Recommendations for instrument setup

Figure 30 Setup A. Recommended setup if a column switching valve (for example 6-position/14-port InfinityLab Quick-Change Valve) is used. For a InfinityLab 2-position/6-port Quick-Change Valve, adapters A1 are not necessary.

<table>
<thead>
<tr>
<th>Number of Capillary</th>
<th>#</th>
<th>Connection</th>
<th>L x ID [mm]</th>
<th>P/N</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>2</td>
<td>Adapter: capillary 2 to column switching valve, (Port IN) / Adapter column switching valve (Port OUT) to capillary 3a</td>
<td>75x0.12mm</td>
<td>G1316-87326</td>
<td>SST Capillary 75x0.12mm, f/m, ns 0.8 (must be purchased separately)</td>
</tr>
</tbody>
</table>

For all other capillaries / connections, please refer to Figure 27 on page 63, Figure 28 on page 64, and Figure 29 on page 65.

NOTE

Adapters to and from the column switching valve are only necessary if a 6-position/14-port InfinityLab Quick-Change Valve or a for example 8-position/18-port InfinityLab Quick-Change Valve is used.
Installation
Recommendations for instrument setup

Figure 31 Setup B. Recommended setup if the instrument contains separate MCTs/ TCCs for 1D and 2D columns.

<table>
<thead>
<tr>
<th>Number of Capillary</th>
<th>#</th>
<th>Connection</th>
<th>L x ID [mm]</th>
<th>P/N</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3b</td>
<td>1</td>
<td>1D column to 1D DAD</td>
<td>280 x 0.12</td>
<td>5067-4651</td>
<td>Capillary ST 0.12x280 SL/SX</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2D column (in 2D MCT) to 2D DAD</td>
<td>280 x 0.12</td>
<td>5067-4651</td>
<td>Capillary ST 0.12x280 SL/SX (part of 2D-LC capillary kit)</td>
</tr>
</tbody>
</table>

For all other capillaries / connections, please refer to Figure 27 on page 63, Figure 28 on page 64, and Figure 29 on page 65.
Recommendations for instrument setup

Figure 32 Setup C. Recommended setup if 1D column is hosted in an Integrated Column Compartment (ICC).

<table>
<thead>
<tr>
<th>Number of Capillary</th>
<th>#</th>
<th>Connection</th>
<th>L x ID [mm]</th>
<th>P/N</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
<td>Injection Valve to ICC</td>
<td>0.12x105mm</td>
<td>5500-1238</td>
<td>Capillary ST 0.12x105 SL/SL (provided with ICC)</td>
</tr>
<tr>
<td>C2</td>
<td>1</td>
<td>Heat exchanger out to column (InfiniLab Quick Connect Fitting)</td>
<td>0.12x280mm</td>
<td>5500-1170</td>
<td>Capillary ST 0.12x280 (must be purchased separately)</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2D column (in 2D MCT) to 2D DAD</td>
<td>280 x 0.12</td>
<td>5067-4651</td>
<td>Capillary ST 0.12x280 SL/SX (part of 2D-LC capillary kit)</td>
</tr>
</tbody>
</table>

For all other capillaries / connections, please refer to Figure 27 on page 63, Figure 28 on page 64, and Figure 29 on page 65.
Installation
Recommendations for instrument setup

The 2D-LC Software allows only certain valves to be configured as diverter valves. A list of supported valves can be found in Table 3 on page 62. More information is available in the Agilent Technical Note Agilent InfinityLab 2D-LC Solution with mass spectrometric detection and diverter valve (G4236-90100).

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4231A</td>
<td>2pos/6port valve head, 800 bar</td>
</tr>
<tr>
<td>G4231C</td>
<td>2pos/6port valve head, 1300 bar</td>
</tr>
<tr>
<td>G4232C</td>
<td>2pos/10port valve head, 800 bar</td>
</tr>
<tr>
<td>G4232D</td>
<td>2pos/10port valve head, 1300 bar</td>
</tr>
</tbody>
</table>
4

Installation
Recommendations for instrument setup

Figure 33 Setup D. Recommended setup of a MS diverter valve.

<table>
<thead>
<tr>
<th>Number of Capillary</th>
<th>#</th>
<th>Connection</th>
<th>L x ID [mm]</th>
<th>P/N</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>1</td>
<td>Capillary from 2D detector to T-piece</td>
<td>0.12 x 400</td>
<td>5067-4606</td>
<td>Capillary ST 400x0.12 S/SH</td>
</tr>
<tr>
<td>D2</td>
<td>1</td>
<td>T-piece</td>
<td></td>
<td>0100-0969</td>
<td>1/16in Tee, SST, Low Dead Volume</td>
</tr>
<tr>
<td>D3</td>
<td>1</td>
<td>Capillary from MS to T-piece (self cut)</td>
<td>0.12 x 400</td>
<td>0890-1915</td>
<td>Capillary PEEK, 0.12x1250</td>
</tr>
<tr>
<td>D4</td>
<td>2</td>
<td>T-piece to pressure relief valve; pressure relief valve to diverter valve</td>
<td>0.3 x 80</td>
<td>5500-1228</td>
<td>Capillary ST 0.3x80 SL/SL</td>
</tr>
<tr>
<td>D5</td>
<td>1</td>
<td>Pressure relief valve</td>
<td></td>
<td>G4212-60022</td>
<td>Pressure relief valve</td>
</tr>
<tr>
<td>D6</td>
<td>1</td>
<td>blank nut</td>
<td></td>
<td>01080-83202</td>
<td>Blanking Nut 1/16 in SST</td>
</tr>
<tr>
<td>D7</td>
<td>1</td>
<td>diverter valve to waste</td>
<td></td>
<td>5062-2462</td>
<td>Tubing PTFE 0.7 mm x 5m</td>
</tr>
<tr>
<td>D8</td>
<td>1</td>
<td>peak fittings</td>
<td></td>
<td>5063-6591</td>
<td>Fitting-Fingertight PEEK for 1/16-in</td>
</tr>
<tr>
<td>D9</td>
<td>1</td>
<td>Valve holder for Valve drive to attach to MCT</td>
<td></td>
<td>5067-6138</td>
<td>Valve Holder Kit Right-IF-II-G</td>
</tr>
<tr>
<td>D10</td>
<td>1</td>
<td>Diverter Valve</td>
<td></td>
<td>G4231A</td>
<td>2pos/6port, 800bar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G4231C</td>
<td>2pos/6port, 1300bar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G4232A</td>
<td>2pos/10port, 800bar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G4232C</td>
<td>2pos/10port, 1300bar</td>
</tr>
</tbody>
</table>

For all other capillaries / connections, please refer to Figure 27 on page 63, Figure 28 on page 64, and Figure 29 on page 65.
The 1D/2D switching valve offers the possibility to exclude the 2D flow path of the instrument to run both 1D and 2D experiments which is useful for example if one mass spectrometer is used for both 1D and 2D experiments. Two basic setups are supported (setup E and F). The recommended setups for a 1D/2D Switching valves do not support the use of ICC column compartments, column switching valves or the use of separate 1D and 2D MCTs/TCCs! To run 1D experiments, the 2D mode must be disabled in the 2D-LC Software Configuration Tab.
Installation
Recommendations for instrument setup

Figure 34 Setup E. Recommended setup for the 1D/2D switching valve.

<table>
<thead>
<tr>
<th>Number of Capillary</th>
<th>#</th>
<th>Connection</th>
<th>L x ID [mm]</th>
<th>P/N</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>1</td>
<td>MCT / TCC to 1D DAD</td>
<td>400 x 0.12</td>
<td>5500-1251</td>
<td>Capillary ST 0.12x400 SL/SL</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1D MCT / TCC to 1D DAD</td>
<td>280 x 0.12</td>
<td>5067-4651</td>
<td>Capillary ST 0.12x280 SL/SX</td>
</tr>
<tr>
<td>E1</td>
<td>2</td>
<td>1D column to 1D/2D Switching Valve (1); 2D column to 1D/2D Switching Valve (3)</td>
<td>120 x 0.12</td>
<td>5067-4652</td>
<td>Capillary ST 0.12x120 SX/SX</td>
</tr>
<tr>
<td>E2</td>
<td>1</td>
<td>Connection capillary 1D/2D Switching Valve (4) to (5)</td>
<td>90 x 0.12</td>
<td>5067-4649</td>
<td>Capillary ST 0.12x90 SX/S</td>
</tr>
</tbody>
</table>

For all other capillaries / connections, please refer to Figure 27 on page 63, Figure 28 on page 64, and Figure 29 on page 65.
Installation

Recommendations for instrument setup

![Diagram](image)

Figure 35 Setup F. Recommended setup for the 1D/2D switching valve without 1D detector.

<table>
<thead>
<tr>
<th>Number of Capillary</th>
<th>#</th>
<th>Connection</th>
<th>L x ID [mm]</th>
<th>P/N</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3b</td>
<td>1</td>
<td>1D/2D Switching Valve (2) to 2D DAD</td>
<td>280 x 0.12</td>
<td>5067-4651</td>
<td>Capillary ST 0.12x280 SL/SX</td>
</tr>
<tr>
<td>F1</td>
<td>2</td>
<td>1D column to 1D/2D Switching Valve (1); 2D column to 1D/2D switching valve (3)</td>
<td>120 x 0.12</td>
<td>5067-4652</td>
<td>Capillary ST 0.12x 120 SX/SX</td>
</tr>
<tr>
<td>F2</td>
<td>1</td>
<td>Connection 1D/2D switching valve ports (4) to (5)</td>
<td>90 x 0.12</td>
<td>5067-4649</td>
<td>Capillary ST 0.12x90 SX/S</td>
</tr>
<tr>
<td>F3</td>
<td>1</td>
<td>MCT/TCC to 2D-LC valve (6) / ASM valve (4)</td>
<td>500 x 0.12</td>
<td>5500-1157</td>
<td>Capillary ST 0.12x500 SL/S</td>
</tr>
</tbody>
</table>

For all other capillaries / connections, please refer to Figure 27 on page 63, Figure 28 on page 64, and Figure 29 on page 65.
Installation of the 2D-Valves

Attaching the external valve drives

For InfinityLab 2D-LC instruments that comprise at least one 1260 Infinity II or 1290 Infinity II pump, valve drives are attached to this pump with the Valve Clamp Kit IF II (5067-5685), while the valve drives are interconnected by the Adapter profile (5043-0269). The 2D-LC valve and if selected the MHC decks are mounted on external valve drives (G1170A).

<table>
<thead>
<tr>
<th>#</th>
<th>Holders / connectors</th>
<th>Connection</th>
<th>P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1290 Infinity Valve Drive (must be purchased separately)</td>
<td>Mouting of Valves</td>
<td>G1170A</td>
</tr>
<tr>
<td>1</td>
<td>Clamp Guide Kit IF II (delivered with G1170A)</td>
<td>Top valve to pump</td>
<td>5067-5685</td>
</tr>
<tr>
<td>2</td>
<td>Adapter-profile (delivered with MHC Decks)</td>
<td>between G1170A drives</td>
<td>5043-0269</td>
</tr>
</tbody>
</table>

For a SHC configuration, the 2D-LC valve (G4236A) is attached to the upper pump of the stack. In case of a MHC configuration, the upper MHC deck is attached to the upper pump.
Installation

Installation of the 2D-Valves

1. Mount the clamp guide on the right side of the Infinity II Pump. Markings in the form of round dips are on the body housing. Make a small hole with a peaked screwdriver and tighten the clamp guide with the 3 self-cutting tapping screws.

2. Mount the valve heads on the G1170A external valve drives.

3. Clamp the first external valve drive with the MHC valve on top.

4. Attach the adapter-profile on each of the other external valve drives and mount them according to the positions shown in Figure 36 on page 76.

5. Mount the leak tray with sensor underneath the lowest external valve drive.

6. Install the Pressure release kit, see "Installing the Pressure Release Kit" on page 82.
Connecting the 2D-LC Valve, Standard (G4236A)

The capillary connections of the 2D-LC valves depend on whether a con- or countercurrent configuration achieved. For the standard 2D-LC Valve, both concurrent and countercurrent operation is possible. Schematics in this chapter will reflect a concurrent direction. For the countercurrent setup, please refer to Countercurrent configuration of the Standard 2D-LC Valve in the 2D-LC Software. You find the "Valve topology" configuration screen in OpenLab CDS ChemStation Edition under Instrument>2D-LC Configuration.
Installation

Installation of the 2D-Valves

Figure 37 Schematic representation of the Standard 2D-LC Valve (G4236A) in concurrent flow.

<table>
<thead>
<tr>
<th>Port</th>
<th>Number of Capillary</th>
<th>Connection</th>
<th>L x ID [mm]</th>
<th>P/N</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6a</td>
<td>transfer capillary to MHC Valve (OUT), deck A</td>
<td>170 x 0.12</td>
<td>5500-1270</td>
<td>Capillary ST 0.12x170 S/M</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>waste line</td>
<td>self-cut x 0.7</td>
<td>0890-1713</td>
<td>Tubing-flexible 0.8/1.61mm PTFE WT (delivered with UV detector)</td>
</tr>
<tr>
<td>3</td>
<td>5 F3</td>
<td>from pressure release kit; from 1D column, 1D detector</td>
<td>105 x 0.17</td>
<td>5500-1240</td>
<td>Capillary ST 0.17x105 SL/SL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500 x 0.12</td>
<td>5500-1157</td>
<td>Capillary ST 0.12x500 SL/S</td>
</tr>
<tr>
<td>4</td>
<td>6a</td>
<td>transfer capillary to MHC Valve (IN), deck B</td>
<td>170 x 0.12</td>
<td>5500-1270</td>
<td>Capillary ST 0.12x170 S/M</td>
</tr>
<tr>
<td>5</td>
<td>6a</td>
<td>transfer capillary to MHC Valve (OUT), deck B</td>
<td>170 x 0.12</td>
<td>5500-1270</td>
<td>Capillary ST 0.12x170 S/M</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>to 2D column</td>
<td>400 x 0.12</td>
<td>5500-1251</td>
<td>Capillary ST 0.12x400 SL/SL</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>from 2D pump</td>
<td>280 x 0.17</td>
<td>5067-4608</td>
<td>Capillary ST 0.17x280 SX/S</td>
</tr>
<tr>
<td>8</td>
<td>6a</td>
<td>transfer capillary to MHC Valve (IN), deck A</td>
<td>170 x 0.12</td>
<td>5500-1270</td>
<td>Capillary ST 0.12x170 S/M</td>
</tr>
</tbody>
</table>
Installation
Installation of the 2D-Valves

Connecting the 2D-LC Valve, ASM (G4243A)

In contrast to the standard 2D-LC Valve (G4236A) Agilent recommends using a counter-current configuration for the ASM 2D-LC Valve (G4243A) when working in ASM mode. This section describes the setup for a counter-current configuration of the ASM Valve. For the concurrent setup, please refer to concurrent configuration of the ASM 2D-LC Valve in the 2D-LC Software. You find the **Valve topology** configuration screen in OpenLab CDS ChemStation Edition under Instrument> 2D-LC Configuration.

The installation of a 2D-LC system depends on which modules you are using for which 2D-LC mode and is described above. The connection scheme is displayed in the graphical user interface of the 2D-LC Configuration as **Valve Topology**.
Installation
Installation of the 2D-Valves

Figure 38 Schematic representation of the ASM 2D-LC Valve (G4243A) in countercurrent flow.
Installation

Installation of the 2D-Valves

<table>
<thead>
<tr>
<th>Port</th>
<th>Number of Capillary</th>
<th>Connection</th>
<th>L x ID [mm]</th>
<th>P/N</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>waste line</td>
<td>self-cut x 0.7</td>
<td>0890-1713</td>
<td>Tubing-flexible 0.8/1.61mm PTFE WT (delivered with UV detector)</td>
</tr>
<tr>
<td>2</td>
<td>6b</td>
<td>transfer capillary to MHC Valve (IN), deck A</td>
<td>170 x 0.12</td>
<td>5500-1376</td>
<td>Capillary ST 0.12x170 M/M</td>
</tr>
<tr>
<td>3</td>
<td>6b</td>
<td>transfer capillary from MHC Valve (OUT), deck B</td>
<td>170 x 0.12</td>
<td>5500-1376</td>
<td>Capillary ST 0.12x170 M/M</td>
</tr>
<tr>
<td>4</td>
<td>5 F3</td>
<td>from pressure release kit, from 1D column, 1D detector</td>
<td>105 x 0.17 x 500 x 0.12</td>
<td>5500-1240 5500-1157</td>
<td>Capillary ST 0.17x105 SL/SL Capillary ST 0.12x500 SL/S</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>from 2D pump</td>
<td>280 x 0.17</td>
<td>5067-4608</td>
<td>Capillary ST 0.17x280 SX/S</td>
</tr>
<tr>
<td>6</td>
<td>ASM1-4</td>
<td>outlet to ASM capillary</td>
<td>L x 0.12</td>
<td>see list below</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6b</td>
<td>transfer capillary to MHC Valve (IN), deck B</td>
<td>170 x 0.12</td>
<td>5500-1376</td>
<td>Capillary ST 0.12x170 M/M</td>
</tr>
<tr>
<td>8</td>
<td>6b</td>
<td>transfer capillary from MHC Valve (OUT), deck A</td>
<td>170 x 0.12</td>
<td>5500-1376</td>
<td>Capillary ST 0.12x170 M/M</td>
</tr>
<tr>
<td>9</td>
<td>ASM1-4</td>
<td>inlet from ASM capillary</td>
<td>L x 0.12</td>
<td>see list below</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>to 2D column</td>
<td>400 x 0.12</td>
<td>5500-1251</td>
<td>Capillary ST 0.12x400 SL/SL</td>
</tr>
</tbody>
</table>

Which ASM capillary shall be used depends on the ASM factor, which is optimum for your application. You may choose from following capillaries:

<table>
<thead>
<tr>
<th>Capillary p/n</th>
<th>Length (mm)</th>
<th>Inner diameter (mm)</th>
<th>Volume (µl)</th>
<th>ASM factor</th>
<th>Split ratio (loop:ASM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5500-1300</td>
<td>85</td>
<td>0.12</td>
<td>0.96</td>
<td>5</td>
<td>1.4</td>
</tr>
<tr>
<td>5500-1301</td>
<td>170</td>
<td>0.12</td>
<td>1.9</td>
<td>3</td>
<td>1.2</td>
</tr>
<tr>
<td>5500-1302</td>
<td>340</td>
<td>0.12</td>
<td>3.8</td>
<td>2</td>
<td>1.1</td>
</tr>
<tr>
<td>5500-1303</td>
<td>680</td>
<td>0.12</td>
<td>7.7</td>
<td>1.5</td>
<td>1.05</td>
</tr>
</tbody>
</table>
Installing the Pressure Release Kit

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G4236-60010</td>
<td>2D-LC Pressure Release Kit</td>
</tr>
</tbody>
</table>
4 Installation
Installation of the 2D-Valves

1. Push the pressure release valve assembly in the frame.
2. Take care for the correct orientation.
3. Insert the pressure release assembly to the leak tray, orientation as shown.
4. Push the pressure release assembly in the correct position.
2D-LC Software Configuration

All 2D-LC specific configurations are defined in the "Configure 2D-LC..." screen. This screen allows you to:

- Select your 1D and 2D pump
- Valve topology
- 2D-LC valve head (if multiple Valve heads are available)
- Select the connections of MHC decks (if installed)
- Capillary connections

![Figure 40](image_url) The Configure 2D-LC screen. All basic configurations of the 2D-LC systems, viz. 1D and 2D pump, valve topology, capillary connections as well as all 2D-LC valves are defined here.
1 In OpenLab ChemStation under Method and Run Control, click on Instrument, then 2D-LC Configuration...

2 Select your your 1D and your 2D pump. Please note that this will not rename your pumps. A descriptive naming should be also entered during initial instrument setup in the instrument configuration.

3 Select your valve topology. Depending on the 2D-LC valve that you have installed, viz. the Standard 2D-LC (G4236A) or the ASM 2D-LC Valve (G4243A), your valve will automatically appear here. Please specify whether you connected your valve in concurrent or countercurrent mode.

4 Optional: if the system contains multiple 2D-LC valves, please specify which valve head is to be used.

5 Optional: if your system contains Multiple Heart-Cutting decks, specify which valve head is corresponds to Deck A or B respectively.

6 Select your installed capillaries. Check for correct loop size and correct length of the transfer capillaries. If an ASM 2D-LC valve is used, define the ASM capillary which defines your split ratio (see Table on page 81).
 a To define a ASM capillary, click on Capillaries....
 b Choose a pre-defined ASM capillary
 OR
 Define a generic capillary by choosing Generic Capillary.

 ![Setup Capillaries screen](image)

 Figure 41 The Setup Capillaries screen. Here, you can define ASM and transfer capillaries as well as define other loop sizes.

The settings for the transfer volumes are 13.4 µL between 1D detector and sample loop, and 1.9 µL between 2D-LC valve and MHC valve for a set-up with a MaxLight Cartridge Cell.
Installation

Installation of Active Solvent Modulation (ASM)

Delivery checklist

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4243-90000</td>
<td>Agilent G4243A 2D-LC ASM Valve Guide Technical Note</td>
</tr>
<tr>
<td>5067-4266</td>
<td>2D-LC ASM Valve Head, 1300 bar</td>
</tr>
<tr>
<td>G4236-68000</td>
<td>2D-LC Easy Starter Kit</td>
</tr>
<tr>
<td></td>
<td>Internal part, not orderable</td>
</tr>
<tr>
<td>G1680-63721</td>
<td>Network LAN Switch</td>
</tr>
<tr>
<td>5500-1300</td>
<td>Capillary ST 0.12x85M/M ASM</td>
</tr>
<tr>
<td>5500-1301</td>
<td>Capillary ST 0.12x170M/M ASM</td>
</tr>
<tr>
<td>5500-1302</td>
<td>Capillary ST 0.12x340M/M ASM</td>
</tr>
<tr>
<td>5500-1303</td>
<td>Capillary ST 0.12x680M/M ASM</td>
</tr>
<tr>
<td>5500-1376</td>
<td>Capillary ST 0.12x170M/M transfer</td>
</tr>
<tr>
<td>5067-6171</td>
<td>Capillary Kit 2D-LC, Infinity Classic (optional)</td>
</tr>
<tr>
<td></td>
<td>Internal part, not orderable</td>
</tr>
<tr>
<td>5067-6585</td>
<td>Capillary Kit 2D-LC, 1290 Infinity II</td>
</tr>
<tr>
<td></td>
<td>Internal part, not orderable</td>
</tr>
</tbody>
</table>

Install the valve head and connecting capillaries

For instructions on how to install the valve head and connecting capillaries, refer to "Replace Valve Heads (G1170A)" on page 269.
5 Method Parameters

Method Parameters Standard Heart-Cutting 2D-LC 88
Software Method Setup 88
Set 2D-LC Mode 89
Set solvents 96
Set flow 97
Set Solvent Composition Gradient 98
Sampling table 100
Define Peak Detector Parameter 102

Method Parameters Multiple Heart-Cutting and High Resolution Sampling 2D-LC 104
Software Method Setup 104
Set 2D-LC Mode Multiple Heart-Cutting 105
Set 2D-LC Mode HiRes Sampling 108
Set solvents 109
Set flow 110
Set Solvent Composition Gradient 111
Set 2D Time Segments (Multiple Heart-Cutting Only) 113
Set cuts in the software (HiRes Sampling only) 115
Define Peak Detector Parameter 118
Gradient Preview Functionality 120
Smart Peak Parking 125

Method Parameters Comprehensive 2D-LC 127
Software Method Setup 127
Set 2D-LC Mode 128
Set solvents 129
Set flow 130
Set Solvent Composition Gradient 131
Set 2D Time Segments 134
Define Peak Detector Parameter 136
Gradient Preview Functionality 137

Method Development of Active Solvent Modulation (ASM) 141
Method parameters 142
Optimizing the dilution by using ASM capillaries 143
Optimizing the sample loop flush 143
Including the ASM phase to the 2D gradient 144
Optimizing dilution through method settings 145

This chapter provides background information on method parameters. It helps to optimize methods in Agilent 1290 Infinity II 2D-LC Solution in the modes standard heart-cutting, multiple heart-cutting, high resolution sampling and comprehensive 2D-LC.
Method Parameters Standard Heart-Cutting 2D-LC

Software Method Setup

The method setup dialog is used to edit the 2D-LC specific method parameters of the 2nd dimension pump that were not part of the standard method user interface of the pump.

The setup of following method parameters is available:

1. 2D-LC Mode, see “Set 2D-LC Mode” on page 89
2. Solvents, see “Set solvents” on page 96
3. Flow settings, see “Set flow” on page 97
4. 2D Gradient, see “Set Solvent Composition Gradient” on page 98
5. Sampling table, see “Sampling table” on page 100
6. Operating values, see “Define Peak Detector Parameter” on page 102
7. Preview, see “Setup Second Dimension Gradient with the Graphical User Interface” on page 138

For details, see Online-Help of the software.
Set 2D-LC Mode

Setting the mode has the following consequences:

- **Heart-Cutting**
 A relevant volume of the 1st dimension is cut off and injected onto the 2nd dimension column using the pump in the 2nd dimension. The volume to be injected on the 2nd column is either defined by a peak trigger or by a time window. When heart-cutting starts, a loop is filled with the peak of interest. Then the injection on the 2nd dimension starts running the gradient of the 2nd dimension pump.
5 Method Parameters
Method Parameters Standard Heart-Cutting 2D-LC

NOTE

General considerations for heart-cutting 2D-LC

In heart-cutting 2D-LC keep the following general considerations in mind, when setting up the experiments (see Figure 43 on page 91):

1. The peak-end detection always overrules any loop-fill times.
 - The loop fill time represents the maximum time in case no peak end can be detected, for example with strong tailing peaks.

2. In Peak-based segments more than one peak can be detected and handled, but take in account the following points:
 - A once started 2D-run will be finished even if a second peak will be detected.
 - This second peak could be lost! In doubt, shorten the 2D-run time.
 - The end of the 1D run-time will always finish any 2D-operations.
 - In doubt, add a complete 2D-gradient run time to the 1D-run time.

There is also a different valve switching behavior depending if the modulation valve is equipped with either one or two loops.

- Two loops:
 - With two loops the valve switches only when the end of the peak is detected or if the loop fill time is reached (in case no peak end is detected). If a transfer volume was entered for the peak detector the system will take account for the resulting transfer time, see Figure 44 on page 92. In Figure 44 on page 92, Figure 45 on page 93 and Table 5 on page 94 the valves are always shown in the position a peak would be sampled.

- One loop:
 - For a set-up with one loop and a short bridging capillary in case of a 2-position/4port-duo valve or a 2-position/10-port valve or just with the valve groove in case of an 2pos/6-port valve, the system will switch the loop into the 1D-flow-path to collect the peak after the peak was detected (again respecting a given delay-time). At the end of the peak or after the Sampling time, in case no peak end could be detected, the loop will be switched into the 2D-flow path to let the content of the loop be analyzed in the second dimension, see Figure 45 on page 93.

This behavior is similar for time-triggered operation but with the difference that usually the transfer volume will be taken in account. That means, the valve will switch exactly at the given time-points, see Table 5 on page 94.

The peak volume that will be sampled usually is larger than the loop volume. For details see “Concept of Peak Triggering” on page 32.
5 Method Parameters

Method Parameters Standard Heart-Cutting 2D-LC

Figure 43 Heart-cutting 2D-LC (general considerations) (delay times have been omitted for clarity, besides threshold also the peak-slope can be used for peak detection)
Method Parameters

Method Parameters Standard Heart-Cutting 2D-LC

Figure 44 Valve and loop setup for heart-cutting 2D-LC with the 2D-LC Valve (dual-loop setup)
Method Parameters
Method Parameters Standard Heart-Cutting 2D-LC

Figure 45 Valve and loop setup for heart-cutting 2D-LC with the 2D-LC Valve (single-loop setup)
5 Method Parameters

Method Parameters Standard Heart-Cutting 2D-LC

Table 5
Time-based heart-cutting 2D-LC

<table>
<thead>
<tr>
<th>Dual-loop set-up</th>
<th>Single-loop set-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 46 Valve and loop setup for heart-cutting 2D-LC with the 2D-LC Valve</td>
<td>Figure 47 Valve and loop setup for heart-cutting 2D-LC with 2D-LC Valve</td>
</tr>
<tr>
<td>(example valve)</td>
<td>(example valve)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sampling time start</th>
<th>Sampling time</th>
<th>Sampling time ends</th>
<th>Valve switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop 1</td>
<td>1 D-Peak</td>
<td>Loop 2</td>
<td>2 D-Peak</td>
</tr>
</tbody>
</table>

Loop connected to 1 D-Column | Bridging capillary | Loop connected to 1 D-Column
Method Parameters

Method Parameters Standard Heart-Cutting 2D-LC

1. Select **Heart cutting** in **2D-LC Mode**.

NOTE
The **2D Gradient Stop time** reflects the maximal duration of the gradient in the 2nd dimension; the smallest value is 0.01 min. After that time, the Percent B value before the gradient (or the timetable entry at time = 0.0) is restored. In case of the Comprehensive 2D-LC mode the gradient stops latest when the **Cycle time** is reached.

![2D LC Mode](image)

2D-LC Mode

- **Comprehensive**
- **Heart-Cutting**
- **HiRes sampling**

2D Gradient stop time 1.25 min

2D cycle time 1.75 min

![Gradient Plot](image)

Figure 48 2D-LC Mode Heart-Cutting

The gradient of the 2nd dimension is graphically displayed in a window in the lower right part of the method screen showing also the **Stop time** (as a red vertical line) and (in case of comprehensive 2D-LC) the **Modulation time** as a green vertical line.

![Gradient Plot](image)

Figure 49 Stop time and Modulation time
Method Parameters
Method Parameters Standard Heart-Cutting 2D-LC

5 Set solvents

The selection of the solvents itself must be done in the standard pump method user interface.

• Open the pump method dialog using the button Advanced 2D pump settings… and change the selection of the solvents there.
• After closing the dialog, the solvent settings should be updated immediately.

1 Set the percentage of solvent B to any value from 0 – 100 % in steps of 0.01 %.

Solvent information

Solvent A always delivers the remaining percentage of volume. If the rate of solvent B is for example set to 20 %, solvent A, following the calculation %A = 100 - %B, automatically is set to 80 %.

The name of the selected solvents and their solvent channels (A1:… or A2:… and B1:… or B2:…) are shown in the corresponding text fields.

NOTE

The corresponding Percent B value in the Standard Pump user interface will be ignored as long as the 2D-LC functionality is enabled (see "Configuration" on page 148).
Set flow

1. Set the **2D Flow** (range 0 – 5.0 mL/min).
 This defines the flow in the 2nd dimension being used while 2D-LC is active (within 2D time segments where mode is not equal to OFF).

2. To set and use **Idle Flow** select check box **use idle flow**.
 This defines the flow in the 2nd dimension that is used while the 2D-LC mode is OFF (range 0 – 5.0 mL/min).

NOTE

If **use idle flow** is not selected, the **2D Flow** is also used while 2D-LC mode is OFF.
Set Solvent Composition Gradient

Set Solvent Composition Gradient

The timetable in the 2D Gradient group allows changing the solvent composition. Percent B ranges from 0 – 100 %.

Change the solvent composition at a specified time

1. To change the solvent composition (%B) at the specified time apply a percent B range from 0 – 100 %

NOTE

Different start conditions in the first row may cause step gradients and RI-effects (density differences of the different liquid phases may cause different DAD detection through baseline disturbances).

\[
\begin{array}{c|c|c}
\text{2D gradient} & \text{Time [min]} & \% B \\
\hline
\text{Δ} & 0.00 & 10.00 \\
\text{□} & 1.25 & 60.00 \\
\end{array}
\]

The time axis relates to the Stoptime of the 2\text{nd} dimension pump. Time [min] = 0.00 marks the start of the maybe repetitive gradient cycles, a time greater than Stoptime 2D will be ignored.
Method Parameters
Method Parameters Standard Heart-Cutting 2D-LC

Setup 2D Gradient graphically

The user can graphically setup the 2D gradient including the initial composition (%B) value, the 2D-stoptime and the modulation (repetition) time.

