Notices

© Agilent Technologies, Inc. 2010, 2015

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number
G3800-90029

Edition
Revision A1, October 2015
Printed in USA
Agilent Technologies, Inc.
3501 Stevens Creek Blvd.
Santa Clara, CA 95051 USA

Trademarks
Microsoft® is a registered trademark of Microsoft Corporation in the United States and other countries.
Adobe®, Acrobat® and Reader® are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Software Revision
This guide is valid for 6.5 and later revisions of the Agilent Genomic Workbench software, until superseded.

Warranty
The material contained in this document is provided “as is,” and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses
The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend
U.S. Government Restricted Rights. Software and technical data rights granted to the federal government include only those rights customarily provided to end user customers. Agilent provides this customary commercial license in Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212 (Computer Software) and, for the Department of Defense, DFARS 252.227-7015 (Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial Computer Software or Computer Software Documentation).

Safety Notices

CAUTION
A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

WARNING
A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

ChIP Interactive Analysis User Guide
In This Guide...

This guide contains information to use the interactive analysis portion of the Agilent Genomic Workbench Standard 6.5 ChIP program. See the Workflow User Guide to learn how to set up ChIP analysis methods for running workflows.

1 Getting Started

This chapter gives an overview of how to use the ChIP application to import, analyze, and create reports for chromatin immunoprecipitation (ChIP) data.

2 Importing, Managing, and Exporting ChIP Data and Other Content

This chapter describes how to import, organize, manage, and export ChIP data and other content within the user interface of Agilent Genomic Workbench.

3 Displaying ChIP Data and Other Content

This chapter shows you how to display log ratio data from imported feature extraction data files and analysis results, as well as gene list and track content, in the Genomic Viewer. It also gives you instructions on how to modify the display to visualize the data and content the way you prefer.

4 Setting Up ChIP Interactive Analysis

This chapter gives instructions on how to activate and change options to prepare extracted data for ChIP analysis, analyze the data and set up probe, gene and QC reports.

5 ChIP Interactive Analysis Reference

This chapter describes the commands, shortcut menus, dialog boxes, and tabs of the interactive analysis portion of the ChIP application. A second section describes report output formats.
6 ChIP Statistical Algorithms

This chapter describes implementation details of the algorithms used in the ChIP application of Agilent Genomic Workbench. The ChIP algorithms facilitate the statistical analysis of ChIP-on-chip experiments, for example, detected genomic regions with bound protein.
Contents

1 Getting Started 15
 What is the ChIP Application? 17
 Using Agilent Genomic Workbench on a Mac 18
 Entering the License and Starting the ChIP Application 19
 To enter your license for analyzing ChIP data interactively 20
 To start the ChIP application 21
 Transferring Data from the eArray Web Site 22
 Using Main Window Components to Display/Analyze Data 23
 What are the main window components? 23
 What can you do with the main components for display of data and results? 25
 Switching Applications 27
 Using Tabs and Command Ribbons 28
 Tabs 28
 Commands 29
 Using the Navigator to Search for Data 30
 To search the Navigator 32
 Using the Genomic Viewer to Display Data 34
 What is Genomic Viewer? 34
 To change the size of and detach panes from the Agilent Genomic Workbench main window 36
 To maximize and reattach panes to the Agilent Genomic Workbench main window 37
 General Instructions for Displaying Microarray Data/Results 38
 General Instructions for Setting Options for ChIP Interactive Analysis 39
 Getting Help 41
Contents

- To get help within Agilent Genomic Workbench 41
- To contact Agilent Technical Support 42
- To learn about Agilent products and services 42

2 Importing, Managing, and Exporting ChIP Data and Other Content 43

Importing Files 44
- To select a different location for data files 45
- To import Agilent GEML design files 46
- To import Axon design files 47
- To import a genome build 48
- To import Agilent FE or Axon data files 49
- To import tracks 50
- To import array attributes 52
- To import an experiment file 52
- To import filters 53
- To import a probe file 53
- To import a custom genome for tiling 54
- To import a genome 54
- To transfer catalog and workgroup data 54

Working with Experiments to Organize Imported Data 55
- To display the array designs and data in the program 55
- To create a new experiment 57
- To add arrays to an experiment 59
- To change the order of arrays in an experiment 60
- To change the display names for arrays in an experiment 60
- To rename an array in an experiment 61
- To remove arrays from an experiment 62
- To select or remove calibration array(s) 62
- To show or hide array attributes in an experiment 63
- To display or edit array attributes in an experiment 64
- To display or edit the attribute values of a specific array 64

Managing Content 66
To display a list of the content stored in the program 66
To find specific content items in the Navigator 67
To display the properties of a specific design 68
To download a design from eArray 68
To update probe annotation in design files 68
To rename an array in the Design Data pane 69
To remove data or design files from the program 70
To create a gene list 71
To import a gene list 71
To display the genes in a gene list 72
To add one gene list to another 72
To rename a gene list 73
To delete gene list(s) 73
To display the details of a track 73
To combine tracks 74
To rename a track 75
To delete tracks 75

Exporting and Saving Content 76
To export array attributes 76
To export experiments 77
To export a gene list 78
To export tracks 78
To export filters 79
To copy what you see in the main window 79
To copy the list of array colors for an experiment 80
To save data and design information from an experiment 80

3 Displaying ChIP Data and Other Content 81
Selecting an Experiment for Data Display 82
To select an experiment 82
To select or deselect arrays in the experiment 83
To change the display color of an array 85
Contents

Changing Preprocessing and Analysis Options 109
 To apply normalization 109
 To configure the error model 112
 To combine (fuse) arrays 114
 To combine intra-array replicates 116
 To combine interarray replicates 116
 To apply event detection 117
 To create or modify a metric set filter 121
Displaying results 122
 To view results of analysis 122
 To save a result 123
 To restore a saved result 124
Creating Reports 125
 To create a probe report 125
 To create a gene report 126
 To create a QC report 127

5 ChIP Interactive Analysis Reference 129

ChIP Application Main Window 130
Switch Application Menu 131
Command Ribbons 132
 Home command ribbon 132
 Preprocessing command ribbon 135
 Analysis command ribbon 139
 Reports command ribbon 140
 View command ribbon 141
 Tool command ribbon 143
 Help command ribbon 145

Navigator 147
 Search pane 149
 Design Data pane – icons, special text, and buttons 152
ChIP Interactive Analysis User Guide 11

Contents

Edit Array Color 215
Edit Array Order 216
Experiment Properties 217
Export 219
Export Array Attributes 220
Export Experiments 224
Export Filters 225
Export Tracks 226
Find in column 227
Gene List 228
Gene Report Settings Parameter Settings 230
Go To Gene/Genomic Location 231
Import 232
Import (experiments) 234
Import GEML design files 235
Import Genome 237
Import Genome Build 238
Import Track 239
Metric Set Filter 240
Microarray Properties 242
New Condition 245
Pre-defined Peak Shape detection v2.1 247
Probe Report Settings Parameter Settings 249
Probe Upload 250
Properties (of an experiment result) 253
QC Metrics Table 254
QC Metrics – Frequency Distribution 258
QC Metrics Graph 259
QC Report Settings Parameter Settings 262
Sample Attributes 263
Scroll to Column 264
Select Color 264
Select Experiment for Creating Query 268
Contents

Select report folder 269
Select Users 270
Set genome build and species for Axon design files 271
Setting Normalization Parameters 273
Sharing for enterprise 277
Show/Hide Columns 278
Simple HD Probe Search 279
Track 283
User Preferences 285
View coordinates in UCSC browser 291
View Preferences 293
Whitehead Error Model Parameter Settings 297
Whitehead Per-Array Neighbourhood Model Parameter Settings 298
Whitehead Per-Array Neighbourhood Model (Modified) Parameter Settings 300
Report Formats 301
Probes Report format 301
Gene Report formats 303
QC report format 304

6 ChIP Statistical Algorithms 309
Peak Detection and Evaluation Overview 311
Whitehead per-array neighbourhood models 311
Predefined peak-shape detection 312
Definitions used in the statistical algorithms sections 312
Normalization Algorithms 314
Blank subtraction normalization 314
Interarray median normalization 316
Intra-array (dye-bias) median normalization 317
Intra-array (intensity-dependent) Lowess normalization 320
Intra-array (intensity-dependent) variance stabilization 322
Error Models 324
Contents

Whitehead error model 324
Replicate error model 327

Peak Detection Algorithms 329
 Whitehead per-array neighbourhood models 329
 Predefined peak-shape detection algorithm 336

References 344
1 Getting Started

What is the ChIP Application? 17
Using Agilent Genomic Workbench on a Mac 18
Entering the License and Starting the ChIP Application 19
Transferring Data from the eArray Web Site 22
Using Main Window Components to Display/Analyze Data 23
Switching Applications 27
Using Tabs and Command Ribbons 28
Using the Navigator to Search for Data 30
Using the Genomic Viewer to Display Data 34
General Instructions for Displaying Microarray Data/Results 38
General Instructions for Setting Options for ChIP Interactive Analysis 39
Getting Help 41

This chapter gives an overview of how to use Agilent Genomic Workbench to import, display, and analyze chromatin immunoprecipitation (ChIP) data.

Before or after you import Feature Extraction extracted data into the program, you can assign identification information and attributes to the samples through the Sample Manager tab. See the Sample Manager User Guide.

To display or analyze imported ChIP data, you organize the data files into logical units called experiments. Experiments are used to select the data you want to display or analyze using Agilent Genomic Workbench. After you create an experiment, and add array data, you can then use the Preprocessing, Analysis and Reports tabs of the program to analyze the data in the experiment for binding events.
Experiments can also serve as the basis for automated, unattended ChIP analyses in the Workflow tab. The commands under this tab also let you set up image files for automated, unattended Feature Extraction before array analysis. See the Workflow User Guide for information.
What is the ChIP Application?

The ChIP application contains a complete set of features that lets you analyze chromatin immunoprecipitation (ChIP) microarray data. ChIP microarray analysis can identify the genomic loci that contain proteins that bind to DNA, including individual transcription factors, chromatin modifiers, and components of the general transcription machinery.

With ChIP interactive analysis, you set up an experiment and apply analysis algorithms to your data one experiment at a time. You also set parameters for some report templates for use in Workflow analysis.

You do most of your operations with the Preprocessing, Analysis, and Reports tabs.

See the sequence by which you analyze data, do calculations on results and make reports, “General Instructions for Setting Options for ChIP Interactive Analysis” on page 39.

With the interactive portion of the ChIP application, you can:

• Import data from the Agilent Feature Extraction programs.
• Use an intuitive graphical interface to display data and annotations in the context of an organism’s genome, at several simultaneous levels of detail.
• Normalize your data with several statistical methods.
• Use error modeling and event detection algorithms to identify probes, genes, and genomic loci that have significant binding.
• Display significant binding events graphically within the program, and export report files that you can analyze further with other programs.

With workflow analysis, you configure an analysis method ahead of time, and then run it in a workflow. This method is useful for unattended operation and for consistent analyses of multiple data sets. To review workflow results, you use the Genomic Viewer. For more information and quick-start instructions to set up and run a ChIP workflow, see the Workflow User Guide.
Using Agilent Genomic Workbench on a Mac

The content of this User Guide applies to both the Windows and Mac versions of Agilent Genomic Workbench. Both of these versions have the same features. However, when you use the Mac version of the program, please note the following:

<table>
<thead>
<tr>
<th>Windows command</th>
<th>Equivalent Mac command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right-click</td>
<td>Command-click (Command-click)</td>
</tr>
<tr>
<td></td>
<td>On Macs with trackpads, other options are available. On certain machines, you place two fingers on the trackpad while you press the button below the trackpad. See the user guide for your specific machine.</td>
</tr>
<tr>
<td></td>
<td>If you have a third-party mouse that has more than one button, you may be able to use one of the buttons as a right mouse button.</td>
</tr>
<tr>
<td>Control-click</td>
<td>Control-click (Same as the Windows command)</td>
</tr>
<tr>
<td>Shift-click</td>
<td>Shift-click (Same as the Windows command)</td>
</tr>
<tr>
<td>❌ (Close button)</td>
<td>❌ (Close button)</td>
</tr>
</tbody>
</table>
Entering the License and Starting the ChIP Application

When you start Agilent Genomic Workbench for the first time, the program opens in the Home tab, with the Open Application tab displayed. From this tab, you can click any of the application areas, enter license information, or click Help to open the User Guide for that application.

Figure 1 Open Application tab for Agilent Genomic Workbench ChIP application
1 Gettting Started
To enter your license for analyzing ChIP data interactively

To enter your license for analyzing ChIP data interactively

1 Click the **Open Application** tab if it is not already displayed.
2 Click **License** next to the description of DNA Analytics in the Open Application pane.

The License tab of the User Preferences dialog box appears.

![License tab for ChIP application](image)

Figure 2 License tab for ChIP application

There are two ways to provide the license information:

Use a Server Location

1 Unzip the license .txt file into a folder on your server, to which the program has access.
2 Copy the path for that folder to the Clipboard.
3 In the User Preferences License tab, click **Server Location**.
4 Paste the license folder path into the box below Server Location. (To paste the license for both Windows and Mac computers, hold down the ctrl key and press V.)

5 Click **Apply**, or click **OK** to apply the license and close the dialog box.

Enter a Text License

1 Find the folder that contains the ChIP application license .txt file.

2 Double-click the license name to open the file in Notepad, and copy the text in the Notepad window.

3 In the User Preferences License tab, click **Text License**.

4 Paste the license information into the License text box. (To paste the license for both Windows and Mac computers, hold down the ctrl key and press V.)

5 Click **Apply**.

6 If you have no other licenses, click **OK**.

OR

If you have another license, click the arrow from the Select Analysis Application list, select the application and repeat steps 1-5.

To start the ChIP application

- In the Open Application tab, click the **DNA Analytics (ChIP Module)** icon.

 The ChIP application starts and the Genomic Viewer is displayed.
Transferring Data from the eArray Web Site

When you install Agilent Genomic Workbench, a set of “core data” is transferred to your database. This includes administrative data, control grids, and the names (only) of Catalog and workgroup probe groups, bait groups, microarray designs, and libraries.

Additional data from the eArray Web site are required in order to perform eArrayXD functions. This content is downloaded from the eArray Web site using the Data command from the Home tab. For example, to search for expression probes from the Agilent Catalog, you must first transfer the Catalog expression probe data from the eArray Web site to your server. See “To transfer catalog and workgroup data” on page 54. For more information on how to download data from the eArray Web site, see the eArrayXD User Guide.

In order to import or analyze extracted microarray data using Agilent Genomic Workbench, you must first download the design files that match those microarrays from the eArray Web site, or import them. See “To download a design from eArray” on page 68 and “To import Agilent GEML design files” on page 46. It is not necessary to transfer the entire catalog or workgroup data from eArray to analyze extracted microarrays or run Feature Extraction or analysis workflows.
Using Main Window Components to Display/Analyze Data

You can use the data viewing capability in Agilent Genomic Workbench with or without a license to display data for many types of arrays, including CGH, ChIP, and Methylation (CH3). You can use the data analysis capability in Agilent Genomic Workbench only if you have a license for one or more of the DNA Analytics programs (CGH, ChIP, or Methylation).

What are the main window components?

You use four primary components of the Agilent Genomic Workbench main window to import, manage, export, display, and analyze extracted data.

- Home tab commands — import, manage and export data
- Navigator — create and fill new experiments with array data
 When you make the experiment active, the data appear in the display, called Genomic Viewer.
- Genomic Viewer — display data and content in four Views: Genomic View, Chromosome View, Gene View, and Tab View
 You use commands in the interactive analysis tabs to perform preprocessing, analysis, and reporting of data. You can view the results of data analysis in the Genomic Viewer.
- View tab commands — change appearance of Genomic Viewer display

Figure 3 shows the main window of Agilent Genomic Workbench when the Genomic Viewer tab is selected, and identifies the names of its components.
1 Getting Started
What are the main window components?

Figure 3 Agilent Genomic Workbench main window showing major components for ChIP
What can you do with the main components for display of data and results?

See the table below for the parts of the main window you use to display log ratio data and results.

<table>
<thead>
<tr>
<th>To do this</th>
<th>Use this part of the main window</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change program to CGH, ChIP, Methylation (CH3), expression, microRNA, or SureSelect Target Enrichment</td>
<td>Switch Application button: Click the button and click the program you want to open. The scatter plot options are different for the different program types</td>
</tr>
<tr>
<td>Download design files</td>
<td>Navigator for Design Files: Right-click the name of a design file and click Download. Icons give the status of a library or microarray design (update required, draft, review, completed, or submitted). See the eArrayXD User Guide for details.</td>
</tr>
<tr>
<td>Import or export data</td>
<td>Home tab: Click the Import or Export button to select the data you want to import or export. See Chapter 2, “Importing, Managing, and Exporting ChIP Data and Other Content” for more information.</td>
</tr>
<tr>
<td>Select array data to display in the three graphical views or in the Tab View as a table</td>
<td>Experiment pane of the Navigator: Create an experiment with the imported data, select the experiment, and then select the data within the experiment to display or analyze. See Chapter 3, “Displaying ChIP Data and Other Content” for more information.</td>
</tr>
<tr>
<td>Display array data/results for only a certain portion of a chromosome</td>
<td>Genome View: Select a chromosome to display in Chromosome View. You cannot view log ratio data points here. Chromosome View: Select a gene region to display in Gene View. You can display log ratio data points here if you select Scatter Plot in the View Preferences dialog box. Gene View: See the log ratio data next to a selected region of a chromosome, with associated genes and track-based annotation. See Chapter 4, “Setting Up ChIP Interactive Analysis” for information about these Views.</td>
</tr>
</tbody>
</table>
1 Getting Started
What can you do with the main components for display of data and results?

Table 1 Components of Agilent Genomic Workbench main window for display of data and results (continued)

<table>
<thead>
<tr>
<th>To do this</th>
<th>Use this part of the main window</th>
</tr>
</thead>
</table>
| Show/Hide or customize the data points for the scatter plots | **Gene View**: Move the mouse pointer over **Scatter Plot** to display the options. Or, right-click and then click **View Preferences**.
Chromosome View: Right-click and then click **View Preferences**.
View tab: Click **View Preferences**.
See Chapter 3, “Displaying ChIP Data and Other Content” for information on how to do this. |
| Display array data next to tracks or gene lists | **My Entity List pane of Navigator**: Add or select a track or gene list to have it appear in Gene View.
See Chapter 3, “Displaying ChIP Data and Other Content” for information on how to do this. |
| Change the appearance of the display | **View Tab**: Click **View Preferences**. From the View Preferences dialog box, you can change the orientation, select what type of data to view, and configure scatter plot options.
Genomic Viewer: Right-click any View except the Tab View and select **View Preferences**. In the View Preferences dialog box, you can select to show or hide the scatter plots and how to display them, including results.
See Chapter 3, “Displaying ChIP Data and Other Content” for more information. |
| Analyze or reanalyze displayed data | **Preprocessing Tab**: Click this tab to display commands you use to manipulate the data before you apply the algorithms.
Analysis Tab: Click this tab to display commands you use to analyze the data.
Reports Tab: Click this tab to display commands you use to generate reports.
For more information on what you can do in these tabs, see “Tabs” on page 28. |
Switching Applications

You can use the Agilent Genomic Workbench to work with a variety of different data types. Because the requirements for the display of data (and calculation of results, if using a license) are different for different data types, you must switch the application for the type of data you want to display.

The Switch Applications menu, located at the upper right corner of the Agilent Genomic Workbench window, is used to change the application. The selected application is marked . The selected application is also displayed in the title bar of the Agilent Genomic Workbench main window.

![Switch Application Menu](image)

Figure 4 Switch application menu
Using Tabs and Command Ribbons

Tabs

When you click a tab, groups of commands or single commands appear that are specific for that tab. The tabs that are displayed change depending on what licenses you have, and what application is selected (such as CGH, ChIP, CH3).

Figure 5 Tabs for ChIP interactive analysis

The following table summarizes what you can do from the ChIP interactive analysis tabs of Agilent Genomic Workbench.

Table 2 ChIP Interactive Analysis capabilities

<table>
<thead>
<tr>
<th>Tabs</th>
<th>ChIP capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preprocessing</td>
<td>Select/edit normalization calculation</td>
</tr>
<tr>
<td></td>
<td>Select/edit error model</td>
</tr>
<tr>
<td></td>
<td>Combine designs and replicates</td>
</tr>
<tr>
<td></td>
<td>Display QC metrics</td>
</tr>
<tr>
<td>Analysis</td>
<td>Select/edit/apply event detection model</td>
</tr>
<tr>
<td>Reports</td>
<td>Probe report</td>
</tr>
<tr>
<td></td>
<td>Gene report</td>
</tr>
<tr>
<td></td>
<td>QC report</td>
</tr>
<tr>
<td>View</td>
<td>Set up preferences for display of data</td>
</tr>
<tr>
<td></td>
<td>Copy displayed data to the Clipboard</td>
</tr>
<tr>
<td></td>
<td>Turn on or off display of views and Navigator</td>
</tr>
<tr>
<td></td>
<td>Turn on or off tabular display of signal intensity and annotations</td>
</tr>
<tr>
<td></td>
<td>Turn on or off display of Line Connector in Gene View</td>
</tr>
<tr>
<td></td>
<td>Turn on or off display of custom data</td>
</tr>
</tbody>
</table>
Commands

The area where commands appear is called a *command ribbon*. The command ribbon that appears when you click the Home tab for ChIP is shown below. The commands that appear in the command ribbon change depending on what application module is selected, and which tab in that application module is selected.

![Command Ribbon for ChIP Interactive Analysis](image)

Figure 6 Home command ribbon for ChIP interactive analysis

For a complete description of all of the command ribbons and commands you see in Agilent Genomic Workbench, see “Command Ribbons” on page 132.
Using the Navigator to Search for Data

This section gives you instructions on how to search for design files, extracted FE data, experiments and other information in the Navigator of Agilent Genomic Workbench. The Navigator contains different panes when you select the eArray XD, Sample Manager, or Workflow tabs. See the User Guides for those applications for information on the Navigator contents.

Figure 7 Navigator panes
The Navigator shows the array data, experiments, and other content stored in Agilent Genomic Workbench that is available to the logged in user. It contains the following panes:

<table>
<thead>
<tr>
<th>Pane</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search</td>
<td>Lets you search within any pane of the Navigator for a specific item (array or build, for example). You must type the entire array name or term; otherwise, use asterisks () as wildcards for unspecified strings. For example, type “1234” to find any item that contains “1234”.</td>
</tr>
<tr>
<td>Design Data</td>
<td>Contains microarray data files, organized by design and application type, and then by genome build.</td>
</tr>
<tr>
<td></td>
<td>Shows all probe groups and microarray designs that are available to you, organized by folders. For the SureSelect Target Enrichment application type, the program shows all bait groups and libraries. In general, you can:</td>
</tr>
<tr>
<td></td>
<td>• Expand or collapse folders to show or hide content.</td>
</tr>
<tr>
<td></td>
<td>• Look at the icon that appears with an item to monitor its status.</td>
</tr>
<tr>
<td></td>
<td>• Right-click the name of a folder or item to open a shortcut menu that lets you take action on the item.</td>
</tr>
<tr>
<td>Experiment</td>
<td>Contains Agilent Genomic Workbench experiments. Experiments are organizational units that contain links to microarray data and design files. In data analysis modules, experiments also contain saved results. See “Experiment pane – icons, special text, and buttons” on page 157.</td>
</tr>
<tr>
<td>My Entity List</td>
<td>Contains gene lists and tracks:</td>
</tr>
<tr>
<td></td>
<td>• Gene Lists are collections of genes of interest. You can create them within the program, import and export them, and apply them to Gene View and Chromosome View.</td>
</tr>
<tr>
<td></td>
<td>• Tracks are collections of annotation or other information that map to specific genomic locations. You can import, export, and combine tracks, and display them in Gene View with your array data and analysis results.</td>
</tr>
<tr>
<td></td>
<td>See “My Entity List pane – icons, buttons, and special text” on page 165.</td>
</tr>
</tbody>
</table>
To search the Navigator

You can search one or all of the panes of the Navigator for items that match a specific search term. Figure 8 shows the search pane of the Navigator, and identifies a couple of its elements.
Getting Started

To search the Navigator

Figure 8 Search pane of the Navigator

1. At the top of the Navigator, in the Pane list, select the pane to be searched. To search in all panes, select All Panels. If the pane list is not visible, click to show it.

2. In the search term box, type the desired search term. The search term is not case sensitive, but it must contain the complete entry that you want to find. You can use asterisks (*) to represent one or more unspecified characters. For example, type *12345* to find any item that contains “12345”.

3. Click .

 The program searches the selected pane(s) for items that match your search term. If it finds matching items, the program expands the appropriate folders, and displays the names of the matching items in red. The first matching item is highlighted in yellow.

4. Do any of the following:
 - To highlight the next matching item, if one is available, click .
 - To highlight the previous matching item, click .

5. After you complete the search, click to clear the results of the search, as well as your search term.
Using the Genomic Viewer to Display Data

What is Genomic Viewer?

Genomic Viewer is the graphics and tabular display section of the Agilent Genomic Workbench main window. In the Genomic Viewer, extracted data and analysis results can be tabulated and displayed next to depictions of the genome, selected chromosome, and selected genes of the species whose array data you are analyzing.

There are four main views in the Genomic Viewer, as shown in Figure 9.

- **Genome View** – A graphical representation of the entire genome for the selected species. Use this view to select the chromosome to show in the other views.
- **Chromosome View** – A graphical representation of the selected chromosome, displayed with cytobands and a plot area. Click or drag the mouse to select a region to display in the Gene View.
- **Gene View** – A more detailed view of the chromosomal region selected in the Chromosome View.
- **Tab View** – Displays design annotation and log ratio data related to the chromosome you select in Chromosome View.

For more information on the Genomic Viewer and its views, see Chapter 5, “ChIP Interactive Analysis Reference”.

Figure 9 Genomic Viewer in vertical orientation
To change the size of and detach panes from the Agilent Genomic Workbench main window

- To change the size of a pane in the main window, drag one of its inside borders.
- To detach a pane from the main window and open it in a separate window, click its **Detach** button.

![Image of changing pane size and detaching](image)

Figure 10 Changing the size of and detaching panes
To maximize and reattach panes to the Agilent Genomic Workbench main window

- To display a view full-screen in a separate window, click its **Maximize** button.
- To reattach a view in a separate window to the main window, click its **Close** button.

![Maximizing and reattaching panes](image)

Figure 11 Maximizing and reattaching panes
General Instructions for Displaying Microarray Data/Results

An experiment is the folder that holds data from any array set you select for the experiment. The folder also holds analysis results.

You set up experiments to display all data and results in the Genomic Viewer. To set up an experiment you:

- Import data
- Create a new experiment
- Add the imported data to the experiment
- Select the experiment to display data

For step-by-step instructions on how to display data, see the Data Viewing User Guide.

Figure 12 Typical pathway for displaying microarray data/results
General Instructions for Setting Options for ChIP Interactive Analysis

After you import data and set up experiments, you can set up preprocessing and analysis calculations before you make the experiment active. You can also change and apply them after an experiment has been activated. You can combine designs and replicate probes, apply a previously modified algorithm to show binding effects, and produce probe, gene and QC reports. Once you activate an experiment, the program recalculates the results after you change each option.

For more information on how to change analysis options, see Chapter 4, “Setting Up ChIP Interactive Analysis”.

For information on how to analyze ChIP data as part of a Workflow, see the Workflow User Guide.
Figure 13 Typical analysis pathway – Interactive analysis for ChIP application

You can also use the output from the Agilent Feature Extraction program, instead of normalization and error modeling within the ChIP application.
Getting Help

To get help within Agilent Genomic Workbench

Agilent Genomic Workbench has several help resources. Help guides open with Adobe® Reader®.

<table>
<thead>
<tr>
<th>Help Resource</th>
<th>Description/Instructions</th>
</tr>
</thead>
</table>
| ChIP Interactive Analysis User Guide | This user guide, which you are now reading, supplies comprehensive help on all available ChIP tasks. You can access it easily from anywhere within the program.
1. In any tab of Agilent Genomic Workbench, click the Help tab.
| Other User Guides | The Help tab in Agilent Genomic Workbench lets you view any of the available user guides that apply to the currently selected application type.
1. Set the desired application type from the Switch Application menu.
2. In the Agilent Genomic Workbench tab bar, click Help. The names of the available user guides appear in the command ribbon.
3. Click the desired user guide. The selected user guide opens. |
| Product Overview Guide | An additional guide gives an overview of the capabilities within Agilent Genomic Workbench and describes how to start and find help for all of the programs. In addition, it helps you with system administration and troubleshooting.
1. In any interactive analysis tab of Agilent Genomic Workbench, click the Open Application tab.
2. At the upper right corner of the Open Application tab, click Product Overview. |
To contact Agilent Technical Support

Technical support is available by phone and/or e-mail. A variety of useful information is also available on the Agilent Technical Support Web site.

<table>
<thead>
<tr>
<th>Resource</th>
<th>To find technical support contact information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agilent Technical Support Web site</td>
<td>1 Go to http://chem.agilent.com. 2 Select a country or area. 3 Under Quick Links, select Technical Support. 4 Select from the available links to display support information.</td>
</tr>
</tbody>
</table>
| Contact Agilent Technical Support by telephone or e-mail (United States and Canada) | Telephone: (800-227-9770)
E-mail: informatics_support@agilent.com |
| Contact Agilent Technical Support by telephone or e-mail (for your country) | 1 Go to http://chem.agilent.com. 2 Select Contact Us. 3 Under Worldwide Sales and Support Phone Assistance, click to select a country, and then click Go. Complete e-mail and telephone contact information for your country is displayed. |

To learn about Agilent products and services

To view information about the Life Sciences and Chemical Analysis products and services that are available from Agilent, go to www.chem.agilent.com.
This chapter describes how to import, organize, manage, export and display ChIP data and other content within the user interface of the Agilent Genomic Workbench.
Importing Files

From the Home tab, you can import many kinds of files into the Agilent Genomic Workbench. The table below summarizes the kinds of files you can import, and the topics in this section that describe how to import them.

The Design Data pane of the Navigator displays all of the content available for the user who is logged in. Some of this content (such as Catalog designs not yet downloaded) must be downloaded from the eArray Web site before it can be used. Some of the content is available for you to use but not change (red, read-only content), and some of the content you imported and can change (green), in the program. See “Navigator” on page 147 for more information on the Navigator panes and how to use them.

For information on downloading microarray designs and other content from the eArray Web site, see the eArrayXD User Guide.

<table>
<thead>
<tr>
<th>Type of file</th>
<th>Comments</th>
<th>See these topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microarray data files</td>
<td>• Agilent Feature Extraction (*.txt) data files</td>
<td>“To import Agilent FE or Axon data files” on page 49</td>
</tr>
<tr>
<td></td>
<td>• Axon (*.gpr) data files</td>
<td></td>
</tr>
<tr>
<td>Microarray design files</td>
<td>• Agilent GEML (*.xml) design files</td>
<td>“To import Agilent GEML design files” on page 46</td>
</tr>
<tr>
<td></td>
<td>• Axon (*.gal) design files</td>
<td>“To import Axon design files” on page 47</td>
</tr>
<tr>
<td>Genome builds</td>
<td>Agilent-supplied genome information for human, mouse and rat genomes</td>
<td>“To import a genome build” on page 48</td>
</tr>
<tr>
<td>Tracks</td>
<td>BED format annotation track files</td>
<td>“To import tracks” on page 50</td>
</tr>
<tr>
<td>Array attributes</td>
<td>.txt files that you have created yourself or previously exported from the Agilent Genomic Workbench</td>
<td>“To import array attributes” on page 52</td>
</tr>
</tbody>
</table>
To select a different location for data files

By default, the program stores microarray and experimental data files in `C:\Program Files\Agilent\Agilent Genomic Workbench Standard Edition <version number>\data`. If you like, you can select a different location.

CAUTION Do not select a location that contains a backup data folder. Data in the selected location will be overwritten by the current data.

1 In the Home tab, click **User Preferences**.
 The User Preferences dialog box appears. See “User Preferences” on page 285.
2 In the Miscellaneous tab, under Data Location, click **Browse**.
 An Open dialog box appears.
3 Select a location, then click **Open**.
To import Agilent GEML design files

The Agilent Genomic Workbench database must contain designs that match the Agilent Feature Extraction data files you want to import. The design file must be present before any extraction data files can be imported. Your imported GEML files contain array-specific information such as probe names, annotations, and chromosomal locations, and are associated with a specific genome build.

- Catalog design files must be downloaded from the eArray Web site.
- Designs with multiple genome builds are supported for both Catalog and custom designs. For Catalog designs, the design must first be downloaded from the eArray Web site. You can then import the design for other genome builds.

1. In the Home tab, click **Import > Design Files > GEML File**.

 The Import Design Files dialog box appears. See “Import” on page 232. The dialog box shows only *.xml files.

2. To select a file for import, click its name. To select additional files, hold down the **Ctrl** key and click their names.

3. Click **Open**.

 The program validates the selected file(s), and the Import GEML Design Files dialog box appears. See “Import GEML design files” on page 235.

 - If a design file passes validation, the Status column shows **Valid** in green.
 - If the design is an Agilent Catalog design, and is not yet downloaded from the eArray Web site, the Status shows **NotAllowed** in red. You must download the file from the eArray Web site.

NOTE

Make sure you have full permissions in the data location.

The selected location appears in the Preferences dialog box, in Data Location.

4. Click **OK**.
To import Axon design files

You can import Axon (*.gal) microarray design files into the Agilent Genomic Workbench. The program requires the Axon design files that match all Axon array data files you import.

1 In the Home tab, click Import > Design Files > Axon File.
 The Import Axon Design Files dialog box appears. See “Import” on page 232. The dialog box shows only *.gal files.
2 To select a file for import, click its name. To select additional files, hold down the Ctrl key and click their names.
3 Click Import.
 The program validates the selected file(s), and the Set genome build and species for Axon design files dialog box appears. See “Set genome build and species for Axon design files” on page 271.
 If a design file passes validation, the Status column will show Update in green. If a design file fails validation, Corrupt appears in the Status column beside it, and the program does not import the file. To remove the corrupt design from the list, click its Remove button.
4 For each design file, select the appropriate Species and Genome Build.
5 Click Start Import.

- If a design is already in the database, the Status shows Overwrite in yellow. If you continue, the imported design replaces the design in the database.
- If a design file fails validation, Corrupt appears in the Status column beside it, and the program will not import the file. To remove the corrupt design from the list, click its Remove button.

4 Click Start Import.
 The program imports the file(s). The files appear as new design folders in the Design Data folder of the Navigator, with the genome build as a node within the folder.
 You can import two design files with the same name, but associated with different genome builds. If you do, the program creates a single design folder with two nodes, one for each genome build.
The program imports the file(s). The files appear as new design folders in the Design Data folder of the Data pane, organized by application (CGH, ChIP, or methylation, for example).

To import a genome build

In general, the program uses the genome build specified in the array design file, and protects it from changes. If a genome build is not available in the program, you can import one.

NOTE

Use arrays from a single genome build in an experiment.

1 In the Home tab, click **Import > Genome Build**.

 The Import Genome Build dialog box appears. See “Import Genome Build” on page 238.

2 Set the following. All are required.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>• Type the genome’s species of origin, as you would like it to appear within the program.</td>
</tr>
<tr>
<td>Build Name</td>
<td>• Type the name of the genome build you want to import, as you would like it to appear within the program.</td>
</tr>
<tr>
<td>RefSeq File</td>
<td>This file contains information on gene locations for Gene View.</td>
</tr>
<tr>
<td></td>
<td>a Click Browse.</td>
</tr>
<tr>
<td></td>
<td>A dialog box appears.</td>
</tr>
<tr>
<td></td>
<td>b Select the desired file, then click Open.</td>
</tr>
<tr>
<td>Cyto-band File</td>
<td>This file contains the graphic information on the cytobands for Genome and Chromosome Views.</td>
</tr>
<tr>
<td></td>
<td>a Click Browse.</td>
</tr>
<tr>
<td></td>
<td>A dialog box appears.</td>
</tr>
<tr>
<td></td>
<td>b Select the desired file, then click Open.</td>
</tr>
</tbody>
</table>

3 Click **OK**.
To import Agilent FE or Axon data files

You can import several types of microarray data files into the Agilent Genomic Workbench:

- Agilent Feature Extraction (FE) *.txt data files
- Axon (*.gpr) data files

To import Agilent Feature Extraction files, the representative GEML array design files must be imported first. In order to import Axon data files, the representative Axon.gal design files must be imported first. See “To import Agilent GEML design files” on page 46 or “To import Axon design files” on page 47.

1 In the Home tab, do one of the following:
 - To import Agilent FE data files, click Import > Array Files > FE File.
 - To import Axon data files, click Import > Array Files > Axon File.

 A dialog box appears. Only data files of the appropriate type appear. See “Import” on page 232.

2 To select a file for import, click its name. To select additional files, hold down the Ctrl key and click their names.

3 Do one of the following:
 - For Agilent FE files, click Open.
 - For Axon files, click Import.

 In either case, the Agilent Feature Extraction Importer dialog box appears. “Agilent Feature Extraction Importer” on page 186.

4 Set the following, as needed:
To import tracks

You can import BED format track files into the Agilent Genomic Workbench. Track files contain specific features correlated with chromosomal locations, and apply to a specific genome build of a given species.

1 In the Home tab, click Import > Track.

The Import Track dialog box appears. See “Import Track” on page 239.

2 Set the following. All are required.
To import tracks

1. Click OK. The program imports the track. To display the track in Gene View, and to manage tracks, see “To combine tracks” on page 74 and “To show tracks in Gene View” on page 98.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>• Select the species to which the track applies.</td>
</tr>
<tr>
<td>Build Name</td>
<td>• Select the specific genome build of the species to which the track applies.</td>
</tr>
<tr>
<td>Track Name</td>
<td>• Type a name for the track. This name identifies the track within the program, including the name that appears if you include the track in Gene View.</td>
</tr>
<tr>
<td>Track File</td>
<td>a Click Browse. A dialog box appears. b Select the name of the track (*.bed) file to import. c Click Open. The location of the file appears in Track File.</td>
</tr>
</tbody>
</table>
To import array attributes

An array attributes file is a tab-delimited *.txt file that contains a list of arrays by barcode, and values for specific array attributes. Attributes are pieces of array-specific information, such as the hybridization temperature and the name of an array set that contains the array.

Although you can import array attributes with this function, the Sample Manager application lets you import and assign array attributes more easily. See the Sample Manager User Guide.

To import an array attributes file

1. From the Home tab, click Import and then select ArrayAttributes. The Import AttributeFiles dialog box appears. See “Import” on page 232.
2. Select the microarray attributes file, then click Import. The program imports the file. If the ArrayIDs in the file do not match the ArrayIDs of arrays in the program, a dialog box appears. The dialog box has a list of the ArrayIDs in the file that do not match. Click No to stop the import process, or click Yes to continue anyway.

To import an experiment file

In the Agilent Genomic Workbench, an experiment is a set of links to microarray data and design files, and any associated results. An Agilent Genomic Workbench experiment file is a single ZIP file that contains the design and data files for one or more experiments. You can import:

- Experiment files created in the Agilent Genomic Workbench on another computer
- Agilent Genomic Workbench 5.0 and 6.0 experiment files

1. In the Home tab, click Import > Experiments. The Import Experiments dialog box appears. See “Import” on page 232.
2. Select the ZIP file that contains the experiment(s) you want to import, then click OK.
To import filters

 Filters are used in the Agilent Genomic Workbench to include or exclude data from an analysis, based on filter criteria. Filters are created in the interactive CGH and ChIP applications, or in workflow setup.

1. In the Home tab, on the Command Ribbon, click **Import > Filters**. The Import dialog box appears. See “Import” on page 232 for more information.

2. Select the file that contains the exported filter(s) for import, and then click **Import**.

3. In the filters Import dialog box, mark the **Import** box next to each filter you want to import, and then click **OK**.

To export the data and design files from one or more experiments, see “To export experiments” on page 77.

To import a probe file

1. In the Home tab, on the Command Ribbon, click **Import > Probe Upload**. The Probe Upload dialog box appears. See “Probe Upload” on page 250.

2. Complete the dialog box, and click **Preview**. See the eArrayXD User Guide for more information.
To import a custom genome for tiling

1. In the Home tab, on the Command Ribbon, click **Import > Custom Genome for Tiling**.

 The Import Genome dialog box appears. See “Import Genome” on page 237 for more information.

2. Complete the dialog box and select the file that contains the custom genome for import, and then click **Save**.

To import a genome

You can import a user-defined genome for use with the Genomic Tiling or Bait Tiling tools. When you do, the genome becomes a permanent part of the database on your Genomic Workbench server, and is available to all of the users in your workgroup. For details on Genomic Tiling and Bait Tiling, and how to use the Import > Custom Genome for Tiling command, see the *eArrayXD User Guide*.

To transfer catalog and workgroup data

You can transfer probe data and exon boundary data from the eArray Web site to your Agilent Genomic Workbench server. You can also transfer probe data from both the Agilent Catalog and from the folders of your workgroup. Probe data are available by application type (i.e. Expression, ChIP, and so on). Exon boundary data apply to all application types. For more information, see “Catalog and Workgroup Data” on page 189.

1. In the Home tab, click **Data**.

2. For the selected type of data, click **Download**.

 A Data Download task is submitted and appears in the Tasks folder of the Navigator.
Working with Experiments to Organize Imported Data

This section describes how to organize imported array data and designs into experiments. Experiments, shown in the Experiment pane of the Navigator, contain links to specific array data and design files in the Design Data pane. After you set up an experiment, you can then analyze selected array data within the experiment.

Because experiments only contain links to the actual data and design files, any number of experiments can use a given set of files. In the data analysis applications (CGH, ChIP, or methylation, for example), experiments also can contain saved experiment results.

