高效液相色谱—电喷雾质谱
分析牛肾组织中的氟喹诺酮

作者
Ralph Hindle
Access Analytical Lab
#3, 2616 - 16 Street N. E.
Calgary, Alberta T2E 7J8
Canada

Chin-Kai Meng
Agilent Technologies, Inc.
2850 Centerville Road
Wilmington, DE 19808-1610
USA

引言
氟喹诺酮是从萘啶酸衍生成的合成抗菌素，其作用是治疗其他抗菌剂有抗药性的动物感染。这是一类广谱抗生素，对革兰氏阳性和革兰氏阴性细菌均有活性。欧盟委员会法规Annex 1 (EEC) No. 2377/90规定，牛肾中恩氟沙星的最大残留允许量 (MRL) (恩氟沙星与环丙沙星的总和) 为 200 µg/kg，猪，家禽和兔肉中最大残留限量 (MRL) 为 300 µg/kg。对于所有其他食用动物，最大残留限量 (MRL) 均为 200 µg/kg [1]。

有许多方法涉及分析各种组织中的氟喹诺酮，其中液相/荧光检测和液相质谱检测法最为常用。大部分方法采用酸性或碱性有机溶剂进行萃取，然后用某种样品纯化方法处理，其中最有效的是固相萃取(SPE)。加拿大食品监督局采用酸化甲醇提取动物组织，然后用强阳离子交换SPE进行净化，最后用液相色谱-荧光检测分析[2]。Chen 和 Schneider[3]报道了一种鸡油中恩氟沙星的筛选方法，他们对样品提取和离心之后，不经纯化，用荧光光谱检测萃取物。
欧盟委员会决议 2002/657/EC 允许对 96/23 决议中的 Annex 1 中 B 组物质采用 HPLC-荧光检测分析[4]。喹诺酮和其他兽药属 B 组，用质谱(MS)的正选择离子(SIM)进行鉴定需要有三个鉴定积分点。对于低分辨 HPLC/MS，只要离子比值满足相对强度的指标，每个检测到的离子可获得一个鉴定积分点。本文利用 33 μg/kg 的标样添加样品，根据欧盟决议第 2002/657/EC 号，其要求如下：

- 在萃取时将内标(IS)加入到测试样品中。
- 为了使用平均回收率校正的数据，允许的回收率范围为 -20% 到 +10%。
- 变异系数(CV) (%)的重复性预期为 100 μg/kg CV 的一半到三分之二，允许极限值一半的浓度时，此值为 23%。
- 对于液相色谱/质谱(LC/MS)分析过程，在测试条件下，该目标被分析物的最小可接受保留时间(RT)为色谱柱死时间的两倍。
- 被分析物的保留时间与内标物的保留时间之比，即 LC 被分析物的相对保留时间应当对应于允许限 2.5% 时校准溶液的相对保留时间的一半。
- 分子离子最好选择的鉴定离子之一。
- 相对标准偏差的最大允许波动应当满足表6列出的 Annex 的指标(在本文的情况下为 ±25% 或者 30%)。

实验部分
试剂与材料
HPLC 级甲醇和乙腈购自 Caledon Lab (加拿大，Ontario 的乔治城)。
98% 的甲酸购自 EM 科学公司。

酸化甲醇溶液；含 30% 甲醇的去离子水 pH 3 (每 100 mL 水含 100 μL 甲酸)。

酸化甲醇的制备是将 100 μL 98% 的甲酸加入到 100 mL 甲醇中。

酸化去离子水的制备是将 100 μL 98% 的甲酸加入到 100 mL 去离子水中。

Ultra-Turrax T25 均质器，50 mL 的聚丙烯离心管，以及 13 mm 的氟化聚乙烯(PEDF) 注射过滤头(0.2 μm) 购自 VWR 科技公司。

所有的氟喹诺酮，包括内标的储备液均由加拿大食品监督局赠送，浓度为 100 ng/mL(ppm)，溶剂为含 1% 乙酸的甲醇。溶液在 4°C 保存。通过用酸化甲醇溶液稀释得到用于加入样品的不同浓度的标准溶液。选择环丙沙星、恩氟沙星和达氟沙星为目标化合物，这是由于加拿大食品监督局优先监测样品中包含了这些化合物。这些化合物校准溶液(1 ng/μL) 的制备是将 100 μL 每种储备溶液置于 10 mL 容量瓶中，用酸化去离子水稀释至刻度。内标溶液只含 1 ng/μL 的诺氟沙星和达氟沙星，制备方式同上。