![2D Gradient window in edit mode]

1. Click to enable the graphical editing capabilities.
2. To add a new gradient point, move the cursor within the drawing area close to a new gradient point until the cursor changes to and click.
3. To delete a gradient point, move the cursor close to the gradient point to be deleted until the cursor changes to , select the right segment and click.
4. To move a gradient point, move the cursor close to the gradient point to be moved until the cursor changes to , select the left segment and drag.
5. To change the stop time, move the cursor close to the red dotted vertical line until the cursor changes to and drag.
6. To change the modulation time, move the cursor close to the green dotted vertical line until the cursor changes to and drag.
7. To change the initial composition, move the cursor close to the filled circle most left near the y-axis until the cursor changes to and drag the point.
Method Parameters Standard Heart-Cutting 2D-LC

Sampling table

The content of the Sampling table specifies when (within the runtime of the 1st dimension) the selected 2D-LC mode is active.

Table 6 Definitions 2D Time Segments

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Specifies when a new segment starts (or ends)</td>
</tr>
</tbody>
</table>
| Mode | Following options exist:
• Time based
The specified time defines the beginning of a time segment.
• Peak based
The peak detector is enabled at the specified time.
• Off
The time segments ends at the specified time. |
| Maximum peak duration | Only valid in case of trigger mode = peak-based. After that time the 2D-gradient repetition ends regardless of the peak detector state. |
| (Comprehensive mode only) | |
| Sampling time | Set the time the loop remains in the flow path of the 1st dimension. |
| (Heartcutting mode only) | |
| Add transfer volume |
• Checked:
Valve is switched at the specified time plus the time to deliver the delay volume
• Unchecked
Valve is switched at the specified time
(This check box is available only for Time based mode) |

NOTE
If the Sampling table is empty, no 2D-LC operation will be executed at all.

Set Sampling table for Heartcutting mode

1. To specify, when the actual trigger mode gets active, fill the Time column.
Specifies the point in time of the 1D runtime where the actual trigger mode gets active.
Time segments must not overlap. Time of a segment must be always set longer than Time of previous segment plus Sampling time plus 2D-stop time. Otherwise a warning icon is shown in the respective time column of the table.

2. To specify the mode and time, select **Time based**, **Peak based** or **Off** from the drop-down list in the **Mode** column fill the **Time** field.

 - **Time based**
 The specified time defines the beginning of a heartcut segment. For details see Figure 43 on page 91.

 - **Peak based**
 The peak detector is enabled at the specified time. For details see Figure 43 on page 91.

 - **Off**
 The time segments ends at the specified time.

3. Set the **Sampling time**.
 This defines the time the loop remains in the flow path of the 1st dimension.

 NOTE In Peak-triggered mode the **Sampling time** specifies the maximum sampling time in case no peak end is detected by the peak detector.

4. To add or delete table rows, use the + and - icons below the table.

 The **Sampling table** now is defined for **Comprehensive** or **Heartcutting** mode.
5 Method Parameters
Method Parameters Standard Heart-Cutting 2D-LC

Define Peak Detector Parameter

This section allows parameterizing the peak detector to be used for peak-triggered 2D-LC operation (comprehensive or heart cutting).

Peak detector

<table>
<thead>
<tr>
<th>Mode</th>
<th>Threshold dropdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upslope</td>
<td>5.00 mAU/s</td>
</tr>
<tr>
<td>Downslope</td>
<td>5.00 mAU/s</td>
</tr>
<tr>
<td>Threshold</td>
<td>5.00 mAU</td>
</tr>
<tr>
<td>Upper threshold</td>
<td>3000.000 mAU</td>
</tr>
</tbody>
</table>

Figure 53 Overview on Peak detector parameters

The stop time for a 2D-LC measurement must be set for the 2D pump, which can be accessed through the advanced settings. It must be at least the 1D run time and applies to the entire measurement, not to partial 2D-only runs/gradients for parked peaks.

Multiple Heart-Cutting automatically extends this run time, if required, as analyzing parked peaks takes usually longer than the 1st dimension run only.

If you define a 1D stop time, it will be applied unchanged, for example the analysis will stop after that time without processing any parked peaks. This is not recommended and will lead to a warning in the gradient preview.

NOTE If no peak detector is configured (see "Configuration" on page 148) this section is disabled. The currently configured peak detector (name & serial number of the detector) is shown in the section header.

NOTE To facilitate the determination of parameters, it is possible to preview Threshold and Slope in the reference chromatogram.
Method Parameters
Method Parameters Standard Heart-Cutting 2D-LC

1. Go to Instrument> Setup 2DLC and tab Advanced.
2. Select Peak detection mode from the drop-down list.
 The following options are available:
 • Off
 The peak detector is not used.
 • Threshold only
 Detects peaks based on threshold values only.
 • Threshold/Slope values
 Detects peaks based on both - threshold and slope.
 • Slope only
 Detects peaks based on slope values only.
3. To define Upslope (slope of the rising peak), add the required values to the corresponding field.
4. To define Downslope (slope of the falling peak), add the required values to the corresponding field.
5. To define Threshold (height of the peak that triggers collection), add the required values to the corresponding field.
6. To define Upper threshold (height of the peak that ensures that collection is not switched off even for a saturated signal that might be expected to do so), add the required values to the corresponding field.
Method Parameters

Method Parameters Multiple Heart-Cutting and High Resolution Sampling 2D-LC

Software Method Setup

The method setup dialog is used to edit the 2D-LC specific method parameters of the 2nd dimension pump that were not part of the standard method user interface of the pump.

The setup of following method parameters is available:

1. **2D-LC Mode**, see “Set 2D-LC Mode Multiple Heart-Cutting” on page 105
2. **Solvents**, see “Set solvents” on page 109
3. **Flow settings**, see “Set flow” on page 110
4. **2D Gradient**, see “Set Solvent Composition Gradient” on page 111
5. **2D Time segments**, see “Set 2D Time Segments (Multiple Heart-Cutting Only)” on page 113
6. **Operating values**, see “Define Peak Detector Parameter” on page 118
7. **Gradient preview** with toolbar, see “Gradient Preview Functionality” on page 120.
Method Parameters

Method Parameters Multiple Heart-Cutting and High Resolution Sampling

2D-LC

Set 2D-LC Mode Multiple Heart-Cutting

Setting the mode has the following consequences:

- **Heart-Cutting**

 A relevant volume of the 1st dimension is cut off and injected onto the 2nd dimension column using the pump in the 2nd dimension. The volume to be injected on the 2nd column is either defined by a peak trigger or by a time window. When heart cutting starts, a loop is filled with the peak of interest. Then the injection on the 2nd dimension starts running the gradient of the 2nd dimension pump.
Considerations for multiple heart cutting 2D-LC

In multiple heart-cutting 2D-LC keep the following general considerations in mind, when setting up the experiments (see Figure 43 on page 91):

1. The peak-end detection always overrules any Sampling Time. The Sampling Time represents the time, how long the loop is flown through. Only the last part of the cut (exactly the volume of the built-in loop) is transferred to the 2nd dimension.

2. In Peak-based segments more than one peak can be detected and handled, but take in account the following points:
 - A once started 2D-run will be finished even if further peaks will be detected.
 - Analysis is done as soon as possible
 - Deck is flushed before unparking
 - Once started, a deck content is analyzed completely
 - Unparking is done in reverse order (avoids carry-over)
 - Peaks get lost if 2D deck is full and no 1D deck position is available
 - The end of the 1D run-time will always finish any 2D-operations.

In doubt, add a complete 2D-gradient run time to the 1D-run time, or define the run-time in the 2D pump only (the run-time will then be increased if necessary).
Method Parameters
Method Parameters Multiple Heart-Cutting and High Resolution Sampling

2D-LC

1. Select the **Heart-Cutting 2D-LC Mode** (correct for standard heart-cutting and multiple heart-cutting setup).

![2D-LC Mode](image)

Figure 55 2D-LC Mode Heart-Cutting
Set 2D-LC Mode HiRes Sampling

Setting the mode has the following consequences (for details, see "High Resolution Sampling - Peak Parking Principles" on page 23):

- **HiRes sampling:**
 In contrast to **Heart-Cutting**, which uses the continuous flow-through principle, the MHC valve is switched before and after parking the peak.

NOTE

Considerations for high-resolution sampling 2D-LC

In high-resolution sampling 2D-LC keep the following general considerations in mind, when setting up the experiments (see "High Resolution Sampling - Peak Parking Principles" on page 23):

1. Each loop for consecutive snips stores the same sample volume.
2. First and last loop cannot be used for parking.
3. Solvent transfer from 1D to 2D can be reduced.
4. Cut number 5 cannot be parked entirely in the sample loop. Otherwise cut 6 would got partially to the transfer capillary and would therefore be lost or spoil cut 5.

 Cut 5 stays partially in the transfer line and is immediately being analyzed in 2D.
5. For parking cut 6 in the sample loop, the cut first needs to be moved from the 2D-LC valve to the deck valve. This new volume must be defined in the configuration of the 2D-LC system.

1. Select the **HiRes sampling** Mode.
Method Parameters Multiple Heart-Cutting and High Resolution Sampling

2D-LC

Set solvents

The selection of the solvents itself must be done in the standard pump method user interface.

- Open the pump method dialog using the button Advanced 2D pump settings… and change the selection of the solvents there.
- After closing the dialog, the solvent settings should be updated immediately.

1 Set the percentage of solvent B to any value from 0 – 100 % in steps of 0.01 %.

- Solvent information

 Percentage settings

 A: 30 %
 B: 10 %

 A1: 100.0 % Water V.03
 B1: 100.0 % Acetonitrile V.03

 Solvent information

 Figure 56 2D-LC solvent settings

 Solvent A always delivers the remaining percentage of volume. If the rate of solvent B is for example set to 20 %, solvent A, following the calculation %A = 100 - %B, automatically is set to 80 %.

 The name of the selected solvents and their solvent channels (A1:... or A2:... and B1:... or B2:...) are shown in the corresponding text fields.

- NOTE

 The corresponding Percent B value in the Standard Pump user interface will be ignored as long as the 2D-LC functionality is enabled (see "Configuration" on page 148).
5 Method Parameters
Method Parameters Multiple Heart-Cutting and High Resolution Sampling
2D-LC

Set flow

Flow settings

<table>
<thead>
<tr>
<th>2D Flow</th>
<th>1.00 ml/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>use idle flow</td>
<td>1.00 ml/min</td>
</tr>
</tbody>
</table>

Figure 57 Flow settings

1 Set the 2D Flow (range 0 – 5.0 mL/min).
 This defines the flow in the 2nd dimension being used while 2D-LC is active (within 2D time segments where mode is not equal to OFF).

2 To set and use Idle Flow select check box use idle flow.
 This defines the flow in the 2nd dimension that is used while the 2D-LC mode is OFF (range 0 – 5.0 mL/min).

NOTE
If use idle flow is not selected, the 2D Flow is also used while 2D-LC mode is OFF.
Method Parameters

Method Parameters Multiple Heart-Cutting and High Resolution Sampling

2D-LC

Set Solvent Composition Gradient

Set Solvent Composition Gradient

The timetable in the 2D Gradient group allows changing the solvent composition. Percent B ranges from 0 – 100 %.

Change the solvent composition at a specified time

1. To change the solvent composition (%B) at the specified time apply a percent B range from 0 – 100 %

NOTE

Different start conditions in the first row may cause step gradients and RI-effects (density differences of the different liquid phases may cause different DAD detection through baseline disturbances).

<table>
<thead>
<tr>
<th>Time [min]</th>
<th>% B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>1.25</td>
<td></td>
</tr>
</tbody>
</table>

The time axis relates to the StopTime of the 2nd dimension pump. Time [min] = 0.00 marks the start of the maybe repetitive gradient cycles, a time greater than StopTime 2D will be ignored.
5 Method Parameters
Method Parameters Multiple Heart-Cutting and High Resolution Sampling

2D-LC

Setup 2D Gradient graphically

The user can graphically setup the 2D gradient including the initial composition (%B) value, the 2D-stoptime and the modulation (repetition) time.

![2D Gradient window in edit mode](image)

1. Click 📈 to enable the graphical editing capabilities.
2. To add a new gradient point, move the cursor within the drawing area close to a new gradient point until the cursor changes to ⬤ and click.
3. To delete a gradient point, move the cursor close to the gradient point to be deleted until the cursor changes to ⬤, select the right segment and click.
4. To move a gradient point, move the cursor close to the gradient point to be moved until the cursor changes to ⬤, select the left segment and drag.
5. To change the stop time, move the cursor close to the red dotted vertical line until the cursor changes to → and drag.
6. To change the modulation time, move the cursor close to the green dotted vertical line until the cursor changes to ← and drag.
7. To change the initial composition, move the cursor close to the filled circle most left near the y-axis until the cursor changes to ⬤ and drag the point.
Method Parameters
Method Parameters Multiple Heart-Cutting and High Resolution Sampling
2D-LC

Set 2D Time Segments (Multiple Heart-Cutting Only)

The content of the Sampling table specifies when (within the runtime of the 1st dimension) the selected 2D-LC mode is active.

Table 7 Definitions 2D Time Segments

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Specifies when a new segment starts (or ends)</td>
</tr>
<tr>
<td>Mode</td>
<td>Following options exist:</td>
</tr>
<tr>
<td></td>
<td>• Time based</td>
</tr>
<tr>
<td></td>
<td>The specified time defines the beginning of a time segment.</td>
</tr>
<tr>
<td></td>
<td>• Peak based</td>
</tr>
<tr>
<td></td>
<td>The peak detector is enabled at the specified time.</td>
</tr>
<tr>
<td></td>
<td>• Off</td>
</tr>
<tr>
<td></td>
<td>The time segments ends at the specified time.</td>
</tr>
<tr>
<td>Maximum peak duration</td>
<td>Only valid in case of trigger mode = peak-based. After that time the 2D-gradient repetition ends regardless of the peak detector state.</td>
</tr>
<tr>
<td>(Comprehensive mode</td>
<td></td>
</tr>
<tr>
<td>only)</td>
<td></td>
</tr>
<tr>
<td>Sampling time</td>
<td>Set the time the loop remains in the flow path of the 1st dimension.</td>
</tr>
<tr>
<td>(Heartcutting mode</td>
<td></td>
</tr>
<tr>
<td>only)</td>
<td></td>
</tr>
<tr>
<td>Add transfer volume</td>
<td>• Checked:</td>
</tr>
<tr>
<td></td>
<td>Valve is switched at the specified time plus the time to deliver the delay volume</td>
</tr>
<tr>
<td></td>
<td>• Unchecked</td>
</tr>
<tr>
<td></td>
<td>Valve is switched at the specified time</td>
</tr>
<tr>
<td></td>
<td>(This check box is available only for Time based mode)</td>
</tr>
</tbody>
</table>

NOTE

If the Sampling table is empty, no 2D-LC operation will be executed at all.

Set Sampling table for Heartcutting mode

1. To specify, when the actual trigger mode gets active, fill the Time column.
 Specifies the point in time of the 1D runtime where the actual trigger mode gets active.

NOTE

Time segments must not overlap. Time of a segment must be always set longer than Time of previous segment plus Sampling time plus 2D-stop time.

Otherwise a warning icon is shown in the respective time column of the table.
Method Parameters

Method Parameters Multiple Heart-Cutting and High Resolution Sampling

2D-LC

Sampling table (Heartcutting)

<table>
<thead>
<tr>
<th>Time [min]</th>
<th>Mode</th>
<th>Sampling time [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.00</td>
<td>Peak based</td>
<td>0.15</td>
</tr>
<tr>
<td>20.00</td>
<td>Off</td>
<td></td>
</tr>
</tbody>
</table>

2. To specify the mode and time, select Time based, Peak based or Off from the drop-down list in the Mode column fill the Time field.
 - **Time based**
 The specified time defines the beginning of a heartcut segment. For details see Figure 43 on page 91.
 - **Peak based**
 The peak detector is enabled at the specified time. For details see Figure 43 on page 91.
 - **Off**
 The time segments ends at the specified time.

3. Set the Sampling time.
 This defines the time the loop remains in the flow path of the 1st dimension.

NOTE
In Peak-triggered mode the Sampling time specifies the maximum sampling time in case no peak end is detected by the peak detector.

4. To add or delete table rows, use the + and - icons below the table.

The Sampling table now is defined for Comprehensive or Heartcutting mode.
Method Parameters

Set cuts in the software (HiRes Sampling only)

Peak parking steps for high-resolution sampling

- Flow goes through loop 1 in deck A.
- Cut 1 detected. Valve in deck A switches at beginning of
- cut 1 to loop A2 and is parked there,
- cut 2 to loop A3
- cut 3 to loop A4
- cut 4 to loop A5
- Cut 5 is on its way (in the transfer capillary) to loop A6 – the last loop in deck A. After switching the 2D-LC valve, the cut will be analyzed immediately.
- Cut 6 goes to loop 1 in deck B, transfer requires time, which needs to be configured:
- Cut 7 goes to loop B2,...,
- cut 10 goes to loop B5.
- Last loop is required for flow-through while other deck runs analysis.
- During analysis, loops are filled with solvent of 2D gradient base.

Transfer volume and sampling time

The volume of the capillary between 2D-LC valve and each deck valve determines the minimum sampling time.

\[t = \frac{V}{F} \]

for example \(\frac{5 \mu L}{500 \text{nl/min}} = 0.6 \text{ s} \)

This is the time \(t \), which is needed for filling the transfer volume \(V \) at a given 1D flow rate \(F \).

If the sampling time would be less than that, two cuts could end up in the same transfer capillary.
Method Parameters

Method Parameters Multiple Heart-Cutting and High Resolution Sampling

2D-LC

NOTE

By default, sample loops are filled by up to 80 %, which reflects the parabolic flow profile in capillaries.

Practically, loops can’t be filled to 100 %, which would partially send samples to waste. A lower loop filling/shorter cuts can be achieved by reducing the sampling time. The default sampling time t is calculated from the loop volume V, flow rate F and default loop filling 80 % by the following equation:

$$ t \leq \frac{V \cdot 80\%}{F} $$

NOTE

High-resolution sampling works only in time based mode. Peak based mode would be possible and may be added for future versions but creating an unpredictable number of cuts from an unpredictable number of peaks easily exceeds the storage capacity of MHC valves.

Currently, only one series of cuts can be stored in one MHC deck for the same reason. If one deck is half full, it is unlikely to be sufficient for another series.

As soon as a deck is empty, it may be used for further series.
5 Method Parameters

Method Parameters Multiple Heart-Cutting and High Resolution Sampling

2D-LC

1. Use a left-click for sampling peaks.

OR

enter values to the table (sampling time, number of cuts)

Sampling table

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Mode</th>
<th>Sampling time (s)</th>
<th>Cuts</th>
<th>Loop filling</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.15</td>
<td>Time based</td>
<td>2.50</td>
<td>10</td>
<td>62</td>
</tr>
</tbody>
</table>

OR

drag the mouse over the desired range
Method Parameters

Define Peak Detector Parameter

This section allows parameterizing the peak detector to be used for peak-triggered 2D-LC operation (comprehensive or heart cutting).

Peak detector

- **Mode**
 - Threshold

- **Upslope**
 - 5.00 mAU/s

- **Downslope**
 - 5.00 mAU/s

- **Threshold**
 - 5.000 mAU

- **Upper threshold**
 - 3000.000 mAU

Figure 59 Overview on Peak detector parameters

The stop time for a 2D-LC measurement must be set for the 2D pump, which can be accessed through the advanced settings. It must be at least the 1D run time and applies to the entire measurement, not to partial 2D-only runs/gradients for parked peaks.

Multiple Heart-Cutting automatically extends this run time, if required, as analyzing parked peaks takes usually longer than the 1st dimension run only.

If you define a 1D stop time, it will be applied unchanged, for example the analysis will stop after that time without processing any parked peaks. This is not recommended and will lead to a warning in the gradient preview.
Method Parameters
Method Parameters Multiple Heart-Cutting and High Resolution Sampling

1. Go to Instrument> Setup 2DLC and tab Advanced.
2. Select Peak detection mode from the drop-down list.
 The following options are available:
 • Off
 The peak detector is not used.
 • Threshold only
 Detects peaks based on threshold values only.
 • Threshold/Slope values
 Detects peaks based on both - threshold and slope.
 • Slope only
 Detects peaks based on slope values only.
3. To define Upslope (slope of the rising peak), add the required values to the corresponding field.
4. To define Downslope (slope of the falling peak), add the required values to the corresponding field.
5. To define Threshold (height of the peak that triggers collection), add the required values to the corresponding field.
6. To define Upper threshold (height of the peak that ensures that collection is not switched off even for a saturated signal that might be expected to do so), add the required values to the corresponding field.

NOTE
If no peak detector is configured (see "Configuration" on page 148) this section is disabled. The currently configured peak detector (name & serial number of the detector) is shown in the section header.

NOTE
To facilitate the determination of parameters, it is possible to preview Threshold and Slope in the reference chromatogram.
Method Parameters
Method Parameters Multiple Heart-Cutting and High Resolution Sampling
2D-LC

Gradient Preview Functionality

The gradient preview provides the following functions:

- Displays the gradient (%B) of the 1st dimension pump
- Displays the gradient (%B) of the 2nd dimension during the runtime of the first dimension, depending on the selected 2D-LC mode (comprehensive OR heart-cutting)
- Allows to graphically edit the gradient shifting
- Displays a reference signal by which a user can easily setup the trigger table or optimize his peak detector settings

Reference Signal

The user can load a chromatographic signal from an LC detector - a so-called reference signal. The signal will be shown in the gradient preview. This signal is automatically shown in the gradient preview of the setup dialog as long as the reference signal is part of the method. The signal can also be removed from the method or replaced by another signal.

Loading / removing a reference signal is triggered by toolbar buttons (or the context menu) of the gradient preview.

When a reference signal is loaded, a reference signal related y-axis is shown on the right side of the gradient preview window. The grid of the graphic window is either adjusted to the absorbance axis (right axis) or the %B axis (left) and can be changed by clicking on the corresponding axis. The signal name (e.g. DAD1 A, Sig= 280, 190 Ref=550,100) is shown in the legend of the graphic window.

Figure 60 Gradient preview

The reference signal offers the following:

- Simplified set-up of (time-based) heart cuts in case the chromatogram of the sample is known in advance
- Preview of peaks, which would be analyzed in the 2nd dimension that is based on the current peak detector settings (threshold, slope)
Method Parameters

Method Parameters Multiple Heart-Cutting and High Resolution Sampling

2D-LC

Gradient Preview and Toolbar

The method screen allows you to set up and modify the 2D-LC method graphically. The different orders from the toolbar are:

- **Edit mode on/off**: Enables to shift gradients as in comprehensive 2D-LC method setup
- **load/remove reference signal**: Uploads a reference signal into the method screen. This is very helpful to illustrate, which at which positions of the chromatogram cuts will be taken.
- **Generate time segments**: Creates a time table based on the reference signal and peak detector settings in advanced parameters (“Define Peak Detector Parameter” on page 118)
- **Autoscale**: Zooms to scale of highest signal
- **Edit Snap Distance**: Allows you to specify the precision to which a gradient point can be placed interactively in the Gradient Preview

Graphical explanation

- **Time based** triggering displays peaks in yellow. Sampling time is generated automatically by the thresholds of the peaks.
5 Method Parameters
Method Parameters Multiple Heart-Cutting and High Resolution Sampling

2D-LC

- **Peak based** triggering displays peaks in green. All peaks, which can be cut, are displayed. Sampling time is put in by user and is determined by the shape of peak.
- Loop content is displayed by shaded areas (dark yellow/green), see "Concept of Peak Triggering" on page 32
- Missed cuts are displayed in red
- Missed peaks are marked by exclamation mark icon
- Gradient can be adjusted such that it matches the reference signal, see "Set Solvent Composition Gradient" on page 111

Setup Second Dimension Gradient with the Graphical User Interface

The gradient preview allows to edit gradient shifting graphically, see below. This replaces the editing of large timetables by a few mouse operations.

1. To enter the editing mode, use the context menu.
 ![Gradient Preview](image1)

2. Click into the menu. Timetable entries are marked with circles.
 ![Gradient Preview](image2)
5 Method Parameters
Method Parameters Multiple Heart-Cutting and High Resolution Sampling

2D-LC

3 Drag the mouse to a new %B value at a specified runtime of the 1st dimension. This draws a straight line.

4 When releasing the mouse, a new timetable entry is made and the gradient rollout is automatically updated.

5 Repeat step 2 with other timetable entries at the bottom of the gradients.
5 Method Parameters

Method Parameters Multiple Heart-Cutting and High Resolution Sampling

2D-LC

6 Move the mouse cursor near to a shift line to change menu context and insert or delete shift points as needed.

The stop time for a 2D-LC measurement must be set for the 2D pump, which can be accessed through the advanced settings. It must be at least the 1D run time and applies to the entire measurement, not to partial 2D-only runs/gradients for parked peaks.

Multiple Heart-Cutting extends this run time automatically, as analyzing parked peaks takes usually longer than the 1st dimension run only.

If you define a 1D stop time, it will be applied unchanged, i.e. the analysis will stop after that time without processing any parked peaks. This is not recommended and will lead to a warning in the gradient preview.
5 Method Parameters
Method Parameters Multiple Heart-Cutting and High Resolution Sampling

2D-LC

Smart Peak Parking

Smart peak parking optimizes parking for all time-based peaks in a reference signal.

Goals:
• Capture as many peaks as possible.
• Analyze them as fast as possible.

If still some peaks cannot be parked, user can define important peaks (Prioritize).
5 Method Parameters

Method Parameters Multiple Heart-Cutting and High Resolution Sampling

2D-LC

NOTE

By default, smart peak parking is active. For backward compatibility, smart peak parking can be disabled.

NOTE

The software displays a preview of what can be parked. This is a prediction only. The firmware decides in real-time, if a cut can be parked or not. In some cases, cuts may still be missed.
Method Parameters

Method Parameters Comprehensive 2D-LC

Software Method Setup

The method setup dialog is used to edit the 2D-LC specific method parameters of the 2nd dimension pump that were not part of the standard method user interface of the pump.

![Figure 61 2D-LC method setup (General settings)](image)

The setup of following method parameters is available:

1. **2D-LC Mode**, see "Set 2D-LC Mode" on page 89
2. **Solvents**, see "Set solvents" on page 129
3. **Flow settings**, see "Set flow" on page 130
4. **2D Gradient**, see "Set Solvent Composition Gradient" on page 131
5. **2D Time segments**, see "Set 2D Time Segments" on page 134
6. **Operating values**, see "Define Peak Detector Parameter" on page 136
7. **Gradient preview**, see "Gradient Preview Functionality" on page 137
Method Parameters
Method Parameters Comprehensive 2D-LC

Set 2D-LC Mode

Setting the mode has the following consequences:

- **Comprehensive** 2D-LC:

 The entire volume of the 1st dimension will be injected (using the pump in the 2nd dimension) onto the 2nd column. Two identical loops are used alternating, while one loop is filled in the 1st dimension, the volume of the other loop is separated with the 2nd column.

1. Select **Comprehensive** in 2D-LC Mode.

NOTE

The **Modulation time** reflects the duration of one injection cycle in the 2nd dimension. After that time, the solvent composition gradient will be repeated. The parameter **Modulation time** is only used in the **Comprehensive** mode.

The **2D Gradient Stoptime** reflects the maximal duration of the gradient in the 2nd dimension; the smallest value is 0.01 min. After that time, the Percent B value before the gradient (or the timetable entry at time = 0.0) is restored. In the Comprehensive 2D-LC mode the gradient stops latest when the **Modulation time** is reached.

![2D-LC Comprehensive mode](image1)

Figure 62 2D-LC Comprehensive mode

The gradient of the 2nd dimension is graphically displayed in a window in the lower right part of the method screen showing also the **Stop time** (as a red vertical line) and the **Modulation time** as a green vertical line.

![Stop time and Modulation time](image2)

Figure 63 Stop time and Modulation time
5 Method Parameters
Method Parameters Comprehensive 2D-LC

Set solvents

The selection of the solvents itself must be done in the standard pump method user interface.

- Open the pump method dialog using the button Advanced 2D pump settings... and change the selection of the solvents there.
- After closing the dialog, the solvent settings should be updated immediately.

1 Set the percentage of solvent B to any value from 0 – 100 % in steps of 0.01 %.

<table>
<thead>
<tr>
<th>Solvents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage settings</td>
</tr>
<tr>
<td>A: 30 %</td>
</tr>
<tr>
<td>B: 10 %</td>
</tr>
</tbody>
</table>

A1: 100.0 % Water V.03
B1: 100.0 % Acetonitrile V.03

NOTE

The name of the selected solvents and their solvent channels (A1:... or A2:... and B1:... or B2:...) are shown in the corresponding text fields.

Figure 64 2D-LC solvent settings

Solvent A always delivers the remaining percentage of volume. If the rate of solvent B is for example set to 20 %, solvent A, following the calculation %A = 100 - %B, automatically is set to 80 %.

The name of the selected solvents and their solvent channels (A1:... or A2:... and B1:... or B2:...) are shown in the corresponding text fields.

NOTE

The corresponding Percent B value in the Standard Pump user interface will be ignored as long as the 2D-LC functionality is enabled (see "Configuration" on page 148).
Set flow

<table>
<thead>
<tr>
<th>Flow settings</th>
<th>1.00 ml/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D Flow</td>
<td></td>
</tr>
<tr>
<td>use idle flow</td>
<td></td>
</tr>
</tbody>
</table>

Figure 65 Flow settings

1. Set the **2D Flow** (range 0 – 5.0 mL/min).
 This defines the flow in the 2nd dimension being used while 2D-LC is active (within 2D time segments where mode is not equal to OFF).

2. To set and use **Idle Flow** select check box **use idle flow**.
 This defines the flow in the 2nd dimension that is used while the 2D-LC mode is OFF (range 0 – 5.0 mL/min).

NOTE
If **use idle flow** is not selected, the **2D Flow** is also used while 2D-LC mode is OFF.
Set Solvent Composition Gradient

Set Solvent Composition Gradient

The timetable in the 2D Gradient group allows changing the solvent composition. Percent B ranges from 0 – 100 %.

Change the solvent composition at a specified time

1 To change the solvent composition (%B) at the specified time apply a percent B range from 0 – 100 %

Different start conditions in the first row may cause step gradients and RI-effects (density differences of the different liquid phases may cause different DAD detection through baseline disturbances).

<table>
<thead>
<tr>
<th>Time [min]</th>
<th>% B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>10.00</td>
</tr>
<tr>
<td>1.25</td>
<td>60.00</td>
</tr>
</tbody>
</table>

The time axis relates to the Stoptime of the 2nd dimension pump. Time [min] = 0.00 marks the start of the maybe repetitive gradient cycles, a time greater than Stoptime 2D will be ignored.
5 Method Parameters
Method Parameters Comprehensive 2D-LC

Define shifted gradients

1. To modify an entry in the timetable over the runtime of the 1st dimension (shifted gradient), click + sign at the beginning of the line and add one or more lines.

```
+/-sign
```

To add a new entry, use the add button (+ sign at the table bottom) in the timetable or in the shifted gradient table depending on the current focus. A new empty line is added at the end of the table, after editing the new line the table will be sorted automatically ascending by time.

OR

To delete the currently selected entry, use the delete button (- at the table bottom).

```
+/-sign
```

A gray colored + indicates that the associated nested table has no entries, otherwise the + is black.

NOTE

a. To add a new entry, use the add button (+ sign at the table bottom) in the timetable or in the shifted gradient table depending on the current focus. A new empty line is added at the end of the table, after editing the new line the table will be sorted automatically ascending by time.