To display the array designs and data in the program

- To display the directory of data in the program, use the Data pane (Figure 14). Double-click a folder to expand or collapse it, or click the ▼ and □ buttons.
In the Design Data pane, the program organizes design files by the application (CGH, ChIP, or methylation, for example) to which they apply. It organizes array data files by genome build under the design with which they are associated.

You can right-click many elements of the Design Data pane to open shortcut menus. For information, see “Design Data pane – actions and shortcut menus” on page 153.

Many icons can appear in the Design Data pane. See “Design Data pane – icons, special text, and buttons” on page 152 for a complete list.

The Search pane can help you find specific data files or other content. See “To find specific content items in the Navigator” on page 67.

For more information on working with and managing microarray design files, see the eArray XD User Guide.
To create a new experiment

In the Agilent Genomic Workbench, experiments are organizational units that contain links to data and design files. To display or analyze data, you must first create an experiment and associate the desired data files with it. Because experiments only contain links to the actual data and design files, any number of experiments can use a given set of files. In data analysis applications (CGH, ChIP, or methylation, for example), experiments can also contain saved experiment results.

1 In the Home tab, click Create Experiment.
 The Create Experiment dialog box appears. See “Create Experiment” on page 203.

2 Type a Name and an optional Description for the experiment.

3 Do one of the following:
 • To create an empty experiment, and add data to it later, click OK.
 The program creates the experiment. To add arrays to the experiment later, see “To add arrays to an experiment” on page 59.
 • To create an experiment and add data to it now, follow these steps: (You can add or remove data from the experiment later, as well.)
 a Click Properties.
 The Experiment Properties dialog box appears. See “Experiment Properties” on page 217.
 b Under Select Design, select the design and genome build for the desired array data.
 The applicable arrays appear in Array List.
 c In Array List, click the name of an array that you want in your experiment. Hold down the Ctrl key and click the names of additional arrays.
 d Click \(\rightarrow \).
 The program transfers the selected arrays to the Selected Array List.
 The dialog box also gives you other options for adding arrays. See “Experiment Properties” on page 217 for information.
 e Click OK.
 The program creates the new experiment, and adds the selected arrays.
To create a new experiment

- To create an experiment and add data to it using the “drag and drop” method, follow these steps:

a. To create an empty experiment, click OK. The program creates the experiment.

b. From the Design Data pane, expand a design to see the build and array data.

c. Drag an array from the Design Data pane and drop it onto the experiment folder in the Experiment pane.

In all cases, a folder with the name of the new experiment appears in the Experiment pane of the Navigator.

![Figure 15: Experiment pane of the Navigator](image-url)
To add arrays to an experiment

After you create an experiment, or import one, you can add arrays to it. When you add arrays to an experiment, you create links between the experiment and the array data and design files. Because the program does not move the actual files, multiple experiments can share the same arrays.

1. In the **Experiment** pane, double-click the **Experiments** folder to expand it.

2. Right-click the name of the desired experiment, then click **Show Properties**.

 The Experiment Properties dialog box appears. See “Experiment Properties” on page 217.

3. Under **Select Design**, select the design file and genome build for the arrays to add.

 The arrays for the selected design file and genome build appear in Array List.

4. In **Array List**, select the arrays to add to the experiment. To select a single array, click its name. To select additional arrays, hold down the **Ctrl** key and click their names.

5. Click **>**.

 The program transfers the selected arrays to the Selected Array List.

 The dialog box also gives you other options for adding arrays. See “Experiment Properties” on page 217 for more information.

6. Click **OK**.

Or, to add array data to an experiment using the “drag and drop” method,

1. From the Design Data pane, expand a design to see the build and array data.

 Drag an array from the Design Data pane and drop it onto the experiment folder in the Experiment pane.

 If needed, the program adds appropriate design and genome build folders to your experiment folder in the Experiment pane. It places the arrays you selected in the appropriate genome build folder.
To change the order of arrays in an experiment

When you select an experiment, a table appears in the Tab View of Genomic Viewer that contains log ratio values and, if selected, signal intensities for arrays in the experiment. See “Tab View” on page 180. You can change the order in which the arrays appear in the table. If you display separate (stacked) scatter plots in Gene View and Chromosome View for each array, the array order also determines the order in which these plots appear. You can use this feature to organize your arrays more logically, or to make it more convenient to display certain arrays. It is especially useful if you have many arrays.

1 In the Experiment pane, right-click the name of the desired experiment, then click Edit Array Order.
 The Edit Array Order dialog box appears. See “Edit Array Order” on page 216.
2 In Design, select the design that contains the arrays whose order you want to change.
 The arrays from the selected design appear in Array Name.
3 Do any of the following:
 • To move an array up in the list, click its name, then click ▲.
 • To move an array down in the list, click its name, then click ▼.
 • To sort the list based on a specific microarray attribute, select the desired attribute in Order by.
4 Click OK.

To change the display names for arrays in an experiment

You can change the name displayed for arrays in an experiment, based on array attributes. When you change the display names for arrays in an experiment, the array names are changed only for the selected experiment. The display names are unchanged in the Design Data pane and in the other experiments.

1 Expand the folders in the Experiment pane until you see the experiment you want to change.
2 Right-click the experiment name, and select Show Properties.
To rename an array in an experiment

When you rename an array in an experiment, you change the array’s name only within the context of the selected experiment. The name of the array remains unchanged in the Design Data pane, and in other experiments.

1. Expand the folders in the Experiment pane until you can see the array to rename.
2. Right-click the name of the desired array, then click Rename. An Input dialog box appears.
3. Type the new name for the array, then click OK.
 The name of the array in the tab view of the selected experiment is renamed. The global display name of the array is not changed.

NOTE To see the original name of the array, move the mouse pointer over the array name. A ToolTip appears that displays the original array name.
To remove arrays from an experiment

When you remove arrays from an experiment, you only remove the links between the experiment and the data files. The files remain available in the program for use in other experiments. To completely remove files from the program, see “To remove data or design files from the program” on page 70.

1 In the Experiment pane, expand folders until you can see the desired experiment, and the array(s) to remove from it.

2 In the Arrays or Calibration Arrays folder of the desired experiment, click the name of an array to select if for removal. Hold down the Ctrl key and click the names of additional arrays.

3 Right click one of the selected array names, then click Delete. A Confirm dialog box appears.

4 Click Yes.

 The program removes the links between the experiment and the selected array data files. If the removal of arrays leaves a design folder in the experiment empty, the program removes this folder as well.

To select or remove calibration array(s)

After you add an array to an experiment, you can select it as a calibration array. The program shows calibration arrays within the Calibration Arrays folder of the experiment with a special icon. You can also remove the calibration designation from an array.

To select an array as a calibration array

1 Expand the folders of the Experiment pane until you can see the array to select as a calibration array.

2 Right-click the name of the array, then click Select for Calibration. To select all of the arrays of a given design in the experiment as calibration arrays, right-click the genome build folder of the design, then click Set for Calibration.

 The program selects the array as a calibration array. In the Calibration Arrays folder of the applicable genome build and design within the experiment, the array appears with a special icon.
To deselect an array from calibration

1 Expand the folders of the Experiment pane until you can see the array. The program lists calibration arrays in the Calibration Arrays folder(s) of the applicable genome build(s) and design(s) within each experiment.

2 Right-click the name of the array, then click Deselect from Calibration. To deselect multiple calibration arrays at once, select all of the arrays. Right-click one of the arrays, then click Deselect from Calibration. (To select multiple arrays, click the name of one array, then hold down the Ctrl key and click the names of additional arrays. To select a contiguous block of arrays, click the name of the first array, then hold down the Shift key and click the name of the last one.)

The program removes the array(s) from calibration, and moves the arrays to the Arrays folder of the applicable genome build and design within the experiment. The icons of the arrays change to the standard (non-calibration) array icon.

To show or hide array attributes in an experiment

Sample attributes are pieces of array-specific information, such as the amount of label used or hybridization temperature. You can show or hide attributes for the arrays in the experiment with the Sample Attributes dialog box. See “Sample Attributes” on page 263.

You cannot hide the required attributes. These include Array ID, Global Display Name, Green Sample, Red Sample (for 2-color arrays), and Polarity.

1 Right-click the experiment whose attributes you want to show or hide, or to change.

2 Click Sample Attributes.

You see the array attributes and their values that were set up in the Sample Manager table. See the Sample Manager Guide.

3 Click Show/Hide Attributes.

The Show/Hide Columns dialog box appears. See “Show/Hide Columns” on page 278.
To display or edit array attributes in an experiment

1. Right-click the experiment whose attributes you want to display or edit.
2. Click **Sample Attributes**.

 You see the array attributes and their values that were set up in the Sample Manager table. See the *Sample Manager Guide*. See “Sample Attributes” on page 263.
3. Double-click the cell whose array attribute value you want to change.

 NOTE

 You cannot change Array ID, Polarity, Extraction Status, or IsMultiPack attributes for extracted or UDF arrays.

4. Click **Save Changes**.
5. Click **Close**.

To display or edit the attribute values of a specific array

Array attributes are pieces of array-specific information, such as the amount of label used or hybridization temperature. You can display a list of attributes for each array that is available in the program.
To display or edit the attribute values of a specific array

Expand the folders of the Design Data pane or the Experiment pane until you can see the array of interest.

Right-click the name of the array, then click Show Properties.

The Microarray Properties dialog box appears, with a list of array attributes. See “Microarray Properties” on page 242. You can also edit the attributes of a specific array from this dialog box. In addition, if the array is an Agilent array, you can display header and feature information passed through from the Agilent Feature Extraction program.

When you are finished, click Close.

You use the Sample Manager tab to organize, create, import, and export array attributes. See the Sample Manager User Guide for more information.
Managing Content

This section describes how to create, find, rename, update, combine, and/or remove content such as data, gene lists, and tracks, stored in the Agilent Genomic Workbench. To display the data, gene list and track content, see Chapter 3, “Displaying ChIP Data and Other Content”.

To display a list of the content stored in the program

The Design Data and My Entity List panes of the Navigator show the content stored in the Agilent Genomic Workbench.

Figure 16 The Agilent Genomic Workbench Navigator
To find specific content items in the Navigator

At the top of the Navigator is a search pane that can help you find specific content items. See “Search pane” on page 149.

1 Type a search term in the box at the top of the Navigator. The search term is not case-sensitive, but it must reflect the entire name of the content item to find. You can use asterisks (*) as wildcards to represent a group of unspecified characters. For example, if you type *1234*, the search will find all items that contain “1234” in the name.

2 By default, the program searches all panes of the Navigator. To limit your search to a specific pane, click . In the list that appears, select the desired pane.

3 Click .

The program searches the selected pane(s). If it finds item(s) that match your search term, it expands folders so that the items are visible, and highlights them in red. You may need to scroll down to see retrieved items.

4 To clear the results of a search, click .

NOTE

Content that is available exclusively in the eArrayXD tab, such as the probes and probe groups that you use to create custom microarray designs, is covered in the eArrayXD User Guide.

Design Data pane – Shows all of the design and array data files stored in the database. For more information, see “To display the array designs and data in the program” on page 55.

My Entity List pane – Shows the gene lists and tracks stored in the program. To display the names of gene lists or tracks available in the program, double-click the names of folders to expand or collapse them, or click the ☰ or ☰ buttons.
To display the properties of a specific design

Design properties include general information about a design, such as its name, application type, and associated species. They also include a list of the names and chromosomal locations of probes.

1 Expand the folders of the DesignData pane until you can see the genome build folder(s) within the desired design folder.

2 Right-click the desired genome build folder, then click Show Properties.

The Design Properties dialog box appears. See “Design Properties” on page 209.

To download a design from eArray

In order to analyze extracted microarray data in Agilent Genomic Workbench, the design for the microarray must be present in the database. The Design Data pane of the Navigator shows the available design content. See “Design Data pane – icons, special text, and buttons” on page 152.

1 Expand the Agilent Catalog or workgroup folder until you see the design you want to download.

2 Right click the design you want to download, and click Download from eArray.com.

An information box appears that lets you know the download task is started.

3 Click OK.

The task appears in the Tasks pane of the Navigator. The color of the circle shows the status of the task. See “Tasks pane – icons, buttons and special text” on page 169.

To update probe annotation in design files

Agilent regularly makes updates to probe annotations on its eArray Web portal. If you have imported Agilent array designs into the Agilent Genomic Workbench, and you are a registered eArray user, you can
To rename an array in the Design Data pane

This topic describes how to rename an array in the Design Data pane, which changes the Global Display Name for the array. If you rename an array in this way, and subsequently add the array to an experiment, the array appears in the experiment with the new name. It also changes the array name in any experiment to which it is already linked. To rename an array only within the context of a specific experiment, see “To rename an array in an experiment” on page 61.

You can only rename an array that you imported.

1. Expand the folders of the Design Data pane until you can see the array you want to rename.
2. Right-click the name of the array, then click Rename.
 An Input dialog box appears.
3. Type a new name for the array, then click OK.
The program renames the array.

To remove data or design files from the program

You can delete array design and data files from the program when you are finished with them.

1. If an array to delete is associated with an experiment, first delete it from the experiment. See “To remove arrays from an experiment” on page 62.

2. In the Design Data pane, expand folders until you can see the design folder or array to delete.

NOTE

You cannot delete data or design files that are read-only.

3. Do one of the following:
 - For array data files, click the name of the first array, then hold down the Ctrl key and click the names of additional arrays within the same design.
 - For array design folders, click the name of the first design folder, then hold down the Ctrl key and click the names of additional ones. This selects the designs and all array data files within them for deletion.

4. Right-click the name of a selected design folder or array data file, then click Delete.
 - A confirmation dialog box appears.

5. Click Yes.
 - The program deletes the selected files.

CAUTION

When you delete files, you permanently remove them from the Agilent Genomic Workbench. To restore deleted files, you must import them again.
To create a gene list

When you create a gene list, you create a list of the genes in a contiguous chromosomal region that you select. To create a list of genes in multiple regions, create multiple gene lists, and combine them. See “To add one gene list to another” on page 72.

1 Follow these steps to select a chromosomal region for your gene list. If you know the exact start and end locations of the desired chromosomal region, skip to step 2.
 a In Genome View, select the desired chromosome. The selected chromosome appears in Chromosome View. See “Chromosome View” on page 173.
 b In Chromosome View, in the plotting area to the right of the chromosome, drag the pointer over the approximate desired chromosomal region. The program encloses the region in a blue box, and displays the region in greater detail in Gene View.
 c In Gene View, adjust the view so only the genes of interest appear. For a description of the adjustment commands available in Gene View, see “Gene View” on page 175.

2 Right-click anywhere within the log ratio plotting area in Gene View, then click Create Gene List.

The Create Gene List dialog box appears. See “Create Gene List” on page 204.

3 In the dialog box set the Name, Description and Color.

4 In the dialog box select the chromosomal region for the new gene list.

5 Click OK.

The new gene list appears in the My Entity List of the Navigator in the Gene List folder.

To import a gene list

A gene list file is a plain text (*.txt) file that contains one gene name per line. When you import a gene list into the Agilent Genomic Workbench, it appears in the Gene List folder in the My Entities List pane. You can use
To display the genes in a gene list

the gene list to highlight specific genes, or to show or hide the appearance of genes and data, in Gene and Chromosome Views. See “To show gene lists in Gene View” on page 95.

1 In the My Entities List pane, double click the Entities folder to expand it.

2 Right-click the Gene List folder, then click Import Gene List.
 An Import dialog box appears. See “Import” on page 232.

3 Select the desired gene list file. To select additional gene list files, hold down the Ctrl key and click their names.

4 Click OK.

To display the genes in a gene list

You can display the genes in a gene list as a table.

1 Expand the folders in the My Entity List pane until you can see the desired gene list.

2 Right-click the gene list, then click View In Table.
 The Gene List dialog box appears, with a table that contains the names of the genes in the gene list. You can also use this dialog box to edit the description of the gene list and its display color. See “Gene List” on page 228.

 You can also create gene lists. For more information, see “To create a gene list” on page 71.

To add one gene list to another

You can add one gene list (a source gene list) to another (the target gene list). The program appends the source gene list to the end of the target gene list, and leaves the source gene list unchanged.

1 Expand the folders in the My Entity List pane until you can see the genes lists to combine.

2 Right-click the desired source gene list, then click Add to Gene List.
A dialog box appears. For more information, see “Add Gene List <name> to” on page 185.

3 In Select target gene list, select the desired target gene list.
4 Click OK.

To rename a gene list

The name of a gene list identifies it within the Gene List folder of the My Entity List pane. You can rename gene lists.

1 Expand the folders of the My Entity List pane until you can see the gene list to rename.
2 Right-click the desired gene list, then click Rename.
 An Input dialog box appears.
3 Type a new name for the gene list, then click OK.

To delete gene list(s)

1 In the My Entity List of the Navigator, click to expand the Gene List folder.
2 Click the name of a gene list to delete. Hold down the Ctrl key and click the names of additional gene lists.
 This selects the lists.
3 Right-click one of the selected gene lists, then click Delete.
 A confirmation dialog box appears.
4 Click Yes.

To display the details of a track

The table that you display contains the values for a list of track attributes.

1 In My Entity List pane, expand the Tracks folder to see the track.
2 Right-click the name of the track, then click View Details.
To combine tracks

You can create a track that contains elements from two or more existing tracks. The existing tracks must be available in the Agilent Genomic Workbench, and they must be associated with the same genome build.

1. In the **My Entities List** pane, double-click the **Entities** folder to expand it, if necessary.

2. Right-click the **Tracks** folder, then click **Combine Tracks**.

 The Combine Tracks dialog box appears. See “Combine Tracks” on page 196.

3. In **Name**, type a name for the combined track. The program uses this name to identify the track in the Tracks folder, and to label the track if it appears in Gene View.

4. Click **New Condition**.

 A new row appears in the Track/Operator list.

5. Under **Track**, select the first track to combine.

6. Click **New Condition**, then select another Track/Operator pair. You can set up as many Track/Operator pairs as you like, but you must set up at least two. When you add a track, the program automatically assigns the AND operator to the previous track.

 To remove the bottom row from the list, click **Delete Condition**. To delete all rows from the list, and erase any entry in Name, click **Reset**.

7. Under **Operator**, select one of the following:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>Creates a combined track out of 2 tracks consisting of elements that appear in both tracks.</td>
</tr>
<tr>
<td>OR</td>
<td>Creates a combined track out of 2 tracks consisting of elements that appear in either of the tracks.</td>
</tr>
<tr>
<td>MINUS</td>
<td>Removes the elements of the second track from the first track.</td>
</tr>
</tbody>
</table>
8 Click **Save**.

Your combined track appears in the Tracks folder of the My Entities List pane. The Combine Tracks dialog box remains open for you to create another combined track.

9 Click **Close**.

To rename a track

The name of a track identifies it both within the Tracks folder of the My Entity List pane, and in Gene View when you select *Show In UI* for the track. You can rename tracks.

1 Expand the folders of the My Entity List pane until you can see the track to rename.

2 Right-click the desired track, then click **Rename**.

 An Input dialog box appears.

3 Type a new name for the track, then click **OK**.

To delete tracks

1 In the My Entity List of the Navigator, expand the Tracks folder.

2 Click the name of a track to delete. Hold down the **Ctrl** key and click the names of additional tracks.

 This selects the tracks.

3 Right-click one of the selected tracks, then click **Delete**.

 A confirmation dialog box appears.

4 Click **Yes**.
Exporting and Saving Content

This section describes how to export several kinds of files from the program.

To export array attributes

You can export selected array attributes for any imported arrays that you choose. You first select the arrays and then the attributes that you want exported for your array selection. You can access this capability from the Home tab or the shortcut menu for an experiment.

1. Click **Home > Export > Array Attributes**.
 OR
 In the Experiment pane of the Navigator, right-click an experiment of interest, and click **Export Attributes**.
 The Export Array Attributes dialog box appears with the Array tab displayed. See “Export Array Attributes” on page 220.
 If you opened this dialog box by right-clicking an experiment, only those arrays associated with the experiment appear in the Selected Array List. You can add or subtract from the list.

2. Under **Select Design**, select the design file and genome build for the arrays to add.
 The arrays for the selected design file and genome build appear in Array List.

3. In **Array List**, select the arrays whose attributes you intend to export.
 To select a single array, click its name. To select additional arrays, hold down the **Ctrl** key and click their names.

4. Click .
 The program transfers the selected arrays to the Selected Array List.

5. Click **Next** to choose attributes for the selected arrays.
 The Export Array Attributes dialog box appears with the Attribute tab displayed. See “Attribute tab” on page 222.
 All of the attributes for the arrays are already located in the Selected Attribute List.
To export experiments

You can export experiments as a ZIP file to transfer them to another computer. Exported experiments contain the associated design and array data files, only. The program does not export information about array selections, or any analysis parameters or results.

1 In the Home tab, click **Export > Experiments**.
 The Export Experiments dialog box appears. See “Export Experiments” on page 224.

2 Mark the experiments to export. To export all experiments, click **Select All**.

3 Click **OK**.
 An Export dialog box appears. See “Export” on page 219.

4 Select a location and type a name for the exported ZIP file.

5 Click **Export**.
 The program exports all selected experiment(s) together as a single ZIP file.
To export a gene list

You can export a gene list as a text file that contains one gene per line.

1. In the My Entity List pane, in the Gene List folder, right-click the gene list to export, then click Save As.
 A Save As dialog box appears.
2. Select a location and type a name for the file.
3. Click Save.
 A success message appears.
4. Click OK.

To export tracks

You can export selected tracks as a BED format track file. You can then import this file into the Agilent Genomic Workbench on another computer, or into a genome browser that accepts BED format files.

1. In the Home tab, click Export > Tracks.
 The Export Tracks dialog box appears. See “Export Tracks” on page 226.
2. Mark the tracks to export. To select all tracks for export, click Select All.
3. Click OK.
 An Export dialog box appears.
4. Select a location and type a name for the exported track file, then click Export.
 The program exports the track(s) as a single BED format track file.
To export filters

You can export selected array, feature, design, metric, and aberration filters that are available in some data analysis applications in the Agilent Genomic Workbench. The program exports all selected filters as a single *.xml file that you can import at a later time.

1 In the Home tab, click **Export > Filters**.

 The Export Filters dialog box appears. See “Export Filters” on page 225.

2 Under Export, mark the check boxes beside the filter(s) to export. To select all filters for export, click **Select All**.

3 Click **OK**.

 An Export dialog box appears.

4 Select a location and type a name for the exported file, then click **Export**.

 The program exports all selected filters as a single *.xml file.

To copy what you see in the main window

You can copy panes of the main window to the Clipboard as images, and then paste them into a new document in another program (such as Microsoft® Word, or PowerPoint). The images contain only what actually appears on your screen; regions to which you must scroll are not included.

1 In the **View** tab, click **Copy**.

2 In the shortcut menu that appears, click the name of the pane to copy. You can copy any view, or the Navigator. To copy all of the panes, click **All**.

 The program copies the selected pane(s) to the clipboard.

3 Open a document in a program that accepts images. In that program, click **Edit > Paste**, or the appropriate paste command.
To copy the list of array colors for an experiment

You can copy the list of arrays in an experiment, and the colors assigned to them, to the clipboard as an image. You then paste the image into a document in another program such as Word or PowerPoint.

1 In the **Experiment** pane, expand the **Experiments** folder.
2 Right-click the name of the desired experiment, then click **Edit Array Color**.
 The Edit Array Color dialog box appears. See “Edit Array Color” on page 215.
3 In the dialog box, click **Edit > Copy**.
 The program copies the names of the arrays and their colors to the clipboard as an image.
4 Open a program that accepts images. Click **Edit > Paste**, or the appropriate paste command for the specific program.

To save data and design information from an experiment

You can save the data and design information from a single design in an experiment as a tab-delimited text file.

1 In the **Experiment** pane, expand the **Experiments** folder until you see the genome build(s) for the design you want to export.
2 Right-click the name of the desired genome build, then click **Save As Text File**.
 A dialog box appears.
3 Select a location and type a name for the saved file, then click **Save**.
3

Displaying ChIP Data and Other Content

Selecting an Experiment for Data Display 82
Displaying Array Data 88
To display QC metrics of arrays and set array QC status 93
Searching for Probe and Gene Information 102

This chapter shows you how to display log ratio data from imported feature extraction data files and analysis results, as well as gene list and track content, in the Genomic Viewer. It also gives you instructions on how to modify the display to show the data and content in different ways.
Selecting an Experiment for Data Display

An experiment is a set of links to microarray data and design files, and any associated results. You can see a list of the experiments in the Experiments pane of the Navigator. See “Navigator” on page 147 for more information.

When you select an experiment and the Preprocessing and Analysis options have not been turned on or set to apply, the program shows the log ratio data of selected arrays in the selected experiment. See “To locate and display data (or results) within the Views” on page 92.

When you select an experiment and Preprocessing and Analysis options have been turned on, the program automatically begins the analysis of the selected array data with selected settings and displays its results.

This section describes how to select an experiment, select or deselect arrays for further analysis, and analyze arrays one at a time.

To select an experiment

When you select an experiment to make it active, the program begins the analysis with the current settings. You can either set the Preprocessing and Analysis parameters before you select the experiment, or change the settings one at a time after the first analysis and reanalyze. Every time you change a Preprocessing or Analysis setting for a selected experiment, the program recalculates results.

1 If necessary, do one of the following to add an experiment to the Experiment Pane in the Navigator:
 • Create a new experiment and add data to it. See “To create a new experiment” on page 57.
 • Import a saved DNA Analytics 5.0, or 6.0 ChIP experiment. See “To import an experiment file” on page 52.

2 In the Navigator, double-click the name of the experiment.

The Experiment Selection dialog box appears.

3 Click Yes.
In the Experiment pane of the Navigator, the name of the experiment turns blue. The name also appears in the title bar of the main window. Tables of data and design information appear in Tab View.

If you have selected to show the results of an algorithm calculation, then results appear for the first array when you select the experiment, if you have not selected any other arrays.

You can select or deselect arrays in the experiment both before and after you select it. Every time you select or deselect an array in an active experiment or change a setting, the program reanalyzes the new data set with the changed settings. See “To select or deselect arrays in the experiment” on page 83.

When you select the experiment after deselecting it or selecting another one, the experiment is simply restored if the settings haven’t changed. If they have changed, the program reanalyzes all of the arrays selected when the experiment was last selected.

To select or deselect arrays in the experiment

To include arrays for display and analysis, you select them from the arrays available, either in an inactive experiment or the selected one. When you first create an experiment, the program automatically sets the first array in the experiment for analysis. If you do not select additional arrays for analysis, only the first one will be analyzed when the experiment is selected.

To select the arrays for analysis before experiment selection:

1. Hold down the **Shift** key to highlight contiguous arrays or hold down the **Ctrl** key to highlight noncontiguous arrays.
2. Right-click the highlighted arrays, and click **Select**.

 Even though the selected arrays do not change color, they change color after activation.

In the Navigator, an array’s icon has two appearances after experiment selection:

- **Array not selected.**
To select or deselect arrays in a selected experiment:

1. In the Navigator, expand the folders of the selected experiment.
2. Click the name of an array you want to include in the analysis.
 To include additional arrays, hold down the Ctrl key and click their names. To include a contiguous block of arrays, click the name of the first array in the block, then hold down the Shift key and click the name of the last one.
3. Right-click the name of one of the highlighted arrays, then click Select.
 After you select the arrays, the program reanalyzes the data set within the experiment and posts the data in Genome, Chromosome, and Gene Views. You can see the data and results for just the selected arrays in the Selected Arrays tab in Tab View.
 To show analysis results if they do not appear, see “To view results of analysis” on page 122.
 To customize the appearance of the results in Genome, Chromosome, and Gene Views, see “To customize scatter plot ranges and colors” on page 89.

You can also use the headings of columns in Tab View that contain array data to select and deselect arrays.

- Click a column heading to select that array only.
- Hold down the Ctrl key and click a column heading to select or deselect an array without affecting the status of other arrays.
- Right-click a column heading to open a shortcut menu with options that allow you to select or deselect that array, or all arrays.

For more information on the Tab View, see “Tab View” on page 180.
To change the display color of an array

The color assigned to an array changes the color of its icon when you select the array within an experiment. It also changes the colored square in the array’s column heading in Tab View.

1. In the Experiment pane, in the Experiments folder, expand the folder of an experiment until you can see the array whose color you want to edit.

2. Right-click the desired array, then click Edit Array Color.

 The Select Color dialog box appears. The dialog box offers three different ways to choose the desired color. “Select Color” on page 264.

3. Select the desired color in one of the following ways:

<table>
<thead>
<tr>
<th>Dialog box tab</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swatches</td>
<td>Click the desired color swatch.</td>
</tr>
<tr>
<td>HSB (Hue/Saturation/Brightness)</td>
<td>Type or adjust the values in H (Hue), S (Saturation), and B (Brightness), or alternately, follow these steps:</td>
</tr>
<tr>
<td></td>
<td>a Select H, then drag the slider to select a hue based on the color strip to its right.</td>
</tr>
<tr>
<td></td>
<td>b Click an appropriate location in the large color box to the left of the slider to set the saturation and brightness levels of the color.</td>
</tr>
<tr>
<td></td>
<td>Both the HSB and equivalent RGB values of the color appear in the dialog box. Note these values; they will be useful if you need to duplicate this color in the future.</td>
</tr>
<tr>
<td>RGB (Red/Green/Blue)</td>
<td>Do any of the following. Note the final RGB Values—they will be useful if you need to duplicate this color in the future.</td>
</tr>
<tr>
<td></td>
<td>a Drag the Red, Green, and Blue sliders.</td>
</tr>
<tr>
<td></td>
<td>b Type or adjust values in the boxes to the right of the sliders.</td>
</tr>
</tbody>
</table>

Samples of the color in different contexts appear under Preview. The upper half of the color sample on the right shows the original color for comparison.

4. Adjust the color as desired, then click OK.

You can also manage all of the colors for all of the arrays in an experiment. Right-click the experiment, then click Edit Array Color. For more information, see “Edit Array Color” on page 215.
To analyze an experiment one sample at a time

You can use Sample-By-Sample View to analyze or reanalyze the active experiment one array at a time. When you work in this special mode, the program displays only one array at a time, and it also adds a new Sample-By-Sample View to the main window, where you can create or edit the Karyotype and Research Notes attributes of each array as you go.

1. Select an experiment. See “To select an experiment” on page 82.

2. Click View > Show, then mark Sample-BySample View.

 Sample-By-Sample View appears. The program also displays the first array in the experiment in Genome, Chromosome, Gene, and Tab Views.

3. Analyze the first array, as desired. You can also type comments in Karyotype and Research Notes.

 The program saves what you type in the Karyotype and Research Notes attributes of the array.

4. Do any of the following:
 - To show and analyze another array, right-click its name within the selected experiment in the Navigator, and click Select.
 - To leave Sample-By-Sample mode, click View > Show, then clear SampleBySample View.
To share an experiment

You can select enterprise users to share the experiment. These users can change or delete the experiment.

1 In the Experiment pane of the Navigator, right-click on an experiment for which you are the owner.
2 Select Share.
3 In the Sharing for enterprise dialog box, click Add. See “Sharing for enterprise” on page 277.
 The Select users dialog box opens. See “Select Users” on page 270.
4 Select the user(s) to share the experiment.
5 Click OK to add the users and close the Select Users dialog box.
6 Click OK to close the Sharing for enterprise dialog box.

To remove a user from a shared experiment

1 In the Experiment pane of the Navigator, right-click on an experiment for which you are the owner.
2 Select Share.
3 In the Sharing for enterprise dialog box, select the user(s) to remove from the experiment. See “Select Users” on page 270.
4 Click Remove.
5 Click OK to close the Sharing for enterprise dialog box.
Displaying Array Data

After you select an experiment, you can change how data appear within the Views, or change the appearance of the Views that contain the data (or results).

To display the scatter plots

By default, display of scatter plots is turned On. If you do not see the scatter plot(s), do one of the following:

1. From the View tab, click View Preferences. See “View Preferences” on page 293 for more information.
2. In the View Preferences dialog box, under Data Visibility, select All views and then mark the box next to Scatter Plot.

OR

1. Right-click in any of the views, and select View Preferences. See “View Preferences” on page 293 for more information.
2. In the View Preferences dialog box, under Data Visibility, select All views and then mark the box next to Scatter Plot.

To show or hide data in the scatter plots

1. In the Gene View, click Scatter Plot, and do any of the following:

<table>
<thead>
<tr>
<th>To do this</th>
<th>Follow these steps</th>
</tr>
</thead>
</table>
| Show or hide ratio values in the Ratios plot | • To show the data points - Mark the Ratios check box and select Ratio Values from the list.
• To hide all data points - Clear the Ratios check box. |
| Show or hide log ratio values in the Log Ratios plot | • To show the data points - Mark the Log Ratios check box and select Log Ratio Values from the list.
• To hide all data points - Clear the Log Ratios check box. |
To customize scatter plot ranges and colors

To make it easier to see significant results, you can customize the display of scatter plot data. For each data type (ratio, log ratio) you can set custom ranges and colors for the display. For channels, you can set custom colors only.

To add and customize a range

1. In Gene View, move the mouse pointer over Scatter Plot to display the options.
2. Under Configure Coloring schemes, mark the check box under Ratios.
3. Select a data type from the Color by list.
4. Click Configure Color and Ranges.

The Configure Coloring Ranges and Shades dialog box appears, where you set ranges and colors for any of the data types. For more information, see “Configure Coloring Ranges and Shades” on page 198.

5. In the Configure Coloring Ranges and Shades dialog box, click the Ratios or Log Ratios tab and then select the data type to configure.
6. Type minimum and maximum numbers to define a range for the data type.
7. Click Color to open the Select Color dialog box. Use the tabs to select a color for the range. See “Select Color” on page 264 for more information.
3 Displaying ChIP Data and Other Content

To change scatter plot appearance

8 Click OK to close the Select Color dialog box and return to the Configure Coloring Ranges and Shades dialog box.

9 Click Add Range to add the custom range to the range list.

10 When you are done, click OK to close the dialog box.

To edit or remove a range

1 In the Configure Coloring Ranges and Shades dialog box, click the Ratios or Log Ratios tab and then select the data type to configure.

2 In the range list, mark the Edit/Delete box to select the range. You can mark more than one range.

3 Click Edit Range to change the minimum and maximum values, or to change the color for the selected range.

4 Click Delete Range to delete the selected range.

5 Click OK to close the dialog box.

To change scatter plot appearance

You use the Preferences dialog box to change the appearance of the scatter plots in Chromosome and Gene Views.

1 In the Genomic Viewer, right-click in the Gene View or Chromosome View, and then click View Preferences.

Or, click the View tab, and then click View Preferences.

The View Preferences dialog box appears. See “View Preferences” on page 293.

2 Do any of the following:

<table>
<thead>
<tr>
<th>To do this</th>
<th>Follow these steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show or hide the scatter plot</td>
<td>a In the View tab under Data Visibility, in View, select All Views.</td>
</tr>
<tr>
<td></td>
<td>b Do one of the following:</td>
</tr>
<tr>
<td></td>
<td>To show the scatter plot, mark Scatter Plot.</td>
</tr>
<tr>
<td></td>
<td>To hide the scatter plot, clear Scatter plot.</td>
</tr>
<tr>
<td></td>
<td>c Click OK.</td>
</tr>
</tbody>
</table>
To print the scatter plot

You can print the scatter plot as it appears in Genome, Chromosome, and Gene Views. Each view selected in the analysis is printed on a separate page. Chromosomes and genes appear on the printed pages, but tracks do not.

1. In the Home tab, click **Print**.
2. Set print options, as desired, then click **OK**.

To do this

<table>
<thead>
<tr>
<th>To do this</th>
<th>Follow these steps</th>
</tr>
</thead>
</table>
| Change the symbol that appears for data points | You can select the symbol separately for each design type.
 a. Under Rendering patterns, select the desired **Design type**.
 b. Under Styles, for each data type, select the desired symbol.
 c. Click **Apply**. |
| Show a separate scatter plot in Gene and Chromosome Views for each selected array | a. In the View tab, under **View Alignment**, under **Rendering Style**, select **Stacked**.
 b. Click **Apply**. |
| Show one scatter plot that contains data for selected arrays | a. In the View tab, under **View Alignment**, under **Rendering Style**, select **Overlaid**.
 b. Click **Apply**. |
To create custom scales for Views

You can customize the scale used for display in the Chromosome View and Gene View. Custom scales are applied to both views.

1. Click the View tab and then click **View Preferences**.
2. In the View Preferences dialog box, under **Configure Scales**, mark the box next to **Apply** for the Ratios and/or Log Ratios plot.

In Range, type a value to use for the range. The range you type changes the scale for the display of the selected data.

To locate and display data (or results) within the Views

- To move through the data of the selected arrays, do any of the following. In general, all views are synchronized; if you select a location or region in one view, the other views move there as well.

<table>
<thead>
<tr>
<th>To do this</th>
<th>Follow these steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select a specific chromosome to display</td>
<td>• In Genome View, click the desired chromosome. All other views switch to the selected chromosome.</td>
</tr>
<tr>
<td>Display data in a region of the selected chromosome</td>
<td>• In Chromosome View, in the scatter plot, drag the pointer over the desired region. Gene View expands (or shrinks) to show only the selected region. Tab View scrolls to the new cursor location.</td>
</tr>
<tr>
<td>Zoom in and out in Gene View</td>
<td>• Click to zoom in.</td>
</tr>
<tr>
<td></td>
<td>• Click to zoom out.</td>
</tr>
<tr>
<td>Scroll through the selected chromosome</td>
<td>• Click to scroll up.</td>
</tr>
<tr>
<td></td>
<td>• Click to scroll down.</td>
</tr>
<tr>
<td></td>
<td>Note: These arrows will appear side by side for horizontal orientation.</td>
</tr>
<tr>
<td>Re-center Gene View or Chromosome view</td>
<td>Click anywhere in Chromosome View, or anywhere within the scatter plot in Gene View.</td>
</tr>
<tr>
<td></td>
<td>The location you click becomes the new cursor location.</td>
</tr>
</tbody>
</table>
To display QC metrics of arrays and set array QC status

QC Metrics are indicators of the quality of data from an array. QC Metrics, which are available only for Agilent arrays, are either passed through from the FE program, or are calculated by the ChIP application.

<table>
<thead>
<tr>
<th>To do this</th>
<th>Follow these steps</th>
</tr>
</thead>
</table>
| Move all views to a specific genomic location | a Click Home > Go To Gene/Genomic location
| | A dialog box appears.
| | b Under Genomic Location, select a Chromosome, and type a Base Position.
| | c Click Go.
| | All views move to the selected location. |
| Center all views on the location of a specific gene | a Click Home > Go To Gene/Genomic location
| | A dialog box appears.
| | b Under RefSeq by Symbol, either select the desired gene (if available) or type the name of the gene.
| | c Click Go.
| | All views move to the location of the selected gene. |
| Center Chromosome and Gene views based on data in Tab View | In Tab View, click any entry in any table, except a column heading.
| | Chromosome and Gene Views become centered on the genomic location that corresponds to the selected entry. |
| Scroll to a specific column in Tab View | a In Tab View, right-click any column heading, then click Scroll To Column
| | A dialog box appears
| | b In Select Column, select the desired column.
| | c Click OK. |
| View the exact chromosomal location of the cursor | At the bottom of the main window, look at the first cell of the Status bar. The location appears as the chromosome followed by the base position. For more information on the status bar, see “Status Bar” on page 184. |

To display QC metrics of arrays and set array QC status

QC Metrics are indicators of the quality of data from an array. QC Metrics, which are available only for Agilent arrays, are either passed through from the FE program, or are calculated by the ChIP application.
Displaying ChIP Data and Other Content
To display QC metrics of arrays and set array QC status

Itself. You can view QC Metrics for an individual array, the arrays in an experiment, or the arrays associated with a specific design and genome build.

1 In the Preprocessing tab, do one of the following:
 • To display the QC metrics of Agilent arrays in the active experiment – In the ribbon, click QC Metric.
 • To display the QC metrics of a specific Agilent array – In the Design Data or Experiment panes of the Navigator, right-click the name of the array. In the shortcut menu that appears, click QC Metrics.
 • To display the QC metrics of all Agilent arrays associated with a genome build within a specific design folder – In the Design Data or Experiment panes of the Navigator, right-click the name of the genome build folder within the desired design folder. In the shortcut menu that appears, click QC Metrics.

In each case, the QC Metrics Table appears. For each array, the QC Metrics Table color codes each metric as Evaluate (pink), Good (turquoise), Excellent (yellow) or NA (white). This dialog box also offers several other options for display of the QC metrics. See “QC Metrics Table” on page 254.

2 In the QC Status column, select the desired overall status for each array.

This sets the QCMetricStatus attribute of each array. You can use the value of this attribute as the basis for an array filter.

3 Click Close.

After you view the QC metrics of an array, you can set the QC status of the array. Later, you can use an array filter to include or exclude arrays from an analysis based on their QC metric status.
Displaying Content (Gene Lists/Tracks)

To show gene lists in Gene View

A gene list is a set of genes of interest. Within the program, you can highlight the genes in the gene list in Gene View, or limit the display of data, genes, and tracks to the regions selected by a gene list.

You can import gene lists into the Agilent Genomic Workbench, and you can also create them in the program and export them. See “To import a gene list” on page 71, and “To export a gene list” on page 78.

In Gene View, the names of all genes normally appear in gray. When you apply a gene list, the program highlights the listed genes in their selected display color. You can also limit the genes and/or data that appear in Gene View and Chromosome View to only the listed genes.

1 In the My Entity List pane of the Navigator, expand the Gene List folder. If the desired gene list does not appear, create or import it. See “To create a gene list” on page 71, or “To import a gene list” on page 71.

2 Right-click the desired gene list, then do one of the following to apply it:
 • To show all genes and all data, and highlight the listed genes in their display color, click Highlight.
 • To show only the listed genes and only the data for those genes, click Show only.

Gene and Chromosome Views change accordingly. In the Navigator, the name of the gene list appears in italics.