样品制备
1. 对于牛肾，直接称取 3 g 样品置于 50 mL 的聚丙烯离心管中。
2. 对于加标样品，加入 100 μL 的 1 ng/μL (100 ng) 加标溶液，得到 33 μg/kg 的含量。在进行萃取之前，让样品静置 1 小时。
3. 对于空白样品，加入 100 μL 的酸化甲醇溶液。
4. 对所有的加标样品，在萃取前加入 100 μL 的 1 ng/μL (100 ng) 内标溶液。在此溶液中含有相同浓度的诺氟沙星，如果由于地诺沙星干扰，需要时用作替代内标。
5. 样品中加入 15 mL 酸化甲醇，用 Ultra-Turrax T25 均一化器处理 2 min。
6. 然后将这些样品离心 10 min，将上清液移入干净的试管中。
7. 萃取液用酸化去离子水以1:3的比例（250 µL萃取液 + 750 µL水）稀释，用0.2 µm的PVDF过滤框过滤后，置于自动进样器样品瓶中，进行LC/MS分析。

因为采用内标定量分析，所以就不需要测定萃取物的最终体积，也不用等分稀释。化学工作站进行的内标计算将测定被分析物和内标的相对含量。这就校正了样品的任何浓缩和稀释效应。

标准溶液的制备

采用5点校准来测定三种目标化合物，1点校正用于作为氟沙星，一种内标替代物。表1给出了加入到5个试管的每个试管内的标准和目标化合物溶液（每种1 ng/µL）。标准溶液的制备是将250 µL空白萃取液和750 µL酸化去离子水加入到含有被分析物的试管中，然后用用0.2 µm的PVDF过滤框过滤。

每个标准溶液的最终含量为5 pg/µL。进样量50 µL，即250 pg的柱子进样量。5中溶液的每种溶液中含有目标被分析物的量是不同的，以便制备校准曲线，如表1所示。

如表4所示，目标化合物的相关系数为0.9987到0.9992。

以本文的方法制备标准溶液将抵消任何由于MS离子源存在共流出物可能引起的离子抑制和增强效应。

| 表1. 分析标准溶液(LC/MSD 进样50 µL)的制备
| 标准溶液 | 加入的内标体积(µL) | 加入的目标化合物体积(µL) | 内标的进样量(pg) | 目标化合物进样量(pg)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>1</td>
<td>250</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2</td>
<td>250</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>5</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>10</td>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>20</td>
<td>250</td>
<td>1,000</td>
</tr>
</tbody>
</table>

LC/MS 条件

HPLC为Agilent 1100系列，包括在线脱气器、二元泵、自动进样器、柱恒温箱，二极管阵列检测器(DAD)和四级杆质量选择检测器(MSD)（表2）。

| 表2. LC/MS 条件
| HPLC
色谱柱	Zorbax Eclipse XDB-C8, 150 mm x 4.6 mm, 5 µm (部品号993697-906)
溶剂A	0.1% 甲酸
溶剂B	0.1% 甲酸乙腈
流速	0.4 mL/min
进样体积	50 µL
色谱柱温度	30 °C

| MS
离子源	电喷雾离子化 (ESI) (正离子模式)
离子采集时间	14 个离子，每个平均40 毫秒
碎裂电压	随离子而变化（见表3）
载气流速	12 L/min
电喷雾压力	30 psi
干燥气温度	350 °C
毛细管电压	4000 V

| 表3. 在SIM模式（单采集组）采集的离子的碎裂电压 (V)
<table>
<thead>
<tr>
<th>化合物</th>
<th>离子</th>
<th>碎裂电压 (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>氟沙星 (内标)</td>
<td>320</td>
<td>120</td>
</tr>
<tr>
<td>302</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>276</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>环丙沙星</td>
<td>332</td>
<td>120</td>
</tr>
<tr>
<td>314</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>288</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>达氟沙星 (内标)</td>
<td>358</td>
<td>120</td>
</tr>
<tr>
<td>340</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>恩氟沙星</td>
<td>360</td>
<td>120</td>
</tr>
<tr>
<td>342</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>316</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>沙氟沙星</td>
<td>386</td>
<td>120</td>
</tr>
<tr>
<td>368</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>342</td>
<td>220</td>
<td></td>
</tr>
</tbody>
</table>
所有离子均包含在从进样（时间 = 0）开始的单一采集组中。另一种方法是将采集组开始时间设定为第一个化合物流出之前半分钟左右的时刻。因为这将使流出液尽可能长时间地排入废液管路。这也会减少进入离子源的共萃取物质，从而减少污染。

