Notices

© Agilent Technologies, Inc. 2017

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number
103016-400

Kit Part Number
103015-100

Edition
First edition, March 2017
Revision E0
Printed in USA

Agilent Technologies, Inc.
2850 Centerville Road
Wilmington, DE 19808-1610 USA

Warranty

The material contained in this document is provided “as is,” and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or sub-contract, Software is delivered and licensed as “Commercial computer software” as defined in DFAR 252.227-7014 (June 1995), or as a “commercial item” as defined in FAR 2.101(a) or as “Restricted computer software” as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies’ standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.
Contents

Introduction
  Assay Background  5
  Glossary  8

Kit Information
  Kit Contents  9
  Kit Shipping and Storage  9
  Additional Required Items  10

Assay Workflow
  Day Prior to Assay  13
  Day of Assay  14
  Running the Assay  18
  Data Analysis  19
1
Introduction

Assay Background

The Agilent Seahorse XF Cell Mito Stress Test measures key parameters of mitochondrial function by directly measuring the oxygen consumption rate (OCR) of cells. Sequential compound injections measure basal respiration, ATP production, proton leak, maximal respiration, spare respiratory capacity, and nonmitochondrial respiration (see Figure 1 on page 6). The Seahorse XF Cell Mito Stress Test uses modulators of respiration that target components of the electron transport chain (ETC) in the mitochondria to reveal key parameters of metabolic function. The compounds (oligomycin, FCCP, and a mix of rotenone and antimycin A) are serially injected to measure ATP production, maximal respiration, and nonmitochondrial respiration, respectively. Proton leak and spare respiratory capacity are then calculated using these parameters and basal respiration.

Figure 2 on page 6 illustrates the complexes of the ETC and the target of action of all of the compounds in the Seahorse XF Cell Mito Stress Test Kit. Oligomycin inhibits ATP synthase (complex V), FCCP uncouples oxygen consumption from ATP production, and rotenone and antimycin A inhibit complexes I and III, respectively.

Table 1 on page 7, describes how each modulator targets a specific component of the ETC. Oligomycin inhibits ATP synthase (complex V), and the decrease in OCR following injection of oligomycin correlates to the mitochondrial respiration associated with cellular ATP production. Carbonyl cyanide-4 (trifluoromethoxy) phenylhydrazone (FCCP) is an uncoupling agent that collapses the proton gradient and disrupts the mitochondrial membrane potential. As a result, electron flow through the ETC is uninhibited, and oxygen is maximally consumed by complex IV.
Introduction

The FCCP-stimulated OCR can then be used to calculate spare respiratory capacity, defined as the difference between maximal respiration and basal respiration. Spare respiratory capacity is a measure of the ability of the cell to respond to increased energy demand. The third injection is a mix of rotenone, a complex I inhibitor, and antimycin A, a complex III inhibitor. This combination shuts down mitochondrial respiration and enables the calculation of nonmitochondrial respiration driven by processes outside the mitochondria.

Figure 1  Agilent Seahorse XF Cell Mito Stress Test profile of the key parameters of mitochondrial respiration

Figure 2  Agilent Seahorse XF Cell Mito Stress Test modulators of the ETC
The Seahorse XF Cell Mito Stress Test is the standard assay for measuring mitochondrial function in cells. The Seahorse XF Cell Mito Stress Test Kit is designed to evaluate mitochondrial function using the Seahorse XFe and Seahorse XF Extracellular Flux Analyzers. The kit contains the reagents required to determine key parameters of mitochondrial function (See the “Glossary” on page 8 for more details.)

The ability to assess mitochondrial function has enabled researchers to advance their understanding of metabolism’s key role in cellular physiology, disease pathology, and etiology. This assay provides insight into the cause of mitochondrial dysfunction and an in-depth understanding of metabolic pathways, signals, and phenotypes.
Introduction

Glossary

- **Basal respiration**: Oxygen consumption used to meet cellular ATP demand and resulting from mitochondrial proton leak. Shows energetic demand of the cell under baseline conditions.

- **ATP production**: The decrease in oxygen consumption rate upon injection of the ATP synthase inhibitor oligomycin represents the portion of basal respiration that was being used to drive ATP production. Shows ATP produced by the mitochondria that contributes to meeting the energetic needs of the cell.