To remove the effects of a gene list, right-click the active gene list in the Navigator, then click Show All.
To select gene list display color

In Gene View, the names of all genes normally appear in gray. When you apply a gene list, the program highlights the listed genes in their selected display color. You can customize this color.

1 In the My Entity List pane of the Navigator, expand the Gene List folder.
2 Right-click the name of the gene list whose color you want to change, then click View in Table.
 The Gene List dialog box appears.
3 Under Color, click Color.
 A dialog box appears.
4 Select the desired color.
 The dialog box offers three different ways to choose the desired color. See “Select Color” on page 264.
5 Adjust the color as desired, then click OK.
6 In the Gene List dialog box, click OK.

To display a gene list as a table

You can display the description of a gene list and the names of the genes in it.

1 In the My Entity List pane of the Navigator, in the Gene List folder, right-click the desired gene list, then click View in Table.
 The Gene List dialog box appears. See “Gene List” on page 228. The names of the genes appear in Gene Names. You can also use this dialog box to edit the description of the gene list, or to change its display color. To change the display color, see “To select gene list display color” on page 96.
2 When you are finished displaying the list, click OK.
 You can also export a gene list. See “To export a gene list” on page 78.
To change the appearance of genes in Gene View

You use the User Preferences dialog box to change the appearance of the genes in Chromosome and Gene Views.

1 Right-click any part of the Gene View, then click User Preferences. The User Preferences dialog box appears.

2 Click Tracks. See “Track” on page 283.

3 Do any of the following:

<table>
<thead>
<tr>
<th>To do this</th>
<th>Follow these steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show or hide genes in Gene View</td>
<td>a Under Visualization Parameters:</td>
</tr>
<tr>
<td></td>
<td>To show genes – Under Genes, mark Show Gene Symbols.</td>
</tr>
<tr>
<td></td>
<td>To hide genes – Under Genes, clear Show Gene Symbols.</td>
</tr>
<tr>
<td></td>
<td>b Click Apply</td>
</tr>
<tr>
<td>Change the display font for genes (and track annotations) in Gene View</td>
<td>a In the Gene Symbols tab, under Font, select a new Font, Font Style, and Font Size.</td>
</tr>
<tr>
<td></td>
<td>b Click Apply</td>
</tr>
<tr>
<td>Change the display angle for genes (and track annotations) in Gene View</td>
<td>a Under Visualization Parameters, under Genes, in Orientation (Degrees), type a new orientation in degrees. 0º is horizontal.</td>
</tr>
<tr>
<td></td>
<td>b Click Apply</td>
</tr>
</tbody>
</table>

4 Click OK.
To show tracks in Gene View

Tracks contain information for specific genomic locations. A multitude of tracks from diverse sources is available for many species. You can display tracks next to genes and microarray data in Gene View.

1 Select and show microarray data. See “To select an experiment” on page 82.
2 In the My Entity List pane, open the Tracks folder.
3 Right-click the track you want to display, and click Show In UI.

Or, you can do this:
1 In Gene View, right-click anywhere within the scatter plot, then click User Preferences.
 The User Preferences dialog box appears. See “User Preferences” on page 285.
2 Click Tracks.
3 Mark the Show in UI check box of each desired track.
4 Click OK.
 The program displays the selected tracks in Gene View.

To change the appearance of tracks

Within the Tracks tab of the User Preferences dialog box, you can modify the appearance of tracks, as described in the table below.

<table>
<thead>
<tr>
<th>To do this</th>
<th>Follow these steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Include track information in reports</td>
<td>a In the list of tracks, in the Show in Report column, mark the check boxes of the desired tracks.</td>
</tr>
<tr>
<td></td>
<td>b Click Apply. Doing this adds a column with the hits from the track file.</td>
</tr>
<tr>
<td>Show or hide annotations in all tracks</td>
<td>• To show annotations in all tracks: under Tracks, mark Show Annotations.</td>
</tr>
<tr>
<td></td>
<td>• To hide annotations in all tracks: under Tracks, clear Show Annotations.</td>
</tr>
</tbody>
</table>
Displaying ChIP Data and Other Content

To display tracks in UCSC Browser

1. Right-click Gene View, and click **Show in UCSC**.
 The View coordinates in UCSC browser dialog box appears. See “View coordinates in UCSC browser” on page 291.

2. Complete the dialog box with the track parameters, and click **OK**.
 The UCSC Browser appears, if you are connected to the Internet. It may be necessary to enable pop-ups or set other preferences on the UCSC Web site; see the browser help for information.

<table>
<thead>
<tr>
<th>To do this</th>
<th>Follow these steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display all selected tracks as a single track</td>
<td>• Under Tracks, mark Show Overlaid. The program combines the annotations of all selected tracks into a single track named Overlaid Track. • To show tracks individually again, clear Show Overlaid.</td>
</tr>
<tr>
<td>View the parameters and the list of annotations of a track</td>
<td>• In the list of tracks, next to the desired track, click Details...</td>
</tr>
<tr>
<td>Change the display font for track annotations (and genes)</td>
<td>a Under Font, select a new Font, Font Style, and Font Size for track annotations. b Click Apply. The program changes the display font of track annotations and genes in Gene View.</td>
</tr>
<tr>
<td>Change the order in which tracks appear in Gene View.</td>
<td>The order of tracks in the Gene Symbols tab controls the left-to-right order of tracks in Gene View. a Click the name of the track you want to move. b Do any of the following: • To move the track up in the list of tracks (and farther left in Gene View), click its name, then click Up. • To move the track down in the list of tracks (and farther right in Gene View), click its name, then click Down. c Click Apply.</td>
</tr>
<tr>
<td>Change the display angle of track annotations (and genes)</td>
<td>• Under Genes, in Orientation, type a new orientation (in degrees). 0º is horizontal. The program changes the display angle of track annotations and genes in Gene View.</td>
</tr>
</tbody>
</table>
3 Displaying ChIP Data and Other Content
To display tracks in UCSC Browser

Figure 18 Track displayed in UCSC browser
To change the graphical display to a different genome build

The default graphical display for Genome, Chromosome and Gene Views represents human genome build 18.

- To change the graphical display to a different genome build, activate an experiment whose data are based on a design file of a different genome build.

The display automatically changes when you activate an experiment that contains a design file with a different genome build, such as human genome build 17, or a mouse or rat genome build.

If a genome build is not available for the design file you import, you must import the genome build first. See “To import a genome build” on page 48.

The program does not let you add arrays that belong to one genome build to an experiment that contains arrays of a different genome build.

See also “To create a new experiment” on page 57, “To add arrays to an experiment” on page 59, and “To select an experiment” on page 82.
Searching for Probe and Gene Information

To search Tab View for specific probe information

You can find a specific entry in a column of a data table in Tab View. For more information on Tab View, see “Tab View” on page 180.

1 In Tab View, right-click anywhere in the column you want to search, then click Find in column.

The Find in column dialog box appears. The column to be searched also appears in the title bar of the dialog box.

The Find in column function works within the selected chromosome.

2 Set the search parameters, as described below.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Comments/Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find in column</td>
<td>• Type the text you want to find (the search term). This can be an entire entry, or part of one.</td>
</tr>
<tr>
<td>Direction</td>
<td>• Select one of these options:</td>
</tr>
<tr>
<td></td>
<td>• Up – Search the column upwards from the current cursor location (the highlighted row of the table).</td>
</tr>
<tr>
<td></td>
<td>• Down – Search the column downwards from the current cursor location (the highlighted row of the table).</td>
</tr>
<tr>
<td></td>
<td>Tip: Click a row in Tab View to highlight it.</td>
</tr>
<tr>
<td>Conditions</td>
<td>• Mark any of these, as desired:</td>
</tr>
<tr>
<td></td>
<td>• Match Case – Return entries that match upper and lower case characters in the search term.</td>
</tr>
<tr>
<td></td>
<td>• Match whole word – Return an entry only if the entire entry matches the search term.</td>
</tr>
</tbody>
</table>

3 Click Find Next.

If the program finds a match, it highlights the row that contains the matching entry, and resets the cursor to the corresponding position. You can click Find Next as many times as you like, and the program
To search an experiment using a query

You can create a query to search for samples in an experiment, based on conditions you select. Query results are returned based on attribute conditions in the query. For example, a query can return the FE output file name for the AMADID 039902.

1 From the Experiment pane, right-click the experiment folder, and select Create Query.

 The Select experiment for creating query dialog box opens. See “Select Experiment for Creating Query” on page 268.

2 Mark the experiment(s) for which you want to create the query, then click OK.

 The Create Query dialog box appears. See “Create Query” on page 206.

3 Select a query to use, or create a new query with conditions you want. See “New Condition” on page 245. Click OK to save the condition and return to the Create Query dialog box.

4 Create and add the conditions you want to the query.

5 Click Execute to start the query. Results of the query are displayed in the Results box.

To search for probes in eArray

A High Density (HD) Search from an Agilent HD probe database, retrieves probes that cover specific regions of the genome of a given species. The eArray Web site has separate databases that contain HD probes for CGH,
ChIP-on-chip, and methylation microarrays. In a Simple HD Search, you set the overall density of retrieved probes. You can find more information about probes in the eArrayXD User Guide.

1 Right-click in the data plot area of Gene View, then click Simple HD Search. See “Simple HD Probe Search” on page 279.

 The eArrayXD tab opens with the Simple HD Probe Search pane. The Genomic Intervals and Species search criteria reflect the selected region in the Genomic Viewer.

2 To return to the Gene View, click the Genomic Viewer tab.

To search for probes in a chromosomal location

Use this to find probes in a chromosomal region that you specify.

1 In Gene View, click on a chromosomal location, or hold down the mouse button and drag a chromosomal region of interest.

2 Right-click in Gene View, and click Chromosomal Location Search.

 The Probe Search pane opens, with the selected location and species pre-set.

3 Complete the dialog with search parameters, and click Search. See the eArrayXD User Guide for information on how to set the search parameters.

 The results of the search appear in the bottom of the pane.

To search the Web for information on probes in Tab View

You can use any entry in a table in Tab View as the basis for a Web search.

1 In Tab View, right-click any data table entry other than a column heading.

2 Click one of the available sites.

 If the site you want does not appear in the shortcut menu, you can create a custom search link. See “To create a custom Web search link” below.
The selected site opens in your Internet browser. The program passes the table entry to the site as a search string.

To create a custom Web search link

If you need to search a different database or site based on data table entries, you can create your own custom search link. When you right-click a table entry in Tab View, a shortcut menu opens, and your custom link appears in it. If you select this link, the Agilent Genomic Workbench opens the site in your Web browser and passes the table entry to the site as a search string.

1. Right-click any data table entry in Tab View, except a column heading, then click **Customize Link**.

 The Customize Search link dialog box appears. See “Customize Search Link” on page 208.

2. Click **New**.

3. In the Input dialog box, in **URL name**, type a name for the link.

 This name appears in the shortcut menu that opens when you right-click a data table entry.

4. Click **OK**.

5. In **URL**, type the complete URL needed to pass a search string to the site. Use `<target>` as the query string value.

 For example, this URL transfers the selected table entries to Google.com:

 http://www.google.com/search?hl=eng&q=<target>

6. Click **Update**, then click **Yes**.

To update or delete a custom Web search link

1. Right-click any data table entry in Tab View other than a column heading, then click **Customize Link**.

 The Customize Search link dialog box appears.

2. In **URL Name**, select the custom search link you want to update or delete.
3 Do one of the following:

<table>
<thead>
<tr>
<th>To do this</th>
<th>Follow these steps</th>
</tr>
</thead>
</table>
| Update a Web search link | a. Edit the **URL name** and the **URL** as needed.
| | b. Click **Update**.
| | A Confirm dialog box appears.
| | c. Click **Yes**. |
| Delete a Web search link | b. Click **Delete**. |

4 Click **Close**.
4 Setting Up ChIP Interactive Analysis

Working with Interactive Analysis Options 108
Changing Preprocessing and Analysis Options 109
Displaying results 122
Creating Reports 125

This chapter gives instructions on how to set up the interactive analysis functions for ChIP Interactive Analysis experiments. These include the Preprocessing, Analysis and Reports tabs.
Working with Interactive Analysis Options

For a detailed description of the interactive analysis tabs – Preprocessing, Analysis, Reports – and their commands see “Command Ribbons” on page 132. For information on the View command ribbon, see “View command ribbon” on page 141 and Chapter 3, “Displaying ChIP Data and Other Content”.

Figure 19 ChIP Interactive Analysis tabs

Table 1 shows the tasks in this chapter that you can use to change preprocessing and analysis options, display results, and create reports.

Table 3 Interactive analysis topics

<table>
<thead>
<tr>
<th>Subject</th>
<th>See these topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Changing Preprocessing and Analysis Options”</td>
<td>“To apply normalization” on page 109</td>
</tr>
<tr>
<td></td>
<td>“To configure the error model” on page 112</td>
</tr>
<tr>
<td></td>
<td>“To combine (fuse) arrays” on page 114</td>
</tr>
<tr>
<td></td>
<td>“To combine intra-array replicates” on page 116</td>
</tr>
<tr>
<td></td>
<td>“To combine interarray replicates” on page 116</td>
</tr>
<tr>
<td></td>
<td>“To apply event detection” on page 117</td>
</tr>
<tr>
<td></td>
<td>“To create or modify a metric set filter” on page 121</td>
</tr>
<tr>
<td>“Displaying results”</td>
<td>“To view results of analysis” on page 122</td>
</tr>
<tr>
<td></td>
<td>“To save a result” on page 123</td>
</tr>
<tr>
<td></td>
<td>“To restore a saved result” on page 124</td>
</tr>
<tr>
<td>“Creating Reports”</td>
<td>“To create a probe report” on page 125</td>
</tr>
<tr>
<td></td>
<td>“To create a gene report” on page 126</td>
</tr>
<tr>
<td></td>
<td>“To create a QC report” on page 127</td>
</tr>
</tbody>
</table>
Changing Preprocessing and Analysis Options

To apply normalization

You normalize microarray data to correct for three known factors that cause the reported signal intensities to differ from the “true” signal:

- Non-specific binding (noise)
- Variations from one array to another
- Dye bias (the tendency of a specific fluorescent dye to alter binding)

See Table 4 on page 110 for a description of the normalization methods. You can apply any combination of normalization methods to your data, or you can use the normalized output from the Agilent Feature Extraction program instead.

1. In the Preprocessing tab, under Normalization, select User Defined. The Edit button becomes available.

2. Click the Edit button .

 The Setting Normalization Parameters dialog box appears. The available normalization methods appear under Select Normalization.

3. Under Select Normalization, mark the desired normalization methods.

4. To set the specific parameters of a normalization method, click the name of the method.
 The name of the method and its parameters appear in the right pane of the dialog box. Select the desired parameters from the list(s) in this pane. See “Setting Normalization Parameters” on page 273.

5. Click OK.

To use processed Feature Extraction output

- In the Preprocessing tab, under Normalization, select Use FE Output. The Edit button becomes unavailable.
By default, the program uses raw feature intensity data from the imported data files. When you use this option with files from the Agilent Feature Extraction program, the Agilent Genomic Workbench uses the normalized feature intensities from the FE software instead.

Table 4 Normalization methods available in interactive mode

<table>
<thead>
<tr>
<th>Normalization method</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank subtraction normalization</td>
<td>This kind of normalization corrects for nonspecific binding. It first calculates the central tendency of the negative controls on the array for both the immunoprecipitated (IP) and whole cell extract (WCE) channels. It then subtracts these central tendencies from the raw signal intensities of each feature on the array.</td>
</tr>
<tr>
<td>Interarray median normalization</td>
<td>This kind of normalization corrects for variations from one replicate array to another. The Agilent Genomic Workbench calculates and applies it separately for each channel. It first calculates the median signal intensity over the common probes in each replicate array. It then finds the average of these median intensities over all replicates of all arrays. For each array, it computes the ratio of its median signal intensity to the average of the median signal intensities of all arrays. Finally, it normalizes data by multiplying each signal intensity by the applicable ratio.</td>
</tr>
</tbody>
</table>
| Dye-bias (intra array) median normalization | This kind of normalization corrects for dye bias within each array in an experiment, and it normalizes the intensities of the IP channel only. It can calculate the dye bias in two ways:
 - **By equalizing central tendencies of IP and WCE channels** – This method first calculates the ratio of the median IP signal intensity to the median WCE signal intensity. Then, it multiplies the signal intensities of the data probes by this ratio.
 - **By normalizing central tendency of log ratios to 1** – This method multiplies the signal intensities of all data probes on the array by a correction factor. This correction factor adjusts the central tendency of log ratios of the data probes on the array to 1.
 Note: If Dye-bias (intra-array) Median normalization is selected, Variance Stabilization normalization and Intra-array Lowess normalization cannot be selected. |
Intra-array Lowess (intensity dependent) normalization

Intra-array normalization attempts to correct for artifacts caused by nonlinear rates of dye incorporation, as well as inconsistencies in the relative fluorescence intensity between some red and green dyes. The Lowess normalization algorithm normalizes the channels within each array using a nonlinear polynomial fit to the data, and effectively normalizes by probes and by arrays.

Note: If you are using feature extraction data that have been normalized by the Lowess approach, you do not need to apply the intra-array Lowess normalization here.

Note: If Intra-array Lowess normalization is selected, blank subtraction and Interarray Median normalization are not available.

Variance stabilization

This normalization is useful for data that is either “blank-subtracted” or “spatially detrended” but it may have utility for data processed by other means as well. Variance stabilization is an alternative to Lowess normalization that fits a regression curve to signal intensities after applying an “arcsinh(x)” transform to each channel. This approach uses a two-parameter error model to compress the reported ratios of probes with weak signals after blank-subtraction. After the transform is applied, the variance of the reported log ratios should be independent of the signal strength.

Note: If you are using feature extraction data that have been normalized by the Lowess approach, you do not need to apply Variance Stabilization here.

Note: If Variance Stabilization normalization is selected, Dye-bias (intra-array) Median normalization and Intra-array Lowess normalization are not available.

For a detailed description of the statistical algorithms the Agilent Genomic Workbench uses to normalize data, see “Normalization Algorithms” on page 314.
To configure the error model

The main goal of ChIP data analysis is to find the chromosomal locations where protein binding (or other events) occur. The error model calculates the likelihood that a given probe signal represents a binding event, and assigns p-values to each probe as a measure of this likelihood. A p-value close to 1 indicates that a probe is unlikely to represent a significant binding event. A very small p-value (for example, < 0.001) indicates that the probe is very likely to represent one.

After the ChIP application uses the error model to assign p-values, it then evaluates the p-values of groups of neighboring probes to make binding calls. See “To apply event detection” on page 117. For a detailed discussion of the statistical algorithms used in the error model, see “Error Models” on page 324.

To select an error model

- In the Preprocessing tab, under Error Model, select one of these options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whitehead Error Model</td>
<td>The program uses this error model by default. Select this model unless you have tried both models and know that the other one provides a better match to biological truths and/or positive controls that you have available for your specific experiment. When you select this model, the Edit button becomes available, and you can set additional advanced parameters. For a description of the statistical algorithm used in this model, see “Error Models” on page 324.</td>
</tr>
<tr>
<td>Use FE Error Model</td>
<td>Uses data produced by the error model from the Agilent Feature Extraction (FE) program. These data are available in the imported FE file(s). Select this model if you have tried both models, and know this one provides a better match to biological truths and/or positive controls you have available for your specific experiment. If you select this model, the Edit button becomes unavailable; you do not need to set any additional parameters. For a description of the statistical algorithm used in this model, see the Feature Extraction 10.10 Reference Guide.</td>
</tr>
</tbody>
</table>
To set parameters for the Whitehead error model

The parameters for the Whitehead error model are optional, advanced settings. You can use them to optimize the statistical calculations of the error model using training data specific to your particular assay.

1 Select the Whitehead error model. See “To select an error model” on page 112.

2 Under Error Model, click the Edit button.

 The Whitehead Error Model Parameter Settings dialog box appears.

3 Set any of these parameters, as desired:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Comments/Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source of additive (intensity-dependent) error of each channel is</td>
<td>The options for this parameter affect the additive (intensity-dependent) component of the estimate of the error in IP – WCE. Select one of these sources: • Standard deviation of background pixels • Additive error as computed by Agilent Feature Extractor • Observed spread of negative controls</td>
</tr>
<tr>
<td>Custom defined f-value</td>
<td>The f-value of one replicate of an array is the rate at which the multiplicative error increases with signal intensity. Normally, the ChIP application calculates f-values automatically, but you can type a custom value. 1 Mark Custom defined f-value. 2 In the box, type the desired f-value.</td>
</tr>
</tbody>
</table>

4 Click OK.
To combine (fuse) arrays

If you have two arrays that use different design files, you can combine them into one larger virtual array. This can increase the coverage of the genome in your design. For example, if you have a catalog array, you can design another array to add probes between the catalog probes to increase the density of coverage. With the Fuse function, you can combine the array data to see all of the probe data in the display at once.

The program cannot combine arrays from more than two different design files; see the requirements for fusing arrays at the end of this topic.

1. Create and activate a new experiment. See “To create a new experiment” on page 57 and “Selecting an Experiment for Data Display” on page 82.

2. To the new, active experiment, add the arrays that you want to fuse. See “To add arrays to an experiment” on page 59.

3. Assign the same value to the ArraySet attribute of every array you want to fuse. Follow these steps for each array:
 a. In the Experiment pane of the Navigator, right-click the name of the array, then click Show Properties.
 The Microarray Properties dialog box appears.
 b. Next to the ArraySet attribute, under Value, click ↓.
 The field becomes active.
 c. Type a value in the text box. Type the same value for the ArraySet attribute of every array.
 d. Click Close.

4. In the Preprocessing tab, under Combine, click Fuse.
 The Array Set dialog box lists the arrays to be fused.

NOTE
You can only change microarray attributes for arrays for which you are the owner.

NOTE
Double-check the values in the ArraySet Attribute column of the dialog box. The Agilent Genomic Workbench fuses all of the array pairs that have the same value for this attribute.
5 Set any of these options, as desired:

- **Select Normalization** – Select **None** or **Centralization**. Centralization adds or subtracts a constant value from each log ratio measurement. This recenters the log ratio values.

- **Remove arrays from experiment after fuse** – To delete the initial unfused arrays from the experiment, mark this option. This reduces the duplication of data within the experiment.

6 Click **Continue**.

The program fuses the arrays. The fused array appears in the Experiment pane of the Navigator in a new design folder within the active experiment. The folder name contains the names of both designs.

Requirements for fusing arrays:

- Each array must be associated with a different design file.
- All of the arrays must be of the same application type (for example, ChIP).
- None of the arrays can be fused arrays.
- The samples you hybridize to the arrays must all be aliquots from the same preparation.
- (Preferred) Hybridization and labeling occur for all samples together under the same conditions.

NOTE

- If the arrays that you fuse have probes in common, these probes appear as replicates in the fused array. You can combine these replicates. See “To combine intra-array replicates” on page 116.

- If the original arrays that you fused change, you can manually update the fused array. Fuse the same set of arrays again.

- If you want to fuse many arrays, consider importing a sample attributes file. See “To import array attributes” on page 52, or the Sample Manager User Guide.
To combine intra-array replicates

Intra-array replicates are features within the same array that contain the same probe. The probe information is contained in the design file for each type of array. You can combine these replicates to increase the statistical power of your analyses. For a discussion of the statistical model that the Agilent Genomic Workbench uses to combine replicates, see “Intra-array (dye-bias) median normalization” on page 317.

To combine intra-array replicates for the selected arrays of the active experiment:

1. Click **Preprocessing**.
2. Under Combine, in Replicates, mark **Intra Array**.
 - The Agilent Genomic Workbench combines the replicates in the selected arrays within the experiment.
 - If you set this option before you activate an experiment, it is applied when you activate the experiment and select the arrays.
 - To restore the replicates to their uncombined state, clear the check box.

To combine interarray replicates

When you combine interarray replicates, you select an array attribute. The Agilent Genomic Workbench combines replicates from the arrays with the same value for the selected attribute. For a discussion of the statistical model the Agilent Genomic Workbench uses to combine replicates, see “Interarray median normalization” on page 316.

To combine interarray replicates for all arrays of the active experiment:

1. Click **Preprocessing**.
2. Under Combine, in Replicates, mark **Inter Array**.
3. In Group By, select the desired array attribute.
 - For the attribute that you select, each array must have the same value.
 - You can assign values in one of two ways:
 - In the **Sample Manager** tab, assign the values in the column of the selected attribute for the arrays whose replicates you intend to combine.
To apply event detection

Whitehead per-array neighbourhood detection model

The Whitehead per-array neighbourhood model (and the modified version) used to detect binding events, considers the p-values of both the probe in question and its neighbors. You can customize the parameters of the model, including the maximum distance between neighbor probes and the stringency of the detection process. The model considers probes in groups of three, shown in Figure 20. Two neighbor probes (blue) flank a central probe (red).
The program considers the probe “bound” if the \(p \)-value of the composite error-corrected ratio (“X”) of all three probes (“\(X_{bar} \)”) is less than a set cut-off value, and if either of the following is true:

- The \(p \)-values for the central probe and at least one of its neighbors are less than set cut-off values.
- The \(p \)-value of one (or optionally, another number) of the neighbors of the central probe is less than a set cut-off value.

For a detailed description of the statistical calculations involved in event detection, see “Peak Detection Algorithms” on page 329.

Predefined peak shape detection algorithm

The predefined peak shape detection algorithm produces a peak shape that is universal to each microarray/microarray set. In this way, detailed per-probe information can be used to detect peaks:

- If a probe is not inside any of the “peak” objects, then it is “not bound.” Nothing special is drawn for this probe, except a baseline at exactly a ratio of 1 (log ratio of zero).
- If a probe is inside a peak, then it gets the significance value and score value of the associated peak. If it is inside two overlapping peaks, it gets the values for the peak with the better score. Peaks are drawn by computing ratios from the collection of detected peaks.
To apply Whitehead per-array neighbourhood event detection to the current experiment

1. Configure the error model. See “To configure the error model” on page 112.

2. Click Analysis.

3. Under Event Detection, select either Whitehead Per-Array Neighbourhood Model or Whitehead Per-Array Neighbourhood Model (Modified).

4. Click the Edit button.

The Whitehead Per-Array Neighbourhood Model (or Modified) Parameter Settings dialog box appears. “Whitehead Per-Array Neighbourhood Model Parameter Settings” on page 298 or “Whitehead Per-Array Neighbourhood Model (Modified) Parameter Settings” on page 300.

5. In A probe is considered “bound” if, change the parameters of the event detection algorithm as desired. The parameters are based on the three-probe model shown in Figure 20. Table 5 describes the parameters.

6. Click OK.

The program applies event detection to the experiment. By default, binding events appear as shaded regions in Gene View.

<table>
<thead>
<tr>
<th>Table 5</th>
<th>Whitehead per-array neighbourhood model parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Comments</td>
</tr>
<tr>
<td>Maximum distance (in bp) for two probes to be considered as neighbors.</td>
<td>The program only considers probes to be neighbors if their genomic locations are within this threshold distance. The default value for this parameter is 1000 base pairs.</td>
</tr>
<tr>
<td></td>
<td>• To change the value, delete the old value and type a new one in the box.</td>
</tr>
<tr>
<td>P(X̄) <</td>
<td>• This parameter refers to the p-value of the average error-corrected ratio (“X”) of the central probe and its left and right neighbors. (The “bar” indicates the average.)</td>
</tr>
<tr>
<td></td>
<td>• The default value is 0.001.</td>
</tr>
<tr>
<td></td>
<td>• To make detection more stringent, decrease the value.</td>
</tr>
</tbody>
</table>
To apply event detection

1 Configure the error model. See “To configure the error model” on page 112.

2 Click Analysis.

3 Under Event Detection, select Pre-defined Peak Shape detection v2.1.

4 Click the Edit button.

The Pre-defined Peak Shape detection v2.1 dialog box appears. See “Pre-defined Peak Shape detection v2.1” on page 247.

5 Complete the dialog box. Descriptions of the parameters for the dialog box are shown in “Pre-defined peak shape detection parameters v2.1” on page 248.

6 Click OK.

7 Under Event Detection, mark Apply.

The program applies event detection to the experiment. By default, binding events appear as shaded regions in Gene View.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central probe has P(X) <</td>
<td>• The central probe is the red probe in Figure 20.</td>
</tr>
<tr>
<td></td>
<td>• The default value is 0.001.</td>
</tr>
<tr>
<td></td>
<td>• To make detection more stringent, decrease the value.</td>
</tr>
<tr>
<td>At least one neighboring probe has P(X) <</td>
<td>• Neighboring probes are probes to either side of the central probe.</td>
</tr>
<tr>
<td></td>
<td>• The blue probes in Figure 20 are the neighbors of the central (red)</td>
</tr>
<tr>
<td></td>
<td>• The default value is 0.1.</td>
</tr>
<tr>
<td></td>
<td>• To make detection more stringent, decrease the value.</td>
</tr>
<tr>
<td>At least n of the neighbors has P(X) <</td>
<td>• The default value for n is 1 or 2 for the Modified Model.</td>
</tr>
<tr>
<td></td>
<td>• The default cut-off value for P(X) is 0.005.</td>
</tr>
<tr>
<td></td>
<td>• To make detection more stringent, decrease the value.</td>
</tr>
</tbody>
</table>
To create or modify a metric set filter

A metric set filter includes or excludes data from the selected experiment based on conditions specified in the filter. The conditions of metric set filters are based on selected metrics. You can create a new metric set filter, or modify an existing one.

1. In the Preprocessing tab, under Filters, click Metric Set Filters > Edit Filter.

 The Metric Set Filter dialog box appears. See “Metric Set Filter” on page 240.

2. Do one of the following:
 • To create a new filter, click New. In the dialog box that appears, type a name for your new filter, then click OK.
 • To edit an existing filter, select its name.

 The name of the filter and its conditions appear in the dialog box.

3. Change the conditions of the filter.

 To restore changed values to their original values, click Reset.

4. Click Update to save the filter.

5. Click Close.
Displaying results

This section explains how to display, save, and restore the analysis results of the active experiment.

To view results of analysis

After you set up an experiment and analyze it, the program displays the results automatically in Chromosome and Gene Views. Figure 21 shows an example of a result displayed in Gene View. To customize the way the results appear, see “To change scatter plot appearance” on page 90.

Figure 21 Gene view, showing detected binding event
If the analysis results do not appear in any of the Views

Check these three potential problem areas in order:

- You may not have applied the event detection algorithm. In the Analysis tab, under Event Detection, mark Apply.
- You may not have selected the experiment or selected the arrays of interest. See “To select an experiment” on page 82.
- You may not be looking in the right region of Chromosome View.

See “To show or hide data in the scatter plots” on page 88 to find out how to display the Scatter Plot, if it is not visible, and how to navigate the View displays to observe results.

To save a result

The program allows you to save the result of the active experiment. You can run many different analyses in the same experiment, and save each one. Later, you can restore any of your saved results.

If you are saving a result for the first time for the experiment:

1. In the Experiment pane of the Navigator, right-click the name of the experiment, then click Save Experiment Result, or
 Click Home > Save Experiment Result.
 A dialog box asks if you want to save the results of the current experiment.
2. Click Yes.
 The Save experiment result dialog box appears.
3. Type a name for the result, then click OK.

If you have already saved at least one result for the experiment:

1. In the Experiment pane of the Navigator, expand the folders of the current experiment.
 The currently selected result, if any, appears in blue in the Results folder.
2. Click Home > Save Experiment Result, or
4 Setting Up ChIP Interactive Analysis

To restore a saved result

Right-click the experiment, then click **Save Experiment Result**.
A dialog box appears.

3 Select one of these options:
- To replace the current result with another saved result, click **Overwrite Current Result**.
- To add the current results to the list of experimental results, click **Create New Result**.
- To change views to another result without changing the current result, click **Continue Without Saving**.

To restore a saved result

1 If necessary, select the experiment that contains the result that you want to see. See “To select an experiment” on page 82.

2 In the Experiment pane of the Navigator, expand the folder of the active experiment, then expand its Results folder.

3 Right-click the desired result, then click **Restore result**.
 The restored result appears in Genome, Chromosome, and Gene Views.
Creating Reports

To create a probe report

The ChIP application makes information about the probes in the current experimental result available in tab-separated value (*.tsv) format. A probe report contains one row for each probe in the array (or array set). The program generates a separate file for each array. See “Probe Report format” on page 301 for a description of the columns in the report. You can view probe reports and perform further analysis on them with a spreadsheet program.

To create a probe report based on the current experimental result:

1 Click Reports > Probe Report.
 The Probe Report Settings Parameter Settings dialog box appears.

2 Click Browse.
 The Select report folder dialog box appears. See “Select report folder” on page 269.

3 Select a folder for the report.

4 In File name, type a name for the report.
 If you type a name that matches an existing report in the selected folder, the program overwrites the existing report when it creates the new one.

5 Click Open.
 The location of the report appears in the Probe Report Settings Parameter Settings dialog box in Report Location.

6 Click OK.
 The program creates the report. If the report contains more than one file, the program creates a folder that contains the report files.
 A dialog box appears.

7 To view the report file(s) in Windows Explorer (in the Finder in Mac OSX), click Yes. Otherwise, click No.
To create a gene report

The ChIP application makes information about the genes in the current experimental result available in tab-separated value (*.tsv) format. A gene report contains one row for each probe in the array (or array set), grouped by the genes to which the probes bind. The program generates a separate file for each array. It also includes loci represented by probes on the array that are not associated with genes. The program creates gene reports in several formats. See “Gene Report formats” on page 303 for a description of these formats, and the columns in each. You can view gene reports and perform further analysis on them with a spreadsheet program.

1. Click **Reports > Gene Report**.

2. Mark either of these check boxes, if desired.
 - **Show only gene names** – The resulting gene report contains only accession numbers of genes (or chromosomal locations for probe loci not associated with genes). This option overrides the next one.
 - **Show probe information** – The resulting gene report contains additional information about the probes in the array associated with the bound genes.

3. Click **Browse**.
 The Select report folder dialog box appears. See “Select report folder” on page 269.

4. Open a folder for the report.

5. In File name, type a name for the report.
 If you type a name that matches an existing report in the selected folder, the program overwrites the existing report.

6. Click **Open**.
 The path name of the report appears in the Gene Report Settings Parameter Settings dialog box in Report Location.

7. Click **OK**.
 The program creates the report. If the report contains more than one file, the program creates a folder that contains the report files.

8. To display the report file(s) in Windows Explorer (in the Finder in Mac OSX), click **Yes**. Otherwise, click **No**.
To create a QC report

The QC report summarizes the settings of the current analysis, and the overall statistics of each array. In addition to summary tables, it includes plots that summarize the data graphically. The program creates the QC Report in HTML format, and generates a separate folder for each array. For more information about the contents of the report, see “QC report format” on page 304.

1 Click Reports > ChIP QC Report.

 The QC Report Settings Parameter Settings dialog box appears. See “QC Report Settings Parameter Settings” on page 262.

2 Click Browse.

 The Select report folder dialog box appears. See “Select report folder” on page 269.

3 Open a folder for the report.

4 In File name, type a name for the report.

 If you type a name that matches an existing report in the selected folder, the program overwrites the existing report when it creates the new one.

5 Click Open.

 The location of the report appears in the QC Report Settings Parameter Settings dialog box in Report Location.

6 Click OK.

 The program creates a folder that contains the report files. A dialog box appears.

7 To display a report, follow these steps:

 a Click Yes.

 The QC report folder for each microarray appears in Windows Explorer (In a new Finder window in Mac OSX).

 b Open the desired folder, then double-click the QCReport HTML file. Your Internet browser opens, displaying the QC report.
4 Setting Up ChIP Interactive Analysis
To create a QC report
This chapter describes the parts of Agilent Genomic Workbench main window that you use to import, organize, manage, export and display ChIP array data/results and other content. It also describes the relevant tab commands, shortcut menus, and dialog boxes that can appear.
ChIP Application Main Window

The main window of the ChIP Application contains the main components illustrated in Figure 22.

Figure 22 Agilent Genomic Workbench Standard Edition – ChIP application main window (horizontal orientation)
Switch Application Menu

The Switch Application menu lets you switch to the other data display and analysis application type in Agilent Genomic Workbench. Mark the desired application type.

CGH (Separate license required) Imports, displays, and analyzes array-based comparative genomics hybridization (aCGH) data in both an interactive “analyze as you go” mode, and an automated workflow mode.

ChIP-on-chip (Separate license required) Imports, displays, and analyzes ChIP-on-chip microarray data in both an interactive “analyze as you go” mode, and an automated workflow mode.

CH3 (Separate license required) Imports and displays data from microarray-based studies of genomic methylation patterns.

Expression Use eArrayXD to display data and view probe groups.

microRNA Use eArrayXD to display data and view probe groups.

SureSelect Target Enrichment Use the Quality Analyzer function for SureSelect Target Enrichment. Import, export, and view data, and use eArrayXD to search, and create Bait Groups. See the *Target Enrichment User Guide* for more information.
Command Ribbons

When you click a tab, groups of commands or single commands appear. The entire string of commands is called a command ribbon. The tabs that are displayed (Figure 24) change depending on what application is selected (such as CGH, ChIP, CH3). This section describes the tab commands used to import, manage, export, and display data/results for ChIP interactive analysis.

![Command Ribbon Image](image)

Figure 24 Agilent Genomic Workbench Standard Edition - ChIP Application tabs

Home command ribbon

The Home command ribbon lets you import, manage, export and display ChIP data and other content (gene lists, tracks) for further analysis.

![Home Command Ribbon Image](image)

Figure 25 Command ribbon in the Home tab of Agilent Genomic Workbench

User Preferences

Opens the User Preferences dialog box with three tabs:

<table>
<thead>
<tr>
<th>Tab</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracks</td>
<td>Opens a dialog box that lets you manage which tracks to display in Genomic Viewer and how they appear. See “User Preferences” on page 285.</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Opens a dialog box where you can select a new location for your data files and set up access to the eArray web site. See “User Preferences” on page 285.</td>
</tr>
</tbody>
</table>
Data
Opens the Catalog and Workgroup Data window where you can choose to download data from the eArray catalog or from your workgroup. See “Catalog and Workgroup Data” on page 189.

Import
Opens a menu of file types that you can import:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array Files</td>
<td>Opens a menu with these options:</td>
</tr>
<tr>
<td></td>
<td>- FE File – Opens the Import FE Files dialog box, where you can select a</td>
</tr>
<tr>
<td></td>
<td>Agilent Feature Extraction array data file to import. See “Import” on page</td>
</tr>
<tr>
<td></td>
<td>232 and “To import Agilent FE or Axon data files” on page 49.</td>
</tr>
<tr>
<td></td>
<td>- Axon File – Opens the Import Axon Files dialog box, where you can</td>
</tr>
<tr>
<td></td>
<td>select Axon (*.gpr) files for import. See “Import” on page 232 and “To</td>
</tr>
<tr>
<td></td>
<td>import Agilent FE or Axon data files” on page 49.</td>
</tr>
<tr>
<td>Design Files</td>
<td>Opens a menu with these options:</td>
</tr>
<tr>
<td></td>
<td>- GEML File – Opens the Import Design Files dialog box, where you can</td>
</tr>
<tr>
<td></td>
<td>select Agilent GEML-based (*.xml) array design files for import. See “</td>
</tr>
<tr>
<td></td>
<td>Import” on page 232 and “To import Agilent GEML design files” on page 46.</td>
</tr>
<tr>
<td></td>
<td>- Axon Design File – Opens the Import Axon Design Files dialog box,</td>
</tr>
<tr>
<td></td>
<td>where you can select Axon (*.gal) array design files for import. See “</td>
</tr>
<tr>
<td></td>
<td>Import” on page 232 and “To import Axon design files” on page 47.</td>
</tr>
<tr>
<td>Genome Build</td>
<td>Opens the Import Genome Build dialog box, where you can import Agilent-</td>
</tr>
<tr>
<td></td>
<td>provided genome build files. See “Import Genome Build” on page 238 and “</td>
</tr>
<tr>
<td></td>
<td>To import a genome build” on page 48.</td>
</tr>
<tr>
<td>Track</td>
<td>Opens the Import Track dialog box, where you can select a BED format track</td>
</tr>
<tr>
<td></td>
<td>file for import, and create a display name for the track. See “Import</td>
</tr>
<tr>
<td></td>
<td>Track” on page 239 and “To import tracks” on page 50.</td>
</tr>
</tbody>
</table>
ChIP Interactive Analysis Reference

Home command ribbon

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array Attributes</td>
<td>Opens the Import Array Attributes dialog box, where you can select a .txt file for import. See “Import” on page 232 and “To import array attributes” on page 52.</td>
</tr>
<tr>
<td>Experiments</td>
<td>Opens the Import Experiments dialog box, where you can select a ZIP format experiment file for import. See “Import” on page 232 and “To import an experiment file” on page 52.</td>
</tr>
<tr>
<td>Filters</td>
<td>Opens the Import dialog box, where you select a filter file to import. For more information, see “Import” on page 232 and “To import filters” on page 53.</td>
</tr>
<tr>
<td>Probe Upload</td>
<td>Lets you import a file of probe sequences and annotation. For more information, see the eArrayXD User Guide.</td>
</tr>
<tr>
<td>Custom Genome for Tiling</td>
<td>Opens the Import Genome dialog box, where you upload a user defined genome for use with the Genomic Tiling and Bait Tiling tools in eArrayXD. For more information, see the eArrayXD User Guide.</td>
</tr>
</tbody>
</table>

Export

Opens a menu that lets you export several kinds of files.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiments</td>
<td>Opens the Export Experiments dialog box, where you can select one or more experiments for export as a single ZIP file. See “Export Experiments” on page 224 and “To export experiments” on page 77.</td>
</tr>
<tr>
<td>Filters</td>
<td>Opens the Export Filters dialog box, where you can select one or more filters for export as a single *.xml file. See “Export Filters” on page 225 and “To export filters” on page 79.</td>
</tr>
<tr>
<td>Tracks</td>
<td>Opens the Export Tracks dialog box, where you can select one or more tracks to export as a single BED format file. See “Export Tracks” on page 226 and “To export tracks” on page 78.</td>
</tr>
<tr>
<td>Array Attributes</td>
<td>Opens the Export Array Attributes dialog box, where you can select arrays and their attributes for export. See “Export Array Attributes” on page 220.</td>
</tr>
</tbody>
</table>

Create Experiment

Opens the Create Experiment dialog box, where you can create a new, empty experiment and add data to it. See “Create Experiment” on page 203 and “To create a new experiment” on page 57.
Save Experiment Result
Saves ChIP results for the selected experiment.