另一种选择是在方法中增加额外的时间编程采集组，只包含采集组时间内流出的化合物的离子。随着方法中化合物的总数增加，这一点将更为重要。要做确证性鉴定是每个化合物需要3个离子。

碎裂器电压的选择是使每个选择离子进行优化。对于每种氯喹诺酮，120 V的碎裂电压只产生分子化的母离子，要产生确证离子就需要较高的碎裂电压。其子离子主要是母离子丢失水和二氧化碳离子。

需要指出，尽管对氯氟沙星和氯氟沙星均采集了质量数为342的离子，但在 MSD 采集表中只增加了一次。

色谱
所有化合物均在5到9 min之间流出，但总的运行时间设置为15 min，最后采用含90%的有机溶剂的流动相将共萃取物从色谱柱中流出。否则，它们最后流出可能干扰后续的分析。当方法有简单的纯化步骤时，如只采用了稀释，这种干扰将使潜在的问题。下面的图对空白牛粪样品和含量为33 μg/kg的样品进行了比较。在每个图中，所选择的离子都是母离子的质子化形式，以及母离子丢失水(M-18)和二氧化碳(M-44)形成的碎片离子。

本研究用作内标的化合物达氟沙星的确认离子，其质荷比为340。基质引起的一个干扰峰也在质量数340。如图1所示，牛粪空白样品的干扰是一个小峰。由于确认离子不会用于内标计算，故对结果没有影响。然而，样品中有共萃取物的流出，并没有进行进一步的纯化，离子抑制效应可能信号响应。为了补偿这些潜在的影响，所有标准样品均用空白牛粪萃取物制备。

图1. 牛粪中加入氯喹诺酮的萃取离子色谱图的比较
图 1. 牛肉中加入氟嗪酮的萃取离子色谱图的比较 (续图)
图 1. 牛胃中加入氟氯沙星的萃取离子色谱图的比较（续图）
氟沙星与多个其它共萃取物的流出处于相同的保留时间区域。这使得定性和定量分析更为困难。然而，如表7所示，共萃物对的响应仍然满足鉴定指标，所以不必对样品作进一步的纯化。这些共萃物的作用在高残留量情况（更接近于欧盟的最大限量标准）下会进一步降低。

回收率

为了对结果进行回收率校正，即用测定的结果除以法定的参比样品或标准加入样品得到的百分比回收率，Annex的表2要求含量大于10 µg/kg的被分析物的回收率在80%到110%之间。表4的数据表明环丙沙星和恩氟沙星的回收率分别为96.3%和86.0%，满足上述要求。但是，氟沙星的平均回收率只有72.6%，不能满

足这一要求。由于这一化合物的变异系数(CV)只有8%，故本方法仍然可能用于筛选目的令人满意的
结果。不过，要得到更高的回收率，还需要做更多的研究工作。由于本研究只包含了标准加入样品，故未采用回收率校正计算。

氟沙星也作为内标与达氟沙星一起加入样品。然而，本研究分析的空白牛眼样品表明，氟沙星的含量并没有超标，其浓度大约是加入量的一半。假设线性回归曲线是由原点，这将意味着检测到的氟沙星约为15-20
µg/kg，这大约是牛眼中氟沙星允许量的10%。表4列出了氟沙星的回收率，尽管是单点校准计算的，也没有对残留进行矫正。然而，因为用于校准的标准样品是通过在空白牛眼样品中加入目标化合物而制备的，故对此有所补偿。

表4. 牛肉中氟喹诺酮的回收率

<table>
<thead>
<tr>
<th>说明</th>
<th>诺氟沙星</th>
<th>环丙沙星</th>
<th>恩氟沙星</th>
<th>沙氟沙星</th>
</tr>
</thead>
<tbody>
<tr>
<td>牛眼加标样品 1</td>
<td>111.8</td>
<td>96.3</td>
<td>84.9</td>
<td>68.5</td>
</tr>
<tr>
<td>牛眼加标样品 2</td>
<td>93.1</td>
<td>94.0</td>
<td>85.6</td>
<td>74.1</td>
</tr>
<tr>
<td>牛眼加标样品 3</td>
<td>88.0</td>
<td>89.6</td>
<td>83.8</td>
<td>77.6</td>
</tr>
<tr>
<td>牛眼加标样品 4</td>
<td>98.9</td>
<td>95.4</td>
<td>86.2</td>
<td>75.2</td>
</tr>
<tr>
<td>牛眼加标样品 5</td>
<td>82.2</td>
<td>93.8</td>
<td>85.4</td>
<td>82.1</td>
</tr>
<tr>
<td>牛眼加标样品 6</td>
<td>143.0</td>
<td>109.3</td>
<td>87.9</td>
<td>72.9</td>
</tr>
<tr>
<td>牛眼加标样品 7</td>
<td>102.6</td>
<td>101.3</td>
<td>83.3</td>
<td>73.0</td>
</tr>
<tr>
<td>牛眼加标样品 8</td>
<td>110.6</td>
<td>90.8</td>
<td>91.0</td>
<td>67.7</td>
</tr>
</tbody>
</table>