- **H⁺ (Proton) leak**: Remaining basal respiration not coupled to ATP production. Proton leak can be a sign of mitochondrial damage or can be used as a mechanism to regulate the mitochondrial ATP production.

- **Maximal respiration**: The maximal oxygen consumption rate attained by adding the uncoupler FCCP. FCCP mimics a physiological “energy demand” by stimulating the respiratory chain to operate at maximum capacity, which causes rapid oxidation of substrates (sugars, fats, amino acids) to meet this metabolic challenge. Shows the maximum rate of respiration that the cell can achieve.

- **Spare respiratory capacity**: This measurement indicates the capability of the cell to respond to an energetic demand as well as how closely the cell is to respiring to its theoretical maximum. The cell's ability to respond to demand can be an indicator of cell fitness or flexibility.

- **Nonmitochondrial respiration**: Oxygen consumption that persists due to a subset of cellular enzymes that continue to consume oxygen after rotenone and antimycin A addition. This is important for getting an accurate measure of mitochondrial respiration.
Kit Contents

The Seahorse XF Cell Mito Stress Test Kit includes six foil pouches that each contain reagents sufficient for a complete Seahorse XF Cell Mito Stress Test in either the 96 or 24 well Agilent Seahorse XF Cell Culture Microplate. Every pouch includes one tube of each of the following compounds: oligomycin, FCCP, and a mix of rotenone/antimycin A. See Table 2.

Table 2  Agilent Seahorse XF Cell Mito Stress Test Kit foil pouch contents

<table>
<thead>
<tr>
<th>Compound</th>
<th>Cap color</th>
<th>Quantity per tube (nmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligomycin*</td>
<td>Blue</td>
<td>63</td>
</tr>
<tr>
<td>FCCP</td>
<td>Yellow</td>
<td>72</td>
</tr>
<tr>
<td>Rotenone + antimycin A</td>
<td>Red</td>
<td>27 (of both)</td>
</tr>
</tbody>
</table>

* Oligomycin is a mixture of Oligomycin A, B, and C with Oligomycin A ≤60%.

Kit Shipping and Storage

Product ships at ambient temperature. Product can be stored at room temperature and is stable for 1 year from the date of manufacture (listed on the box).
Additional Required Items

The following items are also required for performing Seahorse XF Mito Stress Tests, but they are not supplied with the kits.

<table>
<thead>
<tr>
<th>Item</th>
<th>Supplier</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agilent Seahorse XFe/XF Analyzers</td>
<td>Agilent Technologies</td>
<td></td>
</tr>
<tr>
<td>XF Base Medium</td>
<td>Agilent Technologies</td>
<td>102353-100*</td>
</tr>
<tr>
<td>100 mM Pyruvate</td>
<td>Sigma</td>
<td>S8636 or equivalent</td>
</tr>
<tr>
<td>200 mM Glutamine</td>
<td>Sigma</td>
<td>G8540 or equivalent</td>
</tr>
<tr>
<td>2.5 M Glucose</td>
<td>Sigma</td>
<td>G8769 or equivalent</td>
</tr>
</tbody>
</table>

* Please refer to the Seahorse XF Media Selection Guide for a full listing of all media types and our validated recommendations for each kit type.
  

Narrow p1000 pipette tips are recommended for reconstituting compounds within the tube provided (for example, Fisherbrand™ SureOne™ Micropoint Pipet Tips, p/n 02-707-402).
3 Assay Workflow

Day Prior to Assay 13
Day of Assay 14
Running the Assay 18
Data Analysis 19

Figure 3  Agilent Seahorse XF Cell Mito Stress Test assay workflow
Optimal concentrations of FCCP and cell seeding density should be empirically determined for your cells prior to the assay. Refer to FCCP Optimization with the Seahorse XF Cell Mito Stress Test, and Seeding Cells in Seahorse XF Cell Culture Microplates Basic Procedures available on the Agilent website for more information on optimization.

The Cell Line Reference Database (www.agilent.com/cell-reference-database) is a good resource for finding reference publications for your cell type or interest.