Go to Gene/Genomic Location
Moves the cursor to the location in Chromosome and Gene Views that you select. See “Go To Gene/Genomic Location” on page 231.

Print
Opens the Print window to print the display.

Exit
Closes the program.

Preprocessing command ribbon

The Preprocessing command ribbon contains several sets of commands:

- **Normalization** – Configure and apply normalization method(s).
- **Error Model** – Select and configure the error model.
- **Combine** – Fuse array designs and configure how the program combines inter- and intra-array replicate probes.
- **Metric-Set Filters** – Create, edit, or edit filters based on QC metrics.

Normalization

The settings in Normalization control how the program normalizes data before it applies event detection. You normalize data to correct it for known factors such as nonspecific binding, overall variations from one array to another, and dye bias (the tendency for a fluorescent dye molecule to influence binding). See “To apply normalization” on page 109.
Select

User Defined – The program applies user-selected normalization steps and parameters. These steps normalize the selected array data in the current experiment before the program applies the event-detection algorithm. This option also makes the other normalization settings available.

Use FE Output – The program uses the processed feature intensity values available in the output files of the Agilent Feature Extraction program. The program uses these values instead of applying its own normalization algorithms. See “To use processed Feature Extraction output” on page 109. Unless you select this option, the program uses the raw, unprocessed feature intensities.

(Edit button) Opens the Setting Normalization Parameters dialog box, where you can select and configure the program's normalization algorithms. This button is available only if you select *User Defined* as the normalization option. See “Setting Normalization Parameters” on page 273.

Error Model

The error model calculates the likelihood that probes represent binding events, and assigns p-values to probes. A p-value close to 1 indicates that a probe is unlikely to represent a significant binding event. A very small p-value (for example, P < 0.001) indicates that the probe is very likely to represent one.

After the ChIP application uses the error model to assign p-values, it then evaluates the p-values to make binding calls. See “To apply event detection” on page 117. For a detailed discussion of the statistical algorithms used for error modeling and event detection, see “Error Models” on page 324.
Preprocessing command ribbon

Select

- **Whitehead Error Model** – The program uses this error model by default. Select this model unless you have tried both models and know the other one provides a better match to biological truths and/or positive controls you have available for your specific experiment. For a description of the statistical algorithm used in this model, see “Error Models” on page 324. If you choose this error model, click ![edit button](edit.png) to set additional parameters.

- **Use FE Error Model** – Uses the error model from the Agilent Feature Extraction program. Select this model if you have tried both models, and know that this one provides a better match to biological truths and/or positive controls you have available for your specific experiment. If you select this model, the edit button becomes unavailable; you do not need to set any additional parameters.

![Edit button](edit.png) (Edit button) Opens the Whitehead Error Model Parameter Settings dialog box, where you can customize the configuration of Whitehead error model. See “Whitehead Error Model Parameter Settings” on page 297.

Combine

The settings and commands in Combine enable you to combine multiple array designs into a larger virtual combined design. They also allow you to combine both intra- and inter-array replicate probes. See “To combine (fuse) arrays” on page 114 and “To combine intra-array replicates” on page 116. For a discussion of the algorithms used to combine replicates, see “Normalization Algorithms” on page 314.
Fuse
Opens the Array Set dialog box, where you can view the names of arrays to be fused, set options, and fuse designs together to form a larger virtual design. See “Array Set” on page 188, and “To combine (fuse) arrays” on page 114.

Intra Array
Mark this check box to combine intra-array replicates (probes within an array that have the same name). The program combines the replicates when you click Go. See “To combine intra-array replicates” on page 116.

Inter Array
Mark this check box to combine replicates across multiple arrays. The program uses the array attribute you select in Group By and combines replicates from arrays that have the same value selected for that attribute. The program combines the replicates when you click Go.

Group By
Select an array attribute. The program combines replicates from arrays that have the same value assigned to the attribute you select.

Go
Combines replicates according to the other settings under Replicates.

Metric Set Filters
(Standard version only) Metric set filters let you include or exclude microarray data based on metric information from imported Feature Extraction files.

Select one of these options:
• **Edit Filter** – Opens the Metric Set Filter dialog box, where you can create, change, or delete metric set filters. See “Metric Set Filter” on page 240.

• **Apply Filter** – Opens a menu that shows all available metric set filters. Mark the desired filter. To remove the applied filter, or to select no filter, mark **No Filter**.

Analysis command ribbon

Event Detection

Event detection is the algorithm the program uses to determine binding events. See “To apply event detection” on page 117, and “Peak Detection Algorithms” on page 329. The settings in Event Detection allow you to select and customize the model.

[Image: Event Detection group box]

Apply
Mark this check box to apply the selected algorithm to the selected array data in the active experiment.

Select
Select the Event Detection algorithm to use for the analysis.

Opens the Parameter Settings dialog box for the selected model, where you can customize the model. See “Whitehead Per-Array Neighbourhood Model Parameter Settings” on page 298, “Pre-defined Peak Shape detection v2.1” on page 247, and “To apply event detection” on page 117.
Reports command ribbon

The Reports command ribbon lets you save detailed information about the probes, genes, and overall statistics of the current experiment result. You use a spreadsheet program or your Internet browser to open the report files that the program generates. This lets you further view, analyze, and organize the results.

Probe Report

Opens the Probe Report Settings Parameter Settings dialog box, where you can select a location and a name for the probe report file. “Probe Report Settings Parameter Settings” on page 249.

The probe report makes information about the probes in the current experiment result available in tab-separated value (*.tsv) format. You can use a spreadsheet program to open this file. A probe report contains one row for each probe in the array (or array set). See “Probe Report format” on page 301 for a description of the columns in the report.

Gene Report

Opens the Gene Report Settings Parameter Settings dialog box, where you can customize the content of the report, and select a location and a name for the gene report file. See “Gene Report Settings Parameter Settings” on page 230.

The gene report makes information about the genes in the current experiment result available in tab-separated value (*.tsv) format. The gene report contains one row for each probe in an array, grouped by the genes to which the probes bind. It also includes loci represented by probes on the array that are not associated with genes. The program creates gene reports in several formats. See “Gene Report formats” on page 303 for a description of these formats, and the columns in each one. You can view gene reports and perform further analysis on them with a spreadsheet program.
ChIP QC Report Opens the QC Report Settings Parameter Settings dialog box, where you can select a location and a name for the QC report file. See “QC Report Settings Parameter Settings” on page 262.

The QC report summarizes the settings of the current analysis, and the overall statistics of each array. In addition to summary tables, it includes four plots:

• Scatter plot of IP versus WCE
• Scatter plot of enrichment ratio versus intensity
• Histogram of normalized intensity distribution, by channel
• Histogram of normalized log₂ ratio distribution

The program creates the QC report in HTML format, and you can view the report with an Internet browser. For more information about the contents of the report, see “QC report format” on page 304.

View command ribbon

The View command ribbon lets you change the display of data/results in Genomic Viewer.

View Preferences Opens the View Preferences dialog box, where you can customize the display of your data in the Genomic Viewer. See “View Preferences” on page 293.

Copy Opens a menu with the options listed below. In general, the Copy command copies pane(s) of the main window to the Clipboard as an image. You can then paste the image into a document in another program. See “To copy what you see in the main window” on page 79.
View command ribbon

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Copies all panes of the main window to the Clipboard as an image.</td>
</tr>
<tr>
<td>Navigator</td>
<td>Isolates and copies the Navigator to the Clipboard as an image.</td>
</tr>
<tr>
<td>Tab view</td>
<td>Isolates and copies Tab View to the Clipboard as an image.</td>
</tr>
<tr>
<td>Genome view</td>
<td>Isolates and copies Genome View to the Clipboard as an image.</td>
</tr>
<tr>
<td>Chromosome view</td>
<td>Isolates and copies Chromosome View to the Clipboard as an image.</td>
</tr>
<tr>
<td>Gene view</td>
<td>Isolates and copies Gene View to the Clipboard as an image.</td>
</tr>
</tbody>
</table>

Show

Opens a menu with all available elements of the main window. Mark the check box(es) next to the element(s) that you want to display in the Genomic Viewer.

View In Table

Signal Intensity

Mark the check box to see the red and green raw signal intensities of the log ratio data in the Tab View.

Annotation

Mark the check box to show annotations in the Tab View.

Line Connector

Mark **Show** to draw lines between the log ratio data points on the scatter plot in Gene View. Clear the check box to hide the lines.

Cyto band info

View In Gene View

Mark the check box to display cytobands in the Gene View.

Design Columns

View in Table

Mark the check box to show design columns in Tab View.

Custom Data

Show

Mark the check box to display custom data in the Genomic Viewer.
Tool command ribbon

Figure 34 Tool command ribbon

Plugin

Plugins are ancillary programs that process the selected array data in the active experiment in specific ways.

Opens a menu with the options listed below. If you or another user has created custom plug-ins, they also appear in this menu.

- **CGHSmooth** Opens the CGHSmooth Parameters dialog box. See the *CGH Interactive Users Guide* for information.

- **Echo Example** Creates separate, stacked plots of log ratio data for each of the selected arrays in the current experiment. The plug-in plots the data associated with the selected chromosome. The plot appears in a new window. Although simple, this plug-in gives you a convenient way to display the log ratio data for selected arrays as separate plots. See “Echo Example Plot” on page 212.

- **MovAvg Example** Opens the MovAvg Example Parameters dialog box. See the *CGH Interactive Users Guide* for information.

Plugin Settings

Opens another menu with these options:

- **CGHSmooth** Opens the CGHSmooth Parameters dialog box, where you can set the parameters for the plug-in when you have selected to not show the parameters dialog box when you click Plugin. See the *CGH Interactive Users Guide* for information.
MovAvg Example Opens the MovAvg Example Parameters dialog box, where you can set the parameters for the plug-in when you have selected to not show the parameters dialog box when you click Plugin. See the CGH Interactive Users Guide for information.

Create

This group contains two options:

New User Opens the eArray Website, where you can add a new eArray user.

Note Opens a dialog box where you can type notes and comments. You can view these notes from the Notes tab in the Agilent Genomic Workbench main window.

Other

Send Log Sends a log file to Agilent technical support. This log file is used to help troubleshoot problems.
Help command ribbon

The Help command ribbon lets you display the available Agilent Genomic Workbench help guides, and get information about software version, installation history, and check for software updates. Help guides are opened in Adobe Reader.

![Help command ribbon](image)

Figure 35 Help command ribbon for ChIP analysis

<table>
<thead>
<tr>
<th>Help Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Guide</td>
<td>Opens the Agilent Genomic Workbench application user guide for the selected application.</td>
</tr>
<tr>
<td>eArrayXD</td>
<td>Opens the eArrayXD User Guide. This guide comprehensive help on all available eArrayXD tools.</td>
</tr>
<tr>
<td>Sample Manager</td>
<td>Opens the Sample Manager User Guide, that shows how to use the Sample Manager module of Agilent Genomic Workbench to organize microarrays and edit their attributes.</td>
</tr>
<tr>
<td>Feature Extraction</td>
<td>Opens a menu that lets you choose from the following Feature Extraction help guides:</td>
</tr>
<tr>
<td></td>
<td>• Feature Extraction Quick Start Guide – An overview of how to use the Feature Extraction software to extract and generate QC reports for Agilent microarrays</td>
</tr>
<tr>
<td></td>
<td>• Feature Extraction User Guide – A comprehensive user guide that explains how to extract and generate QC reports for Agilent microarrays</td>
</tr>
<tr>
<td></td>
<td>• Feature Extraction Reference Guide – Contains tables that list default parameter values and results for Feature Extraction (FE) analyses, and explanations of how FE uses its algorithms to calculate results.</td>
</tr>
<tr>
<td>Quality Tools</td>
<td>Opens the Quality Tools User Guide, that describes how to query, filter, and evaluate microarray extractions within Agilent Genomic Workbench.</td>
</tr>
</tbody>
</table>
An additional guide is available in the Open Application tab of the program. The *Agilent Genomic Workbench Product Overview Guide* gives an overview of the capabilities within the Standard Edition of Agilent Genomic Workbench. It also describes how to start each of the component programs and find help, and how to enter your license information. In addition, it helps you with system administration and troubleshooting. To open this guide, click the **Open Application** tab, then click **Product Overview**.

<table>
<thead>
<tr>
<th>Help Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workflow</td>
<td>Opens the Workflow User Guide, that describes how to use the Workflow module of Agilent Genomic Workbench to extract image files with Agilent Feature Extraction software and/or analyze data using CGH and ChIP analysis software.</td>
</tr>
<tr>
<td>Data Viewing</td>
<td>Opens the Data Viewing User Guide that describes how to import, organize, manage, export and display data and other content (experiments, gene lists, tracks) within Agilent Genomic Workbench. It is targeted for users who have no DNA Analytics application license(s).</td>
</tr>
<tr>
<td>About</td>
<td>Opens a message with information about the version number and copyright of the program.</td>
</tr>
<tr>
<td>Installation History</td>
<td>Opens the Installation History dialog box, that shows what versions and updates were installed.</td>
</tr>
<tr>
<td>Check Updates</td>
<td>Checks for available updates to the software. If an update is available, you are asked if you want to install it. If no update is available, a message appears to let you know.</td>
</tr>
</tbody>
</table>
Navigator

This section describes the parts of the Navigator, and the shortcut menus and other functionality available within it.

The Navigator catalogs the array data, experiments, and other content stored in Agilent Genomic Workbench. It contains the following panes:
Search

Lets you search within any pane of the Navigator for a specific item (array or build, for example). You must type the entire array name or term; otherwise, use asterisks (*) as wildcards for unspecified strings. For example, type "1234" to find any item that contains "1234".

Design Data

Contains microarray data files, organized by design and application type, and then by genome build application type, then by design and genome build.

Shows all probe groups and microarray designs that are available to you, organized by folders. For the SureSelect Target Enrichment application type, the program shows all bait groups and libraries. In general, you can:

- Expand or collapse folders to show or hide content
- Look at the icon that appears with an item to monitor its status.
- Right-click the name of a folder or item to open a shortcut menu that lets you take action on the item.

See "Design Data pane – icons, special text, and buttons" on page 152 and "Design Data pane – actions and shortcut menus" on page 153.

For Agilent Catalog content, the names of all available items appear in the AgilentCatalog folder. However, to work with this content, you must specifically request a download of the actual data from the eArray Web site.

Experiment

Contains the Agilent Genomic Workbench experiments. Experiments are organizational units within the program that contain links to microarray data and design files. In data analysis applications, experiments also contain saved results.

My Entity List

Contains gene lists and tracks:

- **Gene Lists** are collections of genes of interest. You can create them within the program, import and export them, and apply them to Gene View and Chromosome View.
- **Tracks** are collections of annotation or other information that is correlated with specific genomic locations. You can import, export, and combine tracks, and display them in Gene View alongside your array data and analysis results.
The Search pane lets you find all occurrences of a specific search term in the Data, Experiment, and/or My Entity List panes. See “To find specific content items in the Navigator” on page 67. It also contains several buttons that you can use to detach, hide, show or resize the Navigator.

<table>
<thead>
<tr>
<th>Pane</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>My Networks</td>
<td>Contains the biological networks/pathways that you found using Network Search or that you create using a literature search in eArrayXD. For more information, see the eArrayXD Users Guide.</td>
</tr>
<tr>
<td>Tasks</td>
<td>Shows the jobs that you have submitted. Some jobs are completed locally by the eArrayXD server program. Others are sent to the eArray Web site for completion. In general, you can:</td>
</tr>
<tr>
<td></td>
<td>• Look at the icon that appears with a job to monitor its status.</td>
</tr>
<tr>
<td></td>
<td>• Right-click the name of a pending task to open a shortcut menu that lets you take further action on the job.</td>
</tr>
</tbody>
</table>

Search pane

The Search pane lets you find all occurrences of a specific search term in the Data, Experiment, and/or My Entity List panes. See “To find specific content items in the Navigator” on page 67. It also contains several buttons that you can use to detach, hide, show or resize the Navigator.

Figure 37 Navigator – Search pane

- **Detach button**: Detaches the Navigator from the main window of the program and opens it in a new, separate window.
- **Resize buttons**: Click to hide, show, or expand the Navigator.
Search term box Provides a box for you to type your desired search term. Search terms are not case-sensitive, but they must reflect the entire name of an array or other content item that you want to find. You can use asterisks (*) as wildcards to represent groups of unspecified characters. For example, type *12345* to search for any content that contains the string “12345”.

Panel list Lets you limit a search to a specific pane. Select the name of the desired pane from the list. To select all panes, select All Panels. By default, the program searches all panes.

![Figure 38 Open Pane List](image)

(Show Pane List button, available only if the Pane list is not visible) Makes the Pane list visible.

(Hide Pane List button, available only if the Pane list is visible) Hides the Pane list.

(Search button) Searches the pane(s) selected in the Pane list for all occurrences of the term you typed in the Search term box. If the program finds a matching item, it expands the folder structure to make the matching item(s) visible, makes the lettering of each item red and highlights the item in yellow. Note: The search term is not case-sensitive, but it must reflect the entire name of the desired items. You can use asterisks (*) as wildcards to represent groups of unspecified characters.

Scroll buttons (Available only after a search) Lets you scroll up and down the lists of highlighted search items after a search.
(Clear button, available only after a search) Clears the search term from the Search term box, and resets the color of any matching item to its original color.
Design Data pane – icons, special text, and buttons

<table>
<thead>
<tr>
<th>Item</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Folder]</td>
<td>A collapsed folder (domain) that contains subfolders or other items.</td>
</tr>
<tr>
<td>![Folder Expanded]</td>
<td>An expanded folder. The items that it contains are visible in the Navigator.</td>
</tr>
<tr>
<td>![Folder Plus]</td>
<td>Expands a folder to show its contents.</td>
</tr>
<tr>
<td>![Folder Minus]</td>
<td>Collapses a folder to hide its contents.</td>
</tr>
<tr>
<td>![Folder Microarray]</td>
<td>A folder that can contain microarray design(s) or bait librar(ies).</td>
</tr>
<tr>
<td>![Folder Probe Group]</td>
<td>A folder that can contain probe group(s) or bait group(s).</td>
</tr>
<tr>
<td>![Folder Agilent Content]</td>
<td>An item that contains Agilent content that you must update from the eArray Web site before you can use it.</td>
</tr>
<tr>
<td>![Folder Draft]</td>
<td>An available microarray design with a status of Draft, or an available probe or bait group with a status of Incomplete.</td>
</tr>
<tr>
<td>![Folder Review]</td>
<td>An available library or microarray design with a status of Review.</td>
</tr>
<tr>
<td>![Folder Completed]</td>
<td>An available library or microarray design with a status of Completed.</td>
</tr>
<tr>
<td>![Folder Submitted]</td>
<td>An available library or microarray design with a status of Submitted.</td>
</tr>
<tr>
<td>![Folder Locked]</td>
<td>An available probe or bait group with a status of Locked.</td>
</tr>
<tr>
<td>![Folder Methylation]</td>
<td>A methylation array design. This folder contains array data associated with the design, organized by genome build.</td>
</tr>
<tr>
<td>![Folder CGH]</td>
<td>A CGH array design. This folder contains array data associated with the design, organized by genome build.</td>
</tr>
<tr>
<td>![Folder Gene Expression]</td>
<td>A gene expression array design. This folder contains array data associated with the design, organized by genome build.</td>
</tr>
<tr>
<td>![Folder ChIP]</td>
<td>A ChIP array design. This folder contains array data associated with the design, organized by genome build.</td>
</tr>
<tr>
<td>![Folder Genome Build]</td>
<td>A genome build folder within a specific design folder. This folder contains arrays associated with the specific genome build and design.</td>
</tr>
<tr>
<td>![Folder Sample Data]</td>
<td>A folder that contains sample data for a design. The data are read-only to the user who is currently logged in. The data apply to the indicated genome build, and are not used by eArrayXD.</td>
</tr>
</tbody>
</table>
The Design Data pane of the Navigator shows available content items that are stored on your server for the selected application type, and any external content that you imported. It also shows the names of items in the Agilent Catalog. For more information on the contents of the Design Data pane, and how to use eArrayXD, see the eArrayXD Users Guide.

- Double-click any folder to expand or collapse it.
Main Folders

The Designs folder in the Design Data pane contains the following main folders:

<table>
<thead>
<tr>
<th>Folder</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>AgilentCatalog</td>
<td>Content from the Agilent Catalog that is available for the selected application type.</td>
</tr>
<tr>
<td><Workgroup Name></td>
<td>This folder, which bears the name of your workgroup, contains custom workgroup content that is available for the selected application type.</td>
</tr>
<tr>
<td>Imported External Designs</td>
<td>Design information and array data for downstream processing by Agilent Genomic Workbench data analysis applications. You cannot use eArrayXD to work with any of the items in these folders. For more information, see the applicable User Guide for each data analysis application.</td>
</tr>
<tr>
<td>Custom Designs</td>
<td>Custom designs created using eArray.</td>
</tr>
</tbody>
</table>

AgilentCatalog Folder

- Right-click the name of a microarray design or probe group to open a shortcut menu with available options. (Note – The availability of the options varies by design status and ownership.) See the eArrayXD User Guide for information on how to use these options.

<Workgroup Name> Folder

- Double-click the name of a folder to expand or collapse it.
- Right-click on an Array Design or Probe Group and select one of the available actions (described in the eArrayXD User Guide).
- Right-click the name of a domain folder to open a shortcut menu. See the eArrayXD User Guide for information on how to use these options.

Imported External Designs Folder

Imported external designs appear in this folder under folders for the type of design they represent: ChIP, Expression, CGH, or Only Stats and Params (for imported statistics and parameters from Feature Extraction).
Right-click the **Imported External Designs** folder to open a shortcut menu with an Import option. When you select this option, a menu appears with the following options for file import:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design File</td>
<td>Opens the Import Design Files dialog box, where you can select an Agilent GEML-based (*.xml) file for import. See “Import” on page 232 and “To import Agilent GEML design files” on page 46. Note: You cannot import Catalog designs. They must be downloaded from eArray.</td>
</tr>
<tr>
<td>Axon Design File</td>
<td>Opens the Import Axon Files dialog box, where you can select Axon design (*.gal) files for import. See “Import” on page 232 and “To import Axon design files” on page 47.</td>
</tr>
<tr>
<td>FE File</td>
<td>Opens the Import FE Files dialog box, where you can select an Agilent Feature Extraction .txt data file to import. See “Import” on page 232 and “To import Agilent FE or Axon data files” on page 49.</td>
</tr>
<tr>
<td>Axon File</td>
<td>Opens the Import Axon Files dialog box, where you can select Axon (*.gpr) files for import. See “Import” on page 232 and “To import Agilent FE or Axon data files” on page 49.</td>
</tr>
<tr>
<td>UDF File</td>
<td>Opens the UDF Files dialog box, where you can select a Universal Data File (UDF) to import. See “Import” on page 232.</td>
</tr>
</tbody>
</table>

- Double-click an imported designs folder (ChIP, Expression, CGH, Only Stats and ParamsCH3) to display the imported designs for that data type.
- Double-click the name of an imported design folder, and then double-click the Design Samples folder to display a list of genome builds.
- Double-click the name of a genome build folder to display imported arrays for that build.

Design Folder

- Right-click the name of a design folder to display these options:
Genome Build Folder

- Right-click the name of a genome build folder to display these options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete</td>
<td>Opens a Confirm dialog box. If you click Yes, the program permanently deletes all of the arrays in this genome build folder. (Not available for read-only builds.)</td>
</tr>
</tbody>
</table>

Individual Arrays

- Right-click the name of an array to display these options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show Properties</td>
<td>Opens the Microarray Properties dialog box. See “Microarray Properties” on page 242 and “To display or edit the attribute values of a specific array” on page 64.</td>
</tr>
<tr>
<td>Rename</td>
<td>Opens an Input dialog box, where you can type a new name for the array. Click OK to rename the array.</td>
</tr>
<tr>
<td>Delete</td>
<td>Opens a Confirm dialog box. If you click Yes, the program permanently deletes the array.</td>
</tr>
</tbody>
</table>
Drag an array from the Design Data pane to an experiment folder in the Experiment pane to associate it with an experiment. You can drag multiple arrays at once from one genome build in a design. Hold down the Ctrl key and click the additional arrays to select them. You can also select a contiguous block of arrays; click the first array in the block, then hold down the Shift key and click the last one.

Custom Designs Folder

This folder displays custom designs available from eArrayXD.

Experiment pane – icons, special text, and buttons

<table>
<thead>
<tr>
<th>Item</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Click to expand a folder and display its contents.</td>
</tr>
<tr>
<td>-</td>
<td>Click to collapse a folder and hide its contents.</td>
</tr>
<tr>
<td>!</td>
<td>A folder that contains files or other folders.</td>
</tr>
<tr>
<td>M</td>
<td>A methylation array design. This folder contains array data associated with the design, organized by genome build.</td>
</tr>
<tr>
<td>CGH</td>
<td>A CGH array design. This folder contains array data associated with the design, organized by genome build.</td>
</tr>
<tr>
<td>EXP</td>
<td>A gene expression array design. This folder contains array data associated with the design, organized by genome build.</td>
</tr>
<tr>
<td>CHIP</td>
<td>A ChIP array design. This folder contains array data associated with the design, organized by genome build.</td>
</tr>
<tr>
<td>Build</td>
<td>A genome build folder within a specific design folder. This folder contains arrays associated with the specific genome build and design.</td>
</tr>
<tr>
<td>Build</td>
<td>A read-only genome build folder within a specific design folder.</td>
</tr>
<tr>
<td>Build</td>
<td>A genome build folder, within a specific design folder, that you can modify.</td>
</tr>
<tr>
<td>!</td>
<td>An array that is not selected for view and analysis.</td>
</tr>
<tr>
<td>!</td>
<td>An array that is selected for view and analysis. The specific color of this icon can vary.</td>
</tr>
<tr>
<td>!</td>
<td>An array that has been designated as a calibration array.</td>
</tr>
</tbody>
</table>
You can use many items in the Experiment Pane of the Navigator to open shortcut menus or take other actions.
In general, double-click the **Experiments** folder within the Experiment Pane, and the folders within it, to expand and collapse them. Exception: Double-click the name of an unselected experiment to select it for analysis. This action opens the Experiment Selection dialog box. To select the experiment for analysis, click **Yes**.

The options that are displayed change depending on the user and status of the designs, builds, and arrays. You may not see all of the options that are described below.

Experiments Folder

- Right-click the **Experiments** folder to display these options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Experiment</td>
<td>Opens the Create Experiment dialog box (see “Create Experiment” on page 203), where you can name the new experiment, and open another dialog box that lets you add microarrays to the experiment. See “To create a new experiment” on page 57.</td>
</tr>
<tr>
<td>Export</td>
<td>Opens the Export Experiments dialog box, where you can export one or more experiments as a single ZIP file. See “Export Experiments” on page 224 and “To export experiments” on page 77.</td>
</tr>
</tbody>
</table>
Specific Experiment Folder

- In the Experiments folder, right-click the name of a specific experiment folder to display these options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Experiment</td>
<td>(Appears only if the experiment is not selected.) Opens the Experiment Selection dialog box, which asks if you want to select the experiment. Click Yes to select the experiment for display and analysis. If you switch experiments, a Confirm dialog box asks if you want to save the current result. Select one of these options:</td>
</tr>
<tr>
<td></td>
<td>- Overwrite Current Result – Replaces the currently selected experiment result in the Navigator with the result that appears on your screen.</td>
</tr>
<tr>
<td></td>
<td>- Create New Result – Opens the Save experiment result dialog box, where you can save the result that appears in the main window as a new experiment result. See “To save a result” on page 123.</td>
</tr>
<tr>
<td></td>
<td>- Continue Without Saving – The program does not save the result that appears on your screen.</td>
</tr>
<tr>
<td>Deselect Experiment</td>
<td>(Appears only if the experiment is selected.) If there are unsaved results, a Confirm dialog box opens with these options:</td>
</tr>
<tr>
<td></td>
<td>- Overwrite Current Result – Replaces the currently selected experiment result in the Navigator with the result that appears on your screen.</td>
</tr>
<tr>
<td></td>
<td>- Create New Result – Opens the Save Experiment result dialog box, where you can save the result that appears on your screen as a new experiment result.</td>
</tr>
<tr>
<td></td>
<td>- Continue Without Saving – The program does not save the result that appears on your screen.</td>
</tr>
<tr>
<td></td>
<td>In all three cases, the program then removes the experiment data and results from all views.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Save Experiment Result | Opens a dialog box that asks if you want to save the results of the current experiment. When you click OK, one of these dialog boxes opens:
 • If you have not yet saved a result for the experiment, the Save experiment result dialog box opens, where you can type a name for the experiment result.
 • If you have previously saved the result, the confirm dialog box appears, which lets you overwrite the current result, create a new result, or discard any changes. See “Confirm” on page 200.
 • If you have previously saved the result, and no changes have occurred, a message informs you that the current experimental condition is the same as an existing one. |
| Share | Opens the Sharing for enterprise dialog box where you can add users to share the experiment. See “Sharing for enterprise” on page 277. |
| Show Properties | Opens the Experiment Properties dialog box. Use this dialog box to see the names of the arrays in the experiment, and also to add or remove arrays from the experiment. See “Experiment Properties” on page 217. |
| Sample Attributes | Opens the Sample Attributes dialog box, where you can change the values for the attributes assigned to the arrays in the experiment. See “Sample Attributes” on page 263. To add new attributes you must use the Sample Manager. See Sample Manager User Guide. |
| Export | Opens the Export Experiments dialog box, where you can export this and other experiments as a single ZIP file. See “Export Experiments” on page 224, and “To export experiments” on page 77. |
| Export Attributes | Opens the Export Array Attributes dialog box, where you can save a file that contains selected attributes of the arrays in your experiment. See “Export Array Attributes” on page 220 and “To export array attributes” on page 76. |
| QC Metrics | Opens the QC Metrics table for all arrays in the experiment. The QC Metrics Table is available only for Agilent arrays. See “QC Metrics Table” on page 254, and “To display QC metrics of arrays and set array QC status” on page 93. |
| Edit Array Color | Opens the Edit Array Color dialog box, where you can select a display color for each of the arrays in the experiment. See “Edit Array Color” on page 215. |
Experiment pane – actions and shortcut menus

Design Folder

- In the folder of a specific experiment, right-click the name of a design to display a Delete command. If you click **Delete**, a Confirm dialog box opens. Click **Yes** to disassociate all of the arrays under the design from the experiment.

Genome Build Folder

- In the folder of a specific experiment, in a specific design folder, right-click the name of a genome build to display these options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set for Calibration</td>
<td>This is not used.</td>
</tr>
<tr>
<td>QC Metrics</td>
<td>Opens the QC Metrics table for all arrays in the genome build. The QC Metrics Table is available only for Agilent arrays. See “QC Metrics Table” on page 254, and “To display QC metrics of arrays and set array QC status” on page 93.</td>
</tr>
</tbody>
</table>
Individual Arrays

- In a specific experiment, right-click the name of an individual array to display these options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save As Text File</td>
<td>Opens the Save Design dialog box, where you can save all of the data associated with the genome build and design within the experiment as a tab-delimited text file.</td>
</tr>
</tbody>
</table>
| Delete | Opens a Confirm dialog box that asks if you want to disassociate all arrays under the design from the experiment. Click Yes to remove the links between the arrays and the experiment. Note:
 • If you delete a design from an experiment, the program removes the links between the experiment and the design and its arrays. The actual design and array data remain in the Design Data folder.
 • Saved results become unavailable if they involve arrays you delete with this command. |

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select</td>
<td>(Available only if the array is not already selected) Selects the array for display and analysis.</td>
</tr>
<tr>
<td>Deselect</td>
<td>(Available only if the array is selected) Removes the array data from Genome, Chromosome, and Gene views, and excludes it from the analysis. Also removes the array from the Selected Arrays tab in Tab View.</td>
</tr>
<tr>
<td>Select for Calibration</td>
<td>(Available only in the Arrays folder.) Designates the array as a calibration array. Within the specific experiment, the program moves the name of the array to the Calibration Arrays folder. Within the specific design tab in Tab View, the program also moves the data for the array from the Arrays tab to the Calibration Arrays tab.</td>
</tr>
<tr>
<td>Deselect from Calibration</td>
<td>(Available only within the Calibration Arrays folder.) Designates the array as a “regular” non-calibration array. Within the specific experiment, the program moves the name of the array to the Arrays folder. Within the specific design tab in Tab View, the program also moves the data for the array from the Calibration Arrays tab to the Arrays tab.</td>
</tr>
</tbody>
</table>
Experiment pane – actions and shortcut menus

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rename</td>
<td>Opens an Input dialog box, where you can type a new name for the experiment. Click OK to accept the new name for the experiment.</td>
</tr>
<tr>
<td>Delete</td>
<td>Opens a Confirm dialog box that asks if you want to disassociate the array from the experiment. Click Yes to remove the link between the array and the experiment.</td>
</tr>
<tr>
<td>Note:</td>
<td>• If you delete an array from an experiment, the program removes the link between the experiment and the array. The actual array data remains in the Data folder.</td>
</tr>
<tr>
<td></td>
<td>• You cannot restore an experiment result that includes a deleted array.</td>
</tr>
<tr>
<td>Show Properties</td>
<td>Opens the Microarray Properties dialog box, where you can view and edit microarray attributes. See “Microarray Properties” on page 242. For array files from the Agilent Feature Extraction program, you can also view the headers and feature data from the file.</td>
</tr>
<tr>
<td>QC Metrics</td>
<td>Opens the QC Metrics table for the array(s) you have selected. The QC Metrics Table is available only for Agilent arrays. See “QC Metrics Table” on page 254, and “To display QC metrics of arrays and set array QC status” on page 93.</td>
</tr>
<tr>
<td>Edit Array Color</td>
<td>Opens the Select Color dialog box, where you can select a display color for the array. See “Select Color” on page 264.</td>
</tr>
<tr>
<td>Edit Array Order</td>
<td>Opens the Array Order dialog box, where you can change the order of the arrays in the Experiment pane of the Navigator, and in Chromosome, Gene, and Tab Views. See “Edit Array Order” on page 216.</td>
</tr>
</tbody>
</table>
Results Folder

- In the Results folder of an experiment, right-click the name of a saved result to display these options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restore result</td>
<td>Replaces the result that appears in Genome, Chromosome, Gene, and Tab Views with the saved result. See “To restore a saved result” on page 124. The experiment associated with the saved result must be the selected experiment.</td>
</tr>
<tr>
<td>Rename</td>
<td>Opens an Input dialog box. Type a new name for the result, then click OK.</td>
</tr>
<tr>
<td>Delete</td>
<td>Opens a Confirm dialog box that asks if you want to delete the result. Click Yes to delete the result from the experiment.</td>
</tr>
<tr>
<td>Show Properties</td>
<td>Opens a Properties dialog box that you can use to view or edit a description of the result, and to view other attributes of the result. See “Properties (of an experiment result)” on page 253.</td>
</tr>
</tbody>
</table>

My Entity List pane – icons, buttons, and special text

<table>
<thead>
<tr>
<th>Item</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Click to expand a folder and display its contents.</td>
</tr>
<tr>
<td>-</td>
<td>Click to collapse a folder and hide its contents.</td>
</tr>
<tr>
<td>📁</td>
<td>A folder that contains files or other folders.</td>
</tr>
<tr>
<td>🏷</td>
<td>An individual gene list or track.</td>
</tr>
<tr>
<td>red regular text</td>
<td>An item that is an exact match with the search term in a search, or an unapplied gene list that has red chosen as its custom color.</td>
</tr>
<tr>
<td>colored italics</td>
<td>A gene list that has been applied.</td>
</tr>
<tr>
<td>red bold italics</td>
<td>A track that is selected for display in Gene View.</td>
</tr>
</tbody>
</table>
My Entity List pane – actions and shortcut menus

Gene List folder

- Right-click the Gene List folder to display an Import Gene List option. This command opens an Import dialog box that you can use to import a gene list into the program. See “To import a gene list” on page 71 and “Import” on page 232.
- Double-click the Gene List folder to show or hide its gene lists.
- In the Gene List folder, right-click the name of a gene list to display these options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>View In Table</td>
<td>Opens the Gene List dialog box, where you can view the list of genes. You can also edit the description of the gene list, and change the display color of the genes. See “Gene List” on page 228 and “To select gene list display color” on page 96.</td>
</tr>
<tr>
<td>Rename</td>
<td>Opens an Input dialog box, where you can type a new name for the gene list. Click OK to accept the new name.</td>
</tr>
<tr>
<td>Delete</td>
<td>Opens a confirm dialog box that asks if you are sure you want to delete the gene list. Click Yes to confirm.</td>
</tr>
<tr>
<td>Save As</td>
<td>Opens a Save As dialog box, where you can save the gene list as a text (*.txt) file. See “To export a gene list” on page 78.</td>
</tr>
</tbody>
</table>
Tracks folder

- Right-click the Tracks folder to display these options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add to Gene List</td>
<td>Opens the Add gene list dialog box, where you can add the gene list to any other one in the Gene List folder. See “Add Gene List <name> to” on page 185 and “To add one gene list to another” on page 72.</td>
</tr>
<tr>
<td>Highlight</td>
<td>(Available if the gene list is not selected.) Displays all genes in Gene View, and highlights the genes from the gene list in their display color. See “To show gene lists in Gene View” on page 95.</td>
</tr>
<tr>
<td>Show Only</td>
<td>(Available only if all genes appear in Gene View, or if the gene list is not selected) Limits the genes in Gene View to those on the gene list. No other genes appear. The program displays the genes in their display color. See “To show gene lists in Gene View” on page 95.</td>
</tr>
<tr>
<td>Show All</td>
<td>(Available only for the selected gene list.) In Gene View, displays all genes, without highlighting. See “To show gene lists in Gene View” on page 95.</td>
</tr>
</tbody>
</table>

Option Comments

<table>
<thead>
<tr>
<th>Import Tracks</th>
<th>Opens the Import Track dialog box, where you can import a BED format track file into the program. See “Import Track” on page 239 and “To import tracks” on page 50.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Export Tracks</td>
<td>Opens the Export Tracks dialog box, where you can select tracks for export as a single BED format track file. See “Export Tracks” on page 226 and “To export tracks” on page 78.</td>
</tr>
<tr>
<td>Combine Tracks</td>
<td>Opens the Combine Tracks dialog box, where you can associate two or more individual tracks by logical criteria to create a new combined track. See “Combine Tracks” on page 196 and “To combine tracks” on page 74.</td>
</tr>
</tbody>
</table>
Right-click the name of a track to display these options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show In UI</td>
<td>Mark this option to display the track in Gene View alongside the data and results of the selected experiment.</td>
</tr>
<tr>
<td>Show In UCSC</td>
<td>Opens the UCSC Genome Browser in your Web browser and uploads the track.</td>
</tr>
<tr>
<td>View Details</td>
<td>Opens a table listing all the chromosome locations selected in the track. See “Track” on page 283.</td>
</tr>
<tr>
<td>Edit Color</td>
<td>Opens the Select Color dialog box, where you can select a color for display of the selected track. See “Select Color” on page 264.</td>
</tr>
<tr>
<td>Rename</td>
<td>Opens an Input dialog box, where you can type a new name for the track. Click OK to rename the track.</td>
</tr>
<tr>
<td>Delete</td>
<td>Opens a Delete Track dialog box that asks if you are sure you want to delete the track. Click Yes to delete the track.</td>
</tr>
</tbody>
</table>

My Networks pane

This pane contains the biological networks/pathways that you found using Network Search or that you create using a literature search in eArrayXD. For more information, see the eArrayXD Users Guide.
Tasks pane

Many tasks that you do in Agilent Genomic Workbench generate jobs that are completed in the background on your Agilent Genomic Workbench server or on the eArray Web site. You use the Tasks pane to keep track of the status of these jobs, and to take action on them when their results become available.

Tasks pane – icons, buttons and special text

These icons, buttons, and special text items can appear in the Tasks pane of the Navigator:

<table>
<thead>
<tr>
<th>Item</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Click to expand a folder and display its contents.</td>
</tr>
<tr>
<td></td>
<td>Click to collapse a folder and hide its contents.</td>
</tr>
<tr>
<td></td>
<td>A folder that contains files or other folders.</td>
</tr>
<tr>
<td></td>
<td>A pending task with a status of Submitted. The task has been submitted to the job queue, but no action has been taken on it yet.</td>
</tr>
<tr>
<td></td>
<td>A pending task with a status of Processing. The task has been submitted to the job queue, and the program (or the eArray Web site) is processing the job.</td>
</tr>
<tr>
<td></td>
<td>A pending task with a status of Completed. The results of the job are now available for your use.</td>
</tr>
</tbody>
</table>
Tasks pane – Actions and shortcut menus

- Double-click the name of a folder to expand or collapse it.
- Right-click the name of a pending task to open a shortcut menu. The shortcut menu contains commands that are appropriate to the type of job, and its status.

For details on actions in the task menu, see the eArrayXD User Guide.
Genomic Viewer

The Genomic Viewer is the display for the Agilent Genomic Workbench CGH, ChIP and CH3 applications. It includes three graphical views: Genome, Chromosome and Gene Views. It also contains Tab View and the Cursor.

Genome View

![Image of Genome View](image)

Figure 41 Genome View (vertical orientation), with human chromosomes. The X chromosome is selected.
Genome View shows pictures of each of the distinct types of chromosomes in the selected genome. A blue box is drawn around the currently selected chromosome, and the cursor appears as a blue line across the chromosome.