OR

To delete the currently selected entry, use the delete button (- at the table bottom).
Method Parameters
Method Parameters Comprehensive 2D-LC

The time column specifies time values relative to the runtime of the 1st dimension. In the example above, the original timetable entry 20 %B at time = 0.0 min will be changed to 42 %B at time = 4.0 min doing linear interpolation in between. Between 4.0 min and 8.0 min, the value will change from 42 %B to 25 %B.

Setup 2D Gradient graphically

The user can graphically setup the 2D gradient including the initial composition (%B) value, the 2D-stoptime and the modulation (repetition) time.

Figure 66 2D Gradient window in edit mode

1. Click to enable the graphical editing capabilities.
2. To add a new gradient point, move the cursor within the drawing area close to a new gradient point until the cursor changes to and click.
3. To delete a gradient point, move the cursor close to the gradient pointto be deleted until the cursor changes to , select the right segment and click.
4. To move a gradient point, move the cursor close to the gradient point to be moved until the cursor changes to , select the left segment and drag.
5. To change the stop time, move the cursor close to the red dotted vertical line until the cursor changes to and drag.
6. To change the modulation time, move the cursor close to the green dotted vertical line until the cursor changes to and drag.
7. To change the initial composition, move the cursor close to the filled circle most left near the y-axis until the cursor changes to and drag the point.
Method Parameters
Method Parameters Comprehensive 2D-LC

Set 2D Time Segments

The content of the 2D Time Segments table specifies when (within the runtime of the 1st dimension) the selected 2D-LC mode is active.

Table 8 Definitions 2D Time Segments

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Specifies when a new segment starts (or ends)</td>
</tr>
<tr>
<td>Mode</td>
<td>Following options exist:</td>
</tr>
<tr>
<td></td>
<td>• Time based</td>
</tr>
<tr>
<td></td>
<td>The specified time defines the beginning of a time segment.</td>
</tr>
<tr>
<td></td>
<td>• Peak based</td>
</tr>
<tr>
<td></td>
<td>The peak detector is enabled at the specified time.</td>
</tr>
<tr>
<td></td>
<td>• Off</td>
</tr>
<tr>
<td></td>
<td>The time segments ends at the specified time.</td>
</tr>
<tr>
<td>Maximum peak duration</td>
<td>Only valid in case of trigger mode = peak-based. After that time the 2D-gradient repetition ends regardless of the peak detector state.</td>
</tr>
<tr>
<td>(Comprehensive mode only)</td>
<td></td>
</tr>
<tr>
<td>Sampling time (Heartcutting mode only)</td>
<td>Set the time the loop remains in the flow path of the 1st dimension.</td>
</tr>
<tr>
<td>Add transfer volume</td>
<td>• Checked:</td>
</tr>
<tr>
<td></td>
<td>Valve is switched at the specified time plus the time to deliver the delay volume</td>
</tr>
<tr>
<td></td>
<td>• Unchecked</td>
</tr>
<tr>
<td></td>
<td>Valve is switched at the specified time</td>
</tr>
<tr>
<td>(This check box is available only for Time based mode)</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: If the 2D Time Segments table is empty, no 2D-LC operation will be executed at all.

Set 2D Time Segments for Comprehensive mode

1. To specify when a new segment starts, fill in required time in the time column. After the time defined, the 2D-gradient repetition ends regardless of the peak detector state.
5 Method Parameters
Method Parameters Comprehensive 2D-LC

Trigger table (Comprehensive)

2 To specify the mode and time, select **Time based**, **Peak based** or **Off** from the drop-down list in the **Mode** column fill the **Time** field.

- **Time based**
 The specified time defines the beginning of a time segment where comprehensive 2D-LC is active. The 2D-gradient repetition starts immediately and ends when the 1D-Stoptime is reached or at the time specified in the next timetable entry. The actual gradient cycle is always completed except the 1D stoptime is reached.

- **Peak based**
 The peak detector is enabled at the specified time. The 2D-gradient repetition is started when a begin peak is detected and ends either with peak-end or when max. peak duration is reached. The time segment ends when the 1D-Stoptime is reached or at the time specified in the next timetable entry. It is possible to collect multiple peaks within one time segment.

- **Off**
 The time segments ends at the specified time.

3 In case of trigger-mode, define the the time in the **Max. peak duration** column.

4 To add or delete table rows, use the + and - icons below the table.

The **2D Time Segments** now are defined.
Method Parameters
Method Parameters Comprehensive 2D-LC

Define Peak Detector Parameter

This section allows parameterizing the peak detector to be used for peak-triggered 2D-LC operation (comprehensive or heart cutting).

Peak detector

<table>
<thead>
<tr>
<th>Mode</th>
<th>Threshold</th>
<th>UpSlope</th>
<th>Threshold</th>
<th>DownSlope</th>
<th>Upper threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5.00 mAU/s</td>
<td>5.00 mAU</td>
<td>5.00 mAU/s</td>
<td>3000.000 mAU</td>
</tr>
</tbody>
</table>

Figure 67 Overview on Peak detector parameters

The stop time for a 2D-LC measurement must be set for the 2D pump, which can be accessed through the advanced settings. It must be at least the 1D run time and applies to the entire measurement, not to partial 2D-only runs/gradients for parked peaks.

Multiple Heart-Cutting automatically extends this run time, if required, as analyzing parked peaks takes usually longer than the 1st dimension run only.

If you define a 1D stop time, it will be applied unchanged, for example the analysis will stop after that time without processing any parked peaks. This is not recommended and will lead to a warning in the gradient preview.

NOTE

If no peak detector is configured (see “Configuration” on page 148) this section is disabled. The currently configured peak detector (name & serial number of the detector) is shown in the section header.

NOTE

To facilitate the determination of parameters, it is possible to preview Threshold and Slope in the reference chromatogram.

1. Go to Instrument> Setup 2DLC and tab Advanced.
2. Select Peak detection mode from the drop-down list.
 The following options are available:
 • Off
 The peak detector is not used.
Method Parameters
Method Parameters Comprehensive 2D-LC

- **Threshold only**
 Detects peaks based on threshold values only.

- **Threshold/Slope values**
 Detects peaks based on both - threshold and slope.

- **Slope only**
 Detects peaks based on slope values only.

3 To define **Upslope** (slope of the rising peak), add the required values to the corresponding field.

4 To define **Downslope** (slope of the falling peak), add the required values to the corresponding field.

5 To define **Threshold** (height of the peak that triggers collection), add the required values to the corresponding field.

6 To define **Upper threshold** (height of the peak that ensures that collection is not switched off even for a saturated signal that might be expected to do so), add the required values to the corresponding field.

Gradient Preview Functionality

The gradient preview provides the following functions:

- Displays the gradient (%B) of the 1st dimension pump
- Displays the gradient (%B) of the 2nd dimension during the runtime of the first dimension, depending on the selected 2D-LC mode (comprehensive OR heart-cutting)
- Allows to graphically edit the gradient shifting
- Displays a reference signal by which a user can easily setup the trigger table or optimize his peak detector settings

Reference Signal

The user can load a chromatographic signal from an LC detector - a so-called reference signal. The signal will be shown in the gradient preview. This signal is automatically shown in the gradient preview of the setup dialog as long as the reference signal is part of the method. The signal can also be removed from the method or replaced by another signal.

Loading / removing a reference signal is triggered by toolbar buttons (or the context menu) of the gradient preview.
5 Method Parameters
Method Parameters Comprehensive 2D-LC

When a reference signal is loaded, a reference signal related y-axis is shown on the right side of the gradient preview window. The grid of the graphic window is either adjusted to the absorbance axis (right axis) or the %B axis (left) and can be changed by clicking on the corresponding axis. The signal name (e.g. DAD1 A, Sig= 280, 190 Ref=550,100) is shown in the legend of the graphic window.

![Gradient preview](image)

Figure 68 Gradient preview

The reference signal offers the following:

- Simplified set-up of (time-based) heart cuts in case the chromatogram of the sample is known in advance
- Preview of peaks, which would be analyzed in the 2nd dimension that is based on the current peak detector settings (threshold, slope)

Setup Second Dimension Gradient with the Graphical User Interface

The gradient preview allows to edit gradient shifting graphically. This replaces the editing of large timetables by a few mouse operations.

1. To enter the editing mode, use the context menu.

![Timetable entries are marked with circles.](image)
2D-LC - User Guide

Method Parameters Comprehensive 2D-LC

2. Drag the mouse to a new %B value at a specified runtime of the 1st dimension.

This draws a straight line. When releasing the mouse, a new timetable entry is made and the gradient rollout is automatically updated.

3. Repeat step 2 on page 139 with other timetable entries.
Method Parameters

Method Parameters Comprehensive 2D-LC

4 Move the mouse cursor near to a shift line to change menu context and insert or delete shift points as needed.
Method Parameters

Method Development of Active Solvent Modulation (ASM)

Method Development of Active Solvent Modulation (ASM)

ASM method development helps finding the optimal dilution of 1D solvents in the sample loop for best 2D resolution at lowest cycle time.

After switching on the ASM functionality (see "Method parameters" on page 142), execute the steps in the following order:

1. "Optimizing the dilution by using ASM capillaries" on page 143
2. "Optimizing the sample loop flush" on page 143
3. "Including the ASM phase to the 2D gradient" on page 144
4. "Optimizing dilution through method settings" on page 145
Method Parameters
Method Development of Active Solvent Modulation (ASM)

Method parameters

Advanced settings of 2D-LC method parameters allow switching on and off the use of the ASM functionality.

- If this option is off, it works as a standard 2D-LC valve without dilution.
- If this option is on, the user can set how often he wants to flush the sample loop during the ASM phase.

Figure 69 Method parameters for the ASM Valve (example)
Method Parameters
Method Development of Active Solvent Modulation (ASM)

Optimizing the dilution by using ASM capillaries

A choice of four different ASM capillaries is available for achieving best results. Longer capillaries reduce, shorter capillaries increase the dilution of 1D solvent in the sample loop.

Install and configure different ASM capillaries (see “Configure the ASM Valve” on page 190) for optimizing the results.

<table>
<thead>
<tr>
<th>Capillary p/n</th>
<th>Length (mm)</th>
<th>Inner diameter (mm)</th>
<th>Volume (µl)</th>
<th>ASM factor</th>
<th>Split ratio (loop:ASM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5500-1300</td>
<td>85</td>
<td>0.12</td>
<td>0.96</td>
<td>5</td>
<td>1.4</td>
</tr>
<tr>
<td>5500-1301</td>
<td>170</td>
<td>0.12</td>
<td>1.9</td>
<td>3</td>
<td>1.2</td>
</tr>
<tr>
<td>5500-1302</td>
<td>340</td>
<td>0.12</td>
<td>3.8</td>
<td>2</td>
<td>1.1</td>
</tr>
<tr>
<td>5500-1303</td>
<td>680</td>
<td>0.12</td>
<td>7.7</td>
<td>1.5</td>
<td>1.05</td>
</tr>
</tbody>
</table>

NOTE
Flushing the sample loop 3 times is typically enough and the recommended default. Less time may be sufficient and can be verified during optimization. The user interface displays how long this will take.

Optimizing the sample loop flush

Activate ASM in the software and set Flush sample loop to 3.0 times.

NOTE
Flushing the sample loop 3 times is typically enough and the recommended default. Less time may be sufficient and can be verified during optimization. The user interface displays how long this will take.
Method Development of Active Solvent Modulation (ASM)

Including the ASM phase to the 2D gradient

Gradients that were programmed for the second dimension originally without ASM Valve must be shifted by the delay caused by this dilution during the ASM phase such that the analytical gradient starts after the ASM phase.

If the ASM phase takes for example 0.41 min (based on selected ASM capillary, flush factor and 2D flow rate), all times are shifted compared to a 2D gradient without ASM.

- Gradient ends later and the gradient stop time is increased by 0.41 min
- 2D Cycle time is increased accordingly
- One line is added to the gradient table for the ASM phase
- All times for the analytical gradient are shifted by 0.41 min.

This is true for shifted gradient steps as well (if applicable).
For optimizing separation, you may use a lower percentage of B for the ASM phase and column equilibration phase compared to the original gradient for increasing dilution before the 2D column.

If for example the original analytical gradient started at 20 % B, you may use an ASM phase of for example 2 % B for diluting 1D solvent more strongly during the ASM phase by changing the gradient start condition and adding a line to the 2D gradient table for the ASM phase. The starting point for the analytical gradient does not change. The solvent composition of the equilibration phase is automatically reduced to the start condition.

Apply high-resolution sampling with small cut sizes. Small cut sizes reduce the transfer of solvent volume from 1D to 2D, which can further improve solvent compatibility and 2D resolution.
6 Run the System

Connect the capillaries to the 2D-LC valve 147
Standard Heart-Cutting 2D-LC 148
Configuration 148
Checkout Familiarization Procedure 150
Multiple Heart-Cutting and High Resolution Sampling 2D-LC 159
Configuration 160
Checkout/Familiarization Procedure 163
Comprehensive 2D-LC 175
Configuration 176
Checkout/Familiarization Procedure 179
Active Solvent Modulation (ASM) 189
Configuration 189

This chapter describes how to run the Agilent 1290 Infinity II 2D-LC Solution in the modes standard heart-cutting, multiple heart-cutting, high resolution sampling and comprehensive 2D-LC.
Run the System
Connect the capillaries to the 2D-LC valve

Connect the capillaries to the 2D-LC valve

NOTE
Plumbing of 2D-LC valve
The correct plumbing of the 2D-LC valve differs between comprehensive versus heart-cutting mode and cocurrent versus countercurrent mode.

Use the 2D-LC software to find out the correct plumbing of the 2D-LC valve ports.

1 Install all capillaries to the 2D-LC valve.
 Use the 2D-LC software to find out the correct plumbing of the 2D-LC valve ports:
 - Standard heart-cutting:
 "Configure Valve and Loop" on page 149
 - Multiple heart-cutting
 "Configure Valve and Loop" on page 161
 - High resolution sampling
 - "Configure Valve and Loop" on page 161
 - Comprehensive
 "Configure Valve and Loop" on page 149
Standard Heart-Cutting 2D-LC

This section describes how to run the Agilent 1290 Infinity II 2D-LC Solution in standard heart-cutting 2D-LC.

Configuration

The configuration of the 2D-LC-system is done via the configuration dialog in the software. The order of configuration is mandatory. The following configuration parameters are available:

- **Pumps**
 Section to define which pump is in the first and which one in the second dimension.

- **Detectors**
 Section to define which detector is in the second dimension and which detector should be used for peak detection (optional).

- **Columns**
 Section to define the columns being used in 1st and 2nd dimension.

- **Valve topology, 2D-LC Valve, Multiple Heart-Cutting Valves, Diverter Valve, Capillaries**
 Section to identify the modulation valve(s) used for toggling the loop(s) and section to define the volume of the sampling loop(s).
Configure Valve and Loop

To run 2D-LC, it must be defined, which valve is used for 1st and 2nd dimension.

- **1st dimension:**
 The 2D-LC Valve drop-down list contains all configured valves which can be used for 2D-LC functionality.

- **2nd dimension** (only relevant for multiple heart-cutting 2D-LC):
 If more than one valve matches the current valve/loop configuration, the user can select from a drop-down list, which valve is used to connect 1st and 2nd dimension.

- **Diverter Valve**
 If more than one valve matches the Diverter Valve configuration, a list-box is shown where the user can select the diverter valve.

The Identify button triggers the blinking of the status LED of the corresponding column compartment or valve drive. The button is only enabled in the Online version of the ChemStation.

All possible loop configurations depending on the selected valves are listed separately and illustrated on screen.

![Figure 74 2D-LC valve and loop configuration (concurrent)](image)
Run the System
Standard Heart-Cutting 2D-LC

Software required
1290 Infinity 2D-LC Acquisition Software

Preparations
Check box Enable 2D-LC selected

NOTE Valves may be part of a column compartment (G7116A/B, G1316C) or a valve drive (G1170A).

1 Select 2D-LC Valve.
2 Select topology under Valve topology.
3 To save settings click OK.

Valves and loops are configured for 2D-LC.

Checkout Familiarization Procedure

Checkout runs - heart-cutting: 1290 Infinity Binary or Quaternary LC in 1D

The familiarization procedure illustrates the system’s 2D-LC capabilities and supports the user to start the method for a specific analytical task. The familiarization procedure will guide the user through the most important setups and analysis function.

The sample provided with the familiarization procedure can be determined with a UV-detector and a mass spectrometer. The methods to analyze the starter sample are delivered together with the full package to ensure a smooth familiarization and checkout procedure. With the given method, peaks will overlap in the first dimension and will be separated in the second dimension.

The Agilent 1290 Infinity II 2D-LC Solution is delivered together with all required parts for a complete familiarization procedure for (multiple) heart-cutting and comprehensive 2D-LC.
Run the System
Standard Heart-Cutting 2D-LC

Parts required

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5190-6895</td>
<td>2D-LC starter sample, 1 x 2 mL</td>
</tr>
<tr>
<td></td>
<td>Includes 2 mL</td>
</tr>
<tr>
<td>858700-902</td>
<td>RRHD SB-C18, 2.1x100 mm, 1.8 µm, 1200 bar</td>
</tr>
<tr>
<td>857768-901</td>
<td>RRHD Bonus-RP, 2.1x50 mm, 1.8 µm, 1200 bar</td>
</tr>
<tr>
<td>G2453-85060</td>
<td>Formic Acid-Reagent Grade 5 mL (5 cc)</td>
</tr>
</tbody>
</table>

Hardware required

- “Single Heart-Cutting Configuration” on page 60
- Capillary ST 0.35 x 420 mm M/M 40 µl (5067-5926)

Software required

CD

Preparations

Solvents needed:

1. 1D: mobile phase A = water with 0.2% Formic Acid-Reagent Grade 5 mL (5 cc) (G2453-85060), B = methanol
2. 2D: mobile phase A = water with 0.2% Formic Acid-Reagent Grade 5 mL (5 cc) (G2453-85060), B = acetonitrile

Preparations:

1. Prepare dilution solvent (20 MeOH in mobile phase A): Add 300 µL MeOH to 1200 µL Mobile Phase A.
2. Prepare 400 µL sample: Add 40 µL 2D-LC starter sample to 360 µL dilution solvent.
3. Load method Checkout_MHC_Comp_1290BinX1290Bin.M from the 2D-LC Addon SW CD and modify the settings for your single heart or multiple heart cutting configuration.
Run the System
Standard Heart-Cutting 2D-LC

1 Apply method parameters for 1D

Table 9 Checkout method parameter settings 1D

<table>
<thead>
<tr>
<th>Module</th>
<th>Menu Path</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td></td>
<td>RRHD SB-C18, 2.1x 100 mm, 1.8 µm, 1200 bar (858700-902)</td>
<td></td>
</tr>
<tr>
<td>1D Pump</td>
<td>Set up Instrument Method...> Setup Method 1D Pump</td>
<td>Solvent A</td>
<td>H₂O + 0.2 % formic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solvent B</td>
<td>Methanol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Timetable [1/100 events] (Gradient)</td>
<td>Time [min]: 0.0 min, B[%]: 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Time [min]: 50 min, B[%]: 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stop time: 40 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Post time: 10 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flow rate</td>
<td>0.300 mL/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Posttime</td>
<td>6 min</td>
</tr>
<tr>
<td>1D Column Compartment</td>
<td>Instrument> Setup Method 1D Column Compartment</td>
<td>Temperature</td>
<td>40 °C</td>
</tr>
<tr>
<td>1D Detector</td>
<td>Instrument> Setup Method 1D Detector</td>
<td>Signal A</td>
<td>Wavelength: 254 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bandwidth: 4 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reference Wavelength: 360 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reference Bandwidth: 100 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peakwidth</td>
<td>5 Hz</td>
</tr>
<tr>
<td>1D Sampler</td>
<td>Instrument> Setup Method 1D Sampler</td>
<td>Injection volume</td>
<td>2.0 µL</td>
</tr>
</tbody>
</table>
Run the System

Standard Heart-Cutting 2D-LC

2. **Apply method parameters for 2D.**

<table>
<thead>
<tr>
<th>Module</th>
<th>Menu Path</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td></td>
<td></td>
<td>RRHD Bonus-RP, 2.1x 50 mm, 1.8 µm, 1200 bar (857768-901)</td>
</tr>
<tr>
<td>2D Pump</td>
<td>Setup 2D-Pump</td>
<td>Solvent A</td>
<td>H₂O + 0.2 % formic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solvent B</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2D gradient</td>
<td>Time [min]: 0.0 min, B[%]: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Time [min]: 1.25 min, B[%]: 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2D Gradient stoptime:</td>
<td>1.25 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2D cycletime:</td>
<td>1.75 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2D Flow:</td>
<td>1.0 mL/min</td>
</tr>
<tr>
<td></td>
<td>Setup 2D-Pump Pre-</td>
<td>Gradient shift:</td>
<td>0->20 min from 10->30 % B (only downslope)</td>
</tr>
<tr>
<td></td>
<td>viewEdit mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setup 2D-Pump Advanced 2D pump settings...</td>
<td>Stoptime:</td>
<td>40 min (will be automatically prolonged, if peaks in 2D are not worked off)</td>
</tr>
<tr>
<td>1D Column Compartment</td>
<td></td>
<td>Temperature</td>
<td>40 °C</td>
</tr>
<tr>
<td>2D Detector</td>
<td>Instrument> Setup</td>
<td>Signal A</td>
<td>Wavelength: 254 nm</td>
</tr>
<tr>
<td></td>
<td>Method 2D</td>
<td></td>
<td>Bandwidth: 4 nm</td>
</tr>
<tr>
<td></td>
<td>Detector</td>
<td>Reference Wavelength:</td>
<td>360 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reference Bandwidth:</td>
<td>100 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peakwidth:</td>
<td>≥40 Hz</td>
</tr>
</tbody>
</table>
Run the System
Standard Heart-Cutting 2D-LC

3 Program and/or find the following cuts in the predefined method:

<table>
<thead>
<tr>
<th>Cut-#</th>
<th>Cut-Time [min] 1290 Binary LC</th>
<th>Cut-Time [min] 1290 Quaternary LC¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.25</td>
<td>4.35</td>
</tr>
<tr>
<td>2</td>
<td>6.58</td>
<td>6.86</td>
</tr>
<tr>
<td>3</td>
<td>10.05</td>
<td>10.4</td>
</tr>
<tr>
<td>4</td>
<td>13.3</td>
<td>13.7</td>
</tr>
<tr>
<td>5</td>
<td>16.8</td>
<td>17.15</td>
</tr>
<tr>
<td>6</td>
<td>23.9</td>
<td>24.6</td>
</tr>
</tbody>
</table>

¹ The Cut-Time can vary slightly depending on the configuration

4 Run the method with the 2D-LC starter sample, 1 x 2 mL (5190-6895), 1:10 diluted with Methanol/Water (20/80; v/v) with 0.1 % formic acid.
Run the System
Standard Heart-Cutting 2D-LC

Checkout runs - heart-cutting: 1260 Infinity Binary in 1D

The familiarization procedure illustrates the system’s 2D-LC capabilities and supports the user to start the method for a specific analytical task. The familiarization procedure will guide the user through the most important setups and analysis function.

The sample provided with the familiarization procedure can be determined with a UV-detector and a mass spectrometer. The methods to analyze the starter sample are delivered together with the full package to ensure a smooth familiarization and checkout procedure. With the given method, peaks will overlap in the first dimension and will be separated in the second dimension.

The Agilent 1290 Infinity II 2D-LC Solution is delivered together with all required parts for a complete familiarization procedure for (multiple) heart-cutting and comprehensive 2D-LC.

<table>
<thead>
<tr>
<th>Parts required</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5190-6895</td>
<td>2D-LC starter sample, 1 x 2 mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Includes 2 mL</td>
<td></td>
</tr>
<tr>
<td>858700-902</td>
<td>RRHD SB-C18, 2.1x100 mm, 1.8 µm, 1200 bar</td>
<td></td>
</tr>
<tr>
<td>857768-901</td>
<td>RRHD Bonus-RP, 2.1x50 mm, 1.8 µm, 1200 bar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2D, Heart-cutting</td>
<td></td>
</tr>
<tr>
<td>G2453-85060</td>
<td>Formic Acid-Reagent Grade 5 mL (5 cc)</td>
<td></td>
</tr>
</tbody>
</table>

Hardware required
- “Single Heart-Cutting Configuration” on page 60
- Capillary ST 0.35 x 420 mm M/M 40 µl (5067-5926)

Software required
CD

Preparations
Solvents needed:
- 1D: mobile phase A = water with 0.2 % Formic Acid-Reagent Grade 5 mL (5 cc) (G2453-85060), B = methanol
- 2D: mobile phase A = water with 0.2 % Formic Acid-Reagent Grade 5 mL (5 cc) (G2453-85060), B = acetonitrile

Preparations:
1. Prepare dilution solvent (20 MeOH in mobile phase A): Add 300 µL MeOH to 1200 µL Mobile Phase A.
2. Prepare 400 µL sample: Add 40 µL 2D-LC starter sample to 360 µL dilution solvent.
3. Load method Checkout_MHC_Comp_1290BinX1290Bin.M from the 2D-LC Addon SW CD and modify the settings for your single heart or multiple heart cutting configuration.
Run the System
Standard Heart-Cutting 2D-LC

1. Apply method parameters for 1D

Table 10 Checkout method parameter settings 1D

<table>
<thead>
<tr>
<th>Module</th>
<th>Menu Path</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td></td>
<td>RRHD SB-C18, 2.1x 100 mm, 1.8 µm, 1200 bar (858700-902)</td>
<td></td>
</tr>
<tr>
<td>1D Pump</td>
<td>Set up Instrument Method...> Setup Method 1D Pump</td>
<td>Solvent A</td>
<td>H₂O + 0.2 % formic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solvent B</td>
<td>Methanol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Timetable [1/100 events] [Gradient]</td>
<td>Time [min]: 0.0 min, B[%]: 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Time [min]: 50 min, B[%]: 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stop-time: 40 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Posttime: 10 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flow rate</td>
<td>0.300 mL/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Posttime</td>
<td>6 min</td>
</tr>
<tr>
<td>1D Column Compartment</td>
<td>Instrument> Setup Method 1D Column Compartment</td>
<td>Temperature</td>
<td>40 °C</td>
</tr>
<tr>
<td>1D Detector</td>
<td>Instrument> Setup Method 1D Detector</td>
<td>Signal A</td>
<td>Wavelength: 254 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bandwidth: 4 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reference Wavelength: 360 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reference Bandwidth: 100 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peakwidth</td>
<td>5 Hz</td>
</tr>
<tr>
<td>1D Sampler</td>
<td>Instrument> Setup Method 1D Sampler</td>
<td>Injection volume</td>
<td>2.0 µL</td>
</tr>
</tbody>
</table>
Run the System
Standard Heart-Cutting 2D-LC

2 Apply method parameters for 2D.

<table>
<thead>
<tr>
<th>Module</th>
<th>Menu Path</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td></td>
<td>RRHD Bonus-RP, 2.1x 50 mm, 1.8 µm, 1200 bar (857768-901)</td>
<td></td>
</tr>
<tr>
<td>2D Pump</td>
<td>Setup 2D-Pump</td>
<td>Solvent A</td>
<td>H₂O + 0.2 % formic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solvent B</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>2D gradient</td>
<td></td>
<td>Time [min]:</td>
<td>0.0 min, B[%]: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time [min]:</td>
<td>1.25 min, B[%]: 60</td>
</tr>
<tr>
<td>2D Gradient stoptime</td>
<td></td>
<td>1.25 min</td>
<td></td>
</tr>
<tr>
<td>2D cycletime</td>
<td></td>
<td>1.75 min</td>
<td></td>
</tr>
<tr>
<td>2D Flow</td>
<td></td>
<td>1.0 mL/min</td>
<td></td>
</tr>
<tr>
<td>Setup 2D-Pump Pre-viewEdit mode</td>
<td>Gradient shift:</td>
<td>0->20 min from 10->30 % B (only downslope)</td>
<td></td>
</tr>
<tr>
<td>Setup 2D-Pump Advanced 2D pump settings...</td>
<td>Stoptime</td>
<td>40 min (will be automatically prolonged, if peaks in 2D are not worked off)</td>
<td></td>
</tr>
<tr>
<td>1D Column Compart-ment</td>
<td>Temperature</td>
<td>40 °C</td>
<td></td>
</tr>
</tbody>
</table>
| 2D Detector | Instrument> Setup Method 2D Detector | Signal A | Wavelength: 254 nm
| | | Bandwidth: 4 nm
| | | Reference Wavelength: 360 nm
| | | Reference Bandwidth: 100 nm
| | | Peakwidth: ≥40 Hz |
6 Run the System
Standard Heart-Cutting 2D-LC

3 Program and/or find the following cuts in the predefined method:

<table>
<thead>
<tr>
<th>Cut-#</th>
<th>Cut-Time [min] 1260 Binary LC¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.5</td>
</tr>
<tr>
<td>2</td>
<td>13.13</td>
</tr>
<tr>
<td>3</td>
<td>17.6</td>
</tr>
<tr>
<td>4</td>
<td>21.2</td>
</tr>
<tr>
<td>5</td>
<td>25.25</td>
</tr>
<tr>
<td>6</td>
<td>31.55</td>
</tr>
</tbody>
</table>

¹ The Cut-Time can vary slightly depending on the configuration

4 Run the method with the 2D-LC starter sample, 1 x 2 mL (5190-6895), 1:10 diluted with Methanol/Water (20/80; v/v) with 0.1 % formic acid.
Run the System
Multiple Heart-Cutting and High Resolution Sampling 2D-LC

Multiple Heart-Cutting and High Resolution Sampling 2D-LC

This section describes how to run the Agilent 1290 Infinity II 2D-LC Solution in multiple heart-cutting and high resolution sampling 2D-LC.
6 Run the System
Multiple Heart-Cutting and High Resolution Sampling 2D-LC

Configuration

Overview Configuration Dialog

The configuration of the 2D-LC-system is done via the configuration dialog in the software. The order of configuration is mandatory. The following configuration parameters are available:

- **Pumps**
 Section to define which pump is in the first and which one in the second dimension.

- **Detectors**
 Section to define which detector is in the second dimension and which detector should be used for peak detection (optional).

- **Columns**
 Section to define the columns being used in 1st and 2nd dimension.

- **Valve topology, 2D-LC Valve, Multiple Heart-Cutting Valves, Diverter Valve, Capillaries**
 Section to identify the modulation valve(s) used for toggling the loop(s) and section to define the volume of the sampling loop(s).
Configure Valve and Loop

To run Multiple Heart-cutting/High-resolution sampling 2D-LC, the following parameters must be defined:

- **Select topology:**
 The drop-down list contains all possible valve/loop topologies.

- **2D-LC valve(s):**
 - #1:
 If more than one valve matches the current valve / loop configuration, a list-box is shown where the user can select the 2D-LC valve.
 - #2:
 If more than one valve matches the current valve / loop configuration, a list-box is shown where the user can select the 2D-LC valve.
 Shows the 2nd valve to be used for the injection on the 2nd dimension. This field is only visible if a Dual 2pos/6port configuration is selected.

- **Multiple Heart-Cutting Valve(s)**
 - Deck A (Ports 1 / 8):
 Shows the 6port/14port valve used for the parking deck 1. The field is only enabled in case of a valve / loop configuration with one or two Multiple Heart-Cutting Valves (6 or 12 loops). If more than one 6/14 valve is available, a list-box is shown where the user can select the appropriate valve.
 - Deck B (Ports 5 / 4):
 Select the 6port/14port valve used for the parking deck 2. The list-box is only enabled in case of a valve / loop configuration with two Multiple Heart-Cutting Valves (6 or 12 loops).

- **Diverter Valve**
 If more than one valve matches the Diverter Valve configuration, a list-box is shown where the user can select the diverter valve.

- **Capillaries**
 A list-box is shown where the user can select the capillaries.

- **Identify** button triggers the blinking of the status LED of the corresponding valve or column compartment. The button is only enabled in the Online version of the ChemStation.