加入量 (ng)	100.0	100.0	100.0	100.0
平均值	103.8	96.3	86.0	72.6
标准偏差 SD (精密度) ng	18.9	6.3	2.5	5.8
检测限 (SD × t-stat) ng	56.7	19.0	7.6	17.4
定量限 (SD × 10) ng	189.1	63.4	25.4	58.1
变异系数 CV (SD/平均值)%	18.2	6.6	3.0	8.0
准确度 (%)	103.8	96.3	86.0	72.6

| 线性相关系数(R²) | 0.9895 | 0.9987 | 0.9992 | 0.9887 |
| t-stat (N = 8) | 3.00 | 3.00 | 3.00 | 3.00 |
化合物鉴定

对于色谱分离，Annex 2002/657/EC的2.3.3.1部分要求被测定的物质的最小保留时间起点是相应于色谱柱死体积保留时间(K'=1)的两倍。在本文的条件下，第一个流出的化合物是诺氟沙星，其K'=2.6，所以，这一条件是容易满足的。第二个条件是，对于LC分析，被测物质的保留时间与内标保留时间之比，既相对保留时间应相应于校准溶液在±2.5%容许范围的值。表5列出了加标样品中每个被分析化合物的保留时间与标样保留时间的比较，它们完全处于允许范围之内。

表5. 样品中被分析物相对于标样的相对保留时间

<table>
<thead>
<tr>
<th>化合物</th>
<th>标样中的平均相对保留时间 (N = 15)</th>
<th>标样中的相对保留时间的变异系数 CV (N = 15)</th>
<th>样品中被分析物相对于标样的相对保留时间 (N = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>诺氟沙星</td>
<td>0.922</td>
<td>0.12%</td>
<td>99.8%—100.1%</td>
</tr>
<tr>
<td>环丙沙星</td>
<td>0.975</td>
<td>0.05%</td>
<td>99.9%—100.1%</td>
</tr>
<tr>
<td>恩氟沙星</td>
<td>1.150</td>
<td>0.16%</td>
<td>99.8%—100.2%</td>
</tr>
<tr>
<td>沙氟沙星</td>
<td>1.439</td>
<td>0.47%</td>
<td>99.5%—100.3%</td>
</tr>
</tbody>
</table>

化合物确证

Annex 2002/657/EC的2.3.3.2部分给出了相对离子强度的最大允许限。表6列出了这些数据。

表6. 使用质谱技术的相对离子强度的最大允许限

<table>
<thead>
<tr>
<th>相对强度 (基峰的百分数)</th>
<th>GC/MS(EI)</th>
<th>GC/MS(CI), GC/MS**, LC/MS, LC/MSn</th>
</tr>
</thead>
<tbody>
<tr>
<td>>50%</td>
<td>±10%</td>
<td>±20%</td>
</tr>
<tr>
<td>>20% — 50%</td>
<td>±15%</td>
<td>±25%</td>
</tr>
<tr>
<td>>10% — 20%</td>
<td>±20%</td>
<td>±30%</td>
</tr>
<tr>
<td>≤10%</td>
<td>±50%</td>
<td>±50%</td>
</tr>
</tbody>
</table>

注：当 n = 2 时，MSn 等于 MS/MS
表 7 给出了三个目标化合物以及诺氟沙星和达氟沙星（一个离子）的定性离子的相对强度。可见，8 个加标样品中，诺氟沙星都满足了要求，即残留量不超标。额外的诺氟沙星的存在对定性结果不会有负面影响。然而，达氟沙星对检测的单个定性离子却有干扰，所以，该信号的相对量预期会在较大的程度上变化，变化程度取决于制备稀释样品和标样所用的空白萃取物的确切量。如前所述，标准样品的制备是通过准确量取目标和内标化合物的相对量置于试管或样品瓶中制备的，然后加入空白牛肾萃取物和水。由于在测定未知样品的浓度时，内标计算使用相对含量和相对响应值，而不是绝对含量和绝对响应值，所以，并不一定要知道萃取物和水的精确比率。但是，准确测定萃取物和水的体积可以降低干扰的波动。