Genome View actions and shortcut menus

- Click a chromosome to select it. When you select a chromosome, Chromosome, Gene, and Tab Views show only genomic regions, genes, and data associated with it. The specific location in which you click the chromosome sets the position of the cursor. See “The View Cursor” on page 179.

- On the selected chromosome, click anywhere to reposition the cursor. See “The View Cursor” on page 179. This also repositions the cursor in Chromosome, Gene, and Tab Views.

- Right-click anywhere within Genome View to display a menu. If you click **View Preferences**, the View Preferences dialog box opens, where you can set preferences for the display. See “View Preferences” on page 293.

- Click the **Detach** button (located at the top center of the pane) to remove Genome View from the main window and open it in a separate window. To reattach the view, click its **Close** button.

- Drag the side or bottom borders of the pane to resize it.

- On a border of the pane, click a resize button (for example, ‹ or ›) that points away from the pane to move that border all the way to the edge of the main window. To move the border back to its previous location, click the other resize button.
Chromosome View shows a more detailed diagram of the chromosome you select in Genome View.

- Cytobands and a plotting area appear alongside the chromosome.
- When you select arrays for display, their data appear in the plotting area.
- The cursor appears as a solid blue line across the chromosome and the plotting area.
- The selected region of the chromosome (if any) appears as a dotted blue box in the plotting area.
Chromosome View actions and shortcut menus

- Click a cytoband, any part of the chromosome, or anywhere in the plotting area to reposition the cursor at that location. See “The View Cursor” on page 179.

- Drag the pointer over any part of the plotting area to select a chromosomal region for display in Gene View. Drag parallel to the chromosome. This also repositions the cursor to the center of the selected region. See “The View Cursor” on page 179.

- Right-click anywhere within Chromosome View to display a menu. If you click View Preferences, the View Preferences dialog box opens, where you can set preferences for the display. See “View Preferences” on page 293.

- Click the Detach button (located at the top center of the pane) to remove Chromosome View from the main window and open it in a separate window. To reattach the view, click its Close button.

- Drag an inside border of Chromosome View to resize the view.

- On a border of the pane, click a resize button (for example, or) that points away from the pane to move that border all the way to the edge of the main window. To move the border back to its previous location, click the other resize button.
Gene View

Gene View shows a more detailed view of the chromosomal region you select in Chromosome View. See “Chromosome View” on page 173.

- Regions occupied by genes appear as small blue boxes. Gene names appear nearby. You can customize the appearance of gene names. Also, you can use a gene list to highlight genes of interest, or to limit the genes that appear to those in the list. See “To change the appearance of genes in Gene View” on page 97, and “To show gene lists in Gene View” on page 95.
Log ratio data from selected arrays in the active experiment appear as a scatter plot. Points appear in colors that you can customize. You can also customize the scatter plot. See “To change scatter plot appearance” on page 90.

The location of the cursor matches the location of the cursors in other views. See “The View Cursor” on page 179.

The name of the chromosome, and the coordinates and size of the displayed chromosomal region appear at the top of the pane.

Imported tracks can also appear in Gene View. See “To show tracks in Gene View” on page 98.

Scatter Plot

![Configure Coloring schemes]

You access the scatter plot command group through Gene View or through the View Preferences dialog box from the View tab. The commands differ for each Agilent Genomic Workbench application. Scatter plots appear in the Chromosome and Gene Views, but only if they have been activated in the View Preferences dialog box.

Ratios

Mark the box to enable the Ratios scatter plot. The only choice of data for the plot is Ratio Values.

Log Ratios

Mark the box to enable the Log Ratios scatter plot. Selections let you color-code the Log Ratios by Log Ratio Values or Probe Score Values.

Configure Color and Ranges

Opens the Configure Coloring Ranges and Shades dialog box, where you can set up the colors and ranges for the Ratios and Log Ratios scatter plots. For more information, see “Configure Coloring Ranges and Shades” on page 198.
Gene View buttons

- Zooms in to see a smaller region in more detail.
- Zoons out to see a larger region in less detail.

(Available when Gene View is in vertical orientation.) Scrolls up through
the genes and data to lower-numbered chromosomal coordinates.

(Available when Gene View is in vertical orientation.) Scrolls down
through the genes and data to higher-numbered chromosomal coordinates.

(Available when Gene View is in horizontal orientation.) Scrolls left
through the genes and data to lower-numbered chromosomal coordinates.

(Available when Gene View is in horizontal orientation.) Scrolls right
through the genes and data to higher-numbered chromosomal coordinates.

(Resize buttons) The button that points away from Gene View expands the
view. The other button restores the view to its original size. See the
Product Overview Guide. (These buttons will appear horizontal if the view
orientation is horizontal.)

(Detach button) Removes Gene View from the main window, and opens it
in a separate window. See the Product Overview Guide.

Gene View shortcut menu and other actions

- Click anywhere in the plotting area of Gene View to move the cursor to
 that location. See “The View Cursor” on page 179.
- Drag an inside border of Gene View to resize the view.
- Right-click anywhere in the plotting area of Gene View to display these
 options:
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create Gene List</td>
<td>Opens the Create Gene List dialog box, where you can create a new gene list based on the currently selected (or another) chromosomal region. See “Create Gene List” on page 204 and “To create a gene list” on page 71.</td>
</tr>
<tr>
<td>Show in UCSC</td>
<td>Opens the View Coordinates in UCSC Browser dialog box where you select track information for display in the UCSC (University of California at Santa Cruz) Genome Browser. You can then view the track. See “View coordinates in UCSC browser” on page 291.</td>
</tr>
<tr>
<td>Simple HD Search</td>
<td>Opens SimpleHD Probe Search pane in the Search tab, where you can start a search of the Agilent eArray web site for probes in the selected (or another) chromosomal region. See “To search for probes in eArray” on page 103 and “Simple HD Probe Search” on page 279.</td>
</tr>
<tr>
<td>Chromosomal Location Search</td>
<td>Opens Probe Search in the Search tab, where you can search for probes based on their chromosomal locations. See the eArrayXD User Guide for more information.</td>
</tr>
<tr>
<td>User Preferences</td>
<td>Opens the User Preferences dialog box, where you can set user preferences on three separate tabs. See “User Preferences” on page 285.</td>
</tr>
<tr>
<td>View Preferences</td>
<td>Opens the View Preferences dialog box, where you set preferences for the Genomic Viewer. See “View Preferences” on page 293.</td>
</tr>
</tbody>
</table>
The View Cursor

The View cursor reflects the center of the current chromosomal region of interest. It appears in several Views:

- In Genome View, it appears as a blue bar across the selected chromosome.
- In Chromosome View, it is a blue bar that appears across the chromosome and across the plotting area of the view.
- In Gene View, it is a blue bar that appears across the plotting area and tracks of the view.

![Figure 45 Genomic viewer showing cursors](image)

The position of the cursor in one view is also the position of the cursor in all views. The exact chromosomal location of the cursor appears in the first cell of the Status bar. Several actions affect the position of the cursor:

- In Genome View, click anywhere on a chromosome to move the cursor to that location.
- In Chromosome View, click a cytoband name, part of the chromosome, or anywhere in the plotting area to move the cursor to that location.
- In Gene View, click anywhere in the plotting area to move the cursor to that location.

The cursor in Gene View is the same cursor used for tracks.
In Tab View, click a row of a data table to move the cursor to the chromosomal location associated with that row.

Tab View displays design annotation and log ratio data related to the chromosome you select in Chromosome View. The exact column content of the tables depends on the specific tab and design, but it always includes chromosomal locations of probes.

The selected row of data appears highlighted in blue. This row represents data that corresponds approximately with the location of the cursor.

Columns of log ratio data appear below the names of the specific arrays to which they correspond. If an array is selected for display in Chromosome and Gene views, a colored square appears next to its name.
Signal intensity (raw signals) and/or annotations appear if selected from the View command ribbon.

Tab View tabs and buttons

You can see the following tabs and buttons in Tab View. See Figure 46 for a diagram that identifies some of these elements.

Design tabs
A separate tab appears for each microarray design included in the active experiment. The name of the design appears on each tab, along with an icon:

- A methylation array design
- An aCGH array design.
- A CGH+SNP array design.
- A gene expression array design.
- A ChIP-on-Chip array design.

When you click a design tab, the data and annotation for the arrays in the design appear in Tab View. The program separates the arrays of the design into the Arrays tab and the Calibration Arrays tab (see below).

Arrays tab
(Available when you click a specific design tab.) Contains a table of data and annotation for all arrays in a design that contain biological data.

Selected Arrays tab
Contains a table of data and annotation for the selected arrays from all designs in the active experiment.

(Resize buttons) The button that points away from Tab View expands the view. The other button restores the view to its original size. See the Product Overview Guide for more information.

(Detach button) Removes Tab View from the main window, and opens it in a separate window. See the Product Overview Guide for more information.

Tab View actions and shortcut menus

- Click the **name of an array in a column heading** to select the array for display.
- Right-click the **name of an array in a column heading** to display these options:
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rename Array</td>
<td>Opens an Input dialog box, where you can type a new name for the array. This only changes the name of the array within the active experiment.</td>
</tr>
<tr>
<td>Remove Array From Experiment</td>
<td>Opens a confirmation dialog box. Click Yes to remove the link between the array and the active experiment. This command does not delete the data file from the program. To do this, see “To remove data or design files from the program” on page 70.</td>
</tr>
<tr>
<td>Select Array</td>
<td>(Available if the array is not selected.) Selects the array for display. A colored square appears next to the name of the array.</td>
</tr>
<tr>
<td>Deselect Array</td>
<td>(Available if the array is selected.) Removes the array data from scatter plots, and removes the column of the array from the Selected Arrays tab.</td>
</tr>
<tr>
<td>Edit Array Color</td>
<td>Opens the Select Color dialog box, where you can change the display color of the array. See “Edit Array Color” on page 215 and “To change the display color of an array” on page 85.</td>
</tr>
<tr>
<td>Edit Array Order</td>
<td>Opens the Edit Array Order dialog box, where you can change the order in which the names of the arrays in a given design of the active experiment appear in Tab View and in the Navigator. In Gene View, when you view separate scatter plots for each array, the plots also appear in this order. See “Edit Array Order” on page 216 and “To change the order of arrays in an experiment” on page 60.</td>
</tr>
<tr>
<td>Select All Arrays</td>
<td>Selects all arrays in all designs in the active experiment for display. All arrays appear in the Selected Arrays tab.</td>
</tr>
<tr>
<td>Deselect All Arrays</td>
<td>Removes all arrays from display, and from the Selected Arrays tab.</td>
</tr>
<tr>
<td>Scroll To Column</td>
<td>Opens the Scroll to Column dialog box, where you can select a column in the current tab. The program then scrolls the data table in the tab so you can see the selected column. See “Scroll to Column” on page 264.</td>
</tr>
</tbody>
</table>
• Right-click a *heading of a column other than an array data column* to display a Scroll To Column option. If you click this option, the Scroll to Column dialog box appears, where you can select a column in the current tab. The program then scrolls the data table in the tab so you can see the column.

• Click an *entry in a data table* to select the row in which it appears. This also moves the cursor to the location of the data point that corresponds to the selected row.

• Right-click a *data table entry* to display these options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find in Column</td>
<td>Opens the Find in column dialog box, where you can search for a specific text string within the column you clicked. See “Find in column” on page 227.</td>
</tr>
<tr>
<td>Google</td>
<td>Opens your Web browser, and passes the column entry you clicked as a search string to the selected site. The UCSC links search the indicated University of California, Santa Cruz database related to the indicated genome build. See “To search the Web for information on probes in Tab View” on page 104.</td>
</tr>
<tr>
<td>LocusLink</td>
<td></td>
</tr>
<tr>
<td>PubMed</td>
<td></td>
</tr>
<tr>
<td>UCSC HG15(April ‘03)</td>
<td></td>
</tr>
<tr>
<td>UCSC HG16(July ‘03)</td>
<td></td>
</tr>
<tr>
<td>UCSC HG17(May ‘04)</td>
<td></td>
</tr>
<tr>
<td>UCSC HG18(March ‘06)</td>
<td></td>
</tr>
<tr>
<td>UCSC mm8(Feb ‘06)</td>
<td></td>
</tr>
<tr>
<td>UCSC mm9(July ‘07)</td>
<td></td>
</tr>
<tr>
<td>DGV(hg18)</td>
<td></td>
</tr>
<tr>
<td>GO</td>
<td></td>
</tr>
<tr>
<td>KEGG(HUMAN)</td>
<td></td>
</tr>
<tr>
<td>Customize Link</td>
<td>Opens the Customize Search link dialog box, where you can create or edit a custom Web link that appears in this shortcut menu. When you click a custom link, the program opens your Web browser, and passes the column entry you clicked as a search string to the site. See “Customize Search Link” on page 208 and “To create a custom Web search link” on page 105.</td>
</tr>
<tr>
<td>(other options)</td>
<td>If other options appear in this shortcut menu, they are custom Web search links. Click them to open your Web browser, and pass the column entry you clicked as a search string to the site.</td>
</tr>
</tbody>
</table>
The Status Bar (Figure 47) displays information related to the currently displayed data.

Cursor position
The chromosomal location of the cursor. See “The View Cursor” on page 179.

Genome build
The genome build associated with the currently displayed data.

Ratio type
The mathematical type of the array data. The possible types are:
- ratio
- log2 ratio
- log10 ratio
- ln (natural log) ratio

Selected Row
The row in the currently displayed data table that is selected. The location of the cursor is approximately the chromosomal location associated with this row.

Table size
The number of rows and columns in the displayed tab. The size appears as
<# of rows> x <# of columns>.

![Status Bar Diagram](image)
Dialog Boxes

This section describes the dialog boxes specific to the interactive mode of the ChIP program. They are listed in alphabetical order by title. Many dialog boxes in interactive mode also appear when you use the Genomic Viewer.

Add Gene List <name> to

Purpose: Adds genes from one gene list (the source gene list) to another (the target gene list).

To open: In the My Entity List pane, right-click the name of a gene list, then click Add to Gene List.

Select target gene list

The gene list to which genes are added. Select one from the list.
Build (Read-only) The genome build associated with the genes in the list. The builds of the two gene lists must match.

Description (Optional) Description of the combined gene list.

List of genes A list of the genes in the target gene list.

Genelist Color (Read-only) The current display color of the target gene list.

OK Adds the genes from the source gene list to the target gene list.

Cancel Closes the dialog box without adding any genes to the target gene list.

Agilent Feature Extraction Importer

Figure 49 Agilent Feature Extraction Importer

Purpose: Lets you edit the name of the FE data file you intend to import and to select if you want to flip the red/green ratio for the data.
To open: In the Home tab, click Import > Array Files > FE File, select the desired FE data file(s), then click Open.

Name

Let you edit the names of the FE files. You can change the names of the files to names that you are more likely to recognize or remember.

Dye Flip

For each array:

Select **Normal** if:

- The test samples were labeled with cyanine-5 (red).
- The control samples were labeled with cyanine-3 (green).
- The imported ratio (test/control) should be reported directly.

Select **Flipped** if:

- The test samples were labeled with cyanine-3 (green).
- The control samples were labeled with cyanine-5 (red).
- The imported ratio (control/test) should be reported with the ratio inverted (test/control).

The program does not combine dye-flip pairs.

Overwrite arrays with duplicate names

Mark this option to replace existing file(s) in the program with the imported one(s), if they have the same name(s).

Run in Background

Imports the files, and lets you use your computer for other purposes while the import occurs. This is especially useful if you have many files to import.

OK

Imports the files in the foreground. You cannot use your computer for other purposes while the import occurs.

Cancel

Cancels the entire import process without importing anything.
Array Set

Purpose: Displays the names of arrays to be fused in the analysis.

To open: The array set dialog box opens when you fuse designs. Click the Fuse button in the Preprocessing command ribbon. See “To combine (fuse) arrays” on page 114.

Table: Displays the arrays to be fused, arranged by their values for the ArraySet attribute. The program creates a separate fused array for each group of arrays with a given value for ArraySet. The table also lists the design ID associated with each array, and the design type.

Select Normalization: Currently, the program always applies the Centralization normalization algorithm to the arrays in each fused design. See “Normalization Algorithms” on page 314.

Remove arrays from experiment after fuse: Deletes the original unfused arrays after creating fused arrays. This reduces the duplication of data within the experiment.

Continue: Click to create fused designs using the selected options.

Cancel: Cancels any selections, and closes the dialog box.
Catalog and Workgroup Data

You may choose to download the following data to make custom design using eArrayXD

<table>
<thead>
<tr>
<th>Category</th>
<th>Data Type</th>
<th>Learn More</th>
<th>Download</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common to all applications</td>
<td>Exon boundary data for search</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not Downloaded</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expression</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Catalog Expression probe data</td>
<td>Learn More</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not Downloaded</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Workgroup Expression data</td>
<td>Learn More</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not Downloaded</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CGH + SNP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Catalog SNP probe data</td>
<td>Learn More</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not Downloaded</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Workgroup CGH probe data</td>
<td>Learn More</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not Downloaded</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Target Enrichment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Catalog Target Enrichment bait data</td>
<td>Learn More</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not Downloaded</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Workgroup Target Enrichment bait data</td>
<td>Learn More</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not Downloaded</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ChIP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Workgroup ChIP probe data</td>
<td>Learn More</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not Downloaded</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Micro RNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Catalog MicroRNA probe data</td>
<td>Learn More</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not Downloaded</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 51 Catalog and Workgroup Data dialog box
Purpose: Lets you transfer probe data and exon boundary data from the eArray Web site to your Agilent Genomic Workbench server. You can transfer probe data from both the Agilent Catalog and from the folders of your workgroup. Probe data are available by application type (i.e. Expression, ChIP, and so on). Exon boundary data apply to all application types. For more information, see the *eArrayXD User Guide*.

The transfer of a specific type of data must be complete before you can perform tasks in eArrayXD that require that data. For example, you must transfer Catalog expression probe data before you can use the probe search tool to search for Agilent Catalog expression probes. Also, to transfer other types of data from the eArray Web site, such as probe groups, bait groups, microarray designs, and libraries, you must use other commands. For an overview of data transfers, see the *eArrayXD User Guide*.

To open: In the Home tab, click *Data*.

For each type of data, several items can appear. See the example below:

- **Application type**: The experimental application type for which the probe data apply.
- **Description of data**: The specific source and type of data to be transferred. In the example above, the source of the data is the folders of your workgroup on the eArray Web site, and the specific type of data is probe data for the chromatin immunoprecipitation (ChIP) application type.
- **Message**: Shows the status of the given data transfer. Two messages can appear:
 - Not Downloaded – The given data have not been transferred, or a download request has been made, but the transfer is not yet complete.
 - Downloaded and available – The transfer of the given data is complete. You can use the data when you work in eArrayXD.
- **Learn More**: Opens a new window that gives details about the specific type of data.
Download

Transfers the given type of data from the eArray Web site to your Agilent Genomic Workbench server. If this button does not appear, the given type of data has already been transferred. eArrayXD lets you transfer a given type of data only once.

NOTE

Any member of your workgroup can request the transfer of workgroup and catalog probe data from the eArray Web site. If one user transfers a given set of data, that set is available to all members of the workgroup.

Chart Properties

Purpose: This dialog box is used to create or edit settings for plots.

To open: Use the CGHSmooth, Echo Example, or MovAvg Example plug-in to produce a plot. Right-click within the plot area, then click Properties in the shortcut menu.

This dialog box has three tabs. At any point, click OK to accept the settings in all three tabs, or click Cancel to close the dialog box without making any changes to the settings.
Title tab

Figure 52 Chart Properties dialog box – Title tab

- **Show Title** – Mark this option to display a title across the top of the chart.
- **Text** – Type a title for the chart.
- **Font** – (Available if you mark **Show Title**) Click **Select** to open the Font Selection dialog box. Select the desired font attributes, then click **OK**.
- **Color** – (Available if you mark **Show Title**) Click **Select** to open the Title Color dialog box. Select or configure a color for the title, then click **OK**. This dialog box is identical to the Select Color dialog box. See “Scroll to Column” on page 264.
Plot tab

![Chart Properties dialog box – Plot tab](image)

- In the Plot tab, you can set these properties in the Domain Axis tab ("X" axis):

<table>
<thead>
<tr>
<th>Property</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
</tr>
<tr>
<td>Label</td>
<td>A custom label for the Domain (X) axis of the chart. Type the desired label.</td>
</tr>
<tr>
<td>Font</td>
<td>The font for the custom label on the Domain (X) axis. Click Select to open the Font Selection dialog box. Select the desired font attributes, then click OK.</td>
</tr>
<tr>
<td>Paint</td>
<td>The color of the custom label on the Domain (X) axis. Click Select to open the Label Color dialog box. Select the desired color, then click OK. This dialog box is identical to the Select Color dialog box. See “Select Color” on page 264.</td>
</tr>
</tbody>
</table>
Chart Properties

In the Plot tab, you can set the following properties in the Appearance tab:

<table>
<thead>
<tr>
<th>Property</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other – Ticks tab</td>
<td></td>
</tr>
<tr>
<td>Show tick labels</td>
<td>Mark this option to show, or clear it to hide, the numerical values on the Domain (X) axis.</td>
</tr>
<tr>
<td>Tick label font</td>
<td>The font for the numerical values on the Domain (X) axis. Click Select to open the Font Selection dialog box. Select the desired font attributes, then click OK.</td>
</tr>
<tr>
<td>Show tick marks</td>
<td>Mark this option to show, or clear it to hide, tick marks on the Domain (X) axis.</td>
</tr>
<tr>
<td>Other – Range tab</td>
<td></td>
</tr>
<tr>
<td>Auto-adjust range</td>
<td>Mark this option to automatically set the range of values on the X-axis to include all data.</td>
</tr>
<tr>
<td>Minimum range value</td>
<td>(Available if you do not mark Auto-adjust range) The lowest value represented on the X-axis.</td>
</tr>
<tr>
<td>Maximum range value</td>
<td>(Available if you do not mark Auto-adjust range) The highest value represented on the X-axis. The program automatically converts large numbers to scientific “E” notation – for example, 1.22E8.</td>
</tr>
</tbody>
</table>

- In the Plot tab, you can set the following properties in the Appearance tab:

<table>
<thead>
<tr>
<th>Property</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outline stroke</td>
<td>The thickness of the lines that enclose each plot. Click Select to open the Stroke Selection dialog box. Select the desired line thickness, then click OK.</td>
</tr>
<tr>
<td>Outline paint</td>
<td>The color of the lines that enclose each plot. Click Select to open the Outline Color dialog box. Select the desired color, then click OK. This dialog box is identical to the Select Color dialog box. See “Select Color” on page 264.</td>
</tr>
<tr>
<td>Background paint</td>
<td>The color of the background within each plot area. Click Select to open the Background Color dialog box. Select the desired color, then click OK. This dialog box is identical to the Select Color dialog box. See “Select Color” on page 264.</td>
</tr>
<tr>
<td>Orientation</td>
<td>Select either Vertical (domain-axis on the bottom of the chart) or Horizontal (domain-axis on the left side of the chart).</td>
</tr>
</tbody>
</table>
The Other tab offers these options:

- **Draw anti-aliased** – Mark this option to minimize distortion and visual artifacts in the plot image. This produces a smoother image, but it can be less sharp than the original one.

- **Background paint** – The color of the chart outside of the plot area and legend. Click **Select** to open the Background Color dialog box. Select the desired color, then click **OK**. This dialog box is identical to the Select Color dialog box. See “Select Color” on page 264.

The other options are for future expansion, and are not available in the current release of Agilent Genomic Workbench.
Combine Tracks

Purpose: Lets you create a combined track that contains elements of two or more source tracks, associated by logical criteria. See “To combine tracks” on page 74.

To open: In the My Entity List pane, right-click the Tracks folder, then click **Combine Tracks**.

- **Name**
 - The name of the combined track.

- **New Condition**
 - Adds a new, empty row to the Track/Operator table in the dialog box.

- **Delete Condition**
 - Removes the bottom row from the Track/Operator table in the dialog box.

- **Track**
 - In each row, select a track to include in the combined track.

- **Operator**
 - In each row, select the desired logical operator. This operator controls the manner in which the program combines the track in this row with the others. Select one of these options:
Combine Tracks

Set up a table and select the tracks you wish to combine.

Reset
Removes all Track/Operator pairs from the table in the dialog box, and clears the Name of the combined track.

Save
Creates the combined track, but does not close the dialog box.

Close
Closes the dialog box. Opens the Confirm track save dialog box if you created a combined track, but did not save it.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>Places an element in the combined track if it appears in both this track and any of the others.</td>
</tr>
<tr>
<td>OR</td>
<td>Places an element in the combined track if it appears in either this track or any of the others. If you set this operator for all tracks in the list, the result is a nonredundant set of elements from all tracks.</td>
</tr>
<tr>
<td>MINUS</td>
<td>Removes the elements that appear in this track from the combined track, if they otherwise appear there.</td>
</tr>
</tbody>
</table>
Configure Coloring Ranges and Shades

Figure 56 Set Colors and Ranges dialog box

Purpose: This dialog box is used to type ranges and select colors for scatter plot options. Tabs show selections for Ratios and Log Ratio plot options.

To open: In Gene View, move the mouse pointer over Scatter Plot to display the scatter plot options and then click Configure. Or, click the View tab and click View Preferences. Under Scatter Plot, click Configure.
Configure Coloring Ranges and Shades

Table 7 Ratios Plot Parameters

<table>
<thead>
<tr>
<th>Scale Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>Type a minimum value for the range.</td>
</tr>
<tr>
<td>Max</td>
<td>Type a maximum value for the range.</td>
</tr>
<tr>
<td>Color</td>
<td>Click to open the Select Color dialog box, where you can select the color you want to display for this range. See “Select Color” on page 264 for more information.</td>
</tr>
<tr>
<td>Add Range</td>
<td>Click to add a row to the range table, using the values displayed in Min and Max, and the selected Color.</td>
</tr>
<tr>
<td>Remove Range</td>
<td>Click to remove the ranges with Edit/Delete box marked.</td>
</tr>
<tr>
<td>Edit Range</td>
<td>Click to edit range(s) with Edit/Delete box marked.</td>
</tr>
<tr>
<td>Range table</td>
<td>This table displays the defined ranges, including minimum and maximum values, color for each range, and Edit/Delete selection.</td>
</tr>
</tbody>
</table>

Table 8 Log Ratios Plot Parameters

<table>
<thead>
<tr>
<th>Scale Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Ratio Values</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>Type a minimum value for the range.</td>
</tr>
<tr>
<td>Max</td>
<td>Type a maximum value for the range.</td>
</tr>
<tr>
<td>Color</td>
<td>Click to open the Select Color dialog box, where you can select the color you want to display for this range. See “Select Color” on page 264 for more information.</td>
</tr>
<tr>
<td>Add Range</td>
<td>Click to add a row to the range table, using the values displayed in Min and Max, and the selected Color.</td>
</tr>
<tr>
<td>Remove Range</td>
<td>Click to remove the ranges with Edit/Delete box marked.</td>
</tr>
<tr>
<td>Edit Range</td>
<td>Click to edit range(s) with Edit/Delete box marked.</td>
</tr>
</tbody>
</table>
Table 8 Log Ratios Plot Parameters (continued)

<table>
<thead>
<tr>
<th>Scale Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range table</td>
<td>This table displays the defined ranges, including minimum and maximum values, color for each range, and Edit/Delete selection.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probe Score Values</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>Type a minimum value for the range.</td>
</tr>
<tr>
<td>Max</td>
<td>Type a maximum value for the range.</td>
</tr>
<tr>
<td>Color</td>
<td>Click to open the Select Color dialog box, where you can select the color you want to display for this range. See "Select Color" on page 264 for more information.</td>
</tr>
<tr>
<td>Add Range</td>
<td>Click to add a row to the range table, using the values displayed in Min and Max, and the selected Color.</td>
</tr>
<tr>
<td>Remove Range</td>
<td>Click to remove the ranges with Edit/Delete box marked.</td>
</tr>
<tr>
<td>Edit Range</td>
<td>Click to edit range(s) with Edit/Delete box marked.</td>
</tr>
</tbody>
</table>

Range table This table displays the defined ranges, including minimum and maximum values, color for each range, and Edit/Delete selection.

Figure 57 Confirm dialog box

Purpose: Selects how the state of the current analysis should be retained when switching between applications.

To open: Click the Switch Application button when an experiment is currently selected.
Overwrite Current Result
Replaces the currently selected experiment result in the Navigator with the result that appears on your screen.

Create New Result
Opens the Save Experiment result dialog box, where you can save the result that appears on your screen as a new experiment result. See “To save a result” on page 123.

Continue Without Saving
The program does not save the result that appears on your screen.

Confirm overwrite

Purpose: When you import an experiment, it can contain designs and/or arrays that have the same names as those already available in Agilent Genomic Workbench. This dialog box lets you select which designs and/or arrays to overwrite.
To open: This dialog box appears when you import a ZIP format experiment file, and it contains designs and/or arrays that are already available in Agilent Genomic Workbench. See “To import an experiment file” on page 52.

Select the designs you wish to overwrite

Design The names of the designs in the imported file that have the same names as designs that are already available in Agilent Genomic Workbench.

Overwrite Mark the check box next to each existing design that you want to overwrite.

Select All Marks all of the check boxes under Overwrite.

Deselect All Clears all of the check boxes under Overwrite.

Select the microarrays you wish to overwrite

Array Identification number for the array.

Name The names of the arrays in the imported file that have the same names as arrays that are already available in Agilent Genomic Workbench.

Overwrite Mark the check box next to each existing array that you want to overwrite.

Select All Marks all of the check boxes under Overwrite.

Deselect All Clears all of the check boxes under Overwrite.

OK Overwrites the selected files (both designs and arrays) and closes the dialog box.

Cancel Closes the dialog box, and returns you to the Import (experiments) dialog box. See “Import (experiments)” on page 234.
Create Experiment

Purpose: To create an organizational unit in the Experiment pane of the Navigator to link to array data for viewing and analysis.

To open: In the Experiment pane of the Navigator, right-click the Experiments folder, then click **New Experiment**, or click **Home > Create Experiment**.

Name
Type a name for your new experiment.

Description
Brief description of your experiment with information that helps you identify it.

Properties
Click to access the Experiment Properties dialog box, where you can select microarrays to add to your new experiment. See “Experiment Properties” on page 217.

NOTE
If you do not add data to your new experiment from arrays in the Experiment Properties dialog box, the program creates an empty experiment.
Create Gene List

Purpose: Creates a list that you can use to highlight or limit the genes that appear in Gene View.

To open: Right-click Gene View, then click Create Gene List.

Name: Type a name for the gene list.
Build: Select the genome build for the genes to be selected for list.
Description: Describe the type or nature of the genes in the list.

Set Chromosome Start-Stop

You can select a chromosomal region in Chromosome View before you open the Create Gene List dialog box. If you do, the program presets the chromosomal coordinates of the region.
<table>
<thead>
<tr>
<th>User Defined</th>
<th>Select this option to use the Chromosome, Start, and Stop options to limit the gene list. This option overrides any previously selected region.</th>
</tr>
</thead>
<tbody>
<tr>
<td>For complete gene view</td>
<td>Selects all of the genes that currently appear in Gene View.</td>
</tr>
<tr>
<td>Chromosome</td>
<td>(Available if you select User Defined.) Lets you select the chromosome for the gene list.</td>
</tr>
<tr>
<td>Start</td>
<td>(Available if you select User Defined.) Lets you set the beginning of the genomic region for the gene list.</td>
</tr>
<tr>
<td>Stop</td>
<td>(Available if you select User Defined.) Lets you set the end of the genomic region for the gene list.</td>
</tr>
<tr>
<td>Color</td>
<td></td>
</tr>
<tr>
<td>Change</td>
<td>Click to change the display color of the gene list in Gene View and in the Navigator.</td>
</tr>
</tbody>
</table>
Create Query

Figure 61 Create Query dialog box

Purpose: Used to find samples in an experiment, based on conditions that you select. Also used to create and save a new query in the program. Queries are used to find samples with attributes that match the conditions of the query.

To open: In the Experiment pane, right-click an experiment folder, and select **Create Query**.

Create Query

Query Name Click the arrow and select a query from the list.
<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execute</td>
<td>Executes the selected query. Results of the query appear in the Results box.</td>
</tr>
<tr>
<td>Select sample</td>
<td>Select conditions that are applied for the query. For each condition (row), select a logical operator to apply. To add a condition (row) to the table, click New Condition. Each condition has these elements:</td>
</tr>
<tr>
<td>from the</td>
<td>• Conditions – The condition(s) against which the query searches.</td>
</tr>
<tr>
<td>experiment</td>
<td>• Logical Operation – (Available only if you configure more than one condition.) The relationship between the condition and the next one in the list. For example, if you select AND in Logical Operation for the first condition, the query includes or excludes a sample if it passes both the first condition and the next condition.</td>
</tr>
<tr>
<td>where</td>
<td></td>
</tr>
<tr>
<td>New Condition</td>
<td>Opens the New Condition dialog box, where you create the parameters for the condition. Adds a new, blank condition (row) to the table. See “New Condition” on page 245.</td>
</tr>
<tr>
<td>Edit Condition</td>
<td>Opens the New Condition dialog box, where you can change the parameters for the selected condition.</td>
</tr>
<tr>
<td>Delete Condition</td>
<td>Removes a condition from the list. To remove a specific condition, click anywhere within the condition, then click Delete Condition.</td>
</tr>
<tr>
<td>New</td>
<td>Opens an Input dialog box, where you can type a name for the new query. To accept the name, click OK. The program creates the query, and adds the new name to the Query Name list.</td>
</tr>
<tr>
<td>Update</td>
<td>Saves any changes you make to the query conditions, without closing the dialog box.</td>
</tr>
<tr>
<td>Delete</td>
<td>Opens a Confirm dialog box that asks you if you want to delete the selected query. To delete the query from the program, click Yes.</td>
</tr>
<tr>
<td>Rename</td>
<td>Opens an Input dialog box where you can type a new name for the query. To accept the name, click OK.</td>
</tr>
<tr>
<td>Results</td>
<td>Shows the sample results when you select a query and click Execute.</td>
</tr>
<tr>
<td>Clear</td>
<td>Clears the results of a query execution from the Results box.</td>
</tr>
<tr>
<td>Close</td>
<td>Closes the dialog box. If you created or changed a filter, but did not update it, a Confirm dialog box opens. Click Yes to accept the changes, No to reject the changes, or Cancel to return to the dialog box.</td>
</tr>
</tbody>
</table>
Purpose: Lets you create a custom Web search link in the shortcut menu that appears when you right-click an entry in Tab View. The link opens the URL of your choice, and passes the entry to it as a search string. See “To create a custom Web search link” on page 105.

To open: Right-click any entry in a tab in Tab View, other than a column heading, then click Customize Link.

URL name The name of the custom Web search link that appears in the shortcut menu (see above). To edit an existing custom Web search link, select it from the list.

URL The full uniform resource locator (URL) of the desired search page. For the query string value, type <target>

For example, this URL passes the selected tab view entry to google.com:

http://www.google.com/search?hl=eng&q=<target>

New Opens an Input dialog box, where you can type a name for a new custom Web search link. Click OK to add the name to the URL name list.

Update Saves the settings in the dialog box.

Delete Deletes the currently selected custom Web search link.

Close Closes the dialog box.
Design Properties

Purpose: Provides general and detailed information about a given microarray design. See “To display the properties of a specific design” on page 68.

To open: In the Data pane of the Navigator, right-click the name of a genome build within a design folder, then click **Show Properties**. Several tabs are available.

Attribute tab

Displays general identifying attributes of the array design, and statistics such as the total number of features in the design.

![Design Properties dialog box – Attribute tab](image)

Figure 63 Design Properties dialog box – Attribute tab
Non Unique Probes tab

Displays the nonunique probes in the design. Nonunique probes have more than one mapping in the genome that is a perfect match.

<table>
<thead>
<tr>
<th>S. No</th>
<th>Probe</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A_18_P10314231</td>
<td>chr1:142832357-142835931</td>
</tr>
<tr>
<td>2</td>
<td>A_18_P13304487</td>
<td>chr2:287920171-287920330</td>
</tr>
<tr>
<td>3</td>
<td>A_18_P16122688</td>
<td>chr7:7252522-7252594</td>
</tr>
<tr>
<td>4</td>
<td>A_18_P14749132</td>
<td>chr7:7511790-7511778</td>
</tr>
<tr>
<td>5</td>
<td>A_18_P12210664</td>
<td>chr7:7796297-7797241</td>
</tr>
<tr>
<td>6</td>
<td>A_18_P16127424</td>
<td>chr7:7212068-72120323</td>
</tr>
<tr>
<td>7</td>
<td>A_18_P16199841</td>
<td>chr7:6587657-5870889</td>
</tr>
<tr>
<td>8</td>
<td>A_18_P16218562</td>
<td>chr7:620712196-220712206</td>
</tr>
<tr>
<td>9</td>
<td>A_18_P16199767</td>
<td>chr7:101111553-101111562</td>
</tr>
<tr>
<td>10</td>
<td>A_18_P16194545</td>
<td>chr7:7291146-72971307</td>
</tr>
<tr>
<td>11</td>
<td>A_18_P10065471</td>
<td>chr7:14536907-14536956</td>
</tr>
<tr>
<td>12</td>
<td>A_18_P16398817</td>
<td>chr7:13815299-138152304</td>
</tr>
<tr>
<td>13</td>
<td>A_18_P10030625</td>
<td>chr7:14249463-142494110</td>
</tr>
<tr>
<td>14</td>
<td>A_18_P10012171</td>
<td>chr7:65898756-99698905</td>
</tr>
<tr>
<td>15</td>
<td>A_18_P13397824</td>
<td>chr7:13094746-130944098</td>
</tr>
<tr>
<td>16</td>
<td>A_18_P16641050</td>
<td>chr7:94647494-94647495</td>
</tr>
</tbody>
</table>

Figure 64 Design Properties dialog box – Non Unique Probes tab

S. No The sequence order of the probes within the tab.

Probe The name of each nonunique probe.

Value The chromosomal locations to which each of the probes binds. Because these are nonunique probes, at least two locations appear for each probe.
Data tab
Displays the names of the probes in the design and the genomic locations to which they are designed. The tab displays the probes for one chromosome at a time.

Select Chromosome
The chromosome whose probes appear in the list. To view the probes designed to a different chromosome, select one from this list.

Probe
The name (Probe ID) of each probe.

Chromosome
The name of the chromosome to which the probe is designed.

Start
The location on the selected chromosome of the first base pair to which each probe is designed.

Stop
The location on the selected chromosome of the last base pair to which each probe is designed.
Purpose: The Echo Example Plot is the output of the Echo Example plug-in. It displays the log ratio data for the selected chromosome in the active experiment. Data from all of the selected arrays in the experiment appear as a series of stacked plots, one for each array.

To open: To run the Echo Example plug-in, select the desired experiment, select the desired chromosome in Genome view, then click Tool > Plugin > Echo Example.

Edit: Opens a menu with a Copy plot(s) to clipboard command. This command copies all of the plots to the clipboard as an image. You can then paste the image into a document in another program.

Plots: Each plot displays the log ratio data for the selected chromosome from an individual array in the experiment. You can right-click anywhere within each plot to display these options:
Option Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties</td>
<td>Opens the Chart Properties dialog box, where you can change the appearance of many aspects of the plot. See “Chart Properties” on page 191.</td>
</tr>
<tr>
<td>Copy</td>
<td>Copies the chart to the Clipboard, where you can paste it into a word processing or other program.</td>
</tr>
<tr>
<td>Save as</td>
<td>Opens a Save dialog box, where you can select a location for a saved *.png image file of the plots.</td>
</tr>
<tr>
<td>Print</td>
<td>Opens the Windows Page Setup dialog box, where you can set page size, margins, and orientation, and select a printer. From there, you click OK to open the Windows Print dialog box, where you can set print options and print the plot.</td>
</tr>
</tbody>
</table>
| Zoom In | Opens another menu that lets you zoom in the plot. You can zoom in several ways:
- **Both Axes** – Zooms in the Domain (X) axis for all stacked plots, and zooms in the range Range (Y) axis for the specific plot in which you clicked.
- **Domain Axis** – Zooms in the Domain (X) axis for all stacked plots.
- **Range Axis** – Zooms in the Range (Y) axis for the specific plot in which you clicked.
You can also drag across an area of one of the plots to select an area to zoom in on. |
Zoom Out opens another menu that lets you zoom out the plot. You can zoom out several ways:

- **Both Axes** – Zooms out the Domain (X) axis for all stacked plots, and zooms out the range Range (Y) axis for the specific plot in which you clicked.
- **Domain Axis** – Zooms out the Domain (X) axis for all stacked plots.
- **Range Axis** – Zooms out the Range (Y) axis for the specific plot in which you clicked.

Auto Range opens another menu that lets you zoom the plot to encompass the full range of the data. You can zoom in several ways:

- **Both Axes** – Appropriately zooms both axes of the specific plot to show the full set of data.
- **Domain Axis** – Zooms in the Domain (X) axis for all stacked plots so this axis encompasses the full range of X values of the data.
- **Range Axis** – Zooms in the Range (Y) axis for the specific plot in which you clicked, to encompass the full range of Y values of the data.
Edit Array Color

Purpose: To change the display color of the arrays in an experiment

To open: Right-click an experiment name, then click Edit Array Color.

Select Array
Mark the check box for the array(s) whose color you want to change.

Color
Each colored rectangle opens the Select Color dialog box, where you can change the display color for the specific array.

Select All
Marks all of the check boxes.

Deselect All
Clears all of the check boxes.

Edit Color
Opens the Select Color dialog box, where you can change the color assigned to all of the selected array(s). This assigns the same color to all selected arrays.

Restore default
Click to restore the original color(s) to the array(s) in the experiment.
Edit Array Order

Purpose: Lets you change the order of the arrays in an experiment.