All possible loop configurations depending on the selected valves are listed separately and illustrated on screen.
Run the System
Multiple Heart-Cutting and High Resolution Sampling 2D-LC

1. Select the valve / loop combination for the injection on the 1st dimension (Select topology).
2. Specify the volume of the loop (Loop size).
3. Select the valve for the injection on the 2nd dimension (2D-LC valve(s)).
4. Select the valve for parking peaks (Multiple Heart-Cutting Valve(s)).
5. Select the capillaries used in your system.
6. To save settings click OK.

Preparations

- OpenLAB ChemStation Edition C.01.10 (or higher)
- 1290 Infinity 2D-LC Acquisition Software
- Check box Enable 2D-LC selected

NOTE
Valves must be part of the 1290 Infinity Valve Drive (G1170A).
Run the System
Multiple Heart-Cutting and High Resolution Sampling 2D-LC

Checkout/Familiarization Procedure
Checkout runs - MHC: 1290 Infinity Binary or Quaternary LC in 1D

<table>
<thead>
<tr>
<th>Parts required</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D-LC starter sample, 1 x 2 mL</td>
<td>5190-6895</td>
<td>2D-LC starter sample, 1 x 2 mL</td>
</tr>
<tr>
<td>Includes 2 mL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RRHD SB-C18, 2.1x100 mm, 1.8 µm, 1200 bar</td>
<td>858700-902</td>
<td>RRHD SB-C18, 2.1x100 mm, 1.8 µm, 1200 bar</td>
</tr>
<tr>
<td>RRHD Bonus-RP, 2.1x50 mm, 1.8 µm, 1200 bar</td>
<td>857768-901</td>
<td>RRHD Bonus-RP, 2.1x50 mm, 1.8 µm, 1200 bar</td>
</tr>
<tr>
<td>Formic Acid-Reagent Grade 5 mL (5 cc)</td>
<td>G2453-85060</td>
<td>Formic Acid-Reagent Grade 5 mL (5 cc)</td>
</tr>
</tbody>
</table>

Hardware required "Multiple Heart-Cutting Configuration" on page 61
Software required CD

Preparations
Solvents needed:
- 1D: mobile phase A = water with 0.2 % Formic Acid-Reagent Grade 5 mL (5 cc) (G2453-85060), B = methanol
- 2D: mobile phase A = water with 0.2 % Formic Acid-Reagent Grade 5 mL (5 cc) (G2453-85060), B = acetonitrile

Preparations:
1. Prepare dilution solvent (20 MeOH in mobile phase A): Add 300 µL MeOH to 1200 µL Mobile Phase A.
2. Prepare 400 µL sample: Add 40 µL 2D-LC starter sample to 360 µL dilution solvent.
3. Load method Checkout_MHC_Comp_1290BinX1290Bin.M from the 2D-LC Addon SW CD and modify the settings for your single heart or multiple heart cutting configuration.
1D Apply method parameters for 1D

Table 11 Checkout method parameter settings 1D

<table>
<thead>
<tr>
<th>Module</th>
<th>Menu Path</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td></td>
<td></td>
<td>RRHD SB-C18, 2.1x 100 mm, 1.8 µm, 1200 bar (858700-902)</td>
</tr>
<tr>
<td>1D Pump</td>
<td>Set up Instrument Method...> Setup Method 1D Pump</td>
<td>Solvent A</td>
<td>H₂O + 0.2 % formic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solvent B</td>
<td>Methanol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Timetable [1/100 events] (Gradient)</td>
<td>Time [min]:0.0 min, B[%]:20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Time [min]:50 min, B[%]:100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stoptime: 40 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Posttime: 10 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Flow rate: 0.300 mL/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Posttime: 6 min</td>
</tr>
<tr>
<td>1D Column Compart-</td>
<td>Instrument> Setup Method 1D Column Compart- ment</td>
<td>Temperature</td>
<td>40 °C</td>
</tr>
<tr>
<td>ment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1D Detector</td>
<td>Instrument> Setup Method 1D Detector</td>
<td>Signal A</td>
<td>Wavelength: 254 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bandwidth: 4 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reference Wavelength: 360 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reference Bandwidth: 100 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Peakwidth: 5 Hz</td>
</tr>
<tr>
<td>1D Sampler</td>
<td>Instrument> Setup Method 1D Sampler</td>
<td>Injection volume</td>
<td>2.0 µL</td>
</tr>
</tbody>
</table>

Run the System

Multiple Heart-Cutting and High Resolution Sampling 2D-LC
6 Run the System
Multiple Heart-Cutting and High Resolution Sampling 2D-LC

2 Apply method parameters for 2D.

<table>
<thead>
<tr>
<th>Module</th>
<th>Menu Path</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td>Instrument> Setup</td>
<td>2D-LC>></td>
<td>Verify that the 2D-LC mode is set to Multiple Heart-Cutting</td>
</tr>
<tr>
<td>Column</td>
<td></td>
<td></td>
<td>RRHD Bonus-RP, 2.1x 50 mm, 1.8 µm, 1200 bar (857768-901)</td>
</tr>
<tr>
<td>2D Pump</td>
<td>Setup 2D-Pump</td>
<td>Solvent A</td>
<td>H₂O + 0.2 % formic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solvent B</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td></td>
<td>2D gradient</td>
<td>Time [min]:</td>
<td>0.0 min, B[%]: 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time [min]:</td>
<td>1.25 min, B[%]: 60</td>
</tr>
<tr>
<td></td>
<td>2D Gradient stoptime</td>
<td>1.25 min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2D cycletime</td>
<td>1.75 min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2D Flow</td>
<td>1.0 mL/min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setup 2D-Pump</td>
<td>Pre-viewEdit mode</td>
<td>Gradient shift: 0->20 min from 10->30 % B (only downslope)</td>
</tr>
<tr>
<td></td>
<td>Advanced 2D pump</td>
<td></td>
<td>Stoptime: 40 min (will be automatically prolonged, if peaks in 2D are not worked off)</td>
</tr>
<tr>
<td>1D Column Compart-ment</td>
<td>Temperature</td>
<td></td>
<td>40 °C</td>
</tr>
<tr>
<td>2D Detector</td>
<td>Instrument> Setup</td>
<td>Method 2D Detector</td>
<td>Wavelength: 254 nm, Bandwidth: 4 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reference Wavelength: 360 nm, Reference Bandwidth: 100 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal A</td>
<td>Peakwidth: ≥40 Hz</td>
</tr>
</tbody>
</table>
6 Run the System
Multiple Heart-Cutting and High Resolution Sampling 2D-LC

3 Program and/or find the following cuts in the predefined method:

<table>
<thead>
<tr>
<th>Cut-#</th>
<th>Cut-Time [min] 1290 Binary LC</th>
<th>Cut-Time [min] 1290 Quaternary LC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.25</td>
<td>4.35</td>
</tr>
<tr>
<td>2</td>
<td>6.58</td>
<td>6.86</td>
</tr>
<tr>
<td>3</td>
<td>10.05</td>
<td>10.4</td>
</tr>
<tr>
<td>4</td>
<td>12.19</td>
<td>12.58</td>
</tr>
<tr>
<td>5</td>
<td>13.3</td>
<td>13.7</td>
</tr>
<tr>
<td>6</td>
<td>13.44</td>
<td>13.85</td>
</tr>
<tr>
<td>7</td>
<td>13.58</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>13.72</td>
<td>14.15</td>
</tr>
<tr>
<td>9</td>
<td>13.86</td>
<td>14.3</td>
</tr>
<tr>
<td>10</td>
<td>16.8</td>
<td>17.15</td>
</tr>
<tr>
<td>11</td>
<td>16.94</td>
<td>17.3</td>
</tr>
<tr>
<td>12</td>
<td>17.08</td>
<td>17.45</td>
</tr>
<tr>
<td>13</td>
<td>17.22</td>
<td>17.6</td>
</tr>
<tr>
<td>14</td>
<td>17.36</td>
<td>17.75</td>
</tr>
<tr>
<td>15</td>
<td>23.9</td>
<td>24.6</td>
</tr>
</tbody>
</table>

1 The Cut-Time can vary slightly depending on the configuration

4 Run the method with the 2D-LC starter sample, 1 x 2 mL (5190-6895), 1:10 diluted with Methanol/Water (20/80; v/v) with 0.1 % formic acid.
6 Run the System
Multiple Heart-Cutting and High Resolution Sampling 2D-LC

Checkout runs - MHC: 1260 Infinity Binary in 1D

<table>
<thead>
<tr>
<th>Parts required</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5190-6895</td>
<td>2D-LC starter sample, 1 x 2 mL</td>
</tr>
<tr>
<td></td>
<td>5190-6895</td>
<td>Includes 2 mL</td>
</tr>
<tr>
<td></td>
<td>858700-902</td>
<td>RRHD SB-C18, 2.1x100 mm, 1.8 µm, 1200 bar 1D</td>
</tr>
<tr>
<td></td>
<td>857768-901</td>
<td>RRHD Bonus-RP, 2.1x50 mm, 1.8 µm, 1200 bar 2D, Heart-cutting</td>
</tr>
<tr>
<td></td>
<td>G2453-85060</td>
<td>Formic Acid-Reagent Grade 5 mL (5 cc)</td>
</tr>
</tbody>
</table>

Hardware required "Multiple Heart-Cutting Configuration" on page 61

Software required CD

Preparations

Solvents needed:

- 1D: mobile phase A = water with 0.2 % Formic Acid-Reagent Grade 5 mL (5 cc) (G2453-85060), B = methanol
- 2D: mobile phase A = water with 0.2 % Formic Acid-Reagent Grade 5 mL (5 cc) (G2453-85060), B = acetonitrile

Preparations:

1. Prepare dilution solvent (20 MeOH in mobile phase A): Add 300 µL MeOH to 1200 µL Mobile Phase A.
2. Prepare 400 µL sample: Add 40 µL 2D-LC starter sample to 360 µL dilution solvent.
3. Load method Checkout_MHC_Comp_1290BinX1290Bin.M from the 2D-LC Addon SW CD and modify the settings for your single heart or multiple heart cutting configuration.
Run the System
Multiple Heart-Cutting and High Resolution Sampling 2D-LC

1 Apply method parameters for 1D

Table 12 Checkout method parameter settings 1D

<table>
<thead>
<tr>
<th>Module</th>
<th>Menu Path</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td></td>
<td></td>
<td>RRHD SB-C18, 2.1x 100 mm, 1.8 µm, 1200 bar (858700-902)</td>
</tr>
<tr>
<td>1D Pump</td>
<td>Set up Instrument Method...> Setup Method 1D Pump</td>
<td>Solvent A</td>
<td>H₂O + 0.2 % formic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solvent B</td>
<td>Methanol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Timetable [1/100 events] (Gradient)</td>
<td>Time [min]: 0.0 min, B[%]: 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Time [min]: 50 min, B[%]: 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stop time: 40 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Post time: 10 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flow rate</td>
<td>0.300 mL/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Post time</td>
<td>6 min</td>
</tr>
<tr>
<td>1D Column Compartment</td>
<td>Instrument> Setup Method 1D Column Compartment</td>
<td>Temperature</td>
<td>40 °C</td>
</tr>
</tbody>
</table>
| 1D Detector | Instrument> Setup Method 1D Detector | Signal A | Wavelength: 254 nm
Reference Wavelength: 360 nm
Reference Bandwidth: 100 nm |
| | | Peakwidth | 5 Hz |
| 1D Sampler | Instrument> Setup Method 1D Sampler | Injection volume | 2.0 µL |
Run the System
Multiple Heart-Cutting and High Resolution Sampling 2D-LC

2 Apply method parameters for 2D.

<table>
<thead>
<tr>
<th>Module</th>
<th>Menu Path</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td>Instrument > Setup 2D-LC>></td>
<td></td>
<td>Verify that the 2D-LC mode is set to Multiple Heart-Cutting</td>
</tr>
<tr>
<td>Column</td>
<td></td>
<td></td>
<td>RRHD Bonus-RP, 2.1x 50 mm, 1.8 µm, 1200 bar (857768-901)</td>
</tr>
<tr>
<td>2D Pump</td>
<td>Setup 2D-Pump</td>
<td>Solvent A</td>
<td>H₂O + 0.2 % formic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solvent B</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2D gradient</td>
<td>Time [min]: 0.0 min, B[%]: 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Time [min]: 1.25 min, B[%]: 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2D Gradient stoptime</td>
<td>1.25 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2D cycletime</td>
<td>1.75 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2D Flow</td>
<td>1.0 mL/min</td>
</tr>
<tr>
<td></td>
<td>Setup 2D-Pump</td>
<td>Gradient shift:</td>
<td>0->20 min from 10->30 % B (only downslope)</td>
</tr>
<tr>
<td></td>
<td>Advanced 2D pump set-tings...</td>
<td>Stoptime</td>
<td>40 min (will be automatically prolonged, if peaks in 2D are not worked off)</td>
</tr>
<tr>
<td>1D Column Compart-</td>
<td>Instrument > Setup Method</td>
<td>Temperature</td>
<td>40 °C</td>
</tr>
<tr>
<td>2D Detector</td>
<td>2D Detector</td>
<td>Wavelength</td>
<td>254 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bandwidth</td>
<td>4 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reference Wavelength</td>
<td>360 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reference Bandwidth</td>
<td>100 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peakwidth</td>
<td>≥40 Hz</td>
</tr>
</tbody>
</table>
Run the System
Multiple Heart-Cutting and High Resolution Sampling 2D-LC

3 Program and/or find the following cuts in the predefined method:

<table>
<thead>
<tr>
<th>Cut-#</th>
<th>Cut-Time [min] 1260 Binary LC¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.5</td>
</tr>
<tr>
<td>2</td>
<td>13.13</td>
</tr>
<tr>
<td>3</td>
<td>17.6</td>
</tr>
<tr>
<td>4</td>
<td>20.2</td>
</tr>
<tr>
<td>5</td>
<td>20.45</td>
</tr>
<tr>
<td>6</td>
<td>20.7</td>
</tr>
<tr>
<td>7</td>
<td>21.2</td>
</tr>
<tr>
<td>8</td>
<td>21.45</td>
</tr>
<tr>
<td>9</td>
<td>21.7</td>
</tr>
<tr>
<td>10</td>
<td>22.2</td>
</tr>
<tr>
<td>11</td>
<td>24.6</td>
</tr>
<tr>
<td>12</td>
<td>25.25</td>
</tr>
<tr>
<td>13</td>
<td>25.5</td>
</tr>
<tr>
<td>14</td>
<td>25.75</td>
</tr>
<tr>
<td>15</td>
<td>27</td>
</tr>
</tbody>
</table>

¹ The Cut-Time can vary slightly depending on the configuration

4 Run the method with the 2D-LC starter sample, 1 x 2 mL (5190-6895), 1:10 diluted with Methanol/Water (20/80; v/v) with 0.1 % formic acid.
6 Run the System
Multiple Heart-Cutting and High Resolution Sampling 2D-LC

Checkout run - high-resolution sampling

<table>
<thead>
<tr>
<th>Parts required</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5190-6895</td>
<td>2D-LC starter sample, 1 x 2 mL</td>
</tr>
<tr>
<td></td>
<td>858700-902</td>
<td>RRHD SB-C18, 2.1x100 mm, 1.8 µm, 1200 bar</td>
</tr>
<tr>
<td></td>
<td>857768-901</td>
<td>RRHDBonus-RP, 2.1x50 mm, 1.8 µm, 1200 bar</td>
</tr>
<tr>
<td></td>
<td>G2453-85060</td>
<td>Formic Acid-Reagent Grade 5 mL (5 cc)</td>
</tr>
</tbody>
</table>

Hardware required "Multiple Heart-Cutting Configuration" on page 61

Software required CD

Preparations
Solvents needed:
- 1D: mobile phase A = water with 0.2 % Formic Acid-Reagent Grade 5 mL (5 cc) (G2453-85060), B = methanol
- 2D: mobile phase A = water with 0.2 % Formic Acid-Reagent Grade 5 mL (5 cc) (G2453-85060), B = acetonitrile

Preparations:
1. Prepare dilution solvent (20 MeOH in mobile phase A): Add 300 µL MeOH to 1200 µL Mobile Phase A.
2. Prepare 400 µL sample: Add 40 µL 2D-LC starter sample to 360 µL dilution solvent.
3. Load method Checkout_MHC_Comp_1290BinX1290Bin.M from the 2D-LC Addon SW CD and modify the settings for your single heart or multiple heart cutting configuration.
Run the System
Multiple Heart-Cutting and High Resolution Sampling 2D-LC

1 Apply method parameters for 1D.

Table 13 Checkout method parameter settings 1D

<table>
<thead>
<tr>
<th>Module</th>
<th>Tool</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td></td>
<td></td>
<td>RRHD SB-C18, 2.1 x 100 mm, 1.8 µm, 1200 bar (858700-902)</td>
</tr>
<tr>
<td>1D Pump</td>
<td>Instrument> Setup Method 1D Pump</td>
<td>Solvent A</td>
<td>H₂O + 0.2 % formic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solvent B</td>
<td>Methanol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Timetable [1/100 events] (Gradient)</td>
<td>Time [min]: 0.0 min, B [%]: 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Time [min]: 20 min, B [%]: 55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Time [min]: 21 min, B [%]: 95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stoptime: select As Injector/No Limit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Posttime: select Off</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flow rate</td>
<td>0.600 mL/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Posttime</td>
<td>Off</td>
</tr>
<tr>
<td>1D Column Compartment</td>
<td>Instrument> Setup Method 1D Column Compartment</td>
<td>Temperature</td>
<td>40 °C</td>
</tr>
<tr>
<td>1D Detector</td>
<td>Instrument> Setup Method 1D Detector</td>
<td>Signal A</td>
<td>Wavelength: 254 nm, Bandwidth: 4 nm, Reference Wavelength: 360 nm, Reference Bandwidth: 100 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal B</td>
<td>Wavelength: 260 nm, Bandwidth: 4 nm, Reference Wavelength: 360 nm, Reference Bandwidth: 100 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peakwidth</td>
<td>5 Hz</td>
</tr>
<tr>
<td>1D Sampler</td>
<td>Instrument> Setup Method 1D Sampler</td>
<td>Injection volume:</td>
<td>1.0 µL, 2.0 µL, 5.0 µL, and 3.0 µL</td>
</tr>
</tbody>
</table>
Run the System

Multiple Heart-Cutting and High Resolution Sampling 2D-LC

2. Apply method parameters for 2D.

<table>
<thead>
<tr>
<th>Module</th>
<th>Tool</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td></td>
<td></td>
<td>RRHD Bonus-RP, 2.1x 50 mm, 1.8 µm, 1200 bar (857768-901)</td>
</tr>
<tr>
<td>2D Pump</td>
<td>Setup 2D-Pump</td>
<td>Solvent A</td>
<td>H₂O + 0.2 % formic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solvent B</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>2D gradient</td>
<td></td>
<td>Time [min]: 1.25 min, B[%]: 60</td>
<td></td>
</tr>
<tr>
<td>2D Flow</td>
<td></td>
<td></td>
<td>1.0 mL/min</td>
</tr>
<tr>
<td></td>
<td>Setup 2D-Pump Pre-</td>
<td>Gradient shift:</td>
<td>0->20 min from 10->30 % B (only downslope)</td>
</tr>
<tr>
<td></td>
<td>viewEdit mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stoptime</td>
<td>23 min</td>
</tr>
<tr>
<td>1D Column</td>
<td>Compartment</td>
<td>Temperature</td>
<td>40 °C</td>
</tr>
<tr>
<td>2D Detector</td>
<td>Instrument> Setup</td>
<td>Signal A</td>
<td>Wavelength: 254 nm, Bandwidth: 4 nm, Reference Wavelength: 360 nm,</td>
</tr>
<tr>
<td></td>
<td>Method 2D Detector</td>
<td></td>
<td>Reference Bandwidth: 100 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal B</td>
<td>Wavelength: 260 nm, Bandwidth: 4 nm, Reference Wavelength: 360 nm,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reference Bandwidth: 100 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peakwidth</td>
<td>≥40 Hz</td>
</tr>
</tbody>
</table>
Run the System
Multiple Heart-Cutting and High Resolution Sampling 2D-LC

3 In 2D-LC Mode select HiRes sampling.

4 Run a survey run with the 2D-LC starter sample, 1 x 2 mL (5190-6895), 1:10 diluted with Methanol/Water (20/80; v/v) with 0.1 % formic acid of the first dimension to find out the exact retention time of the peak that elutes at around 11.7 min.

5 Run HiRes sampling with the sampling time adjusted to the 1D retention time of the peak of interest in your system.

Settings for High-Resolution sampling:
- Sampling time: 3 s
- Number of cuts: 10
- Injection volume: 1, 2, 5, and 3 µL,
Run the System
Comprehensive 2D-LC

Comprehensive 2D-LC

This section describes in detail the installation, configuration, method parameters, data analysis and checkout/familiarization of comprehensive two dimensional liquid chromatography with the Agilent 1290 Infinity II 2D-LC Solution.
Comprehensive 2D-LC

6 Run the System

Configuration

Overview Configuration Dialog

The configuration of the 2D-LC-system is done via the configuration dialog in the software. The order of configuration is mandatory. The following configuration parameters are available:

- **Pumps**
 Section to define which pump is in the first and which one in the second dimension.

- **Detectors**
 Section to define which detector is in the second dimension and which detector should be used for peak detection (optional).

- **Columns**
 Section to define the columns being used in 1st and 2nd dimension.

- **Valve topology, 2D-LC Valve, Multiple Heart-Cutting Valves, Diverter Valve, Capillaries**
 Section to identify the modulation valve(s) used for toggling the loop(s) and section to define the volume of the sampling loop(s).
Configure Valve and Loop

To run 2D-LC, it must be defined, which valve is used for 1st and 2nd dimension.

- \textbf{1st dimension:}
 - The \textbf{2D-LC Valve} drop-down list contains all configured valves which can be used for 2D-LC functionality.

- \textbf{2nd dimension (only relevant for multiple heart-cutting 2D-LC):}
 - If more than one valve matches the current valve/loop configuration, the user can select from a drop-down list, which valve is used to connect 1st and 2nd dimension.

- \textbf{Diverter Valve}
 - If more than one valve matches the \textbf{Diverter Valve} configuration, a list-box is shown where the user can select the diverter valve.

The \textbf{Identify} button triggers the blinking of the status LED of the corresponding column compartment or valve drive. The button is only enabled in the Online version of the ChemStation.
All possible loop configurations depending on the selected valves are listed separately and illustrated on screen.

<table>
<thead>
<tr>
<th>Valve topology</th>
<th>2D-LC Valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select topology: 2-way/4-way duo 2 loops (concurrent)</td>
<td>2D-LC Valve A/M (K11) X/M</td>
</tr>
</tbody>
</table>

Multiple Heart-Cutting Valves
- Ports: 1/5
- Ports: 5/4

Diverter Valve
- Not configured
- Waste Port 1→6; MS Port 1→2

Capillaries
- Loop: 100 mm/500 Column 0.5 μm/3D (40 uL)
- Transfer: 1000 mm/20 Column 0.1 μm/2 D/M
- AFM: "Open-Column 100x0.12 mm 1 Jol"

Software required
1290 Infinity 2D-LC Acquisition Software

Preparations
Check box **Enable 2D-LC** selected

NOTE
Valves may be part of a column compartment (G7116A/B, G1316C) or a valve drive (G1170A).

1. **Select 2D-LC Valve.**
2. **Select topology** under **Valve topology.**
3. **To save settings click OK.**

Valves and loops are configured for 2D-LC.
Checkout/Familiarization Procedure

Checkout run - comprehensive (standard setup)

The familiarization procedure illustrates the system’s 2D-LC capabilities and supports the user to start the method for a specific analytical task. The familiarization procedure will guide the user through the most important setups and analysis function, described in the chapters before.

The sample provided with the familiarization procedure can be determined with a UV-detector and a mass spectrometer. The methods to analyze the starter sample are delivered together with the full package to ensure a smooth familiarization and checkout procedure. With the given method, peaks will overlap in the first dimension and will be separated in the second dimension.

The Agilent 1290 Infinity II 2D-LC Solution is delivered together with all required parts for a complete familiarization procedure for (multiple) heart-cutting and comprehensive 2D-LC.

Parts required

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5190-6895</td>
<td>2D-LC starter sample, 1 x 2 mL</td>
</tr>
<tr>
<td>858700-902</td>
<td>RRHD SB-C18, 2.1x100 mm, 1.8 µm, 1200 bar</td>
</tr>
<tr>
<td>959757-302</td>
<td>RRHD Eclipse Plus C18, 3.0x50 mm, 1.8 µm</td>
</tr>
<tr>
<td>G2453-85060</td>
<td>Formic Acid-Reagent Grade 5 mL (5 cc)</td>
</tr>
</tbody>
</table>

Software required

CD

Preparations

Solvents needed:

- 1D: mobile phase A = water with 0.2 % Formic Acid-Reagent Grade 5 mL (5 cc) (G2453-85060), B = methanol
- 2D: mobile phase A = water with 0.2 % Formic Acid-Reagent Grade 5 mL (5 cc) (G2453-85060), B = acetonitrile

Preparations:

1. Prepare dilution solvent (20 % MeOH in mobile phase A): Add 500 µL MeOH to 2000 µL Mobile Phase A.
2. Prepare 400 µL sample: Add 40 µL 2D LC starter sample to 360 µL dilution solvent.
3. Load method Checkout_MHC_FullComp_1290BinX1290Bin.MCheckout_MHC_FullComp_p_1290QuatX1290Bin.M, or Checkout_MHC_FullComp_1260BinX1290Bin.M (depends on your pump setup) from the CD.
Run the System
Comprehensive 2D-LC

1. Run the full comprehensive checkout run using single storage loops. The method for the checkout run is available on the 2D-LC Addon SW DVD under checkout methods.
 - Detection: UV Detection at 254 nm, BW 4 nm; reference at 360 nm, BW 100 nm
 - Acquisition rate: 20 Hz
 - Sample: 2D-LC starter sample, 1 x 2 mL (5190-6895), 1:10 diluted with Methanol/Water (20/80; v/v) with 0.1 % formic acid.
 - Injection volume: 2 μL

2. Verify that the Valve & Loop configuration is set up as shown below:
3 Verify the 1D pump method is set up as shown below:
4 In **Instrument** > **Setup 2D-LC**, verify that the 2D-LC mode is set to **Comprehensive** and that the 2D pump and modulation method are set up as shown below:
Run the full comprehensive checkout run using single storage loops and review the obtained data with the GC Image software. The resulting separation should look similar to the one shown below:
Run the System
Comprehensive 2D-LC

Checkout run - comprehensive (multiple heart-cutting setup)

The familiarization procedure illustrates the system's 2D-LC capabilities and supports the user to start the method for a specific analytical task. The familiarization procedure will guide the user through the most important setups and analysis function, described in the chapters before.

The sample provided with the familiarization procedure can be determined with a UV-detector and a mass spectrometer. The methods to analyze the starter sample are delivered together with the full package to ensure a smooth familiarization and checkout procedure. With the given method, peaks will overlap in the first dimension and will be separated in the second dimension.

The Agilent 1290 Infinity II 2D-LC Solution is delivered together with all required parts for a complete familiarization procedure for (multiple) heart-cutting and comprehensive 2D-LC.

Parts required

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5190-6895</td>
<td>2D-LC starter sample, 1 x 2 mL</td>
</tr>
<tr>
<td>858700-902</td>
<td>RRHD SB-C18, 2.1x100 mm, 1.8 µm, 1200 bar</td>
</tr>
<tr>
<td>959757-302</td>
<td>RRHD Eclipse Plus C18, 3.0x50 mm, 1.8 µm</td>
</tr>
<tr>
<td>G2453-85060</td>
<td>Formic Acid-Reagent Grade 5 mL (5 cc)</td>
</tr>
</tbody>
</table>

Software required

CD

Preparations

Solvents needed:
- 1D: mobile phase A = water with 0.2 % Formic Acid-Reagent Grade 5 mL (5 cc) (G2453-85060), B = methanol
- 2D: mobile phase A = water with 0.2 % Formic Acid-Reagent Grade 5 mL (5 cc) (G2453-85060), B = acetonitrile

Preparations:
1. Prepare dilution solvent (20 % MeOH in mobile phase A): Add 500 µL MeOH to 2000 µL Mobile Phase A.
2. Prepare 400 µL sample: Add 40 µL 2D LC starter sample to 360 µL dilution solvent.
3. Load method Checkout_MHC_FullComp_1290BinX1290Bin.MCheckout_MHC_FullComp_1290QuatX1290Bin.M, or Checkout_MHC_FullComp_1260BinX1290Bin.M (depends on your pump setup) from the CD.
6 Run the System

Comprehensive 2D-LC

1 Repeat the full comprehensive checkout run using MHC valves instead of single storage loops. For this purpose, disconnect the transfer capillaries from the 2D-LC valve to the storage loops and install MHC valves between ports 4 and 5, respectively ports 1 and 8, of the 2D-LC valve (cocurrent configuration).

2 In Instrument> Configure 2D-LC, change the Valve & Loop configuration to 40 µL storage loops as shown below:

- Detection:
 UV Detection at 254 nm, BW 4 nm; reference at 360 nm, BW 100 nm
- Acquisition rate:
 20 Hz
- Sample:
 2D-LC starter sample, 1 x 2 mL (5190-6895), 1:10 diluted with Methanol/Water (20/80, v/v) with 0.1 % formic acid.
- Injection volume:
 2 µL
3 Verify the 1D pump method is set up as shown below:
4 In **Instrument** > **Setup 2D-LC**, verify that the 2D-LC mode is set to **Comprehensive** and that the 2D pump and modulation method are set up as shown below:
5 Run the full comprehensive checkout run using single storage loops. The resulting separation should look similar to the one shown below:

6 Compare the result to that obtained using the MHC valves.
Active Solvent Modulation (ASM)

Configuration

Adjusting the split ratio

Different ASM capillaries are available for adjusting the split ratio and therefore the dilution.

The method can therefore be optimized either for optimum resolution (strong dilution) or lowest cycle time (weak dilution).
6 Run the System
Active Solvent Modulation (ASM)

Configure the ASM Valve

Figure 79 ASM Valve configuration (overview)

1 Select a topology for using the ASM Valve.
2 Choose the ASM Valve as 2D-LC Valve. This is usually done automatically based on installed valves.
3 Choose an ASM capillary. This defines the split ratio.

Preparations
All modules including the ASM Valve are configured in OpenLAB CDS ChemStation Edition.

1 Select a valve topology using an ASM Valve.

HINT
For minimum carry-over, please use counter-current installation for the ASM Valve.

2 Select the ASM Valve as 2D-LC Valve (which is usually pre-selected).
6 Run the System
Active Solvent Modulation (ASM)

3 Define the ASM capillary.
 a To configure capillaries, click on Capillaries... (see Figure 79 on page 190).
 b Select any of the pre-defined ASM capillaries.

 ![Figure 80](image1.png)
 Configuration of the ASM valve with predefined capillaries

 OR

 If you are using a different capillary, you can choose Generic Capillary

 ![Figure 81](image2.png)
 ASM valve configuration (overview)

 In this case, you need to enter two of following three parameters: length, diameter or volume. These parameters are required for calculating the flush volume and back pressure, see “Understanding the ASM factor” on page 41.

 The ASM factor is calculated and displayed based on selected capillaries.

4 Install capillary connections as displayed in figure Valve topology in the UI, see Figure 79 on page 190.

 ![NOTE](image3.png)
 Please note that ASM capillaries are labeled with ASM (in contrast to transfer and other capillaries).

 ![NOTE](image4.png)
 Please note that port positions given in the MHC valve configuration in 2D-LC Software A.01.04 refer to standard 2D-LC valves, not ASM. Please use correct ports displayed figure Valve topology. This will be corrected in 2D-LC Software A.01.04 SR1.
Investigate the effects of using different gradients in the \(\text{2Dimension} \)

This chapter describes, how shifted gradients in the second dimension can be used to enlarge the accessible two-dimensional separation space.
Investigate the effects of using different gradients in the 2Dimension

When combining separation systems with related separation mechanisms in the first and second dimension (as in RPxRP), orthogonality is limited. As a result, only a part of the available two-dimensional separation space will be occupied. In such a case, shifted gradients in the second dimension can be used to enlarge the accessible two-dimensional separation space.