If you are optimizing concentrations for your assay, start with the highest concentrations given in Table 3 on page 15, and make serial dilutions to cover the desired concentration range.
Day Prior to Assay

1. Turn on the Agilent Seahorse XFe/XF Analyzer, and let it warm up overnight (minimum of five hours).

2. Plate cells at a previously determined optimized density in the Seahorse XF Cell Culture Microplate using the appropriate cell culture growth medium. Refer to Basic Procedure, “Seeding Cells in Seahorse XF Cell Culture Microplates”, available on the Seahorse Bioscience website for more information.


Day of Assay

Prepare assay medium

1. Prepare assay medium by supplementing Seahorse XF Base Medium. It is best to use 1 mM pyruvate, 2 mM glutamine, and 10 mM glucose as a starting point; however, desired medium composition can be varied depending on cell type or in vitro culture conditions. Refer to Basic Procedure, “Preparing Assay Media for Use in XF Assays”, on the Seahorse Bioscience website for more information.  

2. Warm the assay medium to 37 °C.

3. Adjust the pH to 7.4 with 0.1 N NaOH.  
   Agilent Seahorse recommends sterile filtration following pH adjustment.

4. Keep at 37 °C until ready to use.

Removing reagent caps

1. Hold the tube in gloved hand.

2. Roll thumb in forward motion over the cap to loosen or, using the decapping tool provided, insert the tooth of a decapper into the inner lip of the cap, and gently rotate the tool backwards. See Figure 4 on page 14.

Figure 4  Removing reagent caps.
Prepare stock compounds

**Important**: Use compounds the same day they are reconstituted. Do not refreeze. Discard any remaining compound.

The Seahorse XF Cell Mito Stress Test Kit includes six foil pouches each containing three tubes of:
- Oligomycin (blue cap)
- FCCP (yellow cap)
- Rotenone/antimycin A (red cap)

Kit reagents are sufficient for six complete Seahorse XF Cell Mito Stress Test assays in the Seahorse XF cell culture microplate.

See “Removing reagent caps” on page 14 for instructions on using the decapping tool.

1. Remove a foil pouch, and allow the compounds to warm to room temperature in the sealed pouch for approximately 15 minutes.
2. Open a foil pouch, and remove the three tubes containing oligomycin (blue cap), FCCP (yellow cap), and rotenone/antimycin A (red cap).
3. Place the tubes in a small tube rake.
4. Using a pipette, resuspend the contents of each tube with the prepared assay medium in volumes described in Table 3.
5. Gently pipette up and down (~10 times) to solubilize the compounds.

**Table 3**  Stock solution

<table>
<thead>
<tr>
<th>Compound</th>
<th>Volume of assay medium</th>
<th>Final stock concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligomycin</td>
<td>630 µL</td>
<td>100 µM</td>
</tr>
<tr>
<td>FCCP</td>
<td>720 µL</td>
<td>100 µM</td>
</tr>
<tr>
<td>ROT/AA</td>
<td>540 µL</td>
<td>50 µM</td>
</tr>
</tbody>
</table>
Prepare compounds for loading in sensor cartridge

Seahorse recommends using the constant compound concentration with variable loading volume approach. This approach entails preparing the compounds at a constant concentration and requires that a different volume of each compound be loaded in the injection port. Table 4 on page 16 and Table 5 on page 17 describe how to prepare to load the cartridges using this method for Seahorse XFe/XF 96 analyzers and Seahorse XFe/XF 24 analyzers, respectively.

Prepare 3 mL each compound in assay medium. Seahorse recommends using 1 µM of oligomycin for most cells. Please contact Technical Support with any questions.

Table 4  Compound Preparation for Loading Sensor Cartridge Ports for Seahorse XFe/XF 96 analyzers. Starting with well volume of 180 µL assay medium

<table>
<thead>
<tr>
<th>Port</th>
<th>Compound</th>
<th>(Final well) (µM)</th>
<th>Stock volume (µL)</th>
<th>Media volume (µL)</th>
<th>10X (Port) (µM)</th>
<th>Add to port (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port A</td>
<td>Oligomycin</td>
<td>0.5</td>
<td>150</td>
<td>2,850</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td>300</td>
<td>2,700</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>600</td>
<td>2,400</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Port B</td>
<td>FCCP</td>
<td>0.125</td>
<td>37.5</td>
<td>2,962.5</td>
<td>1.25</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25</td>
<td>75</td>
<td>2,925</td>
<td>2.5</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
<td>150</td>
<td>2,850</td>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td>300</td>
<td>2,700</td>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>600</td>
<td>2,400</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>Port C</td>
<td>Rotenone/antimycin A</td>
<td>0.5</td>
<td>300</td>
<td>2,700</td>
<td>5</td>
<td>25</td>
</tr>
</tbody>
</table>
Load sensor cartridge


Load compounds into the appropriate ports of a hydrated sensor cartridge.