<table>
<thead>
<tr>
<th>样品</th>
<th>谱图位置</th>
<th>达氟沙星</th>
<th>达氟沙星</th>
<th>达氟沙星</th>
<th>达氟沙星</th>
<th>达氟沙星</th>
<th>达氟沙星</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q1 = 302</td>
<td>Q2 = 276</td>
<td>Q1 = 314</td>
<td>Q2 = 288</td>
<td>Q1 = 340</td>
<td>Q2 = 316</td>
<td>Q1 = 368</td>
</tr>
<tr>
<td>加标 1</td>
<td>49</td>
<td>15</td>
<td>47</td>
<td>17</td>
<td>64</td>
<td>44</td>
<td>28</td>
</tr>
<tr>
<td>加标 2</td>
<td>45</td>
<td>15</td>
<td>48</td>
<td>17</td>
<td>58</td>
<td>46</td>
<td>24</td>
</tr>
<tr>
<td>加标 3</td>
<td>48</td>
<td>16</td>
<td>46</td>
<td>20</td>
<td>63</td>
<td>44</td>
<td>28</td>
</tr>
<tr>
<td>加标 4</td>
<td>42</td>
<td>15</td>
<td>46</td>
<td>17</td>
<td>60</td>
<td>43</td>
<td>30</td>
</tr>
<tr>
<td>加标 5</td>
<td>49</td>
<td>17</td>
<td>45</td>
<td>21</td>
<td>65</td>
<td>44</td>
<td>26</td>
</tr>
<tr>
<td>加标 6</td>
<td>50</td>
<td>19</td>
<td>39</td>
<td>17</td>
<td>72</td>
<td>45</td>
<td>29</td>
</tr>
<tr>
<td>加标 7</td>
<td>49</td>
<td>17</td>
<td>41</td>
<td>18</td>
<td>65</td>
<td>46</td>
<td>29</td>
</tr>
<tr>
<td>加标 8</td>
<td>47</td>
<td>17</td>
<td>42</td>
<td>19</td>
<td>62</td>
<td>39</td>
<td>24</td>
</tr>
<tr>
<td>标样平均</td>
<td>49</td>
<td>20</td>
<td>44</td>
<td>20</td>
<td>86</td>
<td>43</td>
<td>26</td>
</tr>
<tr>
<td>标样标准偏差</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>22</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>允许限（表 7）</td>
<td>25</td>
<td>30</td>
<td>25</td>
<td>30</td>
<td>20</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>下限</td>
<td>37</td>
<td>14</td>
<td>33</td>
<td>14</td>
<td>69</td>
<td>32</td>
<td>19</td>
</tr>
<tr>
<td>上限</td>
<td>62</td>
<td>26</td>
<td>55</td>
<td>25</td>
<td>103</td>
<td>53</td>
<td>32</td>
</tr>
</tbody>
</table>
结论

对用于测定牛肾中三种氟喹诺酮（环丙沙星、恩氟沙星和沙氟沙星）的快速而灵敏的单级四极杆 LC/ESI/MS方法进行了认证。样品萃取物用水稀释后直接分析所得检测限为 8-19 µg/kg (ppb)。所有定性指标均满足Annex 2002/657/EC的要求，三个化合物中的两个满足回收率的定量要求。沙氟沙星的回收率稍低于允许报告结果中对回收进行校正的要求。

参考文献

1. The European Agency for the Evaluation of Medicinal Products, Veterinary Medicines and Inspections, EMEA/MRL/820/02-FINAL, January 2002.
2. Determination of Fluoroquinolones in Bovine, Porcine and Avian Tissues by Liquid Chromatography with Fluorescence Detection, FQL-SP04, Canada Food Inspection Agency, Saskatoon, Saskatchewan, Canada; 2001/03.

欲获得更多的信息

要了解有关我们产品和服务的更多信息，请访问我们的网站：www.agilent.com/chem

安捷伦对本材料所含的错误，或者与使用本材料可能导致的事故或造成的损失概不负责。

本出版物的信息、说明和技术指标如有变更，恕不另行通知。

安捷伦科技公司版权所有 2004

中国印刷
2004年2月10日
5989-0596CHCN