1. To investigate the effects of using different gradients in the second dimension, firstly run a comprehensive 2D-LC separation with the same second dimension gradient from 5-95 % B repeated during the whole run. The 1D pump method should be set up as during the checkout runs (see below):

![Diagram of 2D-LC separation setup](image_url)
Investigate the effects of using different gradients in the 2Dimension

2. In **Instrument> Setup 2D-LC**, set up a 2D pump and modulation method with repeating gradients from 5% to 95% B as shown below:
Investigate the effects of using different gradients in the 2Dimension

3 Run the comprehensive 2D-LC analysis. The resulting separation should look similar to the one shown below:

![Image of 2D-LC separation]

NOTE
Notice how the peaks are distributed around a diagonal line, indicating related separation mechanisms in the first and second dimension.
7 Investigate the effects of using different gradients in the 2Dimension

To improve the separation in the second dimension, a shallower second dimension gradient (e.g. from 25 – 75 % B) could be used. The setup of this 2D method is shown below (this is just shown for explanation purpose; you do not need to run this method!):

The separation resulting from using repeating gradients from 25 – 75 % B in the second dimension is shown below:
Investigate the effects of using different gradients in the 2Dimension

Investigate the effects of using different gradients in the 2Dimension

Notice how the peaks are slightly further separated in the second dimension compared to using repeating gradients from 5 – 95 % B. Also notice that the last peaks eluting from the first dimension column are not eluted in one modulation cycle from the second dimension column (wrap-around; see marked area).

To be able to use even shallower gradients in the second dimension to further improve the separation and to also avoid the occurrence of wrap-around, continuously shifted gradients can be used in the second dimension (as was done during the checkout runs).

5 Compare the separations resulting from using the same second dimension gradient (from 5 – 95 % B and also from 25 – 75 % B) repeating during the whole run to the separation obtained using continuously shifted second dimension gradients in the checkout run.

Notice how the peaks are spread more widely across the two-dimensional separation space (the accessible two-dimensional separation space is enlarged) when shifted gradients are used. Also, notice the effect that using continuously shifted second dimension gradients has on the second dimension retention times of consecutive fractions of the same first dimension peak.
Investigate the effects of using different gradients in the 2Dimension

Apart from using continuously shifted gradients in the second dimension, as was done during the checkout runs, it is also possible to stepwise shift the second dimension gradients. For this purpose, keep the valve & loop configuration as well as the 1D pump method the same. In Instrument> Setup 2D-LC, set up a 2D pump and modulation method with stepwise shifted gradients as shown below:
7 Run the comprehensive 2D-LC analysis with stepwise shifted gradients in the second dimension.

The resulting separation should look similar to the one shown below:

![Graph showing separation results]

NOTE

Notice how consecutive fractions of the same first dimension peak have exactly the same retention time in the second dimension, as they experienced exactly the same second dimension gradient (in contrast to using continuously shifted gradients in the second dimension, which leads to consecutive fractions of one first dimension peak experiencing slightly different second dimension gradients). But be careful! This is only true if the stepwise shifting of the second dimension gradients is performed at times, when no peaks are eluting from the first dimension column.

In case your resulting separation looks different from the one shown above: Your peaks might show a different first dimension retention time due to the use of another first dimension pump (in the separation shown above, a 1290Bin Pump was used in the first dimension). Check whether the stepwise shifting of the second dimension gradients was performed at times when peaks eluted from the first dimension column in your separation and understand the effect this can have on the second dimension retention times of consecutive fractions of the same first dimension peak!
Data Analysis

Data Analysis for Heartcutting 2D-LC (LC-LC) 201
2D-LC Viewer 202
High-resolution sampling - Results 207
Quantitation 211
Data Analysis for Comprehensive 2D-LC (LCxLC) 219
Overview 222
Installation 222
Use GCImage Software 223

This chapter describes the analyzation of data in 2D-LC and is separated in a section heart-cutting 2D-LC and a section comprehensive 2D-LC.
Data Analysis for Heartcutting 2D-LC (LC-LC)

For data-analysis of heart-cutting 2D-LC data OpenLAB CDS ChemStation edition is usually fully sufficient.

Again, the data will be stored in one data-file. If more than one peak was analyzed in the second dimension they will simply follow one after the other in a distance of the second dimension run-time.

If a detector right after the first dimension column was used, e.g. as peak detector for peak triggered operation, these data will be available as a second data-trace.

Figure 82 Example of a heartcutting 2D-LC experiment. Data analysis and display done by OpenLAB CDS ChemStation Edition, the data of a detector placed after the first dimension column (blue) and of the 2D data detector (green). The additional impurities (marked red) could not be detected by 1D-LC only.
Data Analysis for Heartcutting 2D-LC (LC-LC)

2D-LC Viewer

Using the Multiple Heart-Cutting Upgrade kit, the Agilent 1290 Infinity II 2D-LC Solution offers the possibility to store multiple peaks in several sample loops. These stored samples are then injected to the second dimension one by one. Thus long 2D gradients are possible without loss of 1D peaks. But it is quite difficult to review the 2D results using the standard ChemStation Data Analysis. Especially as parked peaks are analyzed in a different order as they have been parked in (this is necessary to avoid carry-over).

The 2D-LC Viewer offers the opportunity to view and analyze second dimension chromatograms comfortably. The viewer can also be used for the analysis of standard heart-cutting 2D-LC data.

Overview 2D-LC Viewer

Figure 83 Overview of the 2D-LC Viewer graphical user interface

1 Tab 2D-LC Viewer
2 Separate displays tabs
3 1D Chromatogram(s)
4 Sampling table (1D)
5 Peak table (2D)
6 2D Chromatogram(s)
7 MS Spectra
Data Analysis

Data Analysis for Heartcutting 2D-LC (LC-LC)

The **2D-LC Viewer** provides the following functions:

- Tab pages enable the user to switch between
 - **2D-LC Viewer**, and
 - **Data Analysis**
- All panes are connected. Highlighting a cut or a chromatogram in one of the fields, will automatically highlight it in the other fields.

- **Sampling table (1D)**
- **Peak table (2D)**
- Toolbar with the elements:
 - Print to printer
 - Prints the report according to the options set in the **Report Options** dialog using the standard print dialog.
 - Print preview
 - Shows the rendered report in a preview window. It is possible to print the report directly from the preview window.
 - Report options
 - Shows up the Report Options Dialog
 - Auto scale
 - Resets all chromatogram windows to their default scaling
 - **2D chromatogram** (checkbox)
 - Hide / unhide the full **2D Signal** window
 - **1D Signal** list box
 - Used to select a signal from the **1D detector**
 - **2D Signal** list box
 - Used to select a signal from the **2D detector**
 - **1D Chromatogram**
 - **2D Chromatogram** (hidden, if **2D chromatogram** checkbox unchecked)
 - **2D Chromatogram(s)**
 - **MS Spectrum**
Data Analysis
Data Analysis for Heartcutting 2D-LC (LC-LC)

Sampling table (1D)

The table lists all heart-cuts which have been analyzed in the 2nd dimension.

Figure 84 Sampling table (1D) (example)

The different columns can be selected or deselected by right mouseclicking the headline of the table.
Data Analysis
Data Analysis for Heartcutting 2D-LC (LC-LC)

Table 14 Legend for Sampling Table

<table>
<thead>
<tr>
<th>PosNr</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut #</td>
<td>The current number of the heart-cut</td>
</tr>
<tr>
<td>1D Cut start [min]</td>
<td>Time when the heart-cut starts (peak begin or time value in trigger table)</td>
</tr>
<tr>
<td>1D Sampling time [min]</td>
<td>The duration (in minutes) of the heart-cut in the 1st dimension. The duration is determined either by the loop fill time, the end-of-peak detection or the max peak duration</td>
</tr>
<tr>
<td>Trigger</td>
<td>Indicates whether heart-cut was taken based on a peak-trigger (Peak) or based on a time given in the trigger table</td>
</tr>
<tr>
<td>2D run start [min]</td>
<td>Time when the analyses of this heart-cut in the 2nd dimension starts (gradient start)</td>
</tr>
<tr>
<td>1D Ret. Time [min]</td>
<td>The retention time (as given by the integrator) of the highest peak in the 1st dim. signal within heart-cut time range. The table cell is empty if no peak found or the signal isn’t integrated. (Column not visible by default)</td>
</tr>
<tr>
<td>Deck</td>
<td>Number of the deck (1 or 2) where the cut (peak) has been parked / analyzed (Column not visible by default)</td>
</tr>
<tr>
<td>Loop</td>
<td>Number of the loop (1... 6) where the cut (peak) has been parked / analyzed (Column not visible by default)</td>
</tr>
</tbody>
</table>

1D Chromatogram

Figure 85 1D Chromatogram (example)

Heart-cuts can be selected using left mouse button, multiple selection using Ctrl-key + left mouse button is also supported.
Data Analysis
Data Analysis for Heartcutting 2D-LC (LC-LC)

The selected signal (see toolbar) from the 1D detector is shown.
- Heart cuts are indicated by a grey rectangle area
- Selected heart-cut(s) is (are) marked in a blue rectangle
- Heart-cuts are annotated using the retention time if available.
 Otherwise the heart-cuts are annotated using their current number.
- Peaks (cuts) that couldn't be taken during acquisition will be marked by a
 warning icon on the x-axis at the time the heart-cut should have been taken.
- A tooltip provides more information about time and reason why the peak
 couldn’t be cut.

2D Chromatogram

![2D Chromatogram](image)

Figure 86 Full 2D Signal (example - only visible, if Full 2D Signal (checkbox) is checked)

This window shows the selected signal of the 2D detector containing the
individual analyses of the heart-cuts.
- The selected heart-cut(s) is marked as a blue area.
- The area of a heart-cut is marked with a gray rectangle when hovering with
 the mouse over the chromatogram window.
- A heart-cut can be selected by clicking in such a rectangle.
- Multiple selections are supported using Ctrl-click.
- All heart-cuts are annotated using the heart-cut number (see also Sampling
table).
- F indicates a bypass (or flush) gradient, which was used to flush the transfer
capillaries after switching the 2D-LC valve.
Data Analysis
Data Analysis for Heartcutting 2D-LC (LC-LC)

The 2D chromatogram of the selected heart-cut is shown as an individual run (x-axis starting at time 0). Chromatograms are overlaid if multiple heart-cuts are selected

For further details, refer to the online help.

High-resolution sampling - Results

Figure 87 2D Chromatogram (example from 2D Chromatogram above)

Figure 88 Results peak group 1
Data Analysis
Data Analysis for Heartcutting 2D-LC (LC-LC)

Figure 89 Results peak group 2

The 1D chromatogram shows 2 groups of peaks, which have been defined in the setup of a High-Resolution measurement. This information of compounds in 1D belonging together will later be used for data analysis. The heart-cut table lists all cuts created in the first dimension, structured by signals and peak groups.

The 2D Chromatogram(s) shows an overlay of all cuts, which have been selected in the heart-cut table. The Peak Table lists all peaks (peak areas), which have been found in the second dimension by applying ChemStation integrator settings.

Areas of peaks which belong together are summed up automatically.
Data Analysis
Data Analysis for Heartcutting 2D-LC (LC-LC)

Structure of Sampling and Peak Tables

<table>
<thead>
<tr>
<th>Cut #</th>
<th>1D Cut start [min]</th>
<th>Sampling time [min]</th>
<th>Mode</th>
<th>1D Run start [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.14</td>
<td>0.08</td>
<td>Time</td>
<td>26.80</td>
</tr>
<tr>
<td>2</td>
<td>9.24</td>
<td>0.08</td>
<td>Time</td>
<td>22.30</td>
</tr>
<tr>
<td>3</td>
<td>9.38</td>
<td>0.08</td>
<td>Time</td>
<td>18.80</td>
</tr>
<tr>
<td>4</td>
<td>9.46</td>
<td>0.08</td>
<td>Time</td>
<td>13.30</td>
</tr>
<tr>
<td>5</td>
<td>9.56</td>
<td>0.08</td>
<td>Time</td>
<td>9.70</td>
</tr>
<tr>
<td>6</td>
<td>13.14</td>
<td>0.08</td>
<td>Time</td>
<td>49.36</td>
</tr>
<tr>
<td>7</td>
<td>13.24</td>
<td>0.08</td>
<td>Time</td>
<td>45.16</td>
</tr>
<tr>
<td>8</td>
<td>13.34</td>
<td>0.08</td>
<td>Time</td>
<td>40.96</td>
</tr>
<tr>
<td>9</td>
<td>13.44</td>
<td>0.08</td>
<td>Time</td>
<td>36.70</td>
</tr>
<tr>
<td>10</td>
<td>13.54</td>
<td>0.08</td>
<td>Time</td>
<td>32.50</td>
</tr>
</tbody>
</table>

Figure 90 Sampling table

1. First level: All signals for all runs
2. Second level: Peak groups
3. Third level: Cuts numbered continuously per signal
Data Analysis
Data Analysis for Heartcutting 2D-LC (LC-LC)

Figure 91 Peak Table

1. First level: All signals for all runs
2. Second level: Components with matching 2D retention times
3. Third level: Cuts and area sum per compound

Summed signal
The optional summed signal (black line) shows the sum of all selected cuts. This allows easy navigation: one area of interest in 1D corresponds to one summed 2D chromatogram (for trying, choose option Show summed signal only). For a single wavelength, this corresponds to the entire 2D area used for quantitation.

Figure 92 Summed signal
Quantitation

Compared to a standard quantitation, a 2D-LC quantitation requires 2 additional steps (identification of compounds, summation of areas) carried out by the 2D-LC software.
Identify compounds

This procedure exemplarily shows a quantitative measurement of the 2D-LC checkout sample using a 3-level calibration of two compounds at two wavelengths.

1. Select signal.
 Use a signal with a low concentration.

2. Integrate the cuts.
 Integration is done using the ChemStation integrator.
Data Analysis
Data Analysis for Heartcutting 2D-LC (LC-LC)

a Click on to Set Integration Range.

The 2D-LC Viewer offers simplified access for changing the integration of one or multiple limits.
5 Verify small peaks in 2D. Use Full 2D Signal or 2D run start time for navigation.

NOTE

Peak integration is based on ChemStation integrator settings. Please verify, if all peaks of interest have been found and integrated. If not, ChemStation settings need to be adjusted. For finding the corresponding peak in the 2D signal, use the peak table and heart-cut table.
8 Data Analysis

Data Analysis for Heartcutting 2D-LC (LC-LC)

4 Adjust integrator settings in ChemStation.

NOTE

ChemStation has no information about cuts and individual 2D chromatograms. So it is important to know, where to look at. In the example above, Cut #2 starts at 16.97 minutes. At 17.939 minutes is compound 2 of cut #2, which is not integrated. In this example, decreasing the area reject parameter from 5 to 1 enables integrating the peak.

5 Apply the adjusted integrator settings to other signals.

NOTE

In integration events, change to a different wavelength for applying settings here. Consider using same limits for other signals, apply to sequence method.
Data Analysis
Data Analysis for Heartcutting 2D-LC (LC-LC)

Calibration

Create a calibration table

1. Create a new calibration table from the MHC Viewer.

![New calibration table](image1)

2. Enter amount/concentration.

![New calibration table](image2)

Add levels

1. Select and add more signals and levels as needed.

![Add new level](image3)
8 Data Analysis
Data Analysis for Heartcutting 2D-LC (LC-LC)

2 Set concentration for each level.

Calibration table
Data Analysis
Data Analysis for Heartcutting 2D-LC (LC-LC)

Quantification

Quantifying samples with unknown concentration based on the calibration table can be done using ChemStation reporting as usual.

1. Specify Report Calculation and Print Style

2.

3.

<table>
<thead>
<tr>
<th>Signal</th>
<th>RT (min)</th>
<th>Area (arb. units)</th>
<th>Area (% of total)</th>
<th>Amount (nmol)</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.167</td>
<td>0.08376</td>
<td>1.772</td>
<td>0.00</td>
<td>3.8500E-03</td>
<td>Compound1</td>
</tr>
<tr>
<td>1.166</td>
<td>0.08376</td>
<td>1.772</td>
<td>0.00</td>
<td>3.8500E-03</td>
<td>Compound2</td>
</tr>
</tbody>
</table>
Typically very complex samples are analyzed by comprehensive 2-dimensional liquid chromatography. The compounds which are often co-eluting form the first dimension are further separated in the second dimension. With the Agilent 1290 Infinity II 2D-LC Solution always one large data-file spanning the run-time of the two-dimensional analysis will be acquired. As an example, a 2-dimensional analysis of a mixture of 26 polyphenolic standard compounds is shown in a one dimensional data analysis display (Figure 94 on page 220). Theoretically, the data can be analyzed with OpenLAB CDS ChemStation edition software.

But for easier data-analysis and better visualization of the comprehensive 2D-LC data special software is recommended. Agilent recommends GC Image LCxLC edition Software from GC Image LLC, Nebraska, USA. A trial download can be found on www.GCImage.com as well as an online manual. Agilent 2D-LC data files also including UV spectra and mass spectra data can be directly imported. This software, with the information of the modulation time, is capable to extract the data and isolate each second dimension run. Data will be reconstructed in a two-dimensional display of the retention times. This can be displayed as a colored 2-dimensional map of compound peaks (Figure 95 on page 220). After baseline correction the peaks can be automatically detected by a peak detection algorithm inherent in the 2D-LC data analysis software (Figure 96 on page 221). Since the third dimension is the intensity of the peaks a 3-dimensional plot of the data is possible (Figure 97 on page 221). With the given data set further qualitative and quantitative data analysis is possible.
8

Data Analysis
Data Analysis for Comprehensive 2D-LC (LCxLC)

Figure 94 Display of two-dimensional LC data with a one-dimensional data analysis software

Figure 95 2D-LC plot of the optimized separation of 26 polyphenolic compounds
Data Analysis

Data Analysis for Comprehensive 2D-LC (LCxLC)

Figure 96 2DLC plot after baseline correction and with software detected peak annotation

Figure 97 3-Dimensional display of the separation of the 26 compound standard mixture. The first dimension separation takes 40 minutes and each second dimension separation takes 39 seconds. The back side shows a generated first dimension chromatogram and gives the impression which peaks are coeluting and separated in the second dimensions.
8 Data Analysis
Data Analysis for Comprehensive 2D-LC (LCxLC)

Overview
GC Image LC x LC Edition (short GC Image) is a software for visualization and data analysis of full comprehensive two-dimensional liquid chromatograms:
- M8700AA GC Image LCxLC Edition for UV and Single Quad measurements
- M8710AA GC Image LCxLC-HRMS Edition for UV and/or High Resolution MS measurements (Q-TOF)

Installation

Parts required Description
CD with software
License dongle (Wibu Key)
Activation code

1 The CD contains two executables: LCxLC2.8r3-HRMS.exe (or higher), LCxLC2.8r3-HRMS-64.exe (or higher). Choose the appropriate version for your operating system. Corresponding versions are available for the UV only detection.
2 Double-click the chosen executable and follow the instructions on the screen.
3 Activate the software with the USB key. Insert the USB dongle and wait. The driver will install automatically.
4 Activate R2.8 (or higher) in the Windows Start Menu.
5 Enter the activation code, which is shipped with the software.
Data Analysis

Data Analysis for Comprehensive 2D-LC (LCxLC)

Use GCImage Software

GCImage is a powerful expert software with many sophisticated features for display, data analysis, compound identification, library search, workflow automation, reporting etc.
The basic knowledges to successfully use the software are the following:
• Import 2D ChemStation data files
• Setting the modulation period
• Choosing a color mapping
• Navigate in the display
• Navigate in the display
• Detect peaks (Blobs)

Preparations

The USB dongle needs always to be inserted when working with GCImage software. If not, you will be asked to insert it.

Basic knowledges

1 Start up LCImage

LCImage offers optionally a password protected user management system. If you don't need it, simply click „Login with system“, which is based on Windows user account.
Data Analysis
Data Analysis for Comprehensive 2D-LC (LCxLC)

2 Import the UV signal from the second dimension detector.
8 Data Analysis
Data Analysis for Comprehensive 2D-LC (LCxLC)

3 Import parameters
Data Analysis for Comprehensive 2D-LC (LCxLC)

4 Fit view
Data Analysis
Data Analysis for Comprehensive 2D-LC (LCxLC)

5 Correct Baseline

6 Shift phase

7 Zoom into an interesting region by using the right mouse button and dragging over the display
8 Adjust colors: LC Image offers refined possibilities for optimizing the color scales. Play around with settings for improving the contrast.

9 Select a data range.

10 By clicking the „Show 3D perspective“ button or the corresponding menu item, you can easily create a customizable 3D plot.
Data Analysis for Comprehensive 2D-LC (LCxLC)

11 View single 2D chromatograms

12 Select blobs
Data Analysis

Data Analysis for Comprehensive 2D-LC (LCxLC)

MS Data

1. Import MS data: The import functionality of MS data is very similar to those of UV measurements. Additionally, you can for example filter to a certain mass range („range limit“), that you are interested in.

2. By clicking on „Show 1D view“, you can display the TIC for that 2D slice.

3. By clicking on data points or blobs in the 2D view, you can display MS spectra of corresponding plots.
9 Troubleshooting and Diagnostics

Overview of the Module's Indicators and Test Functions 232
User Interfaces 233
Agilent Lab Advisor Software 234
The Basic Principle of Troubleshooting 235
Pressure too high 238
Pressure too low 239
Peak area and peak height related 240
Retention time related 241
Missing signal linearity 242
Drifting signal 243
Signal noisy 244
Recommended Tests to Conclude Troubleshooting 245

This chapter gives an overview about the troubleshooting and diagnostic features and the different user interfaces.
Overview of the Module’s Indicators and Test Functions

For an overview of the module’s indicators and test functions, refer to the manuals of the modules installed in your system.
Troubleshooting and Diagnostics

User Interfaces

- Depending on the user interface, the available tests and the screens/reports may vary.
- Preferred tool should be Agilent Lab Advisor Software, see “Agilent Lab Advisor Software” on page 234.
- The Agilent OpenLAB ChemStation C.01.03 and above do not include any maintenance/test functions.
- Screenshots used within these procedures are based on the Agilent Lab Advisor Software.
Agilent Lab Advisor Software

The Agilent Lab Advisor Software (basic license, shipped with an Agilent LC pump) is a standalone product that can be used with or without a chromatographic data system. Agilent Lab Advisor helps to manage the lab for high-quality chromatographic results by providing a detailed system overview of all connected analytical instruments with instrument status, Early Maintenance Feedback counters (EMF), instrument configuration information, and diagnostic tests. By the push of a button, a detailed diagnostic report can be generated. Upon request, the user can send this report to Agilent for a significantly improved troubleshooting and repair process.

The Agilent Lab Advisor software is available in two versions:

• Lab Advisor Basic
• Lab Advisor Advanced

Lab Advisor Basic is included with every Agilent 1200 Infinity Series and Agilent InfinityLab LC Series instrument.

The Lab Advisor Advanced features can be unlocked by purchasing a license key, and include real-time monitoring of instrument actuals, all various instrument signals, and state machines. In addition, all diagnostic test results, calibration results, and acquired signal data can be uploaded to a shared network folder. The Review Client included in Lab Advisor Advanced allows to load and examine the uploaded data no matter on which instrument it was generated. This makes Data Sharing an ideal tool for internal support groups and users who want to track the instrument history of their analytical systems.

The optional Agilent Maintenance Wizard Add-on provides an easy-to-use, step-by-step multimedia guide for performing preventive maintenance on Agilent 1200 Infinity and Agilent InfinityLab LC Series instrument.

The tests and diagnostic features that are provided by the Agilent Lab Advisor software may differ from the descriptions in this manual. For details, refer to the Agilent Lab Advisor software help files.
Troubleshooting and Diagnostics
The Basic Principle of Troubleshooting

The Basic Principle of Troubleshooting

Troubleshooting key Concept – Divide and Conquer

The following troubleshooting concept, shows exemplarily how to approach problems in 2D-LC chromatography.

Most of the following explanations can also be used to isolate and detect standard LC issues.

The basic principle of troubleshooting should always be a step by step approach to the 2D-LC problem. As a first step, find out whether the cause of the error is either:

• The application method, or
• The 2D-LC instrument

For a recommended approach to isolate the cause of the issue, see the graphic below. All examples use symbols as described in the following table.

Table 15 Description for symbols as used in troubleshooting decision trees

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shows and describes a problem in the 2D-LC system. Indicates the starting point for a series of actions and decisions leading to a solution for the problem.</td>
</tr>
<tr>
<td></td>
<td>Illustrates, that the user must identify what an observation means. Then the user must take a decision, which further way of troubleshooting to follow.</td>
</tr>
<tr>
<td></td>
<td>Shows, the user must act to proceed and come to the next decision or solution.</td>
</tr>
</tbody>
</table>
9 Troubleshooting and Diagnostics
The Basic Principle of Troubleshooting

Figure 98 Example for a strategy to identify the application method or instrument as root cause for issues in 2D-LC chromatography
After ruling out the application method as the cause of the issue, one can start to search for the problem's root cause within the 2D-LC Instrument hardware.

Common HPLC hardware issues, along with the location of each problem's respective troubleshooting procedure are listed below:

- "Pressure too high" on page 238
- "Pressure too low" on page 239
- "Peak area and peak height related" on page 240
- "Retention time related" on page 241
- "Missing signal linearity" on page 242
- "Drifting signal" on page 243
- "Signal noisy" on page 244
9 Troubleshooting and Diagnostics
The Basic Principle of Troubleshooting

Pressure too high

- Pressure too high
 - Bypass the column
 - Replace the column
 - Include new column to bypass

Figure 99 Example for a strategy to eliminate issues related to too high pressure in 2D-LC instruments
Pressure too low

Figure 100 Example for a strategy to eliminate issues related to too low pressure in 2D-LC instruments
Peak area and peak height related

Figure 101 Example for a strategy to eliminate issues related to peak problems in 2D-LC instruments
Troubleshooting and Diagnostics
The Basic Principle of Troubleshooting

Retention time related

Figure 102 Example for a strategy to eliminate issues related to retention time in 2D-LC instruments
Troubleshooting and Diagnostics
The Basic Principle of Troubleshooting

Missing signal linearity

Figure 103 Example for a strategy to eliminate issues related to missing signal linearity in 2D-LC instruments
Troubleshooting and Diagnostics
The Basic Principle of Troubleshooting

Drifting signal

Figure 104 Example for a strategy to eliminate issues related to drifting signal in 2D-LC instruments
Signal noisy

Figure 105 Example for a strategy to eliminate issues related to signal noise in 2D-LC instruments
Troubleshooting and Diagnostics
Recommended Tests to Conclude Troubleshooting

Recommended Tests to Conclude Troubleshooting

The following table shows the most important tests to conclude troubleshooting.

- For further detailed information, see:
 - Maintenance information in the specific manual of each module.
 - Troubleshooting Guide poster 5994-0709EN.
 - Best Practice for Using an Agilent LC System 01200-90090.
- For additional help, contact your local Agilent Technologies service representative.

Table 16 Recommended Tests for 2D-LC System Troubleshooting

<table>
<thead>
<tr>
<th>Pump</th>
<th>Column Compartment</th>
<th>Autosampler</th>
<th>Valve</th>
<th>Detector</th>
<th>2D-LC Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Test</td>
<td>Test</td>
<td>Pressure Test (if column valve is present)</td>
<td>Pressure Test standards or inject different volume or blanks</td>
<td>Switching valve position/Check pressure reading Pressure Test</td>
<td>Run Checkout For 2D-LC Instruments</td>
</tr>
<tr>
<td>Leak Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Pressure test of the 1D-LC Part</td>
</tr>
<tr>
<td>Thermostat</td>
<td>Test</td>
<td></td>
<td></td>
<td></td>
<td>• Pressure Test of the 2D-LC Part</td>
</tr>
</tbody>
</table>

Pump characteristic
- Pump Ripple (1260 Pump)
- Tuning (1290 pump)
10 Error Information

What Are Error Messages 247
General Error Messages 248
Timeout 248
Shutdown 249
Remote Timeout 250
Lost CAN Partner 250
Leak Sensor Short 251
Leak Sensor Open 251
Compensation Sensor Open 252
Compensation Sensor Short 252
Fan Failed 253
Leak 253
Module-Specific Error Messages 254
Initialization of Valve Failed 254
Valve Switching Failed 255
Valve Tag Violation 255
Pressure Cluster Partner Missing 256
Position Cluster Partner Missing 256
External Valve falls into resident mode 257

This chapter describes the meaning of error messages, and provides information on probable causes and suggested actions how to recover from error conditions.
What Are Error Messages

Error messages are displayed in the user interface when an electronic, mechanical, or hydraulic (flow path) failure occurs which requires attention before the analysis can be continued (for example, repair, or exchange of consumables is necessary). In the event of such a failure, the red status indicator at the front of the module is switched on, and an entry is written into the module logbook.

If an error occurs outside a method run, other modules will not be informed about this error. If it occurs within a method run, all connected modules will get a notification, all LEDs get red and the run will be stopped. Depending on the module type, this stop is implemented differently. For example, for a pump the flow will be stopped for safety reasons. For a detector, the lamp will stay on in order to avoid equilibration time. Depending on the error type, the next run can only be started, if the error has been resolved, for example liquid from a leak has been dried. Errors for presumably single time events can be recovered by switching on the system in the user interface.

Special handling is done in case of a leak. As a leak is a potential safety issue and may have occurred at a different module from where it has been observed, a leak always causes a shutdown of all modules, even outside a method run.

In all cases, error propagation is done via the CAN bus or via an APG/ERI remote cable (see documentation for the APG/ERI interface).
General Error Messages

General error messages are generic to all Agilent series HPLC modules and may show up on other modules as well.

Timeout

Error ID: 0062

The timeout threshold was exceeded.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 The analysis was completed successfully, and the timeout function switched off the module as requested.</td>
<td>Check the logbook for the occurrence and source of a not-ready condition. Restart the analysis where required.</td>
</tr>
<tr>
<td>2 A not-ready condition was present during a sequence or multiple-injection run for a period longer than the timeout threshold.</td>
<td>Check the logbook for the occurrence and source of a not-ready condition. Restart the analysis where required.</td>
</tr>
</tbody>
</table>
Error Information

General Error Messages

Shutdown

Error ID: 0063

An external instrument has generated a shutdown signal on the remote line. The module continually monitors the remote input connectors for status signals. A LOW signal input on pin 4 of the remote connector generates the error message.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Leak detected in another module with a CAN connection to the system.</td>
<td>Fix the leak in the external instrument before restarting the module.</td>
</tr>
<tr>
<td>2 Leak detected in an external instrument with a remote connection to the system.</td>
<td>Fix the leak in the external instrument before restarting the module.</td>
</tr>
<tr>
<td>3 Shut-down in an external instrument with a remote connection to the system.</td>
<td>Check external instruments for a shut-down condition.</td>
</tr>
<tr>
<td>4 The degasser failed to generate sufficient vacuum for solvent degassing.</td>
<td>Check the vacuum degasser for an error condition. Refer to the Service Manual for the degasser or the pump that has the degasser built-in.</td>
</tr>
</tbody>
</table>
Remote Timeout

Error ID: 0070

A not-ready condition is still present on the remote input. When an analysis is started, the system expects all not-ready conditions (for example, a not-ready condition during detector balance) to switch to run conditions within one minute of starting the analysis. If a not-ready condition is still present on the remote line after one minute the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Not-ready condition in one of the instruments</td>
<td>Ensure the instrument showing the not-ready condition is installed correctly, and is set up correctly for analysis.</td>
</tr>
<tr>
<td>connected to the remote line.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Defective remote cable.</td>
<td>Exchange the remote cable.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Defective components in the instrument</td>
<td>Check the instrument for defects (refer to the instrument's documentation).</td>
</tr>
<tr>
<td>showing the not-ready condition.</td>
<td></td>
</tr>
</tbody>
</table>

Lost CAN Partner

Error ID: 0071

During an analysis, the internal synchronization or communication between one or more of the modules in the system has failed.