- **Standard Assay** - No additional injection
  - Port A: Oligomycin
  - Port B: FCCP
  - Port C: Rotenone/antimycin A

- **Modified Assay** - Additional injection included. To inject an additional compound prior to oligomycin, use port A for the desired compound and then load:
  - Port B: Oligomycin
  - Port C: FCCP
  - Port D: Rotenone/antimycin A

### Table 5

<table>
<thead>
<tr>
<th>Compound Preparation for Loading Sensor Cartridge Ports for Seahorse XFe/XF 24 analyzers. Starting with well volume of 500 µL assay medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Final well) (µM)</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td><strong>Port A</strong></td>
</tr>
<tr>
<td>Oligomycin</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td><strong>Port B</strong></td>
</tr>
<tr>
<td>FCCP</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td><strong>Port C</strong></td>
</tr>
<tr>
<td>Rotenone/antimycin A</td>
</tr>
</tbody>
</table>
Table 6 lists the appropriate volumes and concentrations for this injection scheme.

Table 6  Compound Injection Volumes Involving an Acute Injection. For Seahorse XFe/XF 96 analyzers, start with well volume of 180 µL assay medium. For Seahorse XFe/XF 24 Analyzers, start with well volume of 500 µL assay medium

<table>
<thead>
<tr>
<th>Port</th>
<th>Seahorse XFe/XF 96</th>
<th>Seahorse XFe/XF 24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Add to port volume (µL)</td>
<td>Port concentration</td>
</tr>
<tr>
<td>A</td>
<td>20</td>
<td>10X</td>
</tr>
<tr>
<td>B</td>
<td>22</td>
<td>10X</td>
</tr>
<tr>
<td>C</td>
<td>25</td>
<td>10X</td>
</tr>
<tr>
<td>D</td>
<td>27</td>
<td>10X</td>
</tr>
</tbody>
</table>

Preparation of Agilent Seahorse XF Cell Culture Microplate for assay

1. Remove Seahorse XF Cell Culture Microplates from 37 °C CO₂ incubator and examine the cells under a microscope to confirm confluence.
2. Remove the assay medium from water bath.
3. Change the cell culture growth medium in the cell culture microplate to warmed assay medium using a multichannel pipette, and place the cell culture microplate into a 37 °C non-CO₂ incubator for 45 minutes to 1 hour prior to the assay.

Running the Assay

Open Wave and retrieve saved assay template file. Follow the instructions below:

If you are using Wave:

1. Browse for and open the saved design file.
2. Click **Run**.
3. Place the calibration plate with the loaded sensor cartridge on the instrument tray, and click **Continue**. Calibration takes approximately 15-30 minutes.
   **Note**: Remove the cartridge lid and verify correct plate orientation.
4. When prompted, replace the calibration plate with the cell culture microplate then click **Start**.
If you are using Wave:

1. Browse for and open the saved design file, select the **Review and Run** tab, and then click **Start Run**.

2. When prompted, place the loaded sensor cartridge with the calibrant plate into the instrument, then click **I'm ready**. Calibration takes approximately 15-30 minutes. **Note:** Remove the cartridge lid and verify correct plate orientation.

3. Following calibration and equilibration of the cell culture microplate, when prompted click **I'm ready**.

4. Load the cell culture microplate, and click **I'm ready** to run the assay.

**Data Analysis**

The Seahorse XF Mito Stress Test Report Generator automatically calculates the Seahorse XF Cell Mito Stress Test parameters from Wave data that has been exported to Excel. The Seahorse XF Stress Test Report Generator can be used with either a standard or modified stress test protocol, and provides a convenient, customizable, one-page assay summary.