To open: Right-click an experiment name, then click **Edit Array Order.**

Array Name The arrays in the selected design, listed in the order that they appear in the Navigator. To move an array up or down in the list, you click the name of the array, then click the Move Up and Move Down buttons. The order of arrays in the list selects the left-to-right display order of the arrays in Tab View. The array order also selects the order in which individual scatter plots appear in Gene View.

Design Select the desired design from the list.

Order by Displays the attributes associated with the arrays. Select an attribute to use for ordering the list. The arrays are reordered based on their respective values for that attribute.

- (Move Up button) Moves the selected array up in the list.
- (Move Down button) Moves the selected array down in the list.

OK Applies the array order to the active experiment.

Cancel Closes the dialog box without changing the array order.
Experiment Properties

Figure 69 Experiment Properties dialog box

Purpose: To select the arrays to be linked to the experiment

To open: In the Create Experiment dialog box, click *Properties,* or in the Experiment pane of the Navigator, right-click the experiment name, then click *Show Properties.*

Experiment Name The name of the selected experiment appears automatically.

Description Displays the description of the experiment you typed when you created the experiment.

Select Design

Designs From the list, select the design whose arrays you want to add to the experiment.

Genome Builds From the list, select the genome build for the design you selected, if the design has more than one genome build.
5 ChIP Interactive Analysis Reference

Experiment Properties

Arrays

Array List Displays the arrays in the selected design that are available for this experiment.

- To select an array to move to the Selected Array List, click its name.
- To select additional arrays, hold down the Ctrl key and click their names.
- To select a contiguous block of arrays, click the name of the first array, then hold down the Shift key and click the name of the last one.

Selected Array List Displays the arrays that you have selected for this experiment.

> Moves the selected arrays in Array List to the Selected Arrays List. You can move arrays from as many designs as you like, as long as they are all associated with the same genome build.

>> Moves all of the arrays in Array List to the Selected Arrays List.

< Removes an array from the Selected Array List. To select an array for removal, click its name. If desired, you can re-add an array.

<< Clears the Selected Array List.

Display Name by Click to select how to display the array names in the experiment. The Global Display name is the name assigned in Sample Manager for the array. See the Sample Manager User Guide for more information.

OK Adds selected arrays in the Selected Array List to the experiment, and closes the dialog box.

Cancel Closes the dialog box without adding any arrays to the experiment.
Export

Purpose: Lets you select a location for an exported file.

To open: This dialog box appears after you select specific experiment(s), track(s), or array attribute(s) to export. See “To export experiments” on page 77, “To export tracks” on page 78, or “To export array attributes” on page 76.

Look in
- Displays the folder or other location whose contents appear in the main pane of the dialog box. To select another folder or other location, click ↓.
- Moves to the next higher folder level.
- Moves to the Desktop.
- Creates a new folder in the selected location in Look in.
- Displays the names only, of folders, files, and other locations in the main pane of the dialog box.

Figure 70 Export dialog box – Several types of file exports use this dialog box. This specific example exports selected experiment(s) as a ZIP format file.
Displays both the names and details of folders, files, and other locations in the main pane of the dialog box.

Main pane
Displays the folders, files, and other locations in the selected location in Look in. The program limits listed files to the type selected in Files of type. To select a file, click its name. To open a folder or other location, double-click its name.

File name
Displays the name of the file where the exported content is saved. To change the name, you can either select a file in the main pane of the dialog box, or type a new name.

Files of type
Limits the files listed in the main pane to those of the appropriate type for your specific kind of export. To show all files, click , then select All Files.

Export
Saves the selected content to the location specified in the dialog box.

Cancel
 Cancels your selections and closes the dialog box.

Export Array Attributes

Purpose: This dialog box lets you select arrays whose attributes you want to export. It contains two tabs: an Array tab where you select the arrays, and an Attribute tab where you select the attributes of the selected arrays to export. See “To export array attributes” on page 76.

To open: In the Home command ribbon, click Export > Array Attributes, or in the Experiment pane of the Navigator, right-click the name of an experiment, then click Export Attributes.
Array tab

![Export Array Attributes dialog box – Array tab](image)

Select Design

- **Designs**: Displays all of the designs available in the program. Select the design associated with arrays whose attributes you want to export.
- **Genome Builds**: Displays the genome build(s) associated with the design. Select the desired genome build to display the arrays.

Arrays

- **Array List**: Displays the arrays in the selected design.
 - To select an array for subsequent transfer to the Selected Array List, click its name.
 - To select additional arrays, hold down the Ctrl key and click their names.
 - To select a contiguous block of arrays, click the name of the first array, then hold down the Shift key and click the name of the last one.
Selected Array List

Displays the arrays that you have selected for this experiment.

> Moves the selected arrays in Array List to the Selected Array List. You can move arrays from as many designs as you like, as long as they are all associated with the same genome build.

>> Moves all of the arrays in Array List to the Selected Array List.

< Removes an array from the Selected Array List. To select an array for removal, click its name. If desired, you can re-add an array.

<< Clears the Selected Array List.

Next Moves to the Attribute tab for attribute removal. See “Attribute tab” on page 222.

Cancel Closes the dialog box without selecting any array attributes for export.

Attribute tab

Figure 72 Export Array Attributes dialog box – Attribute tab
Attributes

Selected Attribute List
For the selected arrays, lists the attributes to be exported when you click OK.

- To select an array for subsequent removal to the Attribute List, click its name.
- To select additional arrays, hold down the Ctrl key and click their names.
- To select a contiguous block of arrays, click the name of the first array, then hold down the Shift key and click the name of the last one.

NOTE
You must select the following mandatory attributes, or else the attribute file cannot be imported at a later time: Array ID, Global Display Name, Green Sample, Red Sample, Polarity.

Attribute List
Displays the attributes that are not exported for the selected arrays.

Moves all of the attributes in the Attribute List to the Selected Attribute List.

Back
Moves back to the Array tab for array selection or removal.

OK
Opens the Export dialog box. See “Export” on page 219.

Cancel
Closes the dialog box without adding any attributes to the list to be exported.
Export Experiments

Purpose: Lets you select experiments for export. The program exports all array designs and data associated with the experiments as a single ZIP file. This file does not include any parameter settings, array selections, or results. See “To export experiments” on page 77.

To open: In the Home tab, click Export > Experiments.

Select experiments to export: Displays all experiments available for export. Mark each experiment you want to export.

Select All: Selects all experiments for export.

Deselect All: Clears all check boxes under Select experiments to export.

Cancel: Cancels the export and closes the dialog box.
Export Filters

Figure 74 Export Filters dialog box

Purpose: Lets you select feature-level, array-level, and/or design filters to export as a single *.xml file. You can create and use filters only if you have a DNA Analytics application license. See “To export filters” on page 79.

To open: In the **Home** tab, click **Export > Filters**.

Select filters to export Displays all of the filters available in the program. The table has these columns:

- **Export** – Mark the check box for each filter to export.
- **Filter** – The name of each filter.
- **Type** – The type of content to which the program applies each filter.

Select All Selects all available filters for export.

Deselect All Clears all of the check boxes under Select filters to export.

OK Opens the Export dialog box, where you can select a location for the exported *.xml file of filters. See “Export” on page 219.

Cancel Cancels the export and closes the dialog box.
Export Tracks

Purpose: Lets you select tracks to export as a single BED format file. See “To export tracks” on page 78.

To open: In the Home tab, click Export > Tracks.

Select Tracks Displays all of the tracks available in the program. Mark the check box next to each track that you want to export.

Select All Selects all available tracks for export.

Deselect All Clears all of the check boxes under Select Tracks.

OK Opens the Export dialog box, where you can select a location for the exported BED format file. See “Export” on page 219.

Cancel Cancels the export and closes the dialog box.
Find in column

Purpose: Lets you set search parameters for a specific column entry for the selected chromosome. Based on these parameters, the program highlights the row of the first entry that matches. The cursor then moves to the location selected in the row.

To open: Right-click any entry in a tab in Tab View other than a column heading, then click Find in column in the shortcut menu.

Find in column

Type all or part of the entry that you want to find.

Direction

Select a search direction:

- **Up** – Sets the search to scan the column you clicked in an upward direction from the currently highlighted row.

- **Down** – Sets the search to scan the column you clicked in an downward direction from the currently highlighted row.

Conditions

Mark any of these search options:

- **Match Case** – Mark this option to take case into account. For example, if you mark Match Case, and you type aa351 in Find in column, the search finds the next entry in the column that contains aa351. It does not find entries that contain AA351 or Aa351.
• **Match whole word** – Mark this option to only find entries in which the complete entry matches what you type in Find in column. For example, if you type AA351 in Find in column, and mark **Match whole word**, the program finds the next **AA351** entry. It does not find entries such as AA3512 or AA351992.

Find Next
Finds the next matching entry in the selected column, and moves the cursor to the location selected in the row that contains the entry.

Cancel
Closes the dialog box.

Gene List

![Gene List dialog box](image)

Figure 77
GeneList dialog box
Purpose: Lets you view the names of the genes in a specific gene list and to change the display color of the gene list. See “To display the genes in a gene list” on page 72.

To open: In the My Entity List pane of the Navigator, right-click the name of a gene list, then click View in Table.

Name
(Read-only) The name of the gene list.

Description
(Optional) Brief descriptive comments about the gene list, such as how it was created or the nature of the genes in the list. You can edit the description.

S. No
The sort order number. This is the index number of each gene within the gene list.

Gene Names
The names of the genes in the gene list.

Color
Opens the Choose Gene List Color dialog box, where you can change the display color for the gene list.

OK
Saves the gene list with any new description or display color, and closes the dialog box.

Cancel
Closes the dialog box without making any changes to the gene list.
Purpose: The Gene Report Settings Parameter Settings dialog box lets you set options for the content and location of the gene report. The gene report contains one row for each probe in an array, grouped by the genes to which the probes bind. It is a tab-separated value (*.tsv) file that you can open and analyze further with a spreadsheet program. For multiple arrays, the program creates a separate *.tsv file for each array.

To open: Click Reports > Gene Report.

The program creates gene reports in several formats. See “Gene Report formats” on page 303 for descriptions of the column content in each.

Show only gene names If you mark this check box, the resulting gene report contains only accession numbers of genes (or chromosomal locations for probe loci not associated with genes). A mark in this check box overrides a mark in Show probe information.
Show probe information
If you mark this check box, the resulting gene report contains additional information about the probes in the array.

Report Location
The location where the program saves the probe report. You can type a location in the text box, or you can click Browse to select a location.

Browse
Opens the Select report folder dialog box, where you can select a location for the gene report. See “Select report folder” on page 269.

OK
Creates the gene report.

Cancel
Closes the dialog box without creating a gene report.

Go To Gene/Genomic Location

Purpose: To find a specific gene location in Gene View based on either its associated RefSeq Symbol or its specific genomic location.

To open: Click Home > Go to Gene/Genomic location.

- **RefSeq by Symbol**: Select the Reference Sequence accession symbol from NCBI, then click Go.
- **Genomic Location**:
 - Chromosome
 - Base Position

Figure 79 Go To Gene/Genomic location dialog box
• Base Position – The position on the chromosome.

Click Go after selecting the chromosome number and the position of the gene on the chromosome.

Cancel Closes the dialog box.

Import

![Import dialog box]

Figure 80 Import dialog box

Purpose: Lets you select files for import into Agilent Genomic Workbench.

To open: In the Home tab, click Import, then select any kind of import except Genome Build or Track. The type of file to be imported appears in the title of the dialog box. To import a gene list, right-click the Gene List folder in the My Entities List pane of the Navigator, then click Import Gene List.

Use the standard Windows Explorer commands in the dialog box to select a file for import.
For some imports, you can select multiple files. Click the name of the first file, then hold down the Ctrl key and click the names of additional files. To select a contiguous block of files, click the name of the first file in the block, then hold down the Shift key and click the name of the last one.

File name
Displays the name of a file that you select for import.

Files of type
The program limits the list of files to the specific types expected for the import. To display all files, click , then select All Files.

<table>
<thead>
<tr>
<th>File type</th>
<th>Extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE array file</td>
<td>*.txt</td>
</tr>
<tr>
<td>Axon array file</td>
<td>*.gpr</td>
</tr>
<tr>
<td>UDF file</td>
<td>*.txt</td>
</tr>
<tr>
<td>Design file (GEML)</td>
<td>*.xml</td>
</tr>
<tr>
<td>Axon design file</td>
<td>*.gal</td>
</tr>
<tr>
<td>Array attributes</td>
<td>*.txt</td>
</tr>
<tr>
<td>Experiments</td>
<td>*.zip</td>
</tr>
<tr>
<td>Gene list</td>
<td>*.txt</td>
</tr>
</tbody>
</table>

Import or Open
Imports the file into the program. In some cases, the name of this button is Open, rather than Import. Also, when you click Import, in many cases one or a series of additional dialog box(es) lets you further select the content for import. See the instructions for each specific type of import in Chapter 2.

Cancel
Cancels the import and closes the dialog box.
Import (experiments)

Purpose: Lets you select the specific experiments within a ZIP format experiment file to load into the program. See “To import an experiment file” on page 52.

To open: In the Home tab, click Import > Experiments. In the dialog box that appears, select the desired ZIP format experiment file, then click Import.

These columns appear:
- **Import** – Mark the check box next to the experiment(s) that you want to import.
- **Experiment** – The names of the experiments available for import in the ZIP format experiment file.
- **Version** – Version of software in which the experiment was created.

Select All Selects all of the experiments in the ZIP file for import.

Deselect All Clears all of the check boxes under Import.
OK Imports the selected experiments into the program. If the name of an imported array design or data file matches one that is already available in the program, the Confirm overwrite dialog box appears, where you can select the data and/or design files that you want to overwrite. See “Confirm overwrite” on page 201.

Cancel Cancels the import and closes the dialog box.

Import GEML design files

Purpose: Lets you view general identifying information about the design and to remove any files that you do not want to import.

To open: In the Home tab, click **Import > Design Files > GEML File.** Select the desired *.xml design files, then click **Open.**

- **File Name** The name(s) of the design file(s) to be imported.
- **ID** The Agilent ID number for the design file.
Type The application type, which can be CGH, ChIP, miRNA, or gene expression.
Species The species for the genome build. This appears automatically when the Genome Build is selected.
Genome Build The genome build for the design. If the genome build is not read automatically, a “?” appears. Click Genome Build and select the correct value from the list.
Status • Not Set – Appears if Genome Build and Species information is not shown.
• Not Allowed – Appears if a Genome Build is selected that does not match the design.
• Overwrite – Appears when the design file has been updated and will overwrite any existing one of the same name.
• Valid – Appears when the file is new.
• Corrupt – Appears when the file is corrupt.
Remove Click to remove a specific design file from the list.
Start Import Starts the import of the design files in the list.
Cancel Cancels the upload and closes the dialog box.
Import Genome

Figure 83 Import Genome dialog box

Purpose: To specify a custom genome to import.

To Open: On the Home Command Ribbon, click **Import** and then select **Custom Genome for Tiling**.

- **Species** Select the species for the custom genome from the list.
- **Genome Name** Type the name of the custom genome.
- **Genome Build** Type the build for the genome.
- **Genome is soft-masked** Mark this check box if repeat sequences in your genome file are represented by lower-case letters. If you do not mark this option, the program changes any lower-case characters in your sequence(s) to capital characters.
- **Genome File** Click **Browse**, then locate and select the genome file you want to import.

Save Click to import the selected genome file to the database.

Cancel Click to close the dialog box without importing any data.
Import Genome Build

Purpose: To import a new set of genome build files into Agilent Genomic Workbench. See “To import a genome build” on page 48.

To open: In the Home tab, click Import > Genome Build.

Species The genome’s species of origin.
Build Name The name of the build to be imported.
Refseq File The location of the RefSeq database file. This file contains chromosomal locations of genes. To select a Refseq file, click Browse.
CytoBand File The location of the applicable cytoband file. This file contains graphical cytoband information for Gene View and Chromosome View. To select a cytoband file, click Browse.

OK Imports the genome build and closes the dialog box.
Cancel Cancels the import and closes the dialog box.

CAUTION Import only Agilent-provided genome build files.
Import Track

Figure 85 Import Track dialog box

Purpose: Lets you import a BED format track file. See “To import tracks” on page 50. Track information can appear in Gene view.

To open: In the Home tab, click Import > Track.

- **Species** Select the species to which the track relates. Build Name
 This list contains the available genome builds for the selected species. Select the desired genome build.

- **Color** Shows the currently assigned display color for the track. To change this color, click Change.

- **Track Name** Type a name to identify the imported track.

- **Track File** Type the location of the BED track file that you want to import, or click Browse to select a file.

- **Browse** Opens an Open dialog box, where you can select the BED track file that you want to import.

- **OK** Imports the track into the program.

- **Cancel** Cancels the import and closes the dialog box.
Metric Set Filter

Figure 86 Metric Set Filter dialog box

Purpose: This dialog box is used to create or edit metric set filters that let you include or exclude data for a selected experiment. The filter is applied to the arrays using the threshold values for selected QC metrics in a given metric set. QC metric sets are created using the Quality tools, or are provided with the Feature Extraction software.

To open: Click Preprocessing > Metric Set Filters > Edit Filter.

- **Name** Select the name of the metric set filter you want to edit. To create a new filter, and add its name to the list, click New.
- **Metric Set** The default metric set for the selected application (ChIP) is shown. Click the arrow to select a different metric set.
- **Filter Conditions** For each criterion (row), in each column, select an option from the list, if available. Otherwise, type a value, then press Enter. To add another row to the table, click New Condition.

Each criterion has these elements:
- **Metric** – The QC metric evaluated by the filter.
Metric Set Filter

- **Operator** – How the filter uses the entry in Value to evaluate arrays.
 For example, the **Is** operator configures the filter to include or exclude features where the calculated extraction result of the selected metric is the same as the threshold selected in Value.

- **Value** – The value the filter uses to evaluate an array. For example, if you select the `g_BGNoise` metric and the Operator **Is**, when you select the **Evaluate** Value, the array passes the filter if its extraction result is in the Evaluate threshold range.

Logical Operator – (Available only if you configure more than one criterion) The relationship between the criterion and the next one in the list. For example, if you select **AND** in **Logical Operator** for the first criterion, the filter includes or excludes an array if it passes both the first condition and the next condition.

<table>
<thead>
<tr>
<th>New Condition</th>
<th>Adds a new, blank condition (row) to the table.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete Condition</td>
<td>Removes a condition from the list. To remove a specific condition, click anywhere within the condition, then click Delete Condition.</td>
</tr>
<tr>
<td>Include/Exclude matching values</td>
<td>Select one of these options:</td>
</tr>
<tr>
<td></td>
<td>• Include matching values – If an array passes the filter condition, the program includes it in the analysis.</td>
</tr>
<tr>
<td></td>
<td>• Exclude matching values – If an array passes the filter condition, the program excludes it from the analysis.</td>
</tr>
<tr>
<td>New</td>
<td>Opens an Input dialog box, where you can type a name for the new filter. To accept the name, click OK. The program creates the filter, and adds the new name to the Name list.</td>
</tr>
<tr>
<td>Update</td>
<td>Saves any changes you make to the filter conditions, without closing the dialog box.</td>
</tr>
<tr>
<td>Reset</td>
<td>Restores the values of the filter conditions to what they were before you made any changes to them.</td>
</tr>
<tr>
<td>Delete</td>
<td>Opens a Confirm dialog box that asks you if you want to delete the selected filter. To delete the filter, click Yes.</td>
</tr>
<tr>
<td>Rename</td>
<td>Opens an Input dialog box, where you can type a new name for the filter. To accept the name, click OK.</td>
</tr>
</tbody>
</table>
Microarray Properties

Purpose: Displays the properties associated with an array. You can also edit the values of specific attributes. To add attributes to the list, see the Sample Manager User Guide.

To open: For any array in the Data folder or Experiments folder, right-click the array name, then click Show Properties. For non-Agilent arrays, only the Attribute tab appears.

Attribute tab

• Attribute — Displays the attributes associated with the array.
- **Value** – Indicates the value, if any, for each attribute.

Close Closes the dialog box.

FE Headers

![Microarray Properties dialog box listing FE Headers their values](image)

Figure 88 Microarray Properties dialog box listing FE Headers their values

- **Index** Displays a sequential index to help identify FE properties.
- **Name** Displays feature parameters, statistics and constants for the array.
- **Value** Displays the value for each parameter, statistic and constant.
- **Close** Closes the dialog box.
FE Features Tab

Figure 89 Microarray Properties dialog box listing FE Features and associated data

List of chromosomes Select the chromosome whose feature information you want to view.

Table of features Displays FE features and their associated data.
New Condition

Figure 90 New Condition dialog box

Purpose: To create a condition for a sample query.

To open: In the Create Query dialog box, click **New Condition** or **Edit Condition**. See “Create Query” on page 206.

Attributes

Attributes is the only type of condition you can set for the ChIP application type.

For an attribute conditions, do the following:

- In the list at the left-hand side of the dialog, select the sample attribute for the condition.
In the second list, select an operator to apply to the range.

- **Range** – Type a start and stop value that defines a range for the attribute.

 OR

- **Attribute Value** – Type an attribute value for the attribute.

OK Saves the new or changed condition and returns to the Create Query dialog box.

Cancel. Cancels the changes and closes the dialog box.
Pre-defined Peak Shape detection v2.1

Purpose: This peak detection algorithm “slides” a peak shape through the data searching for good fits. The peak shape is computed from the estimated mean and standard deviation of DNA lengths of the shear distribution, and the “significance” of a potential fit is judged by comparing it to fits on randomized data, using a non-parametric (rank-significance) test.

For each peak that satisfies the non-parametric test, a “score” is computed by testing the quality of the fit under the assumption of an extreme value distribution of the qualities of the fits to randomized data. The significance derived from this test is converted to a score by computing -log10(significance) for the peak fit. For more information, see “Predefined peak-shape detection” on page 312.

To open: In the Analysis tab, under Event Detection, select Pre-defined Peak Shape detection v2.1 and then click the edit icon .
Table 9
Pre-defined peak shape detection parameters v2.1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thresholds</td>
<td></td>
</tr>
<tr>
<td>p-value threshold</td>
<td>Maximum threshold for the nonparametric test for reporting peaks. Value must be greater than $1/$number of randomized runs. (Increase the value to find more peaks.)</td>
</tr>
<tr>
<td>Score threshold</td>
<td>Minimum threshold for extreme value distribution (EVD)-based score. (Decrease value to find more peaks.)</td>
</tr>
<tr>
<td>Peak Shape Parameters</td>
<td></td>
</tr>
<tr>
<td>Estimated mean shear length distribution of sample DNA</td>
<td>Type a mean to be used in the gamma distribution calculation for approximation of the distribution of sheared DNA fragments.</td>
</tr>
<tr>
<td>Estimated standard deviation of the shear length distribution of sample DNA</td>
<td>Type a standard deviation to be used in the gamma distribution calculation of the distribution of sheared DNA fragments.</td>
</tr>
<tr>
<td>Other Algorithmic Parameters</td>
<td></td>
</tr>
<tr>
<td>Precision of peak placement on the chromosome (in base pairs)</td>
<td>This is the window within which the algorithm searches for potential positions for the peak center. When you decrease this window, the time it takes for the algorithm to run increases.</td>
</tr>
<tr>
<td>Number of randomizations for determination of peak significance (via nonparametric test) and score</td>
<td>The program computes p-value and peak score through a number of random samplings. Increase the number of samples to increase the accuracy of the prediction; however this also increases the time to do the calculation.</td>
</tr>
<tr>
<td>Window size (in bp) for computing local baseline.</td>
<td>Use smaller number for smaller genomes.</td>
</tr>
<tr>
<td>Desired spacing of interpolated data points between probe.</td>
<td>Must be less than or equal to probe spacing on the array.</td>
</tr>
</tbody>
</table>
Purpose: The Probe Report Settings Parameter Settings dialog box lets you set the location where the program saves the probe report. A probe report contains information about the probes in the current experimental result in tab-separated value (*.tsv) format. It contains one row for each probe

Table 9 Pre-defined peak shape detection parameters v2.1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatically re-run calculation after learning peak shape?</td>
<td>Selection increases accuracy, but will double the runtime.</td>
</tr>
<tr>
<td>Use errors estimated by Error model?</td>
<td>Select to use the estimated error for each probe to weight its contribution to the peak fit measurement.</td>
</tr>
</tbody>
</table>

Figure 92 Probe Report Settings Parameter Settings dialog box
in the array. See “Probe Report format” on page 301 for a description of the columns in the report. You can view probe reports and perform further analysis on them with a spreadsheet program.

To open: Click **Reports > Probe Report**.

Report Location
Shows the location where the program saves the probe report. You can type a location in the text box or click **Browse**. See “Select report folder” on page 269.

OK
Generates the probe report in the selected location.

Cancel
Closes the dialog box without generating a report.

Probe Upload

Figure 93
Probe Upload dialog box

Purpose: Lets you set up and start a probe upload. A probe upload transfers probe sequences and annotation to your Agilent Genomic Workbench server. See the *eArray XD User Guide* for more information.

To open: In the Home tab, on the Command Ribbon, click **Import > Probe Upload**.
Probe Parameter Details

These parameters appear:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job Name</td>
<td>Type a name that will help you to identify this job.</td>
</tr>
<tr>
<td>Species</td>
<td>Select the desired species. The program associates all probes in the uploaded file with this species.</td>
</tr>
<tr>
<td>Remove replicate probes from upload</td>
<td>Mark this option to upload the first probe in each set of replicate probes in your file, and ignore the others. A replicate probe has the same Probe ID as another probe in the file. If your probe file contains replicate probes, and you do not mark Remove replicate probes from upload, the program does not upload your file.</td>
</tr>
</tbody>
</table>

Probe Precedence

These options specify what the program does if it finds probes in your uploaded file that have the same Probe ID as probes that already exist in the system.

Select one of these options:

- **Overwrite matching probes** – The annotation of the matching uploaded probes replaces the annotations of the existing probes. You can use this option to reannotate existing probes.
- **Skip matching probes** – The program ignores matching uploaded probes, but does upload other probes.
- **Cancel upload if any probes already exist** – The program cancels the entire upload process if it finds a matching uploaded probe.

Upload Probe File Details

Select these options:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe Group Name</td>
<td>The program creates a probe group that contains the probes in your uploaded file. Type a name for this probe group.</td>
</tr>
<tr>
<td>Upload File</td>
<td>The location of the file that contains the probes and annotations to be uploaded. Browse – Opens an Open dialog box, where you can select a file of probes and annotations for upload.</td>
</tr>
</tbody>
</table>
Preview

Opens the Define Uploaded File Columns pane in the dialog box, which lets you view the first few lines of your uploaded file, and label the content of each column of data within it. See the eArrayXD User Guide for more information.

Cancel

Cancels the probe upload and closes the dialog box.

Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| **File Format** | The column content of your probe file. Select one of these options:
 - COMPLETE – The uploaded file contains the columns described in the eArrayXD User Guide.
 - MINIMAL – The uploaded file contains the columns described in the eArrayXD User Guide. |
| **File Type** | The file type defines how the data items in the file are specified and separated. The program accepts tab-delimited text (*.tdt and *.txt) and Microsoft Excel (*.xls) files.
If you use Microsoft Excel 2007 to create the file, save the file as an Excel 97-2003 workbook. This saves the file in the required *.xls format. |

CAUTION

If you select Overwrite Matching Probes in Probe Precedence, the program reannotates matching probes upon upload. The original annotation of these probes cannot be recovered.
Properties (of an experiment result)

Purpose: This dialog box lists the attributes of a saved experiment result.

To open: Right-click the name of the result in the Results folder of an experiment.

Description Shows the description associated with the result. You can add a description, or change an existing one. Click **Save Description** to save the description with the experiment result.

Table Shows the attributes of the experiment result and their corresponding values.

Save Description (Available after you add or change a description) Saves the current description with the experiment result.

Close Closes the dialog box.
QC Metrics Table

Purpose: The QC Metrics Table shows the available metrics for one or more arrays. With this table and the available plots, you can evaluate the quality of your microarray results, and assign a manual QC status to each microarray. Some metrics come from the Agilent Feature Extraction program, while others are calculated by the ChIP application itself. These metrics are available only for Agilent microarrays. See “To display QC metrics of arrays and set array QC status” on page 93.
To open: Click Preprocessing > QC Metric. Alternatively, in the Experiment pane of the Navigator, right-click the name of a genome build, experiment, or individual array, then click QC Metrics.

File

Lets you save the QC Metrics Table as a Microsoft Excel (*.xls) format file. When you click File, a menu opens with an Export command. This command opens a Save dialog box, where you can select a location and type a name for the exported file.

Metric Set

The default metric set for the selected application is displayed. Click the arrow to select a different metric set. Metric sets are created or edited from the Quality tab. See the Quality User Guide for more information.

Table

The values of the QC metrics for arrays appear under QC Metrics, one array per row. The table has many columns:

- **Array Name** – Displays the names of microarrays. Because you can open the QC Metrics Table in several ways, the list can contain an individually-selected microarray, or those associated with an experiment or with a design.

- **Design No.** – Identifies the Agilent design ID for each microarray.

- **Metrics** – The program evaluates each metric, and assigns it a rating of Excellent (yellow), Good (turquoise), Evaluate (pink), or NA (white). The name of each metric appears as a column heading. Mark the check box next to the name of the metric to include it in the available plots. Drag the column heading of a metric horizontally to change its position in the table.

- **Manual QC Flag** – Lets you set the QC MetricStatus attribute of the array. Status can be Pass, Fail, Marginal, or NA. Later, you can filter arrays based on this attribute.

The following metrics are included in the table.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>SignalToNoiseGreen (and Red)</td>
<td>For each channel, this metric is the Signal Intensity divided by BGNoise.</td>
</tr>
<tr>
<td></td>
<td>If this ratio is low, fail the array. A ratio over 100 indicates that the DNA quantity is sufficient and that no significant error was introduced during hybridization, washing, or scanning.</td>
</tr>
<tr>
<td></td>
<td>To display the cut-offs the program uses to score this metric, open the current ChIP_QCMT_(date) default metric set in Feature Extraction.</td>
</tr>
</tbody>
</table>
The program displays the arrays in the table, and in the QC Metrics Graph, grouped by the array attribute you select here.

QC Metrics Table

<table>
<thead>
<tr>
<th>Metric</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>SignalIntensityGreen (and Red)</td>
<td>For each channel, this metric is the median background-subtracted signal after rejecting nonuniform outliers and saturated features. If the signals are too low, fail the array. If the signals are marginal, expect noisy results. Low signals can result from poor quality input DNA or from losses during labeling and clean-up. To display the cut-offs the program uses to score this metric, open the current ChIP_QCMT_(date) default metric set in Feature Extraction.</td>
</tr>
<tr>
<td>BGNoiseGreen (and Red)</td>
<td>For each channel, this metric is the standard deviation of negative control probes after rejecting feature nonuniform outliers, saturated features, and feature population outliers. If the noise is high, examine the array image for visible non-uniformities. High background noise is often introduced during slide handling or from contaminated buffers. To display the cut-offs the program uses to score this metric, open the current ChIP_QCMT_(date) default metric set in Feature Extraction.</td>
</tr>
<tr>
<td>ReproducibilityGreen (and Red)</td>
<td>For each channel, this metric is the Median %CV (coefficient of variation) of background-subtracted signal for replicate non-control probes after outlier rejection. The calculation excludes any probe whose average signal is below the additive noise of that channel (i.e. Average (BGSubSignal) * Multiplicative error < Additive error / Dye Norm Factor). After rejecting non-uniform outliers and saturated features, the program requires at least three probes to calculate the CV for that sequence. It then calculates the median of the CVs of the remaining sequences. If the number of sequences that pass the filter is less than 10, the program does not calculate this metric. High scores on this metric may signal catastrophic failures (for example, that the slide leaked or fell out of the rotisserie). Large bubbles cause moderate values on this metric, but do not compromise the results significantly. To display the cut-offs the program uses to score this metric, open the current ChIP_QCMT_(date) default metric set in Feature Extraction.</td>
</tr>
</tbody>
</table>
Show Frequency Distribution
Opens the Frequency Distribution dialog box. This dialog box contains line plots of the distribution of each selected metric over all of the arrays in the QC Metrics Table. See “QC Metrics – Frequency Distribution” on page 258.

Plot
Opens the QC Metrics Graph dialog box. This dialog box contains plots of each selected metric for each array. See “QC Metrics Graph” on page 259.

Select All
Marks the check boxes of all metrics.

Deselect All
Clears the check boxes of all metrics.

Close
Closes the QC Metrics Table.
Purpose: The plots in this dialog box represent the selected columns in the QC Metrics Table. Each plot shows the number of arrays within each value range for a metric. See “QC Metrics Table” on page 254.

To open: Click **Show Frequency Distribution** in the QC Metrics Table.

Edit
- Opens a menu with a Copy command that copies the plots in the dialog box to the Clipboard. You can then paste the image into a document.

Close
- Closes the dialog box.
Purpose: The plots in this dialog box represent the selected columns in the QC Metrics Table. Each plot shows the value of a given metric for all arrays.

To open: Click Plot in the QC Metrics Table (see “QC Metrics Table” on page 254).

Main Plots These plots have several features:
The background colors in each plot correspond to quality guidelines developed by Agilent, based on normal ranges observed for analyses of well-established cell lines using standard Agilent protocols. See the descriptions of each of these metrics in “QC Metrics Table” on page 254.

A “Box & Whisker” plot appears to the right of the main plot for each metric. See “Box & Whisker Plot,” below.

The program can plot the data as a line graph, a bar graph, or both. See “Line” and “Bar,” below.

If you set your user preferences to show ToolTips (see “View Preferences” on page 293), a ToolTip appears when you place the pointer over any bar. The ToolTip lists the value of each bar and the name of the corresponding array. See Figure 98.

You can right-click any bar to open a shortcut menu for the corresponding array. The options in the shortcut menu allow you to set the QCMetricStatus attribute for the array. See Figure 98.

The QCMetricStatus attribute for each array appears over all of the corresponding bars of the main plot. The four possible values for QCMetricStatus are: (P)ass, (F)ail, (M)arginal, and (N)A.

Figure 98 Portion of the QC Metrics Graph, showing a ToolTip (values in white box), and a shortcut menu. You use the shortcut menu to set the QCMetricStatus attribute for the array. Right-click any bar to open the shortcut menu for the corresponding array.
“Box & Whisker” Plots

A small plot appears to the right of each of the main plots. It represents the overall distribution of values for the metric. Two examples appear in Figure 99. The symbols have the following meanings:

- The lower and upper edges of the box represent the 25th and 75th percentiles, respectively.
- The black horizontal line in the box is the median.
- The black dot is the mean.
- The “whiskers” represent the range of values that are not outliers. An outlier is a point that is out of the 25th to 75th percentile range by more than 150%.
- Open circles represent outliers, and an open triangle represents outliers that plot beyond the available space on the graph.

Figure 99 Two “Box & Whisker” plots

- **Line** Mark this option to display each metric as a line graph.
- **Bar** Mark this option to display each metric as a bar graph.
- **Edit** Opens a menu with a Copy command. This command copies the plots in the dialog box to the Clipboard as an image. You can then paste the image into a document in another program.
- **Close** Closes the dialog box.
QC Report Settings Parameter Settings

Purpose: This dialog box lets you set the location where the program saves the QC report. The QC report summarizes the settings of the current analysis, and the overall statistics of each array. In addition to summary tables, it includes four plots. The program creates the QC report in HTML format for viewing in your Internet browser. For more information about the contents of this report, see “QC report format” on page 304.

To open: Click Reports > QC Report.

Report Location Shows the location where the program saves the QC report. You can type a location in the box or click Browse. See “Select report folder” on page 269.

OK Generates the QC report in the selected location.

Cancel Closes the dialog box without generating a report.
Sample Attributes

Purpose: To show, hide, or edit the attributes of experiment arrays

To open: In the Experiment Pane of the Navigator, right-click an experiment, then click **Sample Attributes.**

Table of Attributes

Lets you select or change the values for the attributes for the arrays in the experiment. The columns that appear initially are the default columns (Array ID, Green Sample, Red Sample, Polarity and Extraction Status) plus any that have been made visible in the Sample Manager table. See the *Sample Manager User Guide.* Changes you make are applied globally.

Show/Hide Attributes

Opens the Show/Hide Columns dialog box, where you can add or remove attribute columns from the table of attributes. See “Show/Hide Columns” on page 278.

Save Changes

Saves any attribute changes you have made.

Cancel Changes

Restores attributes to their prior values, and leaves the dialog box open.

Close

Closes the dialog box.
5 ChIP Interactive Analysis Reference

Scroll to Column

Purpose: Lets you select a “Scroll to” column. The program then scrolls the tab so that you can see the selected column.

To open: Right-click a column heading in Tab View, then click Scroll To Column in the shortcut menu.

Select column Displays the columns available in the currently selected tab. Select the one you want to display.

OK Scrolls the current tab so that you can see the selected column.

Cancel Closes the dialog box.

Select Color

Purpose: To select a color. Three tabs are available for selecting colors:

- Swatches tab - select colors based on samples (swatches)
- HSB tab - select colors based on an HSB schema (Hue, Saturation, and Brightness)
- RGB tab - select colors based on an RGB schema (Red-Green-Blue)

To open: This dialog box opens when a function allows you to change a color. For example, right-click on an array in an experiment, click Edit Array Color and click the Swatches, HSB, or RGB tab.
Swatches tab

This tab is used to select a color based on color samples (swatches).

Preview The Preview area shows how the selected color appears. When you change the color, the original color appears at the top of the color box on the right.

Recent: Choose a recent color selection.

OK Click to select the color and close the dialog box.

Cancel Click to close the dialog box without changing the color.

Reset Click to change swatches, HSB, and RGB colors back to the default colors.
HSB tab

In this tab, you can select a color based on an HSB schema (Hue, Saturation, and Brightness).

Hue Click the H button, and move the slider up and down, or go up and down the list of numbers, to select the hue or color of the array.

Saturation Click the S button, and move the slider up and down, or go up and down the list of numbers, to select the saturation level for the color.

Brightness Click the B button and move the slider up and down, or go up and down the list of numbers, to select the brightness level for the color.

RGB Numbers Reflect the amount of red, green and blue in the resulting color.

Preview The Preview area shows how the selected color appears. When you change the color, the original color appears at the top of the color box on the right.

OK Click to select the color and close the dialog box.
Cancel
Click to close the dialog box without changing the color.

Reset
Click to change the swatches, HSB, and RGB colors back to default values.

RGB tab

![Select Color - RGB tab]

Figure 105 Select Color - RGB tab

This tab is used to select a color based on an RGB schema.

Red
Move the slider to change the amount of red in the color. Or, click the up or down arrow to select a number.

Green
Move the slider to change the amount of green in the color. Or, click the up or down arrow to select a number.

Blue
Move the slider to change the amount of blue in the color. Or, click the up or down arrow to select a number.

Preview
The Preview area shows how the selected color appears. When you change the color, the original color appears at the top of the color box on the right.
Select Experiment for Creating Query

Purpose: Used to select experiment(s) that will be used for a query.

To open: In the Experiment pane of the Navigator, right-click the Experiment folder, and select Create Query.

Select experiment for creating query

Mark the check box next to each experiment you want to use for the query.

- **Select All**: Click to mark all check boxes.
- **Deselect All**: Click to clear all check boxes.

Figure 106 Select experiment for creating query dialog box
OK Opens the Create Query dialog box where you can create a query for the selected experiments. See “Create Query” on page 206.

Cancel Cancels the query and closes the dialog box.

Select report folder

Figure 107 Select report folder dialog box

Purpose: This dialog box lets you select the location for a gene, probe, or QC report.

To open: Select a report from the Reports menu, then click **Browse** in the dialog box that appears. See “Reports command ribbon” on page 140.

Use the standard Windows Explorer commands available in the Select report folder dialog box to select a location for a report. Only the files that have the same file type as the selected report appear in the list of files.

File name Shows the file name of the report to be created. Type a name in the text box.
Select Users

Files of type Shows the file type of the report to be created. The program creates gene and probe reports in tab-separated value (*.tsv) format, and creates QC reports in HTML (*.htm) format.

Open Opens the selected location.

Cancel Closes the dialog box without opening a location.

Select Users

Figure 108 Select Users dialog box

Purpose: Select users who will share an experiment in the Genomic Workbench.

To open: From the Sharing for enterprise dialog box, click Add.

Click to select a user from the list. To select additional users, hold down the Ctrl key and click the additional users to select them. You can also select a contiguous block of users; click the first user in the block, then hold down the Shift key and click the last one.

OK Adds the selected user(s) and closes the dialog box.

Cancel Closes the dialog box without selecting any users.
Set genome build and species for Axon design files

Purpose: Lets you set the species and genome builds associated with imported Axon design file(s), and to remove specific designs files from the import, if necessary. See “To import Axon design files” on page 47.

To open: In the Home tab, click **Import > Design Files > Axon File**... In the dialog box that appears, select at least one Axon design file, then click **Import**.

- **No.** An index number within the dialog box for each Axon file.
- **File Name** The names of each Axon design file selected for import.

Figure 109 Set genome build and species for Axon design files dialog box
Set genome build and species for Axon design files

Species The species associated with each design file. If a species is incorrect, select the correct one from the appropriate list.

Genome Build The genome build associated with each of the design files. If a genome build is incorrect, select the correct one from the appropriate list.

Status The status of the file is one of the following:
- **Valid** – The file is a new file that can be imported.
- **Healthy** – The file has passed validation and can be imported.
- **Not Set** – Appears if Genome Build and Species information is not shown.
- **NotAllowed** – Appears if a Genome Build is selected that does not match the design, or the design is an Agilent catalog design.
- **Overwrite** – The file is a valid design file, but when you import it, it replaces an existing design that has the same name.
- **Corrupt** – The file failed validation. When you start the import process, the program ignores the file.

Remove Click to remove a specific design file from the list. This is useful if you select a design file in error, or if you do not want to overwrite an existing one.