The system processors continually monitor the system configuration. If one or more of the modules is no longer recognized as being connected to the system, the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CAN cable disconnected.</td>
<td>• Ensure all the CAN cables are connected correctly.</td>
</tr>
<tr>
<td></td>
<td>• Ensure all CAN cables are installed correctly.</td>
</tr>
<tr>
<td></td>
<td>Exchange the CAN cable.</td>
</tr>
<tr>
<td>2 Defective CAN cable.</td>
<td></td>
</tr>
<tr>
<td>3 Defective mainboard in another module.</td>
<td>Switch off the system. Restart the system, and determine which module or modules are not recognized by the system.</td>
</tr>
</tbody>
</table>
Error Information
General Error Messages

Leak Sensor Short

Error ID: 0082

The leak sensor in the module has failed (short circuit).

The current through the leak sensor is dependent on temperature. A leak is detected when solvent cools the leak sensor, causing the leak sensor current to change within defined limits. If the current increases above the upper limit, the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Defective leak sensor.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>2 Leak sensor incorrectly routed, being pinched by a metal component.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>

Leak Sensor Open

Error ID: 0083

The leak sensor in the module has failed (open circuit).

The current through the leak sensor is dependent on temperature. A leak is detected when solvent cools the leak sensor, causing the leak-sensor current to change within defined limits. If the current falls outside the lower limit, the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Leak sensor not connected to the main board.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>2 Defective leak sensor.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>3 Leak sensor incorrectly routed, being pinched by a metal component.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>
Compensation Sensor Open

Error ID: 0081

The ambient-compensation sensor (NTC) on the main board in the module has failed (open circuit).

The resistance across the temperature compensation sensor (NTC) on the main board is dependent on ambient temperature. The change in resistance is used by the leak circuit to compensate for ambient temperature changes. If the resistance across the sensor increases above the upper limit, the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Defective main board.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>

Compensation Sensor Short

Error ID: 0080

The ambient-compensation sensor (NTC) on the main board in the module has failed (open circuit).

The resistance across the temperature compensation sensor (NTC) on the main board is dependent on ambient temperature. The change in resistance is used by the leak circuit to compensate for ambient temperature changes. If the resistance across the sensor falls below the lower limit, the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Defective main board.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>
Fan Failed

Error ID: 0068

The cooling fan in the module has failed. The hall sensor on the fan shaft is used by the main board to monitor the fan speed. If the fan speed falls below a certain limit for a certain length of time, the error message is generated.

Depending on the module, assemblies (e.g. the lamp in the detector) are turned off to assure that the module does not overheat inside.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Fan cable disconnected.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>2 Defective fan.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>3 Defective main board.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>

Leak

Error ID: 0064

A leak was detected in the module. The signals from the two temperature sensors (leak sensor and board-mounted temperature-compensation sensor) are used by the leak algorithm to determine whether a leak is present. When a leak occurs, the leak sensor is cooled by the solvent. This changes the resistance of the leak sensor which is sensed by the leak-sensor circuit on the mainboard.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Loose fittings.</td>
<td>Ensure all fittings are tight.</td>
</tr>
<tr>
<td>2 Broken capillary.</td>
<td>Exchange defective capillaries.</td>
</tr>
</tbody>
</table>
Module-Specific Error Messages

For further module-specific errors, please see the manual of the module in question.

Initialization of Valve Failed

Error ID: 24000

During the initialization process the motor of the valve drive moves to some special positions depending on the installed valve head. A failure in this process means either that the movement couldn’t be performed properly or it was not noticed correctly by the sensor.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mechanical problems. Friction too high or blockages on the valve drive's motor or on the valve head.</td>
<td>• Check valve head for correct installation</td>
</tr>
<tr>
<td></td>
<td>• Try to identify the source of trouble by installing a different valve head if possible.</td>
</tr>
<tr>
<td></td>
<td>• Contact your Agilent Service representative.</td>
</tr>
<tr>
<td>2 Defect Sensor on the Valve Drive Motor</td>
<td>• Check valve head for correct installation</td>
</tr>
<tr>
<td></td>
<td>• Try to identify the source of trouble by installing a different valve head if possible.</td>
</tr>
<tr>
<td></td>
<td>• Contact your Agilent Service representative.</td>
</tr>
</tbody>
</table>
Valve Switching Failed

Error ID: 24001

The valve drive was not able to operate the valve head correctly. Either due to mechanical reasons or the movement couldn't be detected correctly.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mechanical problems. Friction too high or blockages on the valve drive's motor or on the valve head.</td>
<td>• Check valve head for correct installation</td>
</tr>
<tr>
<td></td>
<td>• Try to identify the source of trouble by installing a different valve head if possible.</td>
</tr>
<tr>
<td></td>
<td>• Contact your Agilent Service representative.</td>
</tr>
<tr>
<td>2 Defect Sensor on the Valve Drive Motor</td>
<td>• Check valve head for correct installation</td>
</tr>
<tr>
<td></td>
<td>• Try to identify the source of trouble by installing a different valve head if possible.</td>
</tr>
<tr>
<td></td>
<td>• Contact your Agilent Service representative.</td>
</tr>
</tbody>
</table>

Valve Tag Violation

Error ID: 24006

The valve drive identified a different valve head than it had identified during the last initialization.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A valve head has been exchanged (hot-plugged) while the valve drive was still powered on.</td>
<td>Change the valve head. It is important to have the valve switched off for at least 10 s after or before a new valve head has been installed.</td>
</tr>
</tbody>
</table>

NOTE

Soft power-down power supply of the valve drive.
Whenever you want to power cycle the valve drive for a re-boot, it needs to be powered off for at least 10 seconds.
Pressure Cluster Partner Missing

The connection from the valve drive to a defined pressure cluster partner is lost.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Communication issues</td>
<td>Check the CAN cable connections of the modules.</td>
</tr>
<tr>
<td>2 Configuration mismatch</td>
<td>Check and correct if necessary the valve configuration and presence of defined pressure cluster partner.</td>
</tr>
</tbody>
</table>

Position Cluster Partner Missing

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Communication issues</td>
<td>Check the CAN cable connections of the modules.</td>
</tr>
<tr>
<td>2 Configuration mismatch</td>
<td>Check and correct if necessary the valve configuration and presence of defined position cluster partner.</td>
</tr>
</tbody>
</table>
External Valve falls into resident mode

Error ID: Flashing status indicator

The valve drive was not able to operate correctly

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Communication issues</td>
<td>• Check the CAN cable connections of the modules.</td>
</tr>
<tr>
<td></td>
<td>• Check if the hosted module is present.</td>
</tr>
<tr>
<td>2 Configuration mismatch</td>
<td>• Check if the firmware on the entire stack is out of the same firmware set.</td>
</tr>
<tr>
<td></td>
<td>• Check if the limit of 3 hosted modules for each host module is not exceeded.</td>
</tr>
<tr>
<td></td>
<td>• Check if the dipswitch settings are correct.</td>
</tr>
<tr>
<td></td>
<td>• Check if the firmware on the entire stack has to be the latest version.</td>
</tr>
</tbody>
</table>
11 Maintenance

Introduction to Maintenance 259
Warnings and Cautions 260
Overview of Maintenance 262
Cleaning the Module 263
Correcting Leaks 264
Correcting Leaks (G7116B) 264
Correcting Leaks (G1170A) 265
Replace Valve Heads 266
Replace Valve Heads (G7116B) 266
Replace Valve Heads (G1170A) 269
Replacing Parts of the Valve Head 272
Replacing the Fuses of the Infinity Valve Drive 274
Replace the Module Firmware 276

This chapter describes the maintenance of the 2D-LC Solution.
Introduction to Maintenance

The 2D-LC solution is designed for easy maintenance. The most frequent maintenance can be done from the front with the modules in place in the system stack. Examples are maintenance of the needle, needle seats, rotor seals, valve heads, or replacing heat exchangers.
Warnings and Cautions

WARNING

Personal injury or damage to the product

Agilent is not responsible for any damages caused, in whole or in part, by improper use of the products, unauthorized alterations, adjustments or modifications to the products, failure to comply with procedures in Agilent product user guides, or use of the products in violation of applicable laws, rules or regulations.

✔ Use your Agilent products only in the manner described in the Agilent product user guides.

WARNING

Electrical shock

Repair work at the module can lead to personal injuries, e.g. shock hazard, when the cover is opened.

✔ Do not remove the cover of the module.

✔ Only certified persons are authorized to carry out repairs inside the module.

WARNING

Sharp metal edges

Sharp-edged parts of the equipment may cause injuries.

✔ To prevent personal injury, be careful when getting in contact with sharp metal areas.
11 Maintenance
Warnings and Cautions

WARNING
Toxic, flammable and hazardous solvents, samples and reagents
The handling of solvents, samples and reagents can hold health and safety risks.

- When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.
- The volume of substances should be reduced to the minimum required for the analysis.
- Do not operate the instrument in an explosive atmosphere.

CAUTION
Hot heat exchangers
The column compartment has two heat exchanger assemblies that might be hot.

- Allow them to cool down before starting repairs.

CAUTION
Safety standards for external equipment

- If you connect external equipment to the instrument, make sure that you only use accessory units tested and approved according to the safety standards appropriate for the type of external equipment.
Overview of Maintenance

The following pages describe maintenance procedures (simple repairs) that can be done without opening the main cover.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Typical Frequency</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaning the Module</td>
<td>If required</td>
<td></td>
</tr>
<tr>
<td>Correcting Leaks</td>
<td>If a leak has occurred</td>
<td>Check for leaks</td>
</tr>
<tr>
<td>Maintain the Column Switching Valve</td>
<td>If valve leaks</td>
<td></td>
</tr>
<tr>
<td>Replace Valve Heads</td>
<td>If the valve performance shows indication of leakage or wear</td>
<td></td>
</tr>
<tr>
<td>Replacing Parts of the Valve Head</td>
<td>If leak sensor is defective</td>
<td></td>
</tr>
<tr>
<td>Replacing the Fuses of the Infinity Valve Drive</td>
<td>When a fuse is defective</td>
<td></td>
</tr>
<tr>
<td>Replace the Module Firmware</td>
<td>If required</td>
<td></td>
</tr>
</tbody>
</table>
Cleaning the Module

To keep the module case clean, use a soft cloth slightly dampened with water, or a solution of water and mild detergent.

WARNING

Liquid dripping into the electronic compartment of your module can cause shock hazard and damage the module

- Do not use an excessively damp cloth during cleaning.
- Drain all solvent lines before opening any connections in the flow path.
Correcting Leaks

Correcting Leaks (G7116B)

When
If a leakage has occurred at the heat exchanger or at the capillary connections or at the column switching valve.

Tools required

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tissue</td>
</tr>
<tr>
<td>Pipette</td>
</tr>
<tr>
<td>Wrench, 1/4 – 5/16 inch (for capillary connections)</td>
</tr>
</tbody>
</table>

1. Remove the door.
2. Use a pipette and tissue to dry the leak sensor area.
3. Observe the capillary connections and the column switching valve for leaks and correct, if required.
4. Re-install the door.
Correcting Leaks (G1170A)

When
If leakage has occurred at the capillary connections or at the valve.

Tools required

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tissue</td>
</tr>
<tr>
<td>Pipette</td>
</tr>
<tr>
<td>Wrench, 1/4 – 5/16 inch (for capillary connections)</td>
</tr>
</tbody>
</table>

1. Use a pipette and tissue to dry the leak sensor area.
2. Observe the capillary connections and the valve for leaks and correct, if required.
Replace Valve Heads

Replace Valve Heads (G7116B)
Several optional valve heads are available, which can be installed and exchanged easily.

<table>
<thead>
<tr>
<th>Parts required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Any Agilent Quick Change Valve Head.</td>
</tr>
</tbody>
</table>

CAUTION
The valve actuator contains sensitive optical parts, which need to be protected from dust and other pollution. Pollution of these parts can impair the accurate selection of valve ports and therefore bias measurement results.

- Always install a valve head for operation and storage. For protecting the actuator, a dummy valve head (part of Transportation Lock Kit (G1316-67001)) can be used instead of a functional valve. Do not touch parts inside the actuator.

CAUTION
Column Damage or Bias Measurement Results
Switching the valve to a wrong position can damage the column or bias measurement results.

- Fit the lobe to the groove to make sure the valve is switched to the correct position.

CAUTION
Valve Damage
Using a low pressure valve on the high pressure side can damage the valve.

- When using multiple column compartments as part of a method development solution, make sure that the high pressure valve head is connected to the autosampler and the low pressure valve head is connected to the detector.
11 Maintenance

Replace Valve Heads

WARNING

Toxic, flammable and hazardous solvents, samples and reagents

The handling of solvents, samples and reagents can hold health and safety risks.

- Be sure that no solvent can drop out of the solvent connections when removing them from your valve head.

- When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.

1. Switch off the module.
2. Push the valve head to bring it to its outer position.
3. Remove all capillary connections from the valve head.
4. Unscrew the valve head.
11 Maintenance
Replace Valve Heads

5 Put the new valve head onto the valve drive such that the lobe fits to the groove.

6 Screw the valve head onto the valve drive using the union nut.

7 Install all required capillary connections to the valve.

8 Push the valve head until it snaps in and stays in the rear position.

9 Switch on the module.
Replace Valve Heads (G1170A)

The following procedure shows installation only. To remove the valve, follow the instructions in reverse order.

NOTE

The following procedure exemplarily shows a valve head installation. For correct capillary connections see **Valve topology** in the GUI.

CAUTION

The valve actuator contains sensitive optical parts, which need to be protected from dust and other pollution. Pollution of these parts can impair the accurate selection of valve ports and therefore bias measurement results.

- Always install a valve head for operation and storage. For protecting the actuator, a dummy valve head can be used instead of a functional valve. Do not touch parts inside the actuator.

NOTE

For a correct installation of the valve head, the outside pin (red) must completely fit into the outside groove on the valve drive's shaft (red). A correct installation is only possible if the two pins (green and blue) on the valve head fit into their corresponding grooves on the valve drive's actuator axis. Their match depends on the diameter of the pin and groove.

NOTE

The tag reader reads the valve head properties from the valve head RFID tag during initialization of the module. Valve properties will not be updated, if the valve head is replaced while the module is on. Selection of valve port positions can fail, if the instrument does not know the properties of the installed valve.

NOTE

To allow correct valve identification, power off the module for at least 10 s.
11 Maintenance

Replace Valve Heads

1. Insert the valve head into the valve shaft.

2. When the outer pin is locked into the groove, manually screw the nut onto the valve head.

NOTE

Fasten the nut with the 5043-1767 Valve Removal tool.

OR

If the outside pin does not fit into the outside groove, you have to turn the valve head until you feel that the two pins snap into the grooves. Now you should feel additional resistance from the valve drive while continuously turning the valve head until the pin fits into the groove.
11 Maintenance
Replace Valve Heads

3 Install all required capillary connections to the valve.

4 Power on or power-cycle your module, so the valve head gets recognized during module initialization.
Replacing Parts of the Valve Head

When
If valve leaks.

Tools required

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrench, 1/4 inch</td>
</tr>
<tr>
<td>OR</td>
</tr>
<tr>
<td>Hexagonal key, 9/64 inch</td>
</tr>
</tbody>
</table>

1. Remove capillaries from ports.
2. Loosen each fixing stator screw two turns at a time. Remove bolts from head.
3. Remove the stator head (and stator face if applicable).
4. Remove the stator ring.
5. Remove the rotor seal (and isolation seal if damaged or contaminated).
6. Install the new isolation seal (if required). Ensure the metal spring inside the ring faces towards the valve body.
7. Install the new rotor seal.
8. Replace the stator ring. Ensure the stator ring is flush with the valve body.
9. Place the new (if required) stator face in place on the stator head. Reinstall the stator head.
10. Insert the stator screws in the stator head. Tighten the screws alternately two turns at a time until the stator head is secure.
11. Reconnect the pump capillaries to the valve ports.

CAUTION

Wrong use of Pressure Test may damage valve.

The current implementation of the Pressure Test automatically uses the maximum pressure generated by the pump used in the system.

- Do not use the test for modules having a lower maximum pressure than the pump as this will damage the valve. For example do not use 400 bar valve in a TCC or Flexible Cube in combination with a 600 bar pump.

12. Perform a **Pressure Test** to ensure the valve is pressure tight.
11 Maintenance
Replacing Parts of the Valve Head

Figure 106 Valve Head Parts (example)

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stator screws</td>
</tr>
<tr>
<td>2</td>
<td>Stator head assembly</td>
</tr>
<tr>
<td>3</td>
<td>Stator ring screws (not available)</td>
</tr>
<tr>
<td>4</td>
<td>Stator ring (available for service only)</td>
</tr>
<tr>
<td>5</td>
<td>Rotor seal</td>
</tr>
<tr>
<td>6</td>
<td>Bearing ring</td>
</tr>
<tr>
<td>7</td>
<td>Spanner nut (available for service only)</td>
</tr>
</tbody>
</table>

NOTE Figure 106 on page 273 illustrates replacement parts for the valve heads, with the 6-column Selector valve as an example. The valves can vary in their appearance and do not necessarily include all of the illustrated parts. Neither, every spare part is available for each flavor of the valve.
Replacing the Fuses of the Infinity Valve Drive

When
If the flow module shows no reaction.

Tools required
Description
Screwdriver

Parts required
<table>
<thead>
<tr>
<th>#</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2110-1486</td>
<td>Fuse 2 AT250 V</td>
</tr>
</tbody>
</table>

WARNING

- Disconnect the module from line power before changing a fuse or trying to open the hatch of the power input socket.
- Never reconnect the line power before having the power input socket closed.

1. Switch off the instrument. The line switch is located at the rear of the module.
2. Disconnect the power cable from the power input socket.
To access the fuse drawer, gently lift the outer plastic housing of the power inlet socket using a flat screwdriver.

Pull out the fuse drawer as shown.

Replace the defect fuse(s).

Slide in the fuse drawer and push till it fits tightly.

Finally, close the fuse drawer housing, reconnect the instrument to the power line and switch it on.
Replace the Module Firmware

When
The installation of newer firmware might be necessary
• if a newer version solves problems of older versions or
• to keep all systems on the same (validated) revision.
The installation of older firmware might be necessary
• to keep all systems on the same (validated) revision or
• if a new module with newer firmware is added to a system or
• if third party control software requires a special version.

Tools required
Description
Agilent Lab Advisor software

Parts required
Description
1 Firmware, tools and documentation from Agilent web site

Preparations
Read update documentation provided with the Firmware Update Tool.

To upgrade/downgrade the module’s firmware carry out the following steps:

2 For loading the firmware into the module follow the instructions in the documentation.

Module Specific Information
There is no specific information for this module.
12 Parts for Maintenance

2D-LC Loops 278
2D-LC Capillaries 279
ASM Capillaries 280
Pressure Release Kit 281
2D-LC Easy Starter Kit 282
Valve Drive Parts 283
Valve Driver Parts Infinity II 284
Valve Head Parts 285
Technical specifications 286
Tools 286
Vale Options Overview (for 2D-LC) 287
Obsolete Valve Heads 290
MS Diverter Valve 291
Additional Parts for the MS Diverter Valve Setup 292
Valve Options Overview (for G7116B) 293
Additional Heater Devices 295
Additional Heater Devices (for G7116B) 296
Accessories and Consumables (for G7116B) 297
InfinityLab Quick Connect and Quick Turn Fittings 299
InfinityLab Quick Connect Fittings 300
InfinityLab Quick Connect Fitting Replacement Capillaries 301
InfinityLab Quick Turn Fitting 302
Capillary Kits 303
Important Customer Web Links 304

This chapter provides information on parts material required for the solution.
Parts for Maintenance

2D-LC Loops

2D-LC Loops for Standard 2D-LC

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5067-5440</td>
<td>Calibrated loop kit for 2D-LC</td>
</tr>
<tr>
<td>5067-5446</td>
<td>Loop housing kit</td>
</tr>
<tr>
<td>5067-5424</td>
<td>20 µL Loop 2D-LC</td>
</tr>
<tr>
<td>5067-5425</td>
<td>40 µL Loop 2D-LC</td>
</tr>
<tr>
<td>5067-5437</td>
<td>60 µL Loop 2D-LC</td>
</tr>
<tr>
<td>5067-5426</td>
<td>80 µL Loop 2D-LC</td>
</tr>
</tbody>
</table>

2D-LC Loops for MHC valve Fitting M4

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5067-6643</td>
<td>Capillary ST 0.35x104 mm, M/M, 10</td>
</tr>
<tr>
<td>5067-6644</td>
<td>Capillary ST 0.35x208 mm, M/M, 20 µL</td>
</tr>
<tr>
<td>5067-5926</td>
<td>Capillary ST 0.35x420 mm M/M 40 µl</td>
</tr>
<tr>
<td>5067-6645</td>
<td>Capillary ST 0.35x831 mm, M/M, 80 µL</td>
</tr>
<tr>
<td>5067-6646</td>
<td>Capillary ST 0.35x1247 mm, M/M, 120 µL</td>
</tr>
<tr>
<td>5067-6647</td>
<td>Capillary ST 0.35x1870 mm, M/M, 180 µL</td>
</tr>
<tr>
<td>5067-6141</td>
<td>M4 Blank nut</td>
</tr>
<tr>
<td>5023-2504</td>
<td>Hex driver SW-4 slitted</td>
</tr>
</tbody>
</table>
Parts for Maintenance
2D-LC Capillaries

2D-LC Capillaries

1200 Infinity Series 2D-LC Capillary Kit

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5021-1820</td>
<td>Flex capillary, 0.12 mm x 105 mm, no fittings</td>
</tr>
<tr>
<td>G1316-87321</td>
<td>Capillary column-heat exchanger 105 mm lg, 0.17 mm i.d.</td>
</tr>
<tr>
<td>5021-1822</td>
<td>Capillary, 0.12 mm x 280 mm</td>
</tr>
<tr>
<td>5021-1823</td>
<td>Capillary column – detector SST 400 mm lg, 0.12 mm i.d.</td>
</tr>
<tr>
<td>5021-1819</td>
<td>Capillary ST 0.17 mm x 400 mm S/S</td>
</tr>
<tr>
<td>5065-9964</td>
<td>Capillary ST 0.12 mm x 500 mm</td>
</tr>
<tr>
<td>5067-4609</td>
<td>Capillary ST 0.17 mm x 500 mm SX/S</td>
</tr>
<tr>
<td>5067-4669</td>
<td>Capillary ST 0.12 mm x 600 mm S/SL</td>
</tr>
<tr>
<td>01078-87305</td>
<td>Capillary, 0.17 mm x 80 cm, male fit</td>
</tr>
<tr>
<td>5065-4454</td>
<td>Fitting screw long, front and back ferrules 10/pk</td>
</tr>
<tr>
<td>G1316-60005</td>
<td>Low Dispersion Heat Exchanger Double Assy</td>
</tr>
<tr>
<td>G7116-60015</td>
<td>Quick Connect Heat Exchanger Standard</td>
</tr>
<tr>
<td>5500-1188</td>
<td>Quick Turn Capillary ST 0.12 mm x 105 mm, long socket</td>
</tr>
</tbody>
</table>

InfinityLab 2D-LC Capillary Kit legacy

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5067-4651</td>
<td>Capillary ST 0.12 mm x 280 mm SL/SX</td>
</tr>
<tr>
<td>5067-4669</td>
<td>Capillary ST 0.12 mm x 600 mm S/SL</td>
</tr>
<tr>
<td>5500-1245</td>
<td>Capillary ST 0.17 mm x 400 mm SI/SI</td>
</tr>
<tr>
<td>5500-1251</td>
<td>Capillary ST 0.12 mmX 400 mm SL/SL</td>
</tr>
<tr>
<td>5500-1240</td>
<td>Capillary ST 0.17 mm x 105 mm SL/SL</td>
</tr>
<tr>
<td>5500-1227</td>
<td>Capillary ST 0.17 mm x 150 mm SL-SL</td>
</tr>
<tr>
<td>5500-1217</td>
<td>Capillary, ST, 0.17 mm x 900 mm SI/SX</td>
</tr>
<tr>
<td>5067-4608</td>
<td>Capillary ST 0.17 mm x 280 mm SX/S</td>
</tr>
<tr>
<td>5067-4670</td>
<td>Capillary ST 0.17 mm ID 600 mm pre-swaged</td>
</tr>
</tbody>
</table>
ASM Capillaries

ASM Valve Capillary Replacement Kit

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5500-1300</td>
<td>Capillary ST 0.12x85M/M ASM</td>
</tr>
<tr>
<td>5500-1301</td>
<td>Capillary ST 0.12x170M/M ASM</td>
</tr>
<tr>
<td>5500-1302</td>
<td>Capillary ST 0.12x340M/M ASM</td>
</tr>
<tr>
<td>5500-1303</td>
<td>Capillary ST 0.12x680M/M ASM</td>
</tr>
<tr>
<td>5500-1376</td>
<td>Capillary ST 0.12x170M/M transfer</td>
</tr>
</tbody>
</table>
Pressure Release Kit

Figure 107 Pressure release kit, parts

<table>
<thead>
<tr>
<th>Item</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5021-1816</td>
<td>Capillary</td>
</tr>
<tr>
<td></td>
<td>G4236-60010</td>
<td>2D-LC Pressure Release Kit</td>
</tr>
<tr>
<td></td>
<td>0100-0969</td>
<td>TEE, ST, 1/16 inch, Low Dead Volume</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not shown</td>
</tr>
<tr>
<td>2</td>
<td>5022-2184</td>
<td>Union, stand LC flow, no fitting</td>
</tr>
<tr>
<td>3</td>
<td>G7167-87307</td>
<td>500 µL Loop extension</td>
</tr>
<tr>
<td>4</td>
<td>G4212-60022</td>
<td>Pressure Relief Valve</td>
</tr>
<tr>
<td>5</td>
<td>5067-5939</td>
<td>Splitter-Capillary 0.05-ID L-1000 mm</td>
</tr>
</tbody>
</table>
Parts for Maintenance

2D-LC Easy Starter Kit

2D-LC Easy Starter Kit

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5190-6895</td>
<td>2D-LC starter sample, 1 x 2 mL</td>
</tr>
<tr>
<td>G2453-85060</td>
<td>Formic Acid-Reagent Grade 5 mL (5 cc)</td>
</tr>
<tr>
<td>858700-902</td>
<td>RRHD SB-C18, 2.1x100 mm, 1.8 µm, 1200 bar</td>
</tr>
<tr>
<td>857768-901</td>
<td>RRHD Bonus-RP, 2.1x50 mm, 1.8 µm, 1200 bar</td>
</tr>
<tr>
<td>959757-302</td>
<td>RRHD Eclipse Plus C18, 3.0x50 mm, 1.8 µm</td>
</tr>
</tbody>
</table>
Valve Drive Parts

<table>
<thead>
<tr>
<th>Item</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5043-0275</td>
<td>Clamp guide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For attaching the valve to a rail assembly</td>
</tr>
<tr>
<td>2</td>
<td>5067-4792</td>
<td>Leak sensor assembly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External leak sensor</td>
</tr>
<tr>
<td>3</td>
<td>5043-0271</td>
<td>Holder leak plane</td>
</tr>
<tr>
<td>4</td>
<td>5043-0270</td>
<td>Leak plane</td>
</tr>
<tr>
<td>5</td>
<td>5068-0106</td>
<td>Spanner nut</td>
</tr>
<tr>
<td></td>
<td>2110-1486</td>
<td>Fuse 2 AT250 V</td>
</tr>
<tr>
<td>6</td>
<td>5067-4634</td>
<td>Valve rail assembly</td>
</tr>
<tr>
<td>7</td>
<td>5067-1510</td>
<td>Rail assy for column organizer</td>
</tr>
</tbody>
</table>

![Figure 108 Valve Drive Parts](image_url)
Valve Driver Parts Infinity II

<table>
<thead>
<tr>
<th>Item</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5067-6138</td>
<td>Valve Holder Kit Right-IF-II-G For G7116A/B</td>
</tr>
<tr>
<td></td>
<td>5067-6139</td>
<td>Valve Holder Kit Left-IF-II-G For G7116A/B (Not shown)</td>
</tr>
<tr>
<td>2</td>
<td>5067-5685</td>
<td>Clamp Guide Kit-IF-II</td>
</tr>
<tr>
<td>3</td>
<td>5067-4792</td>
<td>Leak sensor assembly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External leak plane</td>
</tr>
<tr>
<td>4</td>
<td>5043-0271</td>
<td>Holder leak plane</td>
</tr>
<tr>
<td>5</td>
<td>5043-0270</td>
<td>Leak plane</td>
</tr>
<tr>
<td>6</td>
<td>2110-1486</td>
<td>Fuse 2 AT250 V</td>
</tr>
<tr>
<td>7</td>
<td>5063-6527</td>
<td>Tubing, Silicon Rubber, 1.2 m, ID/OD 6/9 mm</td>
</tr>
<tr>
<td>8</td>
<td>5181-1519</td>
<td>CAN cable, Agilent module to module, 1 m</td>
</tr>
<tr>
<td>9</td>
<td>5500-1156</td>
<td>T-Tube Connector ID6.4</td>
</tr>
<tr>
<td>10</td>
<td>5043-0269</td>
<td>Adapter-profile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For G1170A (Multiple valve drives can be connected with adapter profiles)</td>
</tr>
</tbody>
</table>

Figure 109 Parts for 1260/1290 Infinity II Valve Drive
Valve Head Parts

NOTE
The figure below illustrates replacement parts for the valve heads, with the 12ps/13pt Selector valve as an example. The valves can vary in their appearance and do not necessarily include all of the illustrated parts. Neither, every spare part is available for each flavor of the valve.

![Figure 110 Valve Head Parts (example)](image)

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stator screws</td>
</tr>
<tr>
<td>2</td>
<td>Stator head assembly</td>
</tr>
<tr>
<td>3</td>
<td>Stator ring screws (not available)</td>
</tr>
<tr>
<td>4</td>
<td>Stator ring (available for service only)</td>
</tr>
<tr>
<td>5</td>
<td>Rotor seal</td>
</tr>
<tr>
<td>6</td>
<td>Bearing ring</td>
</tr>
<tr>
<td>7</td>
<td>Spanner nut (available for service only)</td>
</tr>
</tbody>
</table>
Technical specifications

Table 18 Technical specifications

Max. Pressure:	1300 bar
Liquid Contacts:	Stainless Steel, PEEK
Connections:	Accepts 10-32 male threaded and M4 fittings

Tools

Tool for extra fittings

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8710-2462</td>
<td>Hex Key Driver 3/32 inch</td>
</tr>
<tr>
<td>5023-2504</td>
<td>Hex driver SW-4 slitted</td>
</tr>
<tr>
<td></td>
<td>For M4 fittings</td>
</tr>
<tr>
<td>5067-6141</td>
<td>M4 Blank nut</td>
</tr>
<tr>
<td></td>
<td>For plugging unused valve ports</td>
</tr>
<tr>
<td>5067-6127</td>
<td>Blank Nut SL</td>
</tr>
</tbody>
</table>
Vale Options Overview (for 2D-LC)

The 1300 bar InfinitLab Quick Change Valves are backward compatible to the 1200 bar Valves.

NOTE

The service life of a stator depends on the stress to which the 2D-LC valve is subjected. Therefore, a visual inspection of the surface during maintenance is very important. If scratches or heavy wear is visible during the inspection or the valve has passed 30000 switches, the stator must be replaced.

G4136A 2D-LC Valve Kit, Standard

<table>
<thead>
<tr>
<th>#</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5067-4244</td>
<td>2D-LC Valve Head, 1300 bar</td>
</tr>
<tr>
<td>1</td>
<td>5067-5440</td>
<td>Calibrated loop kit for 2D-LC</td>
</tr>
<tr>
<td>1</td>
<td>5067-6171</td>
<td>Capillary Kit 2D-LC, Infinity Classic (optional) Internal part, not orderable</td>
</tr>
<tr>
<td>1</td>
<td>G4236-68000</td>
<td>2D-LC Easy Starter Kit Internal part, not orderable</td>
</tr>
<tr>
<td>2</td>
<td>G4242-64000</td>
<td>Multiple Heart-Cutting Valve</td>
</tr>
<tr>
<td>1</td>
<td>5067-6585</td>
<td>Capillary Kit 2D-LC, 1290 Infinity II Internal part, not orderable</td>
</tr>
<tr>
<td>1</td>
<td>G1680-63721</td>
<td>Network LAN Switch</td>
</tr>
</tbody>
</table>

5067-4244 2D-LC Valve Head, 1300 bar

<table>
<thead>
<tr>
<th>#</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1535-4857</td>
<td>Stator screws, 10/pk</td>
</tr>
<tr>
<td>1</td>
<td>1535-4045</td>
<td>Bearing ring</td>
</tr>
<tr>
<td>1</td>
<td>5068-0214</td>
<td>Rotor Seal (VHP)</td>
</tr>
<tr>
<td>1</td>
<td>5068-0120</td>
<td>Stator ring</td>
</tr>
<tr>
<td>1</td>
<td>5068-0115</td>
<td>Stator</td>
</tr>
</tbody>
</table>

2D-LC - User Guide 287
Parts for Maintenance

Vale Options Overview (for 2D-LC)

G4243A 2D-LC Valve Kit, ASM

<table>
<thead>
<tr>
<th>#</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5067-4266</td>
<td>2D-LC ASM Valve Head, 1300 bar</td>
</tr>
<tr>
<td>1</td>
<td>G4236-68000</td>
<td>2D-LC Easy Starter Kit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal part, not orderable</td>
</tr>
<tr>
<td>1</td>
<td>G1680-63721</td>
<td>Network LAN Switch</td>
</tr>
<tr>
<td>1</td>
<td>5500-1300</td>
<td>Capillary ST 0.12x85M/M ASM</td>
</tr>
<tr>
<td>1</td>
<td>5500-1301</td>
<td>Capillary ST 0.12x170M/M ASM</td>
</tr>
<tr>
<td>1</td>
<td>5500-1302</td>
<td>Capillary ST 0.12x340M/M ASM</td>
</tr>
<tr>
<td>1</td>
<td>5500-1303</td>
<td>Capillary ST 0.12x680M/M ASM</td>
</tr>
<tr>
<td>4</td>
<td>5500-1376</td>
<td>Capillary ST 0.12x170M/M transfer</td>
</tr>
</tbody>
</table>

5067-4266 2D-LC ASM Valve Head, 1300 bar

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5068-0019</td>
<td>Stator screws</td>
</tr>
<tr>
<td>5068-0257</td>
<td>Bearing Ring</td>
</tr>
<tr>
<td>5068-0240</td>
<td>Rotor Seal (VHP)</td>
</tr>
<tr>
<td>5068-0239</td>
<td>Stator</td>
</tr>
</tbody>
</table>

G4242-64000 Multiple Heart-Cutting Valve

<table>
<thead>
<tr>
<th>#</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5067-4273</td>
<td>6-column selector valve head, 1300 bar</td>
</tr>
<tr>
<td>6</td>
<td>5067-5926</td>
<td>Capillary ST 0.35x 420 mm M/M 40 µl</td>
</tr>
<tr>
<td>2</td>
<td>5500-1270</td>
<td>Capillary ST 0.12 mm x 170 mm S/M</td>
</tr>
<tr>
<td>1</td>
<td>5043-0269</td>
<td>Adapter-profile</td>
</tr>
</tbody>
</table>
Parts for Maintenance

Vale Options Overview (for 2D-LC)

5067-4273 6-column selector valve head, 1300 bar

<table>
<thead>
<tr>
<th>#</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5068-0089</td>
<td>Stator screws</td>
</tr>
<tr>
<td>1</td>
<td>1535-4045</td>
<td>Bearing ring</td>
</tr>
<tr>
<td>1</td>
<td>5068-0242</td>
<td>Rotor Seal (PEEK)</td>
</tr>
<tr>
<td>1</td>
<td>5068-0241</td>
<td>Stator Head</td>
</tr>
</tbody>
</table>
Parts for Maintenance
Vale Options Overview (for 2D-LC)

Obsolete Valve Heads
The following 1200 bar valve heads are no longer orderable:

5067-4214 2D-LC Valve 1200 bar legacy

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5068-0186</td>
<td>Rotor Seal (Vespel)</td>
</tr>
<tr>
<td>5068-0115</td>
<td>Stator</td>
</tr>
<tr>
<td>1535-4857</td>
<td>Stator screws, 10/pk</td>
</tr>
<tr>
<td>1535-4045</td>
<td>Bearing ring</td>
</tr>
</tbody>
</table>

Multiple Heart-Cutting Valve legacy

<table>
<thead>
<tr>
<th>#</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5067-4142</td>
<td>Valve head 6 column selector (1200 bar)</td>
</tr>
<tr>
<td>6</td>
<td>5067-5926</td>
<td>Capillary ST 0.35x 420 mm M/M 40 µl</td>
</tr>
<tr>
<td>1</td>
<td>5974-0197</td>
<td>Capillary Cover Label</td>
</tr>
<tr>
<td>2</td>
<td>5067-5113</td>
<td>Capillary ST 0.17 mm x 250 mm SL/M</td>
</tr>
<tr>
<td>2</td>
<td>5067-6188</td>
<td>Capillary ST 0.17 mm x 500 mm SL-M</td>
</tr>
</tbody>
</table>

5067-4142 6-Column selector valve 1200 bar legacy

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5068-0077</td>
<td>Stator Head</td>
</tr>
<tr>
<td>5068-0067</td>
<td>Rotor Seal (Vespel)</td>
</tr>
<tr>
<td>5068-0089</td>
<td>Stator screws</td>
</tr>
<tr>
<td>1535-4045</td>
<td>Bearing ring</td>
</tr>
</tbody>
</table>
Parts for Maintenance
MS Diverter Valve

MS Diverter Valve

G4231A 2 position/6 port valve head, 800 bar

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5067-4282</td>
<td>2 position/6 port valve head, 800 bar</td>
</tr>
<tr>
<td>5067-4730</td>
<td>2/10 Cap kit 0.17 mm</td>
</tr>
<tr>
<td>5067-4249</td>
<td>2/6 Cap Kit 0.12 mm, incl. QC-HEx</td>
</tr>
<tr>
<td>5067-4250</td>
<td>2/6 Cap Kit 0.12 mm, incl. LD-HEx</td>
</tr>
<tr>
<td>5067-6597</td>
<td>2/6 Cap Kit 0.17 mm, incl. QC-HEx</td>
</tr>
</tbody>
</table>

Alternative diverter valves (2 position / 6 port, PEEK Rotor Seal)

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5067-4137</td>
<td>Valve Head 2 Postion / 6 Port, 600 bar</td>
</tr>
<tr>
<td>5067-4282</td>
<td>2 position/6 port valve head, 800 bar</td>
</tr>
<tr>
<td>0101-1409</td>
<td>Rotor Seal (PEEK)</td>
</tr>
</tbody>
</table>

Alternative diverter valves (2 position / 10 port, PEEK Rotor Seal)

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5067-4145</td>
<td>2ps/10pt valve head, 600 bar</td>
</tr>
<tr>
<td>5067-4283</td>
<td>2ps/10pt valve head, 800 bar</td>
</tr>
<tr>
<td>0101-1415</td>
<td>Rotor Seal (PEEK)</td>
</tr>
</tbody>
</table>

Alternative diverter valves (2 position / 6 port, Vespel Rotor Seal)

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5067-4117</td>
<td>2ps/6pt ultra high pressure valve head, 1200 bar</td>
</tr>
<tr>
<td>5068-0008</td>
<td>Rotor Seal (Vespel)</td>
</tr>
</tbody>
</table>
Parts for Maintenance

MS Diverter Valve

Alternative diverter valves (2 position / 10 port, Vespel Rotor Seal)

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5067-4118</td>
<td>2ps/10pt ultra high pressure valve head, 1200 bar</td>
</tr>
<tr>
<td>5068-0012</td>
<td>Rotor Seal (Vespel)</td>
</tr>
</tbody>
</table>

Additional Parts for the MS Diverter Valve Setup

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4212-60022</td>
<td>Pressure Relief Valve</td>
</tr>
<tr>
<td>5067-4606</td>
<td>Capillary ST 0.12 mm x 400 mm SX/-</td>
</tr>
<tr>
<td>0890-1915</td>
<td>Capillary PK 0.13 mm x 150 cm</td>
</tr>
<tr>
<td>5500-1228</td>
<td>Capillary ST 0.3 mm x 80 mm SL-SL</td>
</tr>
<tr>
<td>5063-6591</td>
<td>PEEK Fittings 10/PK</td>
</tr>
<tr>
<td>0100-0969</td>
<td>TEE, ST, 1/16 inch, Low Dead Volume</td>
</tr>
<tr>
<td>5067-6127</td>
<td>Blank Nut SL</td>
</tr>
<tr>
<td>5062-2462</td>
<td>Tube PTFE 0.7 mm x 5 m, 1.6 mm od</td>
</tr>
</tbody>
</table>
Valve Options Overview

The 1300 bar InfinitLab Quick Change Valves are backward compatible to the 1200 bar Valves.

<table>
<thead>
<tr>
<th>Valve Head</th>
<th>Rotor Seal</th>
<th>Stator Head</th>
<th>Stator Screws</th>
<th>Stator Ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>5067-4233 8 Column Selector</td>
<td>5068-0200</td>
<td>5068-0199</td>
<td>5068-0089</td>
<td>n.a.</td>
</tr>
<tr>
<td>1300 bar</td>
<td>(PEEK)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5067-4241 2ps/6pt Valve</td>
<td>5068-0207</td>
<td>5068-0006</td>
<td>1535-4857</td>
<td>n.a.</td>
</tr>
<tr>
<td>1300 bar</td>
<td>(PEEK)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5067-4240 2ps/10pt Valve</td>
<td>5068-0205</td>
<td>5068-0011</td>
<td>5068-0019</td>
<td>n.a.</td>
</tr>
<tr>
<td>1300 bar</td>
<td>(PEEK)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5067-4273 6 Column Selector</td>
<td>5068-0242</td>
<td>5068-0241</td>
<td>5068-0089</td>
<td>n.a.</td>
</tr>
<tr>
<td>1300 bar</td>
<td>(PEEK)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5067-4284 6 Column Selector</td>
<td>5068-0298</td>
<td>5068-0241</td>
<td>5068-0089</td>
<td>n.a.</td>
</tr>
<tr>
<td>800 bar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Obsoleted Valve Heads

The following 1200 bar valve heads are no longer orderable:

Table 20 Replacement parts obsolete valve heads for G7116B

<table>
<thead>
<tr>
<th>Valve Head</th>
<th>Rotor Seal</th>
<th>Stator Head</th>
<th>Stator Screws</th>
<th>Stator Ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>5067-4121</td>
<td>5068-0002</td>
<td>5068-0001</td>
<td>1535-4857</td>
<td>5068-0127</td>
</tr>
<tr>
<td>8ps/9pt, 1200 bar</td>
<td>(Vespel)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5067-4117</td>
<td>5068-0008</td>
<td>5068-0006</td>
<td>1535-4857</td>
<td>5068-0127</td>
</tr>
<tr>
<td>2ps/6pt, 1200 bar</td>
<td>(Vespel)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5067-4118</td>
<td>5068-0012</td>
<td>5068-0011</td>
<td>5068-0019</td>
<td>n.a</td>
</tr>
<tr>
<td>2ps/10pt, 1200 bar</td>
<td>(Vespel)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5067-4142</td>
<td>5068-0067</td>
<td>5067-0077</td>
<td>5068-0089</td>
<td>n.a</td>
</tr>
<tr>
<td>6 Column Selector, 1200 bar</td>
<td>(Vespel)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Additional Heater Devices

Table 21 Heat Exchanger Overview

<table>
<thead>
<tr>
<th>Flow rate</th>
<th>0.075 mm i.d. capillary</th>
<th>0.12 mm i.d. capillary</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2 mL/min</td>
<td>Ultra-low Dispersion</td>
<td>Standard Flow</td>
</tr>
<tr>
<td></td>
<td>G7116-60021</td>
<td>G7116-60015</td>
</tr>
<tr>
<td></td>
<td>(Internal volume: 1.0 µL)</td>
<td>(Internal volume: 1.6 µL)</td>
</tr>
<tr>
<td>> 2 mL/min</td>
<td>High Flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G7116-60031</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Internal volume: 3.0 µL)</td>
<td></td>
</tr>
</tbody>
</table>

For details, see Table 22 on page 296.
Additional Heater Devices (for G7116B)

Blank heater assemblies without capillaries and fittings:

Table 22 InfinityLab Quick Connect Heat Exchanger

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quick Connect Heat Exchanger Standard (G7116-60015)</td>
</tr>
<tr>
<td></td>
<td>Quick Connect Heat Exchanger Ultra Low Dispersion (G7116-60021)</td>
</tr>
<tr>
<td></td>
<td>NOTE Use InfinityLab Quick Turn Fittings to connect to the Quick Connect Heat Exchanger Ultra Low Dispersion.</td>
</tr>
<tr>
<td></td>
<td>Quick Connect Heat Exchanger High Flow (G7116-60031)</td>
</tr>
</tbody>
</table>
Parts for Maintenance

Accessories and Consumables (for G7116B)

Accessory Kit (for G7116B)

The Accessory Kit (for G7116B) contains accessories and tools needed for the installation and maintenance.

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5181-1516</td>
<td>CAN cable, Agilent module to module, 0.5 m</td>
</tr>
<tr>
<td>5063-6527</td>
<td>Tubing, Silicon Rubber, 1.2 m, ID/OD 6/9 mm</td>
</tr>
<tr>
<td>5500-1191</td>
<td>Capillary ST 0.12 mm x 280 mm, long socket</td>
</tr>
<tr>
<td>5067-5966</td>
<td>InfinityLab Quick Turn Fitting</td>
</tr>
<tr>
<td>5067-5957</td>
<td>InfinityLab Quick Connect Assy ST 0.12 mm x 105 mm</td>
</tr>
<tr>
<td>G7116-60015</td>
<td>Quick Connect Heat Exchanger Standard</td>
</tr>
<tr>
<td>G7116-68003</td>
<td>Column Holder Lamella, 2/pk</td>
</tr>
<tr>
<td>5043-0915</td>
<td>Fitting mounting tool</td>
</tr>
<tr>
<td>G7116-60006</td>
<td>Divider Assembly MCT</td>
</tr>
<tr>
<td>5022-2184</td>
<td>Union, stand LC flow, no fitting</td>
</tr>
<tr>
<td></td>
<td>Double Drain Connector</td>
</tr>
</tbody>
</table>
Available Consumables (for G7116B)

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G7116-68003</td>
<td>Column Holder Lamella, 2/pk</td>
</tr>
<tr>
<td>G7116-68004</td>
<td>Column Holder Clamp (2/pk)</td>
</tr>
<tr>
<td>5500-1191</td>
<td>Capillary ST 0.12 mm x 280 mm, long socket (Capillary from column outlet to detector, no fittings.)</td>
</tr>
<tr>
<td>G7116-60006</td>
<td>Divider Assembly MCT For separating different temperature zones between left and right heater elements.</td>
</tr>
<tr>
<td>5067-5917</td>
<td>InfinityLab Column Identification Tag Blank column ID tag (column ID tag reader kit is required)</td>
</tr>
</tbody>
</table>

Number Kit

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5067-6654</td>
<td>Number Kit 1-8 colored Column Info in red, blue, green, cyan, yellow, black, white, and gray</td>
</tr>
</tbody>
</table>
InfinityLab Quick Connect and Quick Turn Fittings

For further info check either the consumables catalog or “Important Customer Web Links” on page 304.
Part for Maintenance
InfinityLab Quick Connect and Quick Turn Fittings

InfinityLab Quick Connect Fittings

![InfinityLab Quick Connect Fitting]

Figure 111 InfinityLab Quick Connect Fitting

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5067-5965</td>
<td>InfinityLab Quick Connect LC fitting (fitting without pre-installed capillary)</td>
</tr>
<tr>
<td>5043-0924</td>
<td>Front Ferrule for Quick Connect/Turn Fitting</td>
</tr>
<tr>
<td>5067-5961</td>
<td>InfinityLab Quick Connect Assy ST 0.075 mm x 105 mm</td>
</tr>
<tr>
<td>5067-6163</td>
<td>InfinityLab Quick Connect Assy ST 0.075 mm x 150 mm</td>
</tr>
<tr>
<td>5067-6164</td>
<td>InfinityLab Quick Connect Assy ST 0.075 mm x 220 mm</td>
</tr>
<tr>
<td>5067-6165</td>
<td>InfinityLab Quick Connect Assy ST 0.075 mm x 280 mm</td>
</tr>
<tr>
<td>5067-5957</td>
<td>InfinityLab Quick Connect Assy ST 0.12 mm x 105 mm</td>
</tr>
<tr>
<td>5067-5958</td>
<td>InfinityLab Quick Connect Assy ST 0.12 mm x 150 mm</td>
</tr>
<tr>
<td>5067-5959</td>
<td>InfinityLab Quick Connect Assy ST 0.12 mm x 220 mm</td>
</tr>
<tr>
<td>5067-5960</td>
<td>InfinityLab Quick Connect Assy ST 0.12 mm x 280 mm</td>
</tr>
<tr>
<td>5067-6166</td>
<td>InfinityLab Quick Connect Assy ST 0.17 mm x 105 mm</td>
</tr>
<tr>
<td>5067-6167</td>
<td>InfinityLab Quick Connect Assy ST 0.17 mm x 150 mm</td>
</tr>
<tr>
<td>5067-6168</td>
<td>InfinityLab Quick Connect Assy ST 0.17 mm x 220 mm</td>
</tr>
<tr>
<td>5067-6169</td>
<td>InfinityLab Quick Connect Assy ST 0.17 mm x 280 mm</td>
</tr>
</tbody>
</table>
InfinityLab Quick Connect Fitting Replacement Capillaries

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5500-1174</td>
<td>InfinityLab Capillary ST 0.075 mm x 105 mm</td>
</tr>
<tr>
<td>5500-1175</td>
<td>InfinityLab Capillary ST 0.075 mm x 150 mm</td>
</tr>
<tr>
<td>5500-1176</td>
<td>InfinityLab Capillary ST 0.075 mm x 220 mm</td>
</tr>
<tr>
<td>5500-1177</td>
<td>InfinityLab Capillary ST 0.075 mm x 250 mm</td>
</tr>
<tr>
<td>5500-1178</td>
<td>InfinityLab Capillary ST 0.075 mm x 280 mm</td>
</tr>
<tr>
<td>5500-1179</td>
<td>InfinityLab Capillary ST 0.12 mm x 105 mm</td>
</tr>
<tr>
<td>5500-1180</td>
<td>InfinityLab Capillary ST 0.12 mm x 150 mm</td>
</tr>
<tr>
<td>5500-1181</td>
<td>InfinityLab Capillary ST 0.12 mm x 220 mm</td>
</tr>
<tr>
<td>5500-1182</td>
<td>InfinityLab Capillary ST 0.12 mm x 280 mm</td>
</tr>
<tr>
<td>5500-1183</td>
<td>InfinityLab Capillary ST 0.12 mm x 400 mm</td>
</tr>
<tr>
<td>5500-1184</td>
<td>InfinityLab Capillary ST 0.12 mm x 500 mm</td>
</tr>
<tr>
<td>5500-1230</td>
<td>InfinityLab Capillary ST 0.17 mm x 220 mm</td>
</tr>
<tr>
<td>5500-1231</td>
<td>InfinityLab Capillary ST 0.17 mm x 280 mm</td>
</tr>
<tr>
<td>5500-1232</td>
<td>InfinityLab Capillary ST 0.17 mm x 500 mm</td>
</tr>
<tr>
<td>5500-1259</td>
<td>InfinityLab Capillary ST 0.25 mm x 150 mm</td>
</tr>
<tr>
<td>5500-1260</td>
<td>InfinityLab Capillary ST 0.25 mm x 400 mm</td>
</tr>
</tbody>
</table>
Parts for Maintenance
InfinityLab Quick Connect and Quick Turn Fittings

InfinityLab Quick Turn Fitting

![InfinityLab Quick Turn Fitting](image)

Figure 112 InfinityLab Quick Turn Fitting

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5067-5966</td>
<td>InfinityLab Quick Turn Fitting</td>
</tr>
<tr>
<td>5043-0924</td>
<td>Front Ferrule for Quick Connect/Turn Fitting</td>
</tr>
</tbody>
</table>
Capillary Kits

NOTE

Further capillary kits can be found in the *Agilent 1290 Infinity Valve Drive and Valve Heads User Manual* or on the webpage.

Table 23 Common capillary kit

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Connection</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capillary ST 0.12 mm x 340 mm S/SX (5067-4647)</td>
<td>Autosampler to valve</td>
<td>1</td>
</tr>
<tr>
<td>Capillary ST 0.17 mm x 700 mm S/SX (5067-4648)</td>
<td>2nd pump to valve</td>
<td>1</td>
</tr>
<tr>
<td>Capillary ST 0.12 mm x 90 mm S/SX (5067-4649)</td>
<td>Valve to heat exchanger</td>
<td>2</td>
</tr>
<tr>
<td>Capillary ST 0.12 mm x 150 mm SL/SX (5067-4650)</td>
<td>Short column to valve</td>
<td>2</td>
</tr>
<tr>
<td>Capillary ST 0.12 mm x 280 mm SL/SX (5067-4651)</td>
<td>Long column to valve</td>
<td>2</td>
</tr>
<tr>
<td>Capillary ST 0.12 mm x 120 mm SX/SX (5067-4652)</td>
<td>Valve to valve</td>
<td>1</td>
</tr>
<tr>
<td>Capillary ST 0.12 mm x 200 mm S/SX (5067-4653)</td>
<td>Valve to detector</td>
<td>1</td>
</tr>
<tr>
<td>Waste tubing, 2 m (0890-1713)</td>
<td>Valve to waste</td>
<td>2 m</td>
</tr>
<tr>
<td>Waste tube (G1375-87326) (includes M4 PEEK fitting)</td>
<td>Valve to waste</td>
<td>1</td>
</tr>
<tr>
<td>Plastic fitting (0100-1259)</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Bag - plastics (9222-0518)</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Important Customer Web Links

- Videos about specific preparation requirements for your instrument can be found by searching the Agilent YouTube channel at https://www.youtube.com/user/agilent
- To access Agilent University, visit http://www.agilent.com/crosslab/university/ to learn about training options, which include online, classroom and onsite delivery. A training specialist can work directly with you to help determine your best options.
- A useful Agilent Resource Center web page is available, which includes short videos on maintenance, quick lists of consumables for new instruments, and other valuable information.
- Need technical support, FAQs, supplies? – visit our Support Home page at http://www.agilent.com/search/support
This chapter describes alternative ways to install and setup the system.
Legacy Stack Configuration

The following configurations optimize the system flow path, ensuring minimum delay volume in an Agilent Infinity I configuration.

NOTE
The capillary connections should be as short as possible, to ensure optimum performance of the system.

![Legacy stack configuration for Multiple Heart-cutting 2D-LC](image)

Figure 113 Legacy stack configuration for Multiple Heart-cutting 2D-LC
Alternative ways to install the System
Legacy Stack Configuration

Figure 114 Previous stack configuration for Multiple Heart-cutting 2D-LC based on the column organized/valve holder
Alternative ways to install the System
Legacy Stack Configuration

Table 24 1290 Infinity Binary LC in first dimension

<table>
<thead>
<tr>
<th></th>
<th>Partnumber</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Dim</td>
<td>G4220A</td>
<td>1290 Infinity Binary Pump</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G4226A</td>
<td>1290 Infinity Autosampler</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1330B</td>
<td>1290 Thermostat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1316C</td>
<td>1290 Thermostatted Column Compart-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G4212A</td>
<td>1290 Infinity Diode-Array Detector</td>
<td></td>
</tr>
<tr>
<td>2nd Dim</td>
<td>G2198AA</td>
<td>2D-LC Acquisition Software</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G4220A</td>
<td>1290 Infinity Binary Pump</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1170A</td>
<td>1290 Infinity Valve Drive</td>
<td>For 2D-LC valve</td>
</tr>
<tr>
<td></td>
<td>G4236A</td>
<td>2D-LC Valve Kit, 1200 bar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G4212A</td>
<td>1290 Infinity Diode-Array Detector</td>
<td></td>
</tr>
</tbody>
</table>

NOTE
There are a few other configurations when using multiple detectors at different positions. Examples are:
• After first dimension column, or
• At the waste line in addition to the standard 2D-LC detector after the second dimension columns.
If quantitative information is required, it is recommended to use same detector types and flow-cells.

NOTE
1D flow cells require a minimum pressure stability of 60 bar (~870 psi) (which excludes FLD and RID detectors).

NOTE
2D detectors should be connected to CAN bus for automatic run time extension. To be considered for ELSD or 3rd party detectors.

NOTE
Avoid high data rates in the first dimension for peak-based sampling. Otherwise, RI effects may be recognized as peaks, which can cause unwanted sampling. 5 Hz give enough data points for correct peak detection of long 1D runs.
1D/2D Switching

Usually, it is necessary to reconnect capillaries to switch between performing 1D-LC methods and comprehensive 2D-LC methods using the same LC system. The 1D/2D switching setup is a flexible Agilent 1290 Infinity 2D-LC Solution with one detector. It contains an additional 2-position/6 port valve to allow switching between 1D-LC and comprehensive 2D-LC analysis with a few mouse clicks, and without any hardware change. For details, see Automated Switching Between 1D-LC and Comprehensive 2D-LC Analysis (5991-4843EN).

Figure 115 Setup of the Agilent 1290 Infinity 2D-LC Solution with an additional 2-position/6-port valve positioned for 1D-LC analysis.
Figure 116 Setup of the Agilent 1290 Infinity 2D-LC Solution with an additional 2-position/6-port valve positioned for comprehensive 2D-LC analysis; (A) Collection of the effluent from the first dimension column in loop 1 (between ports 1 and 8); (B) Collection of the effluent from the first dimension column in loop 2 (between ports 4 and 5), analysis of the content of loop 1 on the second dimension column.
This chapter describes the different options to use the Agilent 2D-LC Solution with mass selective detection (MSD).

Today the 2D-LC software is an OpenLab CDS ChemStation Edition plug in, which comprises three functions: system control, data acquisition, and data analysis/reporting. The current 2D-LC software requires configuring at least one UV detector in either or both dimensions. A single quadrupole detector may instead be configured for the second dimension. Only UV detectors may be configured in 1D as peak triggering detectors. MS detectors can be used in the second dimension for acquiring 2D-LC data either in OpenLab CDS ChemStation Edition (single quadrupole) or MassHunter workstation (QQQ/Q-TOF).
Agilent 2D-LC Solution with an Agilent Single Quadrupole Detector

Agilent OpenLab 2D-LC Software is a fully integrated solution from method setup to data analysis for 2D-LC/MS within OpenLab CDS ChemStation Edition. It combines the separation power of two-dimensional chromatography with the selectivity of mass selective detection (MSD) in the second dimension. It can be used with all Agilent Single Quadrupole Detectors supported by ChemStation including latest LC/MSD (G6125B) and LC/MSD XT (G6135B). Only UV detectors may be configured in 1D as peak triggering detectors.

NOTE

The 2D-LC system has been optimized for detectors connected to the CAN bus interface. For non-CAN detectors (e.g. third party detectors), suitable run time settings need to be considered in order to get complete signal data, see KPR 25 in the software status bulletin for details.
Using the Single Quadrupole Detector with 2D-LC

As a destructive detector, the single quadrupole detector is usually installed as a 2D detector. It can be configured as described in section "Detector configuration".

When setting up the MSD (Instrument> Set up MSD signals> ...), set noLimit as the Stop Time. This is required as the run time needs to be extended for unparking cuts.

2D-LC Viewer for Single Quadrupole Data

The 2D-LC Viewer displays now also MS and UV spectra and extracted ion chromatograms.
Agilent 2D-LC Solution with the selectivity of mass selective detection (MSD)

Agilent 2D-LC Solution with an Agilent Single Quadrupole Detector

Select signals

Multiple signals can be managed using the signal selector. Use checkmarks for choosing signals to be displayed.

Select highlighted/all items

As a shortcut, multiple signals can quickly be highlighted by control- or shift-clicking signal names for the 2D chromatogram panel and clicking the selection buttons.

time/apex/average per range

Spectra can be displayed for a time or a peak apex by clicking the 2D chromatogram or dragging the mouse for an average spectrum per time range.

Pin spectra

Spectra can be pinned for storing them per associated cut for display and reporting.
Extract ion chromatogram

Ion chromatograms can be extracted for a mass or mass range selected in the spectrum or entered for the 2D chromatogram(s).

Ion chromatograms can also be extracted from spectra by clicking the EIC button and then selecting a mass.

Separate versus overlaid mode

Multiple (extracted ion) chromatograms or spectra can be displayed in the same window (overlay) or in separate windows.

same scale/full scale

Diagrams can be displayed using the same scale or the full scale for each diagram.

linked x and y axes

For zooming, the axes can optionally be linked for all displays. In case of linked axes, all displays will be zoomed to the same range.
Diverter Valve Configuration

A diverter valve can be configured e.g. for removing buffers before they reach an MS detector. Any 2-position LC valve can be chosen in the configuration. Valves should be installed to external valve drives G1170A. Control is done via the CAN connection between 2D-LC modules and the diverter valve, which is not yet available for diverter valves in MS detectors. The user interface shows, which valve outlet ports go to waste vs. detector.
Diverter Valve Method Parameters

A two-position LC valve (e.g. a 2-pos/6-port valve) can be configured in the 2D-LC Configuration for diverting 2D eluent with buffers before they enter an MS detector. As a method parameter, a 2D time can be set, after which the flow path is directed to the detector.

A previously acquired 1D MSD signal can be used as a reference signal after configuring an MS detector in 2D without configuring a 1D peak trigger. In this case, the transfer volume of the reference signal can be entered for that previously installed 1D detector:

- Reference signal is acquired with MSD in first dimension.
- Capillary connections are changed and MSD is moved to 2D. Then, there is no peak detector in 1D. The transfer volume \(V_{t,1} \) needs to be calculated as difference \(V_{t,2} - V_{t,1} \) and configured.
- Reference signal is used for defining cuts in sampling table.
- MSD is used for detection in second dimension.
Agilent 2D-LC Solution with high-end MS detection

Figure 117 Typical system setup

OpenLab CDS ChemStation and MassHunter have passed the test successfully for co-execution regarding parallel data acquisition. For further information please check the recommended conditions in the technical note *2D Chromatogram Creator for MassHunter*.

The LC part is an LC system as described in the previous pages of this 2D-LC system manual. A typical system uses a UV detector in the first dimension and an optional UV detector in the second dimension. The 2D-LC instrument control and UV signal acquisition is still done with OpenLab CDS ChemStation (CS) Edition. Therefore the 2D-LC software requires configuring at least one UV detector.

The MS detector, a TOF, Q-TOF, or Triple Quadrupole, is used in the second dimension. It is controlled by MassHunter (MH) Acquisition software, which acquires the MS signal.
Agilent 2D-LC Solution with the selectivity of mass selective detection (MSD)

Agilent 2D-LC Solution with high-end MS detection

For synchronizing signals of LC and MS, an APG remote cable connects both parts of the system, which communicates start and stop signals.

NOTE

For synchronizing run times (that is starting and stopping measurements simultaneously), please use *External start* as a run parameter in the Masshunter Acquisition software. You will find the information in section *Additional information*, add parameter *run type* and choose option *external run*. Set stop time *no limit* in MassHunter.