Start Import Imports the file(s) and closes the dialog box.

Cancel Cancels the import and closes the dialog box.
Setting Normalization Parameters

Purpose: The Setting Normalization Parameters dialog box lets you include and configure the normalization methods that the program applies during analysis. See “To apply normalization” on page 109 and “Normalization Algorithms” on page 314.

To open: This dialog box opens when you select a Normalization method in the Preprocessing ribbon, and click .

Mark this check box to include blank subtraction normalization in your analysis. This kind of normalization corrects for non-specific binding. It first calculates the central tendency of the negative controls on the array for both the immunoprecipitated (IP) and whole cell extract (WCE) channels. It then subtracts these central tendencies from the raw signal intensities of each feature on the array. As with all of the normalization methods, if the method causes a probe to have a negative value for intensity, it flags the probe as excluded. For information on this algorithm, see “Blank subtraction normalization” on page 314.
Click the words **Blank Subtraction Normalization** to display the settings for this kind of normalization in the right pane of the dialog box. You can configure the following setting:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate central</td>
<td>Selects how the program calculates the central tendency that it</td>
</tr>
<tr>
<td>tendency of blank</td>
<td>subtracts from the raw signal intensity values.</td>
</tr>
<tr>
<td>probes by</td>
<td>There is currently only one selection:</td>
</tr>
<tr>
<td>Dye-bias (intra-array)</td>
<td>• median</td>
</tr>
</tbody>
</table>

Dye-bias (intra-array) Median Normalization

Mark this check box to include intra-array median normalization in your analysis. This kind of normalization corrects for dye bias within each array in an experiment, and it normalizes the intensities of the IP channel only. For information on this algorithm, see "Intra-array (dye-bias) median normalization" on page 317.

Click the words **Dye-bias (intra-array) Median Normalization** to display the settings for this kind of normalization in the right pane of the dialog box. You can configure the following settings:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalize by</td>
<td>Selects how the program computes the dye bias when it applies this</td>
</tr>
<tr>
<td></td>
<td>kind of normalization.</td>
</tr>
<tr>
<td>Inter-Array</td>
<td>• By equalizing central tendencies of IP and WCE channels – This</td>
</tr>
<tr>
<td>Median Normalization</td>
<td>method first calculates the ratio of the median IP signal intensity to</td>
</tr>
<tr>
<td></td>
<td>the median WCE signal intensity. Then, it multiplies the signal</td>
</tr>
<tr>
<td></td>
<td>intensities of the data probes by this ratio.</td>
</tr>
<tr>
<td>Inter-Array</td>
<td>• By normalizing central tendency of log ratios to 1 – This method</td>
</tr>
<tr>
<td>Median Normalization</td>
<td>multiplies the signal intensities of all data probes on the array by a</td>
</tr>
<tr>
<td></td>
<td>correction factor. This correction factor adjusts the central</td>
</tr>
<tr>
<td></td>
<td>tendency of log ratios of the data probes on the array to 1.</td>
</tr>
</tbody>
</table>
signal intensity over the common probes in each replicate array. It then finds the average of these median intensities over all replicates of all arrays. For each array, it computes the ratio of its median signal intensity to the average of the median signal intensities of all arrays. Finally, it normalizes data by multiplying each signal intensity by the applicable ratio. For information on this algorithm, see “Interarray median normalization” on page 316.

Click the words Inter-Array Median Normalization to display a description of this kind of normalization. No settings are required.

Intra-array Lowess (Intensity dependent) Normalization

Mark this check box to include intra-array Lowess (intensity dependent) normalization in your analysis. This kind of normalization attempts to correct for artifacts caused by nonlinear rates of dye incorporation, as well as inconsistencies in the relative fluorescence intensity between some red and green dyes. The Lowess normalization algorithm normalizes the channels within each array using a nonlinear polynomial fit to the data, and effectively normalizes by probes and by arrays. For information on this algorithm, see “Intra-array (intensity-dependent) Lowess normalization” on page 320.

NOTE If you are using feature extraction data that have been normalized by the Lowess approach, you do not need to apply the intra-array Lowess normalization here.

Click the words Intra-array Lowess (Intensity dependent) Normalization to display the settings for this kind of normalization. You can configure the following settings:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression curve is fitted to</td>
<td>Select the data for the regression curve.</td>
</tr>
<tr>
<td></td>
<td>• All data probes - Includes all of the data probes in the regression curve.</td>
</tr>
<tr>
<td></td>
<td>• All common probes - Includes probes whose names start with “LACC”.</td>
</tr>
<tr>
<td></td>
<td>• Gene desert probes - Includes data for probes whose names start with “LACC:GD”</td>
</tr>
</tbody>
</table>
Variance Stabilization

Mark this check box to include intra-array (intensity dependent) variance stabilization normalization in your analysis. This normalization is useful for data that is either “blank-subtracted” or “spatially detrended” but it may have utility for data processed by other means as well. Variance stabilization is an alternative to Lowess normalization that fits a regression curve to signal intensities after applying an “asinh(x)” transform to each channel. This approach uses a two-parameter error model to compress the reported ratios of probes with weak signals after blank-subtraction. After the transform is applied, the variance of the reported log ratios should be independent of the signal strength. For information on this algorithm, see “Intra-array (intensity-dependent) variance stabilization” on page 322.

Click the words Variance Stabilization to display a description of this normalization and the settings. The following settings are available:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression curve is fitted to</td>
<td>Select the data for the regression curve.</td>
</tr>
<tr>
<td>• All data probes</td>
<td>- Includes all of the data probes in the regression curve.</td>
</tr>
<tr>
<td>• All common probes</td>
<td>- Includes probes whose names start with “LACC”.</td>
</tr>
<tr>
<td>• Gene desert probes</td>
<td>- Includes data for probes whose names start with “LACC:GD”.</td>
</tr>
</tbody>
</table>

OK Accepts the selections and closes the dialog box.
Cancel Closes the dialog box without making any changes to the settings.
Sharing for enterprise

![Sharing for enterprise dialog box](image)

Figure 111 Sharing for enterprise dialog box

Purpose: Select users to share an experiment. Users you have shared the experiment with can add or change the experiment.

To open: In the Experiment pane of the Navigator, right-click the name of an experiment, and select **Share**.

Add Opens the Select Users dialog box, where you select users you want to share the experiment.

Remove Removes the selected user(s) from the shared User names list.

OK Accepts the changes and closes the dialog box.

Cancel Cancels any changes and closes the dialog box.
Show/Hide Columns

Figure 112 Show/Hide Columns dialog box

Purpose: Used to select the attributes to be displayed in the Sample Attributes dialog box and the Sample Utility tab. The Sample Utility tab is available when you go to Sample Manager. See the Sample Manager User Guide for information about Sample Manager.

To open: This dialog box appears when you click Show/Hide Attributes at the bottom of the Sample Attributes dialog box.

All available attributes are shown in the Attributes column. Attributes with a check-mark next to them will be displayed in the Sample Attributes and Sample Utilities. To select an attribute for display, mark the Show in Table box next to it. To hide an attribute, clear the Show in Table box again.

- **Save** Saves the current list of selected attributes and updates the Sample Utility table based on the selections.
- **Select All** Selects all the attributes in the list.
- **Deselect All** Removes all check marks from attributes in the list.
Close Closes the dialog box. If changes have been made, the program asks if you want to save your changes before closing.

Simple HD Probe Search

Purpose: Lets you set up and submit a Simple HD Probe Search job to the eArray Web site. Two main options are available for this type of search:

- **Genomic Intervals HD Search** – (Available for CGH, ChIP-on-chip, and methylation applications) Retrieves probes from the Agilent HD probe database on the eArray Web site based on genomic coordinates that you enter.

![Simple HD Probe Search pane in the Search tab](image)
For more information on search functions for the eArray Web site, see the eArrayXD User Guide.

To open: Right-click in the Gene View, and select Simple HD Search.

The table below describes the search parameters that can appear. You must set the Search Name, the Species, the Select HD Search by setting, and one or more Genomic Intervals or Gene Annotations. All other parameters are optional, or can be left as is.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Instructions/Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job Information</td>
<td></td>
</tr>
<tr>
<td>Search Name</td>
<td>Type a name that will help you to identify this search job and its results.</td>
</tr>
<tr>
<td>Species</td>
<td>Select the desired species. The species that appear in the list reflect the species available in the HD probe database for your application type.</td>
</tr>
<tr>
<td>Build Number</td>
<td>(Read-only) The name of the applicable genome build for the selected species. The HD probe database only contains probes designed to the most current genome build for each species.</td>
</tr>
<tr>
<td>Probe Options</td>
<td></td>
</tr>
<tr>
<td>Filters</td>
<td>Select one of the options below. If relevant, type a value for the filter in Filter Value. Filters restrict the list of returned probes, based on specific criteria.</td>
</tr>
<tr>
<td></td>
<td>• None — The search does not apply any of the filters in the list.</td>
</tr>
<tr>
<td></td>
<td>• Average Spacing — In Filter Value, type the desired number of base pairs. This defines the average number of base pairs between the centers of the retrieved probes in each genomic interval.</td>
</tr>
<tr>
<td></td>
<td>• Probes Per Interval — In Filter Value, type the desired number of probes. This defines the maximum number of probes that HD Search retrieves for each genomic interval.</td>
</tr>
<tr>
<td></td>
<td>• Total Probes — In Filter Value, type the desired number of probes. This defines the total number of probes HD Search collectively retrieves for all specified genomic intervals.</td>
</tr>
<tr>
<td>Filter Value</td>
<td>(Available if you select a filter) Type the desired value for your selected filter.</td>
</tr>
</tbody>
</table>
Use TM Filter
Removes probes with T_Ms that produce unsatisfactory results on the Agilent platform. The search always applies this filter.

Similarity Filter
The options below can appear. The availability of specific options depends on species and application type.
- **No Filter** – The program does not apply a similarity filter. If you select this option, the Use Non-Unique Probe Filter check box becomes available (see below). Non-unique probes map to more than one location in the target genome.
- **Perfect Match Filter** – Removes a probe from the search results if it has more than one perfect match in the genome of the selected species.
- **Similarity Score Filter** – Removes a probe from the search results if it is designed to a given genomic region, but it also has significant similarity to other parts of the target genome. Probes such as this can cause cross-hybridization problems.

Use Non-Unique Probe Filter
(Available if you select no similarity filter) Mark this check box to remove a probe if it maps to multiple locations in the target genome.
You can set the stringency of this filter. See below.

Max Perfect Genomic Hits
(Available if you select no similarity filter, and mark Use Non-Unique Probe Filter) Sets the maximum number of locations to which a probe can map in the target genome, and still pass the non-unique probes filter. Type the desired number of locations.
Example: Probe A maps to two locations in the target genome, and Probe B maps to three locations. You select **No Filter** in Similarity Filter, mark **Use Non-Unique Probe Filter**, and type 2 in Max Perfect Genomic Hits. The filter removes Probe B, but does not remove Probe A.

Interval Options
Select HD Search by
- **Genomic Intervals** – Sets up the search to retrieve probes based on genomic intervals that you enter.
- **Gene Annotations** – Sets up the search to retrieve probes based on gene annotations that you enter, such as gene symbols or GenBank accession numbers.
Simple HD Probe Search

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Instructions/Details</th>
</tr>
</thead>
</table>
| Extended Interval Boundary | Type the number of 5' base pairs and 3' base pairs by which to move out the start and end points of all of your genomic intervals. This can help retrieve additional probes that lie outside the initially defined regions of your genomic intervals.
Example: You type 500 in 5' base pairs and 300 in 3' base pairs. eArray extends an original interval of 9000–10000 to 8500–10300. |
| Genomic Intervals | (Available if you select **Genomic Intervals** in Select HD Search By) Type either a chromosomal location or a cytoband in the box. Separate multiple intervals with pipe “|” characters. All of the intervals must be of the same type. For information about how to enter genomic intervals, see the **eArrayXD User Guide**.
Upload – Opens a File Upload dialog box, where you can upload a file of chromosomal locations or cytobands. |
| **Exclude Options** | |
| Standard Exclusion Interval(s) | eArray lets you select from among many sets of standard exclusion intervals, based on annotation tracks. To ignore genomic regions defined in one or more of these sets, mark this option, then select the desired set(s) from the list that appears. Control-click the names of additional sets to select them. |
| Custom Exclusion Interval(s) | To ignore the genomic intervals defined in a file of genomic intervals, mark this option.
Upload – Opens a File Upload dialog box, where you can upload a file of the desired genomic intervals.
You can set both standard and custom exclusion intervals in the same search. |

Search Submits the search job to the eArray Web site.

Reset Clears all parameters, or restores them to their default values.
Purpose: This dialog box lets you view the parameters and data of the track.

To open: Click the Details link next to the desired track in the Tracks tab of the User Preferences dialog box. See “User Preferences” on page 285.
Track Parameters

These parameters appear:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name of the track.</td>
</tr>
<tr>
<td>Species</td>
<td>The species to which the track applies.</td>
</tr>
<tr>
<td>Format</td>
<td>The format of the track data. Agilent Genomic Workbench supports the BED format.</td>
</tr>
<tr>
<td>Genome Build</td>
<td>The specific genome build of the species to which the track applies.</td>
</tr>
<tr>
<td>Description</td>
<td>Descriptive text saved with the track.</td>
</tr>
</tbody>
</table>

Data

Tracks must contain entries for at least these four columns in the table:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome</td>
<td>The name of the chromosome</td>
</tr>
<tr>
<td>Start</td>
<td>The first base pair of the particular feature in the chromosome.</td>
</tr>
<tr>
<td>Stop</td>
<td>The last base pair of the particular feature in the chromosome.</td>
</tr>
<tr>
<td>Name</td>
<td>The name of the feature. This name appears alongside the selected region for the feature.</td>
</tr>
</tbody>
</table>

The other columns are additional BED track file columns that can appear for some tracks. Agilent Genomic Workbench does not support these.

Close

Closes the Track dialog box.
User Preferences

Purpose: This dialog box is used to set up preferences for display of tracks, eArray information and data storage locations, and licenses.

To open: From the Home tab, click User Preferences. Or, right-click in the Gene View, Chromosome View, or Genome View, and click User Preferences.

Tracks tab

![User Preferences dialog box - Tracks tab](image_url)

Figure 115 User Preferences dialog box - Tracks tab
Purpose: To import and set up the appearance of tracks next to the Gene View. Tracks are additional graphic displays of genomic information loaded from an external file. They align with genomic coordinates in Gene View.

To open: In the User Preferences dialog box, click the Tracks tab.

Font Options
Select the font type, style and size for the gene annotations that appear in the selected tracks.

Tracks List
Track Name Name of the track already loaded or imported.
Show in UI Mark the check box to display the track next to Gene View.
Show in Report (Not available in ChIP) Mark the check box to display the track information in all the reports.
Genomic Boundaries (Not available in ChIP) Click to use the track to define only the regions that event detection algorithms run. You can choose to do this for only one track.
Delete Mark the check box to delete the track from the list. Then, click Delete to delete the track from the list.
Details Click to display all the chromosome locations defined in the track.
Import Click to import new tracks.
Delete Click to delete the tracks selected in the Delete column.
Up Click to move a track up the list.
Down Click to move a track down the list.

Visualization Parameters
Genes These options affect the appearance of the Track and Gene View.
 • Orientation – Type a number to set the angle at which the Gene Symbols appear in Gene View and the Track Annotations appear in the tracks.
• Show Gene Symbols – Mark to show gene symbols in Gene View, and clear the check box to hide them.

Genomic Boundaries (Does not apply to ChIP) These options let you include or exclude the Genomic Boundaries from the analysis.

Tracks These options affect the appearance of the Track Views.

• Show Annotations – Mark to show the names of the gene regions for the tracks, and clear to hide them.

• Show Overlaid – Mark to overlay all the tracks that appear next to Gene View, and clear the check box to display the information in separate tracks.
Miscellaneous tab

Purpose: For data/content set-up, this dialog box allows you to set up eArray access and to change the location for data.

To open: In the User Preferences dialog box, click the Miscellaneous tab.

eArray User Details

Sets login details for the Agilent eArray Web site.

- **URL** – At present, https://earray.chem.agilent.com
- **Username** – The name registered on the eArray site.
- **Password** – The password registered on the eArray site.
Error Model (not available for ChIP) The DLR Error Model (Derivative Log Ratio). This measures noise in the data for CGH analyses.

Data Location The folder where the program stores array data and design files. To select a location, click Browse.

Configuration Parameters Lets you set or change location for the database server. Do not change these unless directed to do so by your network or database administrator.

- **Database host** – The fully qualified name for the computer that contains the Agilent Genomic Workbench database.
- **Database port** – The port number on which MySQL Server listens for its clients.
- **Common Storage Location** – (for display only) The location of the common file storage area used to store and access files created during various operations of Agilent Genomic Workbench. The location is set during installation of the Agilent Genomic Workbench server and cannot be changed here.

Change Click to enable configuration parameters.

Restore Click to restore configuration parameters to the original settings.

Change Writer Preferences Opens the File Writer Preferences dialog box, where you select file types that eArray creates for new microarray designs (in addition to the defaults). See the eArrayXD User Guide for more information.

Edit Proxy Settings Opens the Edit Proxy Settings dialog box, where you select to use a proxy and type the proxy settings to use for an Agilent Genomic Workbench client. For more information, see the Product Overview Guide.

Edit Server Proxy Settings Opens the Edit Server Proxy Settings dialog box, where you select to use a proxy server and type the proxy server settings to use for an Agilent Genomic Workbench server. For more information, see the Product Overview Guide.

Apply Applies any changes to the preferences.

OK Accepts any changes and closes the dialog box.

Cancel Cancels all changes and closes the dialog box.
License tab

Purpose: The License tab allows you to display and update your ChIP application license. This license enables the ChIP application, and allows you to use it to analyze array data.

To open: In the User Preferences dialog box, click the License tab.

Host Name Displays the host computer name automatically.

Select Analysis Application Select the Agilent Genomic Workbench application for which you have a license.

Server Location Select this option if you have a concurrent user license, or want to use a server location for your user license(s). To edit this name, select Server Location, then type or copy the name of the computer used as your...
license server, or the fully qualified path name for the folder where your license text files are located. If you select this option, the Text License option is unavailable.

Text License Select this option if you have an application license (CGH, ChIP, CH3). To change the license, delete the old license text, and paste the new license text in the box.

- **OK** Accepts any changes you have made, and closes the dialog box.
- **Cancel** Closes the dialog box without changing any license information.
- **Apply** Accepts any changes you have made, but does not close the dialog box.

View coordinates in UCSC browser

![View coordinates in UCSC browser](image)

Figure 118 View coordinates in UCSC browser
Purpose: Defines a track to upload to the UCSC Web site so that you can see the information in the UCSC Genome Browser.

To open: Right-click in the Gene View, and select Show in UCSC.

Name: Type a name for the track. This name identifies the track when it appears in lists and displays.

Build: (Available if you select User Defined in Set Chromosome Start-Stop.) Select the genome build with which to associate the track.

Description: Type descriptive text to attach to the track for reference.

Set Chromosome Start-Stop: This parameter defines the region of the chromosome for which the track will be defined. Select one of these options:

• User Defined – Lets you define an arbitrary region of any chromosome. If you select this option, select the desired chromosome in Chromosome, then type the beginning (Start) and end (Stop) locations of the desired interval.

• For complete gene view – The chromosomal region that appears in Gene View.

Save as Track in Genomic Workbench: Mark the check box to save this track in the Tracks folder in the My Entity List pane of the Navigator.

Change: Click to open the Choose Track Color dialog box to select the color to use for display of the track in the Tracks folder. See “Select Color” on page 264.

OK: Creates the track and opens the UCSC Web site, where you can display the track and associated information. For information on using the UCSC Web site, see the help and information provided there.

Cancel: Closes the dialog box without creating a track.
View Preferences

Figure 119 View Preferences dialog box for ChIP

Purpose: This dialog box lets you configure how data and results appear in Genome, Chromosome, and Gene Views.

To open: In the View tab, click View Preferences. Or, right-click in any of the views and select View Preferences.
View Alignment

Selects the orientation and rendering style (described below).

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientation</td>
<td></td>
</tr>
<tr>
<td>Horizontal</td>
<td>Stacks Genome, Chromosome, and Gene Views horizontally in the main program window. Genomic locations appear across the bottom of each view.</td>
</tr>
<tr>
<td>Vertical</td>
<td>Displays Genome, Chromosome, and Gene Views from left to right as side-by-side panes in the main program window.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rendering Style</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overlaid</td>
<td>In Chromosome View and in Gene View, displays data and results as a single, combined pane for all arrays. (Default)</td>
</tr>
<tr>
<td>Stacked</td>
<td>In Chromosome View and in Gene View, displays a separate pane for each array.</td>
</tr>
</tbody>
</table>

Data Visibility

For each view, or all views, selects the kind(s) of data and results to display.

In View, select the view you want to configure. To set availability of display items for all views, select All views. Some display items are only available for certain views and applications. When you select a display item, it enables the item for display; for some items, you must also take additional steps to display them. For example, you may need to configure a specific algorithm in the toolbar.

Mark any of the following options, as available:

<table>
<thead>
<tr>
<th>Display item</th>
<th>Description/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scatter Plot</td>
<td>The plot(s) of individual log ratio data points.</td>
</tr>
<tr>
<td>Log ratio error envelope</td>
<td>The log ratio error envelope is a visual representation of the log ratio error calculated by Feature Extraction.</td>
</tr>
</tbody>
</table>

Rendering Patterns

These options control the specific appearance of data and results in Genome, Chromosome, and Gene Views. You configure these options separately for each type of array design.

- **Design Type** – Select the array design type for which you want to define rendering patterns.
- **Styles** – Select the display style for each of the elements in the following table. (Elements that appear grayed-out and do not apply to ChIP are not described here.)

<table>
<thead>
<tr>
<th>Display element</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Ratios</td>
<td>Select the symbol used for log ratio data points in the scatter plots in Chromosome and Gene Views.</td>
</tr>
<tr>
<td>Ratios</td>
<td>Select the symbol used for ratios or probe score values data points in the scatter plots in Chromosome and Gene Views.</td>
</tr>
</tbody>
</table>

Scatter Plot (Chr View) Point Size

Select a point size to use for display of scatter plot data points in the Chromosome View.

NOTE

Rendering scatter plots for more than 10 high density arrays in the Chromosome View may take significant time. Selecting filled circles as the rendering style for scatter plots can also decrease performance. For faster performance, change the rendering style for data from the filled circle to the plus (+) or cross hair sign.

Configure Scales

For Log Ratios or Signal Intensities plots, mark **Apply** to enable the custom scale. In Range, type the value to use as the range for the scatter plot.

Configure Coloring schemes

Use these options to change the display of the scatter plot in the Gene View. These options are the same as those displayed in the Scatter Plot ToolTip in the Gene View.

<table>
<thead>
<tr>
<th>To do this</th>
<th>Follow these steps</th>
</tr>
</thead>
</table>
| Show or hide all ratio data points| • To show the data points – Mark the **Ratios** check box and select **Ratio Values** from the list.
 • To hide the ratio data points – Clear the **Ratios** check box. |
| Show or hide all log ratio data points | • To show the data points – Mark the **Log Ratios** check box and select **Log RatioValues** from the list.
 • To hide the log ratio data points – Clear the **Log Ratios** check box. |
To do this | Follow these steps
--- | ---
Show or hide all probe score data points | • To show the data points – Mark the Log Ratios check box and select Probe Score Values from the list.
 | • To hide the probe score data points – Clear the Log Ratios check box.

Configure colors and ranges for the Scatter Plots | • Click Configure Color and Ranges. In the Set Colors and Ranges dialog box, type the ranges and colors you want to use for the scatter plots. See “Configure Coloring Ranges and Shades” on page 198 for more information.

Show Memory Monitor in Status Bar

- **OK**
 Applies the changes you made to all preferences and closes the dialog box.

- **Cancel**
 Closes the dialog box without applying changes.

- **Apply**
 Applies changes without closing the dialog box.
Whitehead Error Model Parameter Settings

Purpose: This dialog box lets you customize the advanced parameters of the Whitehead error model. Set these parameters to optimize the statistical calculations of the error model using training data specific to your particular assay.

To open: Select Whitehead Error Model under Error Model in the Preprocessing command ribbon, then click . See “To configure the error model” on page 112.

The options for this parameter affect the additive (intensity-dependent) component of the estimate of the error in IP – WCE. Select one of these sources:

- Standard deviation of background pixels
- Additive error as computed by Agilent Feature Extractor
- Observed spread of negative controls
Mark this check box to type a custom f-value. In the box to the right, type an f-value. The f-value of one replicate of an array is the rate at which the multiplicative error increases with signal intensity. By default, the ChIP application calculates f-values automatically. For information on the statistical algorithm, see “Whitehead error model” on page 324.

OK Configures the Whitehead Error Model with the settings in the dialog box.

Cancel Closes the dialog box without changing any settings.

Whitehead Per-Array Neighbourhood Model Parameter Settings

![Whitehead Per-Array Neighbourhood Model Parameter Settings dialog box](image)

Figure 121 Whitehead Per-Array Neighbourhood Model Parameter Settings dialog box

Purpose: This dialog box lets you customize the parameters of the Whitehead per-array neighbourhood model. The ChIP application uses this model to make binding calls based on the p-values of each probe and its neighbors.
To open: Select **Whitehead Per-Array Neighbourhood Model** under Event Detection in the Analysis command ribbon, then click ➡️. See “To apply event detection” on page 117.

Graph
Illustrates the probes considered in the model. Two neighbor probes (blue) flank a central one (red).

Parameters
The program considers the probe “bound” if the average p-values for all three probes is less than a set cut-off value, and if either of the following is true:

- The p-values for the central probe and at least one of its neighbors are less than set cut-off values.
- The p-value of one (or optionally, another number) of the neighbors of the central probe is less than a set cut-off value.

For a detailed description of the statistical algorithms, see “Whitehead per-array neighbourhood models” on page 311.

You can set the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum distance (in bp) for two probes to be considered as neighbors</td>
<td>The program only considers probes to be neighbors if their genomic locations are within this threshold distance. The default value for this parameter is 1000 base pairs.</td>
</tr>
</tbody>
</table>
| **P(Xbar) <** | - This parameter refers to the average p-value for the central probe and its neighbors.
 - The default cut-off value is 0.001.
 - Decreasing the cutoff value makes the detection more stringent. |
| **Central probe has P(X) <** | - The central probe is the red probe in Figure 121.
 - The default cut-off value is 0.001.
 - Decreasing the cut-off value makes the detection more stringent. |
Whitehead Per-Array Neighbourhood Model (Modified) Parameter Settings

This model is exactly like the unmodified model, except that in the modified model, the number of neighbors includes the probe itself, so the default value for \(n \) is 2 instead of 1. For information on the statistical algorithm, see “Whitehead per-array neighbourhood models” on page 311 and “Modified model” on page 335.

Purpose: This dialog box lets you customize the parameters of the Whitehead per-array neighbourhood model. The ChIP application uses this model to make binding calls based on the \(p \)-values of each probe and its neighbors.

To open: Select Whitehead Per-Array Neighbourhood Model (Modified) under Event Detection in the Analysis command ribbon, then click \(\text{OK} \). See “To apply event detection” on page 117.

Parameter Comments

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Comments</th>
</tr>
</thead>
</table>
| At least one neighboring probe has \(P(X) < \) | – Neighboring probes are probes to either side of the central probe. The blue probes in Figure 121 are the neighbors of the central (red) probe.
– The default cut-off value is 0.1.
– Decreasing the cut-off value makes the detection more stringent. |
| At least \(n \) of the neighbors has \(P(X) < \) | – The default value for \(n \) is 1.
– The default cut-off value for \(P(X) \) is 0.005
– Decreasing the cut-off value makes the detection more stringent. |
Report Formats

Probe Report format

The probe report contains information about the probes in the current experiment result in tab-separated value (*.tsv) format. It contains one row for each probe in the array (or array set). The program generates a separate file for each array, and you can use a spreadsheet program to open them.

Probe report files contain the following columns, in this order:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Passed through from the feature extraction program</td>
</tr>
<tr>
<td>ID</td>
<td>Passed through from the feature extraction program</td>
</tr>
<tr>
<td>Chromosome</td>
<td>Name of the chromosome (for example, chr17)</td>
</tr>
<tr>
<td>Start Location</td>
<td>The first base pair of the chromosomal location to which the probe binds</td>
</tr>
<tr>
<td>Control Type</td>
<td>The type of probe. Possible values are: blank, common, data, pos, negative, or FALSE.</td>
</tr>
<tr>
<td>IP Foreground</td>
<td>Passed through from the feature extraction program. This is the median pixel intensity for the foreground of the IP channel.</td>
</tr>
<tr>
<td>IP Background</td>
<td>Passed through from the feature extraction program. This is the median pixel intensity for the background of the IP channel.</td>
</tr>
<tr>
<td>WCE Foreground</td>
<td>Passed through from the feature extraction program. This is the median pixel intensity for the foreground of the WCE channel.</td>
</tr>
<tr>
<td>WCE Background</td>
<td>Passed through from the feature extraction program. This is the median pixel intensity for the background of the WCE channel.</td>
</tr>
<tr>
<td>IP Background SD</td>
<td>Passed through from the feature extraction program. This is the standard deviation of the intensities of the background pixels in the IP channel.</td>
</tr>
</tbody>
</table>
Column Description

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCE Background SD</td>
<td>Passed through from the feature extraction program. This is the standard deviation of the intensities of the background pixels in the WCE channel.</td>
</tr>
<tr>
<td>Norm IP Signal</td>
<td>The IP channel normalized signal (foreground minus background), after both inter- and intra-array normalizations.</td>
</tr>
<tr>
<td>Norm WCE Signal</td>
<td>The WCE channel normalized signal (foreground minus background), after both inter- and intra-array normalizations.</td>
</tr>
<tr>
<td>Normalized Log Ratio</td>
<td>The natural log (base e) of the ratio of Norm IP Signal to Norm WCE Signal.</td>
</tr>
<tr>
<td>X</td>
<td>The difference between Norm IP Signal and Norm WCE Signal, divided by estimated error.</td>
</tr>
<tr>
<td>p-value</td>
<td>The probability that the X value is due to non-biological causes.</td>
</tr>
<tr>
<td>Z</td>
<td>The same as X (above), except that the distribution of Z values has a mean of zero, and a standard deviation of 1.</td>
</tr>
<tr>
<td>Xbar</td>
<td>Averaged neighborhood X, equal to the average of X for this probe and for any adjacent neighboring probes (within 1000 base pairs, user configurable)</td>
</tr>
<tr>
<td>P[Xbar]</td>
<td>The probability that Xbar is due to non-biological causes.</td>
</tr>
<tr>
<td>Is In BoundRegion</td>
<td>Set to 1 if this probe and its immediate neighbors within 1000 base pairs (user configurable) have sufficiently high Xbar values.</td>
</tr>
<tr>
<td>Exclude</td>
<td>Set to 1 if the feature extraction program or the analysis algorithm flagged the probe to be excluded (that is, the normalized signal surpassed the legal range).</td>
</tr>
<tr>
<td>Primary Annotation</td>
<td>Passed through from the design file. It identifies the transcript or gene ID nearest to this probe using simple proximity heuristics.</td>
</tr>
<tr>
<td>Secondary Annotation</td>
<td>Passed through from the design file. It typically represents features that overlap a window centered on the probe. The specific format and window size can vary based on the genome and array design.</td>
</tr>
</tbody>
</table>
Gene Report formats

The gene report contains one row for each probe in an array (or array set), grouped by the genes to which the probes bind. It is a tab-separated value (*.tsv) format file that you can open and analyze further with a spreadsheet program. For multiple arrays, the program creates a separate *.tsv file for each array. The program can create a gene report in one of three formats:

- **Show only gene names** – A single-column report that contains only the names of genes (and other loci) associated with the probes in the array. The program generates this report if you mark Show only gene names when you configure the report.

- **Show probe information** – A report that contains information about each probe, in addition to all of the information in the Standard Report. See the table, below. The program generates this report if you mark Show probe information when you configure the report.

The table below describes the column content of each of these report formats.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accession Numbers</td>
<td>Passed through from the design file. These accession numbers identify the gene(s) most likely to be regulated by the transcription factor(s) to which the probe binds. These identifications are made using a heuristic that looks for nearby genes, and checks their direction relative to the genomic location covered by the probe.</td>
</tr>
</tbody>
</table>
| Primary Annotation Type | Passed through from the design file. It represents the relationship between the probe and the nearby Primary Annotation, and typically assumes a 10 kilobase pair window. The possible values are:
 - **PROMOTER** – This probe is upstream from the transcription start site.
 - **DIVERGENT** – This probe is upstream from two genes that are transcribed in opposite directions.
 - **INSIDE** – This probe is inside a gene.
 - **NONE** – There are no genomic features upstream or downstream of this probe. |
QC report format

The QC report summarizes the settings of the current analysis, and the overall statistics of each array. It also contains scatter plots and histograms that allow you to graphically display the overall results of the analysis. The program creates a separate QC report for each array in your experiment. Each report is a folder that contains an HTML file that you can open in an Internet browser, along with the graphics (*.png files) linked to the HTML file.

<table>
<thead>
<tr>
<th>Column</th>
<th>Show only gene names</th>
<th>Standard report</th>
<th>Show probe information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene</td>
<td>included</td>
<td>included</td>
<td>included</td>
<td>The primary name of this gene as specified in the design file. If more than one probe binds to the gene, the gene name appears only for the first probe.</td>
</tr>
<tr>
<td>Chromosome</td>
<td>included</td>
<td>included</td>
<td></td>
<td>The chromosome on which this gene is located.</td>
</tr>
<tr>
<td>Start</td>
<td>included</td>
<td>included</td>
<td></td>
<td>The first base pair of the locus to which this probe binds.</td>
</tr>
<tr>
<td>End</td>
<td>included</td>
<td>included</td>
<td></td>
<td>The last base pair of the locus to which this probe binds.</td>
</tr>
<tr>
<td>Min P[Xbar]</td>
<td>included</td>
<td>included</td>
<td></td>
<td>The best (minimum) of the P[Xbar] values of the probes for this gene. For a description of P[Xbar] see the probe report format.</td>
</tr>
<tr>
<td>Probe Name</td>
<td>included</td>
<td></td>
<td></td>
<td>The name of this probe.</td>
</tr>
<tr>
<td>Type</td>
<td>included</td>
<td></td>
<td></td>
<td>See “Primary Annotation Type” in the probe report format.</td>
</tr>
<tr>
<td>Normalized Log Ratio</td>
<td>included</td>
<td></td>
<td></td>
<td>The natural log (base e) of the ratio of Norm IP Signal to Norm WCE Signal. See the probe report format.</td>
</tr>
</tbody>
</table>
Summary

The summary table describes the overall statistics of the array, and the settings of the analysis. It contains the following specific information:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of replicate sets</td>
<td>The number of replicate arrays (or array sets) that the program grouped together for this analysis.</td>
</tr>
<tr>
<td>Total number of Probes</td>
<td>The total number of probes on the array.</td>
</tr>
<tr>
<td>Significant Probes (p < 0.001)</td>
<td>The number of probes with p < 0.001, as calculated by the analysis.</td>
</tr>
<tr>
<td>Bound Probes</td>
<td>The number of probes that satisfy the requirements of the event detection model.</td>
</tr>
<tr>
<td>Segments</td>
<td>A segment is a contiguous sequence of bound and unbound probes that satisfy certain conditions. This item reports the number of bound segments, and the number of genes that correspond to these segments.</td>
</tr>
<tr>
<td>Normalizations</td>
<td>The kind(s) of normalization that the program applied during analysis.</td>
</tr>
<tr>
<td>Error Models</td>
<td>The error model the program used to calculate binding probabilities.</td>
</tr>
</tbody>
</table>

Details for replicate sets

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slide Name</td>
<td>The name of the microarray slide detailed in this section.</td>
</tr>
<tr>
<td>Number of Probes</td>
<td>Number of probes on the slide.</td>
</tr>
<tr>
<td>Bound Probes</td>
<td>The number of probes on the slide that satisfy the requirements of the event detection model.</td>
</tr>
<tr>
<td>Derivative Log ratio spread</td>
<td>An indicator of the noise in the experiment, and thus the minimum log ratio difference required to make reliable binding calls. For ChIP experiments, this value typically can be up to 0.5 (or even higher). For information on how the program calculates this value, see “Normalization Algorithms” on page 314.</td>
</tr>
</tbody>
</table>
Item Description

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalized Red/Green Correlation ((R^2))</td>
<td>Similarity in the normalized intensities from both channels in a two-color experiment. The correlation is based upon negative control probes and gives an indication of the amount of dye bias present.</td>
</tr>
<tr>
<td>IP vs WCE</td>
<td>Scatter plot of normalized intensities of the IP and WCE channels. See Figure 122. Well-matched distributions indicate efficacy of normalization. The distributions may not match if a large proportion of genomic loci represented on the array are enriched, as might be the case for the characterization of a general transcription factor.</td>
</tr>
<tr>
<td>Enrichment (log scale) ratio vs Intensity</td>
<td>Scatter plot that shows the enrichment ratio as a function of a probe’s signal intensity. See Figure 123. The distributions may not match if a large proportion of genomic loci represented on the array are enriched, as might be the case for the characterization of a general transcription factor.</td>
</tr>
<tr>
<td>Normalized Intensity Distribution</td>
<td>Histogram that shows the distribution of normalized signal intensities, by channel (red and green). See Figure 124. In general, a symmetric distribution that is free from skew indicates effective normalization. However, you can expect probes that are genuinely enriched to create additional density on the positive side of the distribution.</td>
</tr>
<tr>
<td>Normalized Ratio (log2) Distribution</td>
<td>Histogram of the distribution of normalized log2 ratios. See Figure 125. In general, a symmetric distribution that is free from skew indicates effective normalization. However, you can expect probes that are genuinely enriched to create additional density on the positive side of the distribution.</td>
</tr>
</tbody>
</table>
Figure 122 Example scatter plot of IP vs WCE intensities

Figure 123 Example scatter plot of enrichment ratio versus intensity. This plot uses the same probe color legend as in Figure 122.
Figure 124 Example histogram of normalized intensity distribution. The distributions appear in a separate color for each channel.

Figure 125 Example histogram of normalized log$_2$ enrichment ratio distribution
6 ChIP Statistical Algorithms

Peak Detection and Evaluation Overview 311
 Whitehead per-array neighbourhood models 311
 Predefined peak-shape detection 312
 Definitions used in the statistical algorithms sections 312
Normalization Algorithms 314
 Blank subtraction normalization 314
 Interarray median normalization 316
 Intra-array (dye-bias) median normalization 317
 Intra-array (intensity-dependent) Lowess normalization 320
 Intra-array (intensity-dependent) variance stabilization 322
Error Models 324
 Whitehead error model 324
 Replicate error model 327
Peak Detection Algorithms 329
 Whitehead per-array neighbourhood models 329
 Predefined peak-shape detection algorithm 336
References 344

This chapter provides implementation details for the algorithms used in the ChIP application of the Agilent Genomic Workbench. The ChIP algorithms allow for microarray normalization, and facilitate the statistical analysis of regions with an overabundance of probe signal.

If you plan a chromatin immunoprecipitation on chip (ChIP-on-chip) analysis, this chapter provides an overview of identification of protein-bound regions. Further contents follow the logical order of an analysis workflow after data import. The first set of topics compares and contrasts the normalization approaches, based on the algorithmic
procedures. The next section presents methods to arrive at error estimates. The final section explains the peak detection algorithms used in the Agilent Genomic Workbench.
Peak Detection and Evaluation Overview

ChIP-on-chip is a powerful technology to explore gene regulation by determination of precise genomic locations where a protein is bound. Phenotypic analysis of ChIP data allows promoter and regulatory network analysis, assessment of toxicogenomic biomarkers, and therapeutic screening. Typical ChIP microarrays have a high number of probes that cover both coding and noncoding DNA sequences. The Agilent Genomic Workbench detects robust peaks of probe signal that correspond to the chromatin immunoprecipitation. The Agilent Genomic Workbench also provides genomic visualization of the statistical analysis for identifying and evaluating regions of bound DNA.

Whitehead per-array neighbourhood models

One set of algorithms used in the Agilent Genomic Workbench to detect protein-DNA binding events is comprised of the two Whitehead neighbourhood models. These methods analyze the distribution of all probes on each array, to identify robust regions of increased probe signal ("peaks").

These algorithms examine groups of probe triplets that are significantly enriched, for robust detection of binding events. For example, in a probe-rich region, the area enriched by bound protein may span several probes. (See Figure 126 below.) In this case, probe signal attenuation is often observed at the genomic boundaries of the ChIP fragment. The Whitehead model samples every probe and its immediate upstream or downstream neighboring probe, to identify a robust estimate of the location of bound protein.

![Figure 126](image-url)
Figure 126 A graphical representation of the probe signal perturbation caused by a protein-DNA binding event, such as a transcription factor (TF)
Predefined peak-shape detection

A second algorithm used in the Agilent Genomic Workbench to detect protein-DNA binding events is the predefined peak-shape detection algorithm (PDPD). This method uses the expected distribution of sheared DNA fragments to model the shape of increased probe signal (“peaks”).

The algorithm assumes that probes will show signal enrichment in a manner that is proportional to two factors — the enrichment at the peak center and the distance of the probe from the peak center. Probes that are farther away from the peak center (that is, the chromosomal position of the antibody target) will show enrichment only for longer fragments that span both the probe location and the peak center.