NOTE

Only UV detectors can be configured in 1D as peak triggering detectors.

For comprehensive 2D-LC MS measurements, we recommend using the GC Image LCxLC-HRMS Edition software. This software can display and analyze the 2D-LC MS data. For further information please check the following:

- Chapter *"Data Analysis for Comprehensive 2D-LC (LCxLC)"* on page 219,
- LC Video Tutorial on the GC Image DVD,
- Or in the help file of the GC Image SW.

Table 25 Software for using Agilent 2D-LC Solution with high-end MS detection

<table>
<thead>
<tr>
<th>Type of 2D-LC Mode</th>
<th>Instrument Control</th>
<th>Data Acquisition</th>
<th>Data Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple Heart-Cutting 1, High Resolution Sampling</td>
<td>ChemStation plugin</td>
<td>ChemStation plugin MassHunter</td>
<td>LC Image 1 or MassHunter in combination with 2D Chromatogram Creator for MassHunter software</td>
</tr>
<tr>
<td>Comprehensive</td>
<td>ChemStation plugin</td>
<td>ChemStation plugin MassHunter</td>
<td>LC Image</td>
</tr>
</tbody>
</table>

1. MHC data analysis can be displayed as a false result because peaks from cuts that not belong together can be integrated as one bulb.

But the story is different if you are using Multiple Heart-Cutting (MHC) or High-Resolution to get the correct cut and identify the mass correctly with high-end MS detection. MassHunter has no knowledge about the size, order, and position of cuts created by OpenLab CDS ChemStation Edition. The raw MS TIC signal continuously measures MS data of the 2D eluent. Therefore, you need a tool that aligns the different cut operations from the OpenLab SW with the MS data of the eluent. For this purpose, you must use the 2D Chromatogram Creator for MassHunter.
Agilent 2D-LC Solution with the selectivity of mass selective detection (MSD)

Agilent 2D-LC Solution with high-end MS detection

User Interface/Features

2D Chromatogram Creator for MassHunter provides an easy access to 2D-LC measurements for Agilent MassHunter users. The 2D Chromatogram Creator for MassHunter is used for combining UV signals and metadata of cuts in OpenLab CDS ChemStation Edition with the MS signal acquired by MassHunter.

As output, it creates following MassHunter chromatograms:

- A series of 2D chromatograms, one per cut including MS and optional UV signals
- If applicable, a 1D UV chromatogram (for a typical but optional 1D UV detector) in MassHunter data format including cut data
- An optional raw 2D UV signal, and a
- 2D MS raw signal

Figure 118 Use single data or sequences/worklists and set delay between optional 2D UV detector and MS detector for aligning signals
Agilent 2D-LC Solution with the selectivity of mass selective detection (MSD)
Agilent 2D-LC Solution with high-end MS detection

You will find the 2D Chromatogram Creator for MassHunter on the 2D-LC add-on DVD.

NOTE
More information about Installation, Example Data, and Workflow is available in the Agilent technical note 2D Chromatogram Creator for MassHunter (G2198-90101).

NOTE
Further information about the 2D-LC Diverter Valve Solution can be found in the technical note Agilent InfinityLab 2D-LC Solution with mass spectrometric detection and diverter valve (G4236-90100).
15 Theoretical Background

Theoretical basis of 2D-LC 323
Orthogonality 325
Resolution 325
Peak Capacity 328
2nd dimension as detector 331
Successful Mode Combinations 333
Solvent Elution Modes 334
Practical Issues 340

This chapter gives the theoretical background of 2D-LC and describes the system components (soft- and hardware) of the Agilent 1290 Infinity II 2D-LC Solution.
Theoretical basis of 2D-LC

In 2D-LC, fractions from a chromatographic system (1st dimension) are transferred to a second chromatographic separation system (2nd dimension). So 2D-LC bases on the application of two independent liquid phase separation systems to a sample. 2D-LC is mainly used to improve resolution and sensitivity or to decrease analysis time.

![Diagram showing peak capacity relationship between peak capacities of orthogonal first and second dimension](image)

Figure 119 Peak capacity relationship between peak capacities of orthogonal first and second dimension
The most important benefit of 2D-LC over 1D-LC is the increase of resolving power, which is especially important if dealing with complex samples. For an overview on the main differences between 1D- and 2D-LC, refer to the following topics:

- "Orthogonality" on page 325,
- "Resolution" on page 325, and
- "Peak Capacity" on page 328

The following different methods of 2D-LC exist:

- Heartcutting (LC-LC)
 Only interesting portion of the first dimension effluent transferred to the second dimension.

- Comprehensive (LCxLC)
 Entirety of first dimension effluent sequentially transferred to the second dimension.
Theoretical Background
Theoretical basis of 2D-LC

Orthogonality

The 2D-LC separation power depends on the fact that the two selectivity mechanisms in the different separation stages must be as different as possible. If the mechanisms are completely different and independent, the two separations are called orthogonal.

Any correlation between the selectivity mechanisms degrades orthogonality and reduces the efficiency of the 2D-LC system.

For strategies to achieve maximum orthogonality, refer to Table 27 on page 333 and Table 28 on page 338.

Resolution

A chromatographic separation can be optimized based on physical parameters of the HPLC column such as particle size, pore size, morphology of the particles, the length and diameter of the column, the solvent velocity, and the temperature. In addition, the thermodynamics of a separation can be considered and the properties of the solute and the stationary and mobile phases (percentage of organic solvent, ion strength, and pH) can be manipulated to achieve the shortest possible retention and highest selectivity.

1D-LC Resolution (R_S) can be described as a function of three parameters:
- Column efficiency or theoretical plates (N),
- Selectivity (α),
- Retention factor (k).

\[
R_s = \frac{\sqrt{N}}{4} \left(\frac{\alpha - 1}{\alpha} \right) \left[\frac{k_1^2}{k_2^2 + 1} \right]
\]

Figure 120 Resolution equation

This means that the selection of appropriate mobile and stationary phase properties and temperature is critical in achieving a successful separation.
Theoretical Background
Theoretical basis of 2D-LC

Resolution in a one-dimensional separation usually is measured with:

\[R = \frac{\Delta t}{4\sigma} \]

- \(R = \) Resolution
- \(\Delta t = \) Difference in retention time maxima of two components
- \(\sigma = \) Average standard deviation of two Gaussian peaks

Following results of this formula are important in practice:

- \(R > 1.5 \)
 Peaks are completely baseline resolved
- \(R > 1 \)
 Difference in retention time is larger than peak broadening, and therefore peak spacing is adequate to observe distinct component zones
- \(R < 0.5 \)
 Peaks are completely fused

2D-LC
In 2D-LC the separation behaviour is more complex and described below.

Figure 121 Diagram of 2D resolution measurement: Slice for resolution (top) and 2-dimensional contour plot (bottom)
15 Theoretical Background
Theoretical basis of 2D-LC

The distance between two spots in the contour plot may be calculated by the Pythagorean expression:

\[dr = \sqrt{dx^2 + dy^2} \]

For the resolution along the axis of each dimension applies:

\[R_1 = \frac{dy}{4\sigma_1} \]

and

\[R_2 = \frac{dy}{4\sigma_2} \]

So for two dimensions the resolution may be calculated as follows:

\[R_{2D} = \frac{dr}{4\sigma} = \sqrt{\left(\frac{dx}{4\sigma}\right)^2 + \left(\frac{dy}{4\sigma}\right)^2} \]

Figure 122 2D-Resolution (Pythagorean relation)

or, \(\sigma \) approximated by the average of \(\sigma_1 \) and \(\sigma_2 \), using the easy to measure peak to valley ratio \(P = f/g \) and assuming that peaks are Gaussian:

\[R_S = \sqrt{\frac{1}{2} \ln \left(\frac{1-P}{2}\right)} \]

Figure 123 2D-Resolution (peak to valley ratio relation)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Denotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Resolution</td>
</tr>
<tr>
<td>(\Delta t)</td>
<td>Difference in retention time maxima of two components</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>Average standard deviation of Gaussian peaks</td>
</tr>
<tr>
<td>(dr)</td>
<td>Distance between two spots in a plane</td>
</tr>
<tr>
<td>P</td>
<td>Peak to valley ratio</td>
</tr>
<tr>
<td>f</td>
<td>Difference between amplitude at the valley, h, and g</td>
</tr>
<tr>
<td>h</td>
<td>Valley</td>
</tr>
<tr>
<td>g</td>
<td>Average peak maximum</td>
</tr>
</tbody>
</table>
15 Theoretical Background
Theoretical basis of 2D-LC

Peak Capacity

Peak capacity may be differently defined:

• As the maximum number of peaks that can be resolved in the available separation space (Geometrical Definition), or
• As the ratio of the total area of the chromatogram to the area required for the resolution of any zone (General Definition)

Geometrical Definition

The peak capacity may be defined as the maximum number of peaks that can be resolved in the available separation space. So peak capacity n_c is related to the number of theoretical plates N:

$$n_c = PN^{1/2}$$

(P depends on the retention time range)

In practice peaks are usually not distributed randomly over the chromatogram and often overlap. Or in other words: In practice peaks don’t fill the available separation space evenly. This is the reason, why the number of detectable components of a sample in 1D-LC is relatively small.

2D-LC separation offers an alternative possibility for increasing n_c: Orthogonal retention mechanisms generate a separation plane. Thus, the peak capacity in 2D-LC is the product of the peak capacities of the individual columns. Due to peak broadening in 1st and 2nd dimension, components in 2D-LC are present as two-dimensional ellipses on the retention plane.

How to calculate n_c depends on the method:

• For comprehensive 2D-LC:

$$n_c = \frac{L_1 L_2}{ab} = n_{c1} n_{c2}$$

 \[L = \text{Separation space for dimension} \]
 \[ab = \text{Area for rectangle circumscribing the ellipse on the separation plane} \]

• For heart-cutting 2D-LC:

$$n_c = \sum_{i=1}^{s} n_{ci}$$
Theoretical Background

Theoretical basis of 2D-LC

General Definition

Alternatively peak capacity may be defined as the ratio of the total area A of the chromatogram to the area A_0 required for the resolution of any zone:

$$n_c,_{\text{alternative}} = \frac{A}{A_0}$$

n_c defined that way is related to the geometrical definition by a factor:

$$n_c = \frac{7}{4} n_c,_{\text{alternative}} = 0.79 n_c,_{\text{alternative}}$$

Limits of Peak Capacity in 2D-LC

Under ideal circumstances (orthogonality), the overall peak capacity ($n_{c,2D}$) should be equal to the product of the individual peak capacities of the first and second dimension separations (n_1 and n_2):

$$n_{c,2D} = n_1 n_2$$

In practice the increase in peak capacity is not directly proportional to increase in ability to resolve peaks.

Probable reason for this:

• In 1D-LC, with a baseline width of a single component peak $x_0 = 6\sigma$, x_0 units of component free space on both sides of the maxima is necessary to ensure baseline resolved peaks.

• In 2D-LC the single component zone is $A_0 = 2\pi r^2$ and an area of component free space of $\pi (2r)^2$.

• As a result: For every two component free widths in one dimension, four component free areas are required in two dimensions.

Conclusions for 2D-LC

1D-LC is inadequate for the separation of complex mixtures, as the number of observable peaks compared to number of peaks to observe is too low. One theoretical model (Statistical Model of Overlap = SMO), that correlates well with real world observations, predicts, that the maximal fraction of the total peak capacity that can be seen as chromatographic peaks is 37 % and even only 18 % as single peaks. This implicates that extremely high peak capacities are needed to separate complex samples with lots of components which is extremely difficult to achieve.

Compared to 1D-LC separations, it’s complicated to predict the number of observable peaks in 2D-LC. For example, at a given peak capacity and a given number of components, the aspect ratio in the two axes of separation has impact on how effective the two separation are.
Theoretical Background
Theoretical basis of 2D-LC

From the practical point of view the performance between 1D- and 2D-LC should be compared, considering the following aspects:

- Peak capacity
- Number of peaks observed in experimental chromatograms

Ideal 2D Peak Capacity

One major problem in 2D-LC is loss of 1st dimension resolution due to 2nd dimension sampling process. The determining factors are:

- Gradient time of the 2nd dimension separation cannot exceed the sampling interval of the 1st dimension separation
- Resolution of a pair of peaks in the two-dimensional space is related to the resolution on the first and second dimensions as the Pythagorean average (see Figure 122 on page 327)

A 2D chromatogram is only a way of displaying a lengthy series of sequential chromatograms obtained on the second column and the second column and detector are just a unique type of chemically selective detector of what comes out of the first column (see, "2nd dimension as detector" on page 331). The peak width observed on the second column is independent of the sampling time used in the 1st dimension.

This leads to two extreme scenarios, on how mixtures of components may behave:

- Unresolved mixture is injected into second column and second column separates analytes perfectly
 \[R_{s,2D} \text{ is independent of 1st dimension sampling rate} \]
- Partially resolved mixture is injected into second column and analytes co-elute on the second column
 \[R_{s,2D} \text{ strongly depends on first dimension sampling rate.} \]

This indicates, that it’s very important to respect, how often the 1st dimension effluent must be sampled to avoid loss of resolution.

NOTE

The theoretical limits for ideal 2D peak capacity are defined by the Murphy-Schure-Foley Criterion (M-S-F sampling criterion). According to this criterion, the effluent must be sampled at least 3 – 4 times over 8σ width of the first dimension peak.
2nd dimension as detector

Functionally the second dimension of 2D-LC operates like a chemically sensitive detector for the peaks that elute from the first dimension column. Thus, 2D-LC may be understood as a three step process:

- 1st dimension separation (1)
- Sampling of the 1st dimension (2)
- 2nd dimension separation and detection (3)

Figure 124 Diagram of instrumentation for 2D-LC
Theoretical Background
2nd dimension as detector

Figure 125 Principle of 2D-LC (example for LCxLC): Effluent of first column (1) is sampled (2) and injected to second column (3). Peaks of second column separation are detected and reconstructed.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>First dimension separation</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>Sampling of the first dimension</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>Second dimension separation</td>
<td></td>
</tr>
</tbody>
</table>
Successful Mode Combinations

2D-LC separations are the more effective, the more the selectivity mechanisms involved in the two stages differ. Completely different and independent mechanisms are said to be orthogonal. Any correlation between the selectivity mechanisms degrades orthogonality and reduces the efficiency of the 2D-LC system.

Thus, selecting the best combination of stationary and mobile phase is the major issue to improve 2D-LC methods. Table 27 on page 333 summarizes the advantages and disadvantages of combinations of normal phase (NP), reverse phase (RP), ion exchange (IEC) and size exclusion chromatography (SEC) for 2D-LC operation.

<table>
<thead>
<tr>
<th>Combination</th>
<th>Orthogonality</th>
<th>Peak capacity</th>
<th>Application</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP x RP</td>
<td>1</td>
<td>++2</td>
<td>Peptidomics, metabolomics, Pharmaceuticals, foods, cosmetics</td>
<td>Miscible solvents, broad application, fast speed, gradient elution on both dimensions</td>
</tr>
<tr>
<td>IEC and RP</td>
<td>+3</td>
<td>-</td>
<td>Proteomics, peptidomics</td>
<td></td>
</tr>
<tr>
<td>SEC and RP</td>
<td>+</td>
<td>4</td>
<td>Polymers, proteomics</td>
<td></td>
</tr>
<tr>
<td>NP and RP</td>
<td>+</td>
<td>-</td>
<td>Polymers, pharmaceuticals, oils</td>
<td>Solvent incompatibility, limited application</td>
</tr>
<tr>
<td>Affinity and RP</td>
<td>+</td>
<td>-</td>
<td>Proteomics</td>
<td></td>
</tr>
<tr>
<td>SEC and NP</td>
<td>+</td>
<td>-</td>
<td>Polymers</td>
<td></td>
</tr>
<tr>
<td>SEC and IEC</td>
<td>+</td>
<td>-</td>
<td>Proteomics</td>
<td></td>
</tr>
</tbody>
</table>

1 Orthogonality depends on column choice or mobile phase choice

2 very good

3 good

4 not so good

Table 27 Mode combinations in 2D-LC (LCxLC)
Solvent Elution Modes

Table 28 on page 338 focuses on the effects of elution modes for second dimension separation.

The following elution modes for second dimension separation are commonly used:

- **Gradient**

 A standard gradient of solvent A vs. solvent B for the second dimension separation will be repeated during the complete first dimension separation.
• Shifted Gradient

From each second dimension separation to the next the start-%B and end-%B values of the individual second dimension gradients will be increased in a defined way. Additionally, the gradient span can be increased from each second dimension gradient to the next.

Figure 127 Shifted gradient mode with increase of start-%B
Theoretical Background

Solvent Elution Modes

- Isocratic

All second dimension separations will be carried out in an isocratic mode.

Figure 128 Isocratic mode
Theoretical Background

Solvent Elution Modes

- Advancing isocratic

 Nearly isocratic conditions are used in each second dimension separation, with slightly increasing solvent strength in each successive run.

 The second dimension pumping system is fed with a shallow gradient in eluent composition over the course of the 2D-separation.

![Advancing isocratic mode](image)

Figure 129 Advancing isocratic mode
Theoretical Background

Solvent Elution Modes

Table 28 Different elution modes in the 2nd dimension (pros and cons)

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Gradient/Shifted gradient</th>
<th>Isocratic/Advancing isocratic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak capacity</td>
<td>Superior</td>
<td>Inferior</td>
</tr>
<tr>
<td>Diversity of samples (complex samples)</td>
<td>Superior</td>
<td>Inferior</td>
</tr>
<tr>
<td>Baseline performance (sensitivity)</td>
<td>Inferior</td>
<td>Superior</td>
</tr>
<tr>
<td></td>
<td>(baseline drift caused by solvent gradient)</td>
<td></td>
</tr>
<tr>
<td>Pressure stress (column lifetime!)</td>
<td>Inferior</td>
<td>Superior</td>
</tr>
<tr>
<td></td>
<td>(large changes within every 2nd dimension gradient)</td>
<td>(no pressure changes with isocratic, gradually changing with advancing isocratic)</td>
</tr>
</tbody>
</table>

All modes are easily available with the Agilent 2D-LC Acquisition software.

Each mode has advantages and disadvantages. No single mode is superior in all applications of 2D-LC.
Effect of shifted gradient elution mode in the 2nd dimension

\[\alpha_{sg} \text{ as achieved in shifted gradient mode is larger than } \alpha_{g} \text{ achieved in standard gradient elution mode. This can lead to an improved peak detection and improved separation.} \]

The table below gives an overview, which practical issues have to be considered in 2D-LC.

Table 29 Practical issues in 2D-LC

<table>
<thead>
<tr>
<th>Issue</th>
<th>Theoretical base</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choice of first dimension column diameter</td>
<td>Has impact on trade off between optimum first dimension flow rate and amount of sample injected into the second dimension column for each second column run</td>
<td></td>
</tr>
<tr>
<td>Ratio of column diameter in the two dimensions</td>
<td>Causes significant analyte dilution effects</td>
<td>True gradient elution in the second dimension separation provides better peak capacity than in isocratic elution. Gradient elution is the best available mechanism for achieving peak focusing.</td>
</tr>
<tr>
<td>Goals of the analytical method</td>
<td>Chosen parameter depend on what is important in analysis: • separate as many constituents as possible or • focused on resolution and quantitation of a specific constituent</td>
<td></td>
</tr>
<tr>
<td>Selection of the stationary phases and column formats</td>
<td>For RPLC in both dimensions the retentivity of the second dimension column must be much higher than that of the first dimension column required because: • a relatively large volume of the sample will be collected and injected into the second column • to minimize peak broadening the sample should be focused at the inlet of the second column</td>
<td></td>
</tr>
</tbody>
</table>
Based on theory, in most cases following approaches to achieve best possible 2D-LC should be respected:

- **Methodology**

 As in Comprehensive 2D-LC is no direct need for UV-detection in the first dimension, other eluents than acetonitril or methanol are possible. This implies the possibility to use unconventional organic solvents in the first dimension.

- **Instrumentation**

 It is important to use very low delay-volume-gradient pumping systems that are able to produce high flow rates to achieve fast second dimension gradients with only little gradient delay - like the Agilent 1290 Infinity LC.

- **Columns**

 Total orthagonality is difficult to achieve, as there are relatively few combinations sufficiently phase selective.

- **Detection methods**

 Compared to mass spectrometry DAD based UV detection is faster, cheaper and offers higher reproducibility, thus mass spectrometry offers additional increase in peak capacity by expanding the separation space into the MS-domain. A high sensitivity UV-detector is recommended since a dilution of the first dimension peaks occurs in the second dimension separation – an Agilent 1260 or 1290 Infinity Diode-Array-Detector with 60 mm flow cell is ideal as second dimension detector.

- **Data analysis**

 2D-LC-data are complex. Use of special software is advisable.

1 In case the peak and time triggered operation of the second dimension separation, which is optionally available with the Agilent 1290 Infinity 2D-LC solution, an UV-detector is required between the first dimension column and the modulation valve.
Appendix

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Safety Information</td>
<td>343</td>
</tr>
<tr>
<td>Safety Standards</td>
<td>343</td>
</tr>
<tr>
<td>General</td>
<td>344</td>
</tr>
<tr>
<td>Before Applying Power</td>
<td>344</td>
</tr>
<tr>
<td>Ground the Instrument</td>
<td>344</td>
</tr>
<tr>
<td>Do Not Operate in an Explosive Atmosphere</td>
<td>345</td>
</tr>
<tr>
<td>Do Not Remove the Instrument Cover</td>
<td>345</td>
</tr>
<tr>
<td>Do Not Modify the Instrument</td>
<td>346</td>
</tr>
<tr>
<td>In Case of Damage</td>
<td>346</td>
</tr>
<tr>
<td>Solvents</td>
<td>347</td>
</tr>
<tr>
<td>Safety Symbols</td>
<td>348</td>
</tr>
<tr>
<td>Waste Electrical and Electronic Equipment (WEEE) Directive</td>
<td>350</td>
</tr>
<tr>
<td>Radio Interference</td>
<td>351</td>
</tr>
<tr>
<td>Sound Emission</td>
<td>352</td>
</tr>
<tr>
<td>Solvent Information</td>
<td>353</td>
</tr>
<tr>
<td>Further Information</td>
<td>354</td>
</tr>
<tr>
<td>Agilent Technologies on Internet</td>
<td>355</td>
</tr>
</tbody>
</table>

This chapter provides additional information on safety, legal, and web.
General Safety Information

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Agilent Technologies assumes no liability for the customer’s failure to comply with these requirements.

WARNING

Ensure the proper usage of the equipment.
The protection provided by the equipment may be impaired.

- The operator of this instrument is advised to use the equipment in a manner as specified in this manual.

Safety Standards

This is a Safety Class I instrument (provided with terminal for protective earthing) and has been manufactured and tested according to international safety standards.
General

Do not use this product in any manner not specified by the manufacturer. The protective features of this product may be impaired if it is used in a manner not specified in the operation instructions.

Before Applying Power

WARNING

Wrong voltage range, frequency or cabling
Personal injury or damage to the instrument

- Verify that the voltage range and frequency of your power distribution matches to the power specification of the individual instrument.
- Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.
- Make all connections to the unit before applying power.

NOTE

Note the instrument's external markings described under "Safety Symbols" on page 348.

Ground the Instrument

WARNING

Missing electrical ground
Electrical shock

- If your product is provided with a grounding type power plug, the instrument chassis and cover must be connected to an electrical ground to minimize shock hazard.
- The ground pin must be firmly connected to an electrical ground (safety ground) terminal at the power outlet. Any interruption of the protective (grounding) conductor or disconnection of the protective earth terminal will cause a potential shock hazard that could result in personal injury.
Do Not Operate in an Explosive Atmosphere

WARNING
Presence of flammable gases or fumes
Explosion hazard
- Do not operate the instrument in the presence of flammable gases or fumes.

Do Not Remove the Instrument Cover

WARNING
Instrument covers removed
Electrical shock
- Do Not Remove the Instrument Cover
- Only Agilent authorized personnel are allowed to remove instrument covers. Always disconnect the power cables and any external circuits before removing the instrument cover.
Appendix
General Safety Information

Do Not Modify the Instrument

Do not install substitute parts or perform any unauthorized modification to the product. Return the product to an Agilent Sales and Service Office for service and repair to ensure that safety features are maintained.

In Case of Damage

WARNING

Damage to the module
Personal injury (for example electrical shock, intoxication)

☑ Instruments that appear damaged or defective should be made inoperative and secured against unintended operation until they can be repaired by qualified service personnel.
Solvents

Toxic, flammable and hazardous solvents, samples and reagents

The handling of solvents, samples and reagents can hold health and safety risks.

- When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.
- Do not use solvents with an auto-ignition temperature below 200 °C (392 °F). Do not use solvents with a boiling point below 56 °C (133 °F).
- Avoid high vapor concentrations. Keep the solvent temperature at least 40 K below the boiling point of the solvent used. This includes the solvent temperature in the sample compartment. For the solvents methanol and ethanol keep the solvent temperature at least 25 K below the boiling point.
- Do not operate the instrument in an explosive atmosphere.
- Do not use solvents of ignition Class IIC according IEC 60079-20-1 (for example, carbon disulfide).
- Reduce the volume of substances to the minimum required for the analysis.
- Never exceed the maximum permissible volume of solvents (8 L) in the solvent cabinet. Do not use bottles that exceed the maximum permissible volume as specified in the usage guideline for solvent cabinet.
- Ground the waste container.
- Regularly check the filling level of the waste container. The residual free volume in the waste container must be large enough to collect the waste liquid.
- To achieve maximal safety, regularly check the tubing for correct installation.

NOTE

For details, see the usage guideline for the solvent cabinet. A printed copy of the guideline has been shipped with the solvent cabinet, electronic copies are available in the Agilent Information Center or via the Internet.
Safety Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Indicates dangerous voltages.</td>
</tr>
<tr>
<td>![symbol]</td>
<td>Indicates a protected ground terminal.</td>
</tr>
<tr>
<td>![symbol]</td>
<td>The apparatus is marked with this symbol when hot surfaces are available and the user should not touch it when heated up.</td>
</tr>
<tr>
<td>![symbol]</td>
<td>Sample Cooler unit is designed as vapor-compression refrigeration system. Contains fluorinated greenhouse gas (refrigerant) according to the Kyoto protocol. For specifications of refrigerant, charge capacity, carbon dioxide equivalent (CDE), and global warming potential (GWP) see instrument label.</td>
</tr>
<tr>
<td>![symbol]</td>
<td>Flammable Material For Sample Thermostat which uses flammable refrigerant consult Agilent Information Center / User Manual before attempting to install or service this equipment. All safety precautions must be followed.</td>
</tr>
<tr>
<td>![symbol]</td>
<td>Confirms that a manufactured product complies with all applicable European Community directives. The European Declaration of Conformity is available at: http://regulations.corporate.agilent.com/DoC/search.htm</td>
</tr>
<tr>
<td>![symbol]</td>
<td>Manufacturing date.</td>
</tr>
<tr>
<td>![symbol]</td>
<td>Power symbol indicates On/Off. The apparatus is not completely disconnected from the mains supply when the power switch is in the Off position.</td>
</tr>
<tr>
<td>![symbol]</td>
<td>Pacemaker Magnets could affect the functioning of pacemakers and implanted heart defibrillators. A pacemaker could switch into test mode and cause illness. A heart defibrillator may stop working. If you wear these devices keep at least 55 mm distance to magnets. Warn others who wear these devices from getting too close to magnets.</td>
</tr>
</tbody>
</table>
Magnetic field
Magnets produce a far-reaching, strong magnetic field. They could damage TVs and laptops, computer hard drives, credit and ATM cards, data storage media, mechanical watches, hearing aids and speakers. Keep magnets at least 25 mm away from devices and objects that could be damaged by strong magnetic fields.

<table>
<thead>
<tr>
<th>Table 30</th>
<th>Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Warning Symbol]</td>
<td>Magnetic field</td>
</tr>
<tr>
<td>![Warning Symbol]</td>
<td>Indicates a pinching or crushing hazard</td>
</tr>
<tr>
<td>![Warning Symbol]</td>
<td>Indicates a piercing or cutting hazard</td>
</tr>
</tbody>
</table>

WARNING

alerts you to situations that could cause physical injury or death.

- Do not proceed beyond a warning until you have fully understood and met the indicated conditions.

CAUTION

alerts you to situations that could cause loss of data, or damage of equipment.

- Do not proceed beyond a caution until you have fully understood and met the indicated conditions.
Appendix
Waste Electrical and Electronic Equipment (WEEE) Directive

Waste Electrical and Electronic Equipment (WEEE) Directive

This product complies with the European WEEE Directive marking requirements. The affixed label indicates that you must not discard this electrical/electronic product in domestic household waste.

NOTE
Do not dispose of in domestic household waste
To return unwanted products, contact your local Agilent office, or see http://www.agilent.com for more information.
Appendix
Radio Interference

Radio Interference

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

Test and Measurement

If test and measurement equipment is operated with equipment unscreened cables and/or used for measurements on open set-ups, the user has to assure that under operating conditions the radio interference limits are still met within the premises.
Manufacturer’s Declaration

This statement is provided to comply with the requirements of the German Sound Emission Directive of 18 January 1991.

This product has a sound pressure emission (at the operator position) < 70 dB.

- Sound Pressure Lp < 70 dB (A)
- At Operator Position
- Normal Operation
- According to ISO 7779:1988/EN 27779/1991 (Type Test)
Observe the following recommendations on the use of solvents.

- Brown glass ware can avoid growth of algae.
- Avoid the use of the following steel-corrosive solvents:
 - solutions of alkali halides and their respective acids (for example, lithium iodide, potassium chloride, and so on),
 - high concentrations of inorganic acids like sulfuric acid and nitric acid, especially at higher temperatures (if your chromatography method allows, replace by phosphoric acid or phosphate buffer which are less corrosive against stainless steel),
 - halogenated solvents or mixtures which form radicals and/or acids, for example:
 \[2\text{CHCl}_3 + \text{O}_2 \rightarrow 2\text{COCl}_2 + 2\text{HCl} \]
 This reaction, in which stainless steel probably acts as a catalyst, occurs quickly with dried chloroform if the drying process removes the stabilizing alcohol,
 - chromatographic grade ethers, which can contain peroxides (for example, THF, dioxane, diisopropyl ether) should be filtered through dry aluminium oxide which adsorbs the peroxides,
 - solvents containing strong complexing agents (e.g. EDTA),
 - mixtures of carbon tetrachloride with 2-propanol or THF.
- Avoid the use of dimethyl formamide (DMF). Polyvinylidene fluoride (PVDF), which is used in leak sensors, is not resistant to DMF.
Further Information

Further information is available:

• Folder Documents on the software DVD:
 • Document Primer 2D-LC 5991-2359EN.pdf gives an introduction to principles, practical implementation and applications for Two-Dimensional Liquid Chromatography.

• Folder Documentation of the Agilent OpenLab 2D-LC Software CD:
 • Technical Note G2198-90101 describes software 2D Chromatogram Creator for MassHunter.

• Folder Documents on the Driver CD:
 • Software Status Bulletin (SSB)
 The SSB is updated regularly. Please visit our Website for the latest version at http://www.agilent.com/cs/library/Support/Patches/SSBs/2D-LC.html.
 • Software Release Bulletin (SRB)
 The SRB is an excerpt from the SSB which lists issues which have been fixed with this revision.

• Press F1 in the software user interface for the Online Help with more information on specific software functions.

• For more information about applications, please visit the InfinityLab Application Finder https://www.agilent.com/en/promotions/applicationfinder?s=learnmore.

• For more information about Agilent hardware, and software, please visit the Agilent web site at http://www.agilent.com.
Agilent Technologies on Internet

For the latest information on products and services visit our worldwide web site on the Internet at:

http://www.agilent.com
In This Book

The manual describes the following:
• introduction,
• installing,
• configuring,
• using,
• data analysis,
• safety and related information.