Definitions used in the statistical algorithms sections

This chapter uses these abbreviations and mathematical symbols:

<table>
<thead>
<tr>
<th>Abbreviation or symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP, IP</td>
<td>In a ChIP-on-chip experiment, the signal channel is called the IP or immunoprecipitated channel.</td>
</tr>
<tr>
<td>WCE, WCE</td>
<td>In a ChIP-on-chip experiment, the background channel is called the WCE or whole cell extract channel.</td>
</tr>
<tr>
<td>I</td>
<td>The probe intensity from either the IP or WCE</td>
</tr>
<tr>
<td>D</td>
<td>Any distribution of probe signals</td>
</tr>
<tr>
<td>A</td>
<td>A vector of values, also known as an array, is a one-dimensional matrix and is identified by the symbol A.</td>
</tr>
<tr>
<td>MAD</td>
<td>The median absolute deviation</td>
</tr>
<tr>
<td>UI</td>
<td>User interface for the Agilent Genomic Workbench – for entry of user-defined values into algorithms</td>
</tr>
<tr>
<td>left</td>
<td>Refers to probes closer to the front of a chromosome</td>
</tr>
</tbody>
</table>
right | Refers to probes closer to the end of a chromosome

M versus A | Refers to the M vs. A plot, or a plot (usually log-transformed) which relates the ratio of intensities between channels to the average of intensities between channels. Examination of such a plot can reveal trends due to systematic errors.
Changes in probe signals within a microarray and across samples may be attributed to protein-DNA binding events or to systematic variation. To answer the biological questions that the ChIP experiment was designed to address, you need to measure only the true variation from a binding event. Application of data normalization allows you to limit the systematic variation in the data, such that true biological variations are more readily detected.

The Agilent Genomic Workbench can import data that has already been normalized by Agilent Feature Extraction software, or it can optionally apply user-defined procedures for both intra- and inter-array normalization. For example, if you use the Lowess normalization that Feature Extraction performs on Agilent two-color data, you do not have to normalize the data files again in the Agilent Genomic Workbench. For more information about Lowess normalization, refer to the Agilent Feature Extraction User Guide.

The normalization scheme provided by the Agilent Genomic Workbench contains both intra- and inter-array procedures. If you do not use the normalizations from Feature Extraction, each normalization step may be combined with any of the other normalization steps. It is important to make sure that the normalization steps and options are appropriate for your particular experimental design. The following sections describe each normalization procedure available in the Agilent Genomic Workbench.

Blank subtraction normalization

The blank subtraction normalization subtracts from all signals on the array a measure of central tendency of the signal from negative control probes. This gives a more robust estimate of the true signal ratio, independent of nonspecific binding.

Blank subtraction is a method to transform the data prior to the application of normalization algorithms. Data transformation is the process of applying mathematical modifications to the values of a variable. When you use a data transformation method such as blank subtraction, the Agilent Genomic Workbench recalculates the signal data values, and uses them in any subsequent analyses that you perform.
The Agilent Genomic Workbench uses median subtraction to estimate the central tendency of control (blank) probes:

Median subtraction

Purpose This normalization procedure corrects for nonspecific binding. It uses all control probes — the ones that do not overlap with protein binding events — as a baseline measurement for array probe signals.

Use Median blank subtraction uses the median of the negative control probes as a baseline. You apply this normalization if you know that some probes do not hybridize during an experiment. If the data are noisy or contain nonspecific binding on the control probe set (yielding outliers), then median blank subtraction may yield unwanted results. For example, subtraction of a large median estimate from the experimental probes, can produce negative probe signal values across the array.

Algorithm The program computes corrected intensities for both the immunoprecipitated (IP) and whole cell extract (WCE) channels, by subtraction of the background intensities from the foreground intensities. It then applies the normalization steps to these corrected values:

\[
I_{IP} = \text{normalized} \left(I_{IP,\text{foreground}} - I_{IP,\text{background}} \right) \\
I_{WCE} = \text{normalized}(I_{WCE,\text{foreground}} - I_{WCE,\text{background}})
\]

Given a data vector for each probe on each array:

1. Compute the median of the negative control probes on the array for the IP and WCE channels.
2. Subtract the median from the signal intensities of every probe on the chip for both channels.
3. Flag any probes with a negative normalized signal for exclusion from further analysis.

NOTE A more nuanced version of blank subtraction is available in the Agilent Feature Extraction software.
Interarray median normalization

The interarray median normalization algorithm normalizes the median signal in both channels across all of the arrays in an experiment.

Purpose

To increase the statistical power of the experiment, you often do microarray experiments with replicates. Furthermore, many ChIP-on-chip microarrays come in sets of multiple arrays. Because each array is a separate physical entity, variations between these arrays may exist due to differences in sample preparation, instrumentation, and hybridization. To facilitate the comparison and combination of values from these different arrays, the Agilent Genomic Workbench offers interarray normalization as a linear transformation of the signal data values on each array, for each channel.

Use

If you have replicate arrays, or more than one array for a given genomic ChIP-on-chip experiment, use the interarray median normalization algorithm to ensure that comparisons between probe values are robust, and differences are not due to systematic variation.

Algorithm

Before application of the normalization, the program computes corrected intensities for both the immunoprecipitated (IP) and whole cell extract (WCE) channels, by subtraction of the background intensities from the foreground intensities. It then applies the normalization steps to these corrected values:

\[
I_{IP} = \text{normalized} \left(I_{IP,\text{foreground}} - I_{IP,\text{background}} \right)
\]

\[
I_{WCE} = \text{normalized} \left(I_{WCE,\text{foreground}} - I_{WCE,\text{background}} \right)
\]

1. Create an array \(A \) as the intersection of probes between all arrays.

For each array:

2. Compute the median of the common control probes on the array (denoted “LACC” inside the design file). If there are no common control probes in the design, the Agilent Genomic Workbench uses all the probes on the array.

3. Compute the median intensity of each channel of the common probes in \(A \).

For each channel:
4 Calculate the target median \(t_m \) as the mean of the medians of blanks on each array.

5 Calculate the normalized signal \(S \) as:

\[
S = \frac{(signal - median(blanks)) \times t_m}{median(A)}
\]

6 Flag any probes with a negative normalized signal for exclusion from further analysis.

Intra-array (dye-bias) median normalization

Interarray normalizations control for chip-wide variations in intensity, due to inconsistent washing, inconsistent sample preparation, or other microarray technology imperfections. Two-color array experiments contain signal ratios determined by the concurrent use of contrasting dyes. The normalized values for two-color data are determined by the ratio between the signal and control channels. Dye-related artifacts can affect the intensities of these ratios. The intra-array (dye-bias) median normalization attempts to correct for artifacts caused by nonlinear rates of dye incorporation, as well as inconsistencies in the relative fluorescence intensity between some red and green dyes.

The intra-array median normalization algorithm normalizes the channels within each array so that medians are equivalent. This algorithm is a linear transformation. However, another normalization procedure, termed Lowess, applies a nonlinear normalization, and effectively normalizes by probes and by arrays. The Lowess approach is described in the next section.

If you import the data from the Feature Extraction software using the Lowess approach, then you need not apply the intra-array median normalization.

You have two options for intra-array normalization:
- Equalizing the IP and WCE channels
- Normalizing central tendency of log ratios to 1

For details, see the two subsections below.
Equalizing the IP and WCE channels

Purpose This normalization procedure corrects for dye-bias artifacts by transforming the WCE signal values. The algorithm uses the median values from both channels to calculate a transform, then applies the transform to correct for intensity differences between the dyes used in each channel.

Use Equalization of the IP and WCE channels uses the median of the nonexcluded probes in each channel. You apply this normalization if you have a two-color experiment without previous normalization steps (such as those available in the Feature Extraction software). Normally, this approach works well if you have a large number of regions in which you expect the ratio between signals to deviate from the value 1 (which indicates no change). However, if the majority of the genome is expected not to change probe value intensities between each channel, it may be appropriate to normalize the median of log ratios to 1, to avoid variance that can result from this algorithm.

Algorithm Before application of the normalization, the program computes corrected intensities for both the immunoprecipitated (IP) and whole cell extract (WCE) channels, by subtraction of the background intensities from the foreground intensities. It then applies the normalization steps to these corrected values:

\[
I_{IP} = \text{normalized} \left(I_{IP,\text{foreground}} - I_{IP,\text{background}} \right) \\
I_{WCE} = \text{normalized} \left(I_{WCE,\text{foreground}} - I_{WCE,\text{background}} \right)
\]

For each array:

1 Compute the median of the nonexcluded probes on the array for the IP and WCE channels.
2 Calculate the dye bias as the ratio between the medians of the IP and WCE channels.

For each WCE signal:

3 Transform the signal by multiplying the signal by the dye bias factor obtained in step 2.
4 Flag any probes with a negative normalized signal for exclusion from further analysis.
Normalizing central tendency of log ratios to 1

Purpose
This normalization procedure corrects for dye-bias artifacts by transforming the WCE signal values. The algorithm uses the median values from both channels to calculate a transform, then applies the transform to correct for intensity differences between the dyes used in each channel.

Use
This normalization should be applied if a two-color experiment is used without previous normalization steps (such as those available in the Feature Extraction software). Normally, this approach works well if the majority of the genome is expected not to change probe value intensities between each channel. If there are a large number of regions in which the ratio between signals is expected to deviate from the value 1 (indicating no change), it may be appropriate to normalize the median of log ratios to the central tendency of the IP and WCE channels. Equalizing the IP and WCE channels uses the median of the nonexcluded probes in each channel.

Algorithm
Before application of the normalization, the program computes corrected intensities for both the immunoprecipitated (IP) and whole cell extract (WCE) channels, by subtraction of the background intensities from the foreground intensities. It then applies the normalization steps to these corrected values:

\[
I_{IP} = \frac{I_{IP,\text{foreground}} - I_{IP,\text{background}}}{\text{normalized}}
\]

\[
I_{WCE} = \frac{I_{WCE,\text{foreground}} - I_{WCE,\text{background}}}{\text{normalized}}
\]

For each array:
1. Compute the median of the nonexcluded probes on the array for the IP and WCE channels.
2. Calculate the dye bias as the ratio between the medians of the IP and WCE channels.
3. For each WCE signal:
 3.1. Transform the signal by multiplying the signal by the reciprocal of the dye bias factor obtained in step 2.
4. Flag any probes with a negative normalized signal for exclusion from further analysis.
Intra-array (intensity-dependent) Lowess normalization

Intra-array normalization attempts to correct for artifacts caused by nonlinear rates of dye incorporation, as well as inconsistencies in the relative fluorescence intensity between some red and green dyes. The Lowess (LOcally WEighted polynomial regreSSion) algorithm normalizes the channels within each array using a nonlinear polynomial fit to the data, and effectively normalizes by probes and by arrays. The Lowess approach is also available in the Agilent Feature Extraction software. You can find more information about the application of Lowess in the Feature Extraction software in the Agilent Feature Extraction User Guide.

NOTE
If you import the data from the Feature Extraction software using the Lowess approach, then you need not apply the intra-array Lowess normalization here.

Purpose
This normalization procedure corrects for dye-related artifacts in two-color experiments that cause the Cy5/Cy3 ratio to be affected by the total intensity of the spot. A transform yields the log of the ratio of the signals versus the log of the intensities of the spot. A nonlinear fit is applied to a moving window across the data to obtain a good fit. This fit is used to normalize the data to a more linear response.

Use
The algorithm attempts to correct for artifacts caused by nonlinear rates of dye incorporation, as well as inconsistencies in the relative fluorescent intensity between some red and green dyes. In the absence of bias, the IP signal should be independent of the WCE signal, and thus the data points would be scattered symmetrically around the 45° line.

In many cases, these artifacts can cause the graph of the IP versus WCE signal to be curved. The Lowess transform fits a polynomial curve through the data and uses this curve to adjust the WCE values for each measurement. When the resulting normalized data are graphed versus the adjusted control values, the points are distributed more symmetrically around the 45° line.

The regression curve can be computed using the signals in either all data probes, all common probes (probes whose names start with “LACC”), or an even smaller set using the all gene-desert probes (probes whose names start with “LACC:GD”).
Intra-array (intensity-dependent) Lowess normalization

If Lowess is applied, blank subtraction and interarray median normalization are turned off.

Algorithm

This is a straight implementation of the Lowess method. Before application of the normalization, the program computes corrected intensities for both the immunoprecipitated (IP) and whole cell extract (WCE) channels, by subtraction of the background intensities from the foreground intensities. It then applies the normalization steps to these corrected values:

\[I_{IP} = \text{normalized} (I_{IP, \text{foreground}} - I_{IP, \text{background}}) \]
\[I_{WCE} = \text{normalized}(I_{WCE, \text{foreground}} - I_{WCE, \text{background}}) \]

The Lowess method corrects for dye-bias artifacts by log transforming the IP and WCE signal values. The transform yields the log of the ratio of the \(I_{IP}/I_{WCE} \) signals against the log of the intensities (where intensity is the square root of the product \(I_{IP} \cdot I_{WCE} \)). A nonlinear fit is applied to a moving window across the data to obtain a good fit. This fit is used to normalize the data to a more linear response.

For each array:

1. Add a constant value to every \(I_{IP} \) and \(I_{WCE} \) value to avoid the problem of taking logarithms of negative values in subsequent steps.
2. Compute the signal ratio of the \(I_{IP}/I_{WCE} \) channels for the nonexcluded probes on the array.
3. Calculate the signal intensity of the square root of the product of the \(I_{IP} \) and \(I_{WCE} \) channels for the nonexcluded probes on the array.
4. Log\(_{10}\) transform the ratio and intensity values.

The resulting data are partitioned into a set of overlapping intervals, and a polynomial function is fit to each partition. For curved data trends, lower-degree polynomials (such as \(1^\circ \), which yields a straight line) tend to
approximate the data very well within a small neighborhood, but deteriorate quickly. Higher-degree polynomials tend to overfit the data. The algorithm therefore uses a lower-degree polynomial fit across each partition created by the sliding window. A weighting function is applied to the data points to fit the polynomial function such that points farther away contribute less to the fit.

5 Partition the data obtained in step 4 into n overlapping regions. The smoothness of the fit curve is inversely proportional to the size of the regions.

6 Starting with the first partition, apply the weighting function to the new data neighborhood.

7 Fit a polynomial of degree d to the weighted data using least-squares regression for that region.

8 Move forward to the next partition and apply step 6 and step 7. Stop at the n^{th} partition.

Interpretation
Lowess uses well-known techniques such as least-squares regression, and does not rely upon a set function to be fit to the data. However, it should be emphasized that the Lowess transform must be run on each data set, every time, and cannot be transferred to different data sets, as a slightly different result will occur.

Intra-array (intensity-dependent) variance stabilization
Intra-array normalization attempts to correct for artifacts caused by nonlinear rates of dye incorporation, as well as inconsistencies in the relative fluorescence intensity between some red and green dyes.

The Lowess normalization algorithm normalizes the channels within each array using a nonlinear polynomial fit to the data, and effectively normalizes by probes and by arrays. The variance stabilization method is an alternative to Lowess normalization that fits a regression curve to signal intensities after applying an arcsinh(x) transform to each channel rather than a log(x) transform. The arcsinh(x) transform attempts to adjust the variance so that it is more consistent across the range of the data set.
If you import the data from the Feature Extraction software using the Lowess approach, then you need not apply Variance Stabilization here.

Purpose
The variance stabilization procedure corrects for dye-related artifacts in two-color experiments that cause the variance of the intensities between the dye channels to be affected by the total intensity of the spot. This variance can be described as a relationship between the standard deviation of a given spot and the mean intensity of the spot. Log ratios are often skewed because of this trend. The variance stabilization approach uses a two-parameter error model to compress the reported ratios of probes with weak signals after blank-subtraction. After the transform is applied, the variance of the reported log ratios should be independent of the signal strength.

Use
This normalization technique is based on the observation that in two-channel microarray experiments, increases in raw signal intensities tend to be accompanied by increases in variance between the channels. Log transformation yields a better trend with values that are more normally distributed, but suffer from intensity-dependent variation. The transformation therefore attempts to find the parameters of a transform that yields constant variance across the range of the data set.

Interpretation
Variance stabilization allows quantitative analysis of log ratios between channels in two-dye microarray experiments by ensuring that the variance is uniform between all levels of signal intensity.
Error Models

Error modeling aids in the separation of true biological events, such as protein-DNA binding interactions, from signals that arise from artifacts in the measurement technology. You use error modeling to adjust the ratios (or signal intensities) according to an estimate of confidence in the ratio (or intensity) reported by a probe. The parameters for error calculation may include probe quality measures, or may be calculated from the distribution of probe values on each array. Likewise, the error model may be generated prior to data import, in the Agilent Feature Extraction software, or may be determined by the Agilent Genomic Workbench software.

Whitehead error model

Purpose

The purpose of the error model is to estimate how values measured on the array should be adjusted to reflect the confidence in their measurements. The confidence of such events is calculated based on the confidence of a gain in probe signal intensity.

For example, an intensity ratio with the value “3” can correspond to any intensity measurements in one channel that are three times higher than in the other channel. If the ratio of “3” corresponds to an intensity of 30 in one channel and an intensity of 10 in the other channel, this ratio is considered to be low in confidence, because the measurements are so close to the noise level. On the other hand, a ratio of “3” that corresponds to an intensity of 30,000 in one channel and an intensity of 10,000 in the other channel is much more reliable.

The probe signal confidence is reported as a “p-value”, a parametric measure of how likely it is to observe a probe signal intensity of equal or greater magnitude, according to the error model. The significance of a p-value is scored over a range of 0 to 1. Significant events have p-values close to 0 (p < 0.001); events that likely are due to systematic variations have p-values close to 1.

The Agilent Genomic Workbench computes a p-value from the distribution of probes on each array:
• $P(X)$ – An intensity-based p-value for each probe, derived from a variant on the X_{dev} quantity, as described by the Rosetta compendium.

Use
The error model selects robust probe signals to include in the Whitehead per-array neighbourhood model, and therefore is “on” by default. The Whitehead error model is generally used for error modeling in the Agilent Genomic Workbench. However, if your data include probe quality scores from the Feature Extraction software, you may choose to use the Feature Extraction error model to see if the biological results are closer to those expected. For more information on the Feature Extraction error model, please refer to the *Agilent Feature Extraction User Guide*.

Algorithm
The algorithm obtains a p-value, termed $P(X)$, by first computing an “X” value for each probe. This quantity “X” correlates with the log ratio, but imparts a correction for low intensities.

The program computes intensities for both the immunoprecipitated (IP) and whole cell extract (WCE) channels, according to the normalization options described in the previous sections:

\[
I_{\text{IP}} = \text{normalized} \left(I_{\text{IP,foreground}} - I_{\text{IP,background}} \right)
\]
\[
I_{\text{WCE}} = \text{normalized} \left(I_{\text{WCE,foreground}} - I_{\text{WCE,background}} \right)
\]

If no normalization steps are applied, then the intensities I for the IP and WCE channels are used directly.

1. Calculate the standard deviations of the IP and WCE channels. You may calculate this measure of variance from one of the following:
 - The standard deviation of background pixels. This is the default option. In such cases, the error model is based on the overall performance of the microarray.
 - The observed spread of the negative controls. An estimate of the variance of negative control probes gives a good indication of the error inherited by every probe on the array, due to technological limitations. However, it has not been tested for all situations.
 - The additive error as computed by the Agilent Feature Extraction software. For more information, refer to the *Agilent Feature Extraction User Guide*.

2. Calculate the value f as a factor to adjust the symmetry of the distribution of X. You may define this value, or the Agilent Genomic
Workbench may calculate it automatically. To calculate the value of f, the Agilent Genomic Workbench performs an iterative search of all values of f such that the difference between the values for $X < 0$ are minimized for probes in the highest and lowest quartile:

a. Create an array A that includes the values from all nonexcluded, noncontrol probes in the bottom 25th percentile by WCE, with an X value less than 0.

b. Create an array A' that includes the values from all nonexcluded, noncontrol probes in the top 25th percentile by WCE, with an X value less than 0.

Beginning with an initial estimate of $f = 1.0$, iterate over the following steps until convergence is met, or 50 iterations have occurred:

c. Using the current value of f, assemble a distribution D by computing X for every member of A, using the equation below. Append both the X-value and -X to the distribution.

d. Using the current value of f, assemble a distribution D' by computing X for every member of A', using the equation below. Append both the X-value and -X to the distribution.

e. Compute the difference between the standard deviations of D and D'.

f. Report convergence if the difference computed in step e is less than 0.0001, or 50 iterations have occurred. Otherwise, update f as the previous value of f, multiplied by the ratio of the standard deviation of D' to the standard deviation of D.

3. Compute X for each probe, using the value of f computed in step 2:

$$X = \frac{I_{IP} - I_{WCE}}{\sqrt{f^2(I_{IP}^2 + I_{WCE}^2) + (\sigma_{IP}^2 + \sigma_{WCE}^2)}}$$

4. For each probe, compute $P(X)$ as the probability of observing a value equal to or greater than X, assuming a normal distribution with the computed mean and standard deviation.

5. For each data probe i, compute a Z-score based on the X-values.
Replicate error model

The Whitehead error model in the Agilent Genomic Workbench supports the use of multiple biological or technical replicates. The program extends the error model for replicates by first defining X, and then allowing for multiple arrays in the calculations:

$$X = \frac{IP - WCE}{\sigma_{IP - WCE}}$$

$$= \frac{IP - WCE}{\sqrt{\sigma_{IP}^2 + \sigma_{WCE}^2}}$$

$$= \frac{IP - WCE}{\sqrt{\sqrt{f^2 (\sigma_{IP, mult}^2 + \sigma_{WCE, mult}^2) + \sigma_{IP, add}^2 + \sigma_{WCE, add}^2}}}$$

The denominator can be broken into its constituents:

$$\sigma_{IP} = \sqrt{(f \cdot IP)^2 + \sigma_{IP, add}^2}$$

and

$$\sigma_{WCE} = \sqrt{(f \cdot WCE)^2 + \sigma_{WCE, add}^2}$$

Then define:

$$\sigma_L = \frac{|L|}{X}$$

where $L = \log(\text{IP/WCE})$.

The average log ratio is a weighted average of the replicate log ratios where each weight is:
where \(L_i \) is the log ratio of the \(i \)-th replicate, so the log ratio of the probe is:

\[
L_{\text{avg}} = \frac{1}{\sum w_i} \sum w_i L_i
\]

Then, working backwards from this averaged log ratio, define the weighted average of \(X \)s:

\[
X_{\text{avg}} = \frac{L_{\text{avg}}}{\sigma_{L_{\text{avg}}}}
\]

where the error in the averaged log ratio can be shown to be:

\[
\sigma_{L_{\text{avg}}} = \frac{1}{\sqrt{\sum w_i}}
\]
Peak Detection Algorithms

The Agilent Genomic Workbench detects robust peaks of probe signal that correspond to binding events. You typically normalize these probe signals, and apply an error model, as described in previous sections of this chapter. The normalization allows for direct probe-to-probe intensity ratio comparisons, and comparisons of biological or technical replicates. Error modeling estimates how values measured on the array should be adjusted to reflect the confidence in their measurements. The Agilent Genomic Workbench also provides genomic visualization and evaluation of the statistical analysis. Agilent offers two peak detection algorithms in the Agilent Genomic Workbench to identify and evaluate regions of bound DNA in a genomic context.

Whitehead per-array neighbourhood models

One set of algorithms used in the Agilent Genomic Workbench to detect protein-DNA binding events is comprised of the Whitehead per-array neighbourhood models. These methods use the distribution of all probes on each array to compute robust regions of increased probe signal (“peaks”). The algorithms do this by examining groups of probe triplets that are significantly enriched. The Whitehead models sample every probe and its immediate upstream or downstream neighboring probe, to identify a robust estimate of the location of bound protein. See Figure 127.
Figure 127 A graphical representation of the probe signal “neighbourhood” used in the Whitehead model. The diagrams show the binding event as a transcription factor (TF), and the resultant signals from discrete probes in the binding region. The Whitehead per-array neighbourhood models use probes in the immediate vicinity of the probe signal (here represented as a triplet) to evaluate whether the local increase in signal intensity is likely to represent a binding event.

Original model

The following outlines the original Whitehead per-array neighbourhood model in the Agilent Genomic Workbench. Many of the methods described below are also used in the modified Whitehead per-array neighbourhood model, which is detailed under “Modified model” on page 335.

Purpose

Typical ChIP-on-chip microarrays use discrete probes that cover coding and noncoding genomic DNA. Because a protein-DNA binding event may span regions described by several distinct probes, you need a strategy to aggregate and evaluate such probe signals into a robust region of increased signal intensity. Such regions are termed “peaks”. Peak detection is a method to identify binding events from complex genomic data.

Use

After normalization of the data and application of an error model, the data analysis typically shifts from “low-level” analysis to “high-level” analysis. In low-level analysis, the program applies statistics at the probe level to account for systematic variations, and correlates quality information about probes with signal intensities. In high-level analysis, biological events are catalogued, statistically examined, and collected into information about biological annotation, pathway, and network. The peak detection algorithms in the Agilent Genomic Workbench provide a bridge between low-level and high-level analysis, enabling a complete data analysis workflow for ChIP-on-chip experiments.

Algorithm:

The Whitehead model uses two types of \(p \)-values, and then employs a heuristic that uses both values to predict whether a probe represents a binding event rather than noise in the data. These \(p \)-values are:
• P(X) – The intensity-based p-value for each probe, derived from the X_{dev} quantity. P(X) represents the error-corrected significance of the probe ratio. The Agilent Genomic Workbench may calculate this value directly, from the distribution of probe signals on each array, or you may import the value from the Agilent Feature Extraction software, by selecting the Feature Extraction error model.

• P(X_{neighb}) – A related p-value that uses the intensities of probes that represent regions of the genome that are close to each other. The program calculates this value using the adjacent probe triplets described in the introduction to this section.

Although the binding events (or epigenetic marks) assayed by ChIP-on-chip occur at genomic loci with base-pair resolution, you expect signals to span several hundreds of bases, due to the size of the DNA fragments produced by shearing (see Figure 127 on page 330). Therefore, if a peak is biologically genuine, you can expect that positive signals in a probe are corroborated by the signals of probes that are its genomic neighbors, provided the probes are close enough to each other.

The program computes this corroboration in terms of X_{neighb}, an extension of the p-value calculated as part of the Whitehead or Feature Extraction error model. The value X_{neighb} is a simple average of the X value of a given probe with its genomic neighbors. The program applies a distance threshold to determine whether neighboring probes are close enough to be
considered in the average of the probe triplet described in the introduction to this section. If not, it uses a value of \(X = 0 \) instead. \(X_{\text{neigh}} \) is calculated as follows:

1. Compute the mean \(X \) value for each probe on all arrays through the following simple function:

\[
\overline{X} = \begin{cases}
X & \text{X has no neighbor within range} \\
\frac{(X + X_{\text{left}})}{2} & \text{X has neighbor on the left only within range} \\
\frac{(X + X_{\text{right}})}{2} & \text{X has neighbor on the right only within range} \\
\frac{(X_{\text{left}} + X + X_{\text{right}})}{3} & \text{X has neighbors on the left and right within range}
\end{cases}
\]

2. Compute the distribution \(D \) as all mean \(X \) values of all probes on all arrays.

For each probe on all arrays:

3. For each data probe \(i \), compute a Z-score based on the mean \(X \) value.

4. Compute the \(p \)-value of the mean \(X \)-value by evaluation of the area under the normal Gaussian curve from \(Z \) to infinity.

\(P(X) \) is the area under the normal curve from \(Z \) to infinity. The distribution of values for \(X \) are presumed to be Gaussian.

Whether a set of enriched probes identifies a genomic location at which a protein is bound is subject to several user-defined parameters. The UI allows specification of:

- The maximum distance (in bp) for two probes to be considered as neighbors (default: 1000 bp)
- \(P(X) \) and \(P(X_{\text{bar}}) \) criteria for a probe to be considered “bound” to another probe, extending a binding event area

A probe identifies the location of a “bound” protein if either of the following user conditions are met:
• The calculated p-value, $P(\bar{X})$, is less than a threshold defined in the UI (default: 0.001) and:
 - The error model p-value, $P(X)$, for the central probe is less than a threshold defined in the UI (default: 0.001) or:
 - The error model p-value, $P(X)$, for at least one neighboring probe is less than a threshold defined in the UI (default: 0.1).

• The calculated p-value, $P(\bar{X})$, is less than a threshold defined in the UI (default: 0.001) and:
 - The number of neighbors defined in the UI (default: 1) has an error model p-value, $P(X)$, less than a threshold defined in the UI (default: 0.005).

The decision tree to call a probe “bound” is summarized in the following table and diagram:
Table 10 Parameters for Whitehead per-array neighbourhood model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum distance (in bp) for two probes to be considered as neighbors</td>
<td>The program only considers probes to be neighbors if their genomic locations are within this threshold distance. The default value for this parameter is 1000 base pairs.</td>
</tr>
<tr>
<td></td>
<td>• To change the value, delete the old value and type a new one in the box.</td>
</tr>
<tr>
<td>$P(X_{\bar{y}}) < $</td>
<td>• This parameter refers to the average P-value for the central probe and its neighbors.</td>
</tr>
<tr>
<td></td>
<td>• The default value is 0.001.</td>
</tr>
<tr>
<td></td>
<td>• To make detection more stringent, decrease the value.</td>
</tr>
<tr>
<td>Central probe has $P(X) < $</td>
<td>• The central probe is the red probe in Figure 128.</td>
</tr>
<tr>
<td></td>
<td>• The default value is 0.001.</td>
</tr>
<tr>
<td></td>
<td>• To make detection more stringent, decrease the value.</td>
</tr>
<tr>
<td>At least one neighboring probe has $P(X) < $</td>
<td>• Neighboring probes are probes to either side of the central probe. The blue probes in Figure 128 are neighbors of the central (red) probe.</td>
</tr>
<tr>
<td></td>
<td>• The default value is 0.1.</td>
</tr>
<tr>
<td></td>
<td>• To make detection more stringent, decrease the value.</td>
</tr>
<tr>
<td>At least n of the neighbors has $P(X) < $</td>
<td>• The default value for n is 1.</td>
</tr>
<tr>
<td></td>
<td>• The default cut-off value for $P(X)$ is 0.005.</td>
</tr>
<tr>
<td></td>
<td>• To make detection more stringent, decrease the value.</td>
</tr>
</tbody>
</table>

![Graphical representation of the probe signal “neighbourhood” used in the Whitehead model](image)

Figure 128 A graphical representation of the probe signal “neighbourhood” used in the Whitehead model

Interpretation Probe binding ends when the program finds all neighboring probes that pass the condition tree determined from the user-defined parameters. The program reports the average signal intensity found from bound probes,
and generates a plot as output. It renders the binding events as points in
the visualization panel. The height of each point is equal to the average
log ratio of that region.

Visualization

When the program computes the binding regions, it plots them as a graph,
colored by sample. For two or three simultaneous plots, it is often possible
to distinguish the various regions based on the color blending.

It can still be difficult to read small regions. To zoom in on a region, click
a chromosomal region of interest, or drag a rectangular selection around a
genomic region.

Modified model

The modified Whitehead per-array neighbourhood model is very similar to
the original model, with one exception. You can see this difference if you
compare the dialog boxes for the parameter settings for the two models.
Note the setting at the bottom of the dialog boxes.

- The original version says at least one of the neighbors has a \(p(X) \) less
 than 0.005.
- The modified version says at least two of the neighbors, including the
center probe, have a \(P(X) \) less than 0.005.

Therefore, in the modified algorithm, the *center* probe, shown in red in
Figure 128 on page 334, must pass the same \(P(X) \) value as the neighbors.

With the original Whitehead algorithm, the average of the probes \(P(X_{\text{bar}}) \)
could pass the threshold when the *neighboring* probes that flank the
center probe were high, while the center probe was low. Because the ChIP
binding event is centered on the center probe, the modified Whitehead
algorithm ensures that the center probe always passes the \(P(X) \)
requirement as well.

The overall decision tree for the modified Whitehead per-array
neighbourhood model is similar to that of the original model. A probe
identifies the location of a “bound” protein if either of the following user
conditions are met:

- The calculated \(p \)-value, \(P(X_{\text{bar}}) \), is less than a threshold defined in the
 UI (default: 0.001) *and:*
 - The error model \(p \)-value, \(P(X) \), for the central probe is less than a
 threshold defined in the UI (default: 0.001) *or:*
The error model \(p \)-value, \(P(X) \), for at least one neighboring probe is less than a threshold defined in the UI (default: 0.1).

- The calculated \(p \)-value, \(P(X_{\text{bar}}) \), is less than a threshold defined in the UI (default: 0.001) and:
 - The number of neighbors defined in the UI (default: 2, including the center probe) has an error model \(p \)-value, \(P(X) \), less than a threshold defined in the UI (default: 0.005). In the modified model, the center probe must pass this \(P(X) \) requirement, in addition to the neighbors.

The modified Whitehead per-array neighbourhood model is more reliable than the original model, but the software still includes the original model in case you have used it in the past and wish to compare data using the same algorithm.

Predefined peak-shape detection algorithm

A second protein-DNA binding event detection algorithm used in the Agilent Genomic Workbench is the predefined peak-shape detection algorithm (called “PDPD” hereafter). This method uses the expected distribution of sheared DNA fragments to model the shape of increased probe signal ("peaks").

The algorithm assumes that probes will show signal enrichment in a manner proportional to two factors — the enrichment at the peak center and the distance of the probe from the peak center. Probes that are farther away from the peak center (that is, the chromosomal position of the antibody target) will show enrichment only for longer fragments that span both the probe location and the peak center.

The model implies that the peak shape is derived from the shear-length distribution by computing the expected number of fragments that span the distance between the peak center and the probe location. See Figure 129.
Purpose

Typical ChIP-on-chip microarrays use discrete probes that cover coding and noncoding genomic DNA. Because a protein-DNA binding event may span regions described by several distinct probes, you need a strategy to aggregate and evaluate such probe signals into a robust region of increased signal intensity. Such regions are termed “peaks”. Peak detection is a method to identify binding events from complex genomic data.

Use

After normalization of the data and application of an error model, the data analysis typically shifts from “low-level” analysis to “high-level” analysis. In low-level analysis, the program applies statistics at the probe level to account for systematic variations, and correlates quality information about probes with signal intensities. In high-level analysis, biological events are catalogued, statistically examined, and collected into information about biological annotation, pathway, and network. The peak
detection algorithms in the Agilent Genomic Workbench provide a bridge between low-level and high-level analysis, enabling a complete data analysis workflow for ChIP-on-chip experiments.

Algorithm

PDPD uses two methods to score peaks — a *p*-value, and an extreme value distribution (EVD) of log-likelihood values. It then employs a filter that uses both methods to predict whether a probe represents a binding event rather than noise in the data. The algorithm must first model the expected peak shape, followed by normalization and peak detection. Lastly, the peak scoring and score filtering are applied.

Modeling the expected peak shape

To model the expected peak shape, the peak-detection algorithm first approximates the distribution of sheared DNA fragments by a gamma distribution that uses a user-specified mean and standard deviation.

The mathematical model assumes that probes will show enrichment in a manner proportional to two factors — the enrichment at the peak center and the distance of the probe from the peak center. Probes that are farther away from the peak center (that is, the chromosomal position of the antibody target) would show enrichment only for longer fragments that span both the probe location and the peak center.

The model implies that the peak shape is derived from this shear-length distribution by computing the expected number of fragments that would span the distance between the peak center and the probe location. As a result, the peak shape is generated as the difference of two gamma distribution functions:

\[
\text{height}(d) = G(d, \alpha + 1, \beta) - G(d, \alpha, \beta) \cdot \frac{d\beta}{\alpha}
\]

(1)

Where *d* is the distance from the peak center, \(\alpha\) and \(\beta\) are computed from the user-specified mean and standard deviation, and \(G(d, \alpha, \beta)\) is the Gamma distribution function:

\[
G(d, \alpha, \beta) = 1 - \frac{\Gamma(\alpha, d\beta)}{\Gamma(\alpha)}
\]

(2)

Since peak-shape should be constant across an experiment, the Agilent Genomic Workbench can optionally try to learn the peak shape by analyzing the highest scoring peaks in the data set. The program reports the mean and standard deviation of the shear distribution that underlies
the idealized peak shape, and you can enter these as parameters if you choose to repeat the calculation. Alternatively, you can configure the software to automatically rerun the calculation on each array after learning its peak shape. (Note that this doubles the time that it takes to run the PDPD algorithm.)

Peak detection

The next steps identify peaks that match the predefined peak shape discovered in the steps described above. The PDPD algorithm first partitions the input data into mutually exclusive windows. The algorithm then performs local normalization of the data. Finally, it iteratively identifies peaks in each window and scores those discovered peaks.

Partitioning data into windows

For the initial partitioning of the data into windows, the algorithm identifies all contiguous chromosomal regions of the input data, such that

1. The distance between all neighboring probes within the window is less than a predefined width. (The width is based on the peak shape, and it corresponds to the distance at which two probes would not have any influence on the same peak), and

2. The number of probes in the window is at least 3.

Local normalization

For each potential position, the algorithm first normalizes the data to the local environment of the window by subtracting a baseline value from each data point. The baseline is computed from the average of all probes that are within 1 million base pairs of the data point. The size of this window is user-configurable and should be made smaller for smaller genomes. This baseline-subtraction normalizes for biases that exist in the environment of the window.

Also, because the density of probes will differ slightly across windows, the algorithm makes the density uniform by linearly interpolating the data at points that are “missing” between neighboring probes. By default, the interpolated points are spaced at 25 bp, but this spacing is user-configurable.
Iterative peak detection

Within a window, the algorithm searches in steps of 50 bp for potential positions for the peak center. This spacing is user-configurable, but decreasing it will increase the time it takes for the algorithm to run.

For each candidate position for the peak center, the algorithm computes the cross-correlation between the vector of the peak shape and the normalized data within its span. The data has been normalized to be of equal density across any window that might be examined. Therefore, the correlation is comparable across windows and is used as a measure of quality for placing a peak center at the current putative position. The peak position with the best cross-correlation is considered to be the predicted peak center.

After finding the peak center, the algorithm determines the peak height through an analytical procedure. The peak height is computed as the weighted average of the data around the peak center divided by the weighted average of the peak shape around the peak center, where both weighted averages are computed at the locations relative to the peak center at which there are measurements.

When computing the weighted average of the data, the algorithm uses the residual data, which is defined here as the original data after subtracting any previous peaks found in the region. When computing the weighted average of the peak shape, the algorithm takes the height at each position for which there are measurements of the peak shape. The weighting is done by the height of the peak shape at each position.

The peak is evaluated according to its log-likelihood. The log-likelihood of an entire peak is computed by summing the likelihood of each data point. The log of the ratio values are assumed to be normally distributed either (a) with a fixed standard deviation, or (b) with a standard deviation provided by an external error model around each data point. (This is user-configurable.)

In the case of the assumption of a fixed standard deviation, the data log-likelihood is simply proportional to

\[[-\log(predicted) - \log(\text{observed})]^2 \]

(3)
In this former case, all other terms of the normal distribution are constant (since the standard deviation is fixed for all data points) and thus do not need to be computed. In the latter case, of varying standard deviation based on an error model, the term is

$$- \log(error) - \left[\frac{\log(predicted) - \log(observed)}{error} \right]^2$$

Where $error$ is the standard deviation of the log ratio of the measurements, as predicted by the error model.

Once the algorithm identifies a peak, it subtracts its values from the original data, leaving only the residuals of the data. The algorithm then attempts to find subsequent peaks in the window as described above, except it now uses the residual data.

Peak scoring

There are two ways that the algorithm scores peaks:

- By using a p-value, and
- By using a "score" based on an assumption of an extreme value distribution of log-likelihoods.

The algorithm computes these quantities through random sampling. By default, the algorithm performs 100 samples, but this is user-configurable. Increasing the number of samples (for example, to 1000) improves the accuracy of the predictions, but it also increases the time it takes to run the algorithm in a linear fashion (by 10 times, in this example.)

To perform each random sampling, the algorithm considers the current tentative peak position, but it randomly assigns values to the locations of the original data measurements instead of using the original data. These values are taken from randomly selected measurements on the array.

Randomly selected values may come from locations that have different baselines. Therefore, when picking a random value, the algorithm first subtracts the local baseline of the original genomic location of the value and then adds the baseline of the location into which the probe is inserted — the baseline at the region in which the tentative peak is being considered. Both of these baselines are computed as described above.
For each set of randomly assigned values in the window, the algorithm computes the log-likelihood of the peak centered at the putative position, and stores the result. To evaluate the log-likelihood of a peak found in the real data, the algorithm compares its log-likelihood to the distribution of log-likelihoods of the peaks found when fitting randomized data.

During this comparison, the algorithm estimates the p-value according to the number of times that peaks found in the randomized data exhibit better log-likelihoods than the peak discovered in the real data. For example, if 95 of the 100 randomized values have log-likelihoods that are better than the number associated with the putative peak, then $p < 0.05$.

The algorithm also assigns a “score” by testing the significance of the log-likelihood under the assumption of an extreme value distribution (EVD) of the log-likelihoods from the randomized data. The significance derived from the test is converted to a score by computing the negative \log_{10} of the significance.

Filtering results

The Agilent Genomic Workbench allows you to specify both an initial p-value threshold and a score threshold. The default settings are:

- p-value threshold: 0.01
- Score threshold: 0.0

With these settings, any peak with a p-value < 0.01 will be retained (and reported) by the Agilent Genomic Workbench, regardless of its EVD-based score. Alternate filtering schemes may also be useful, for example:

- p-value threshold: 1.0
- Score threshold: 3.0

In this example, any peak with an EVD-based score above 3.0 will be retained, regardless of its p-value.

Interpretation

The program creates a score by comparing the fit of the peak shape of a binding region to a predefined peak shape from randomized data. A p-value and score threshold are produced, which allows for fine-tuning of those binding regions that are more likely to be reproducible in a number of experiments with similar noise envelopes.

Visualization

When the program computes the binding regions, it plots them as a graph, colored by sample. For two or three simultaneous plots, it is often possible to distinguish the various regions based on the color blending.
It can still be difficult to read small regions. To zoom in on a region, click a chromosomal region of interest, or drag a rectangular selection around a genomic region.
References

In this book

The User Guide presents instructions on how to analyze your ChIP microarray data with Agilent Genomic Workbench Standard 6.5.