Notices

© Agilent Technologies, Inc. 2018

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number
M8368-90011 Rev. E

Edition
03/2018

Printed in Germany
Agilent Technologies
Hewlett-Packard-Strasse 8
76337 Waldbronn

Warranty
The material contained in this document is provided “as is,” and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses
The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend
If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as “Commercial computer software” as defined in DFAR 252.227-7014 (June 1995), or as a “commercial item” as defined in FAR 2.101(a) or as “Restricted computer software” as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies’ standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Safety Notices

CAUTION
A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

WARNING
A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.
In This Book

This manual contains instructions for Method Developers on how to use the Automated Purification software.

1 The Role of the Method Developer

This chapter describes the role of the user of the Automated Purification Software in Expert mode.

2 Preparing Default Purification Methods

This chapter describes the three default Purification methods that can be used as a basis for the development of specific Purification methods.

3 Setting Up an Analytical and Preparative System

This chapter gives step-by-step instructions on setting up the analytical system and the preparative system in the Automated Purification software.

4 Setting Up and Running a Purification Task

This chapter gives instructions for the most important steps for setting up and running a Purification Task.

5 Reviewing Purification Results

This chapter describes how to review the results of a Purification Task.

6 Calibration Procedures

This chapter gives step-by-step instructions for the important calibration procedures for the Purification system.

7 Checkout Procedure

This chapter gives step-by-step instructions on how to carry out a checkout procedure to confirm the correct operation of your Purification system.
Contents

1 The Role of the Method Developer 7

2 Preparing Default Purification Methods 9
   General Method Settings 11
   Analytical Method Settings 16
   Preparative Method Settings 19
   Agilent Active Splitter (G1968D/E/F) 23
   Critical Method Parameters 24

3 Setting Up an Analytical and Preparative System 27
   Setting up an analytical system 28
   Setting up a preparative system 30

4 Setting Up and Running a Purification Task 33
   Setting up a purification task 34
   Configuring a new task 35
   System Suitability Tests 38
   Running a task 39
   Processing partial data and cloning tasks 40
   Reviewing analytical results 42

5 Reviewing Purification Results 43

6 Calibration Procedures 45
   Characterizing the tubing volumes: Mixing point to UV detector and Column to UV detector 48
   Characterizing the column volume 64
   System Configuration and Delay Time Calibration 71

7 Checkout Procedure 85
   Acquire an analytical run using the Chemstation sequence 87
   UV-only Workflow: Focused gradient in the Purification software 91
UV/MS Workflow: Focused gradient in Purification software 94
The Role of the Method Developer

This chapter describes the role of the user of the Automated Purification Software in Expert mode.

Purification software Method Developers work in Expert mode. They are responsible for establishing the software work environment such that Operators (working in Easy Prep mode) can use the purification software to purify their samples.

This comprises the following tasks:

- Creating the (analytical and) preparative base methods that are used in the instrument runs (see “Preparing Default Purification Methods” on page 9).

- Creating the analytical and preparative system parameter sets for all analytical and preparative instruments and operating conditions that are used by the Operators (see “Setting Up an Analytical and Preparative System” on page 27). These systems should be named such that Operators can easily identify their system. To retrieve system parameters, a set of calibration procedures has to be executed, see “Calibration Procedures” on page 45.

- Creating a set of purification task templates that are optimized for purifying the sample types that are provided by the Operators (see “Setting Up and Running a Purification Task” on page 33). We recommend that you provide a task template for each combination of analytical and preparative system that applies. Operators are expected to create their purification tasks based on a Method Developer’s task template that matches their system combination and separation needs.

- Creating a system suitability test task (see “System Suitability Tests” on page 38) to verify that the instrument is still operating as expected. System suitability tests can be executed by operators and method developers. However, only method developers can accept a failed system suitability test to release a blocked instrument.

- Instructing Operators on the work environment and how to set up and run purification tasks.
The Role of the Method Developer

In This Book

- Fixing problems (for example, adjusting parameters or target identification) of Operators' tasks, to which the Operators do not have access.

Method Developers have full access to all features of the purification software and to the ChemStation while working within the main purification software user interface (the purification task screen).
2

Preparing Default Purification Methods

General Method Settings 11
Analytical Method Settings 16
Preparative Method Settings 19
Agilent Active Splitter (G1968D/E/F) 23
Critical Method Parameters 24

This chapter describes the three default Purification methods that can be used as a basis for the development of specific Purification methods.

This description summarizes the recommended purification method settings for purification-related modules. Most of these method settings can be freely modified according to your needs, with limitations noted in “Critical Method Parameters” on page 24. For the alternative modules, which are not listed here, use the applicable settings of the default modules.

Start with a new method:
• Method > New Method.

Methods settings are accessible from Instrument > Setup Instrument Method or Method > Edit Entire Method.

NOTE
It is important for Purification software to mark the Save Method with Data check box in Method > Runtime Check List.

NOTE
Switch off all pumps while you are setting up the methods.
NOTE It is highly recommended that the pumps are not switched off in a pre- or post-run command of the method.

NOTE Methods rely on the instrument configuration and driver revision. If you change the instrument configuration or upgrade the driver revision for which you originally set up your purification (base) method, you must at least save the method for the changed instrument configuration under a new name. However, we recommend that, for a changed instrument configuration or upgraded driver revision, you create a new method from scratch. Otherwise, method resolution will try to adapt the methods from the old configuration/driver revision with every method load (that is, for every sample run), leading to a method changed state, and preventing the run going forward.

When creating a new task based on a task template with a different instrument configuration, make sure that you choose an appropriate preparative base method for the current instrument configuration and driver revision.

We recommend that you choose different task root folders for different instrument configurations so that you do not mix different configurations in the same task root folder.
General Method Settings

In all modules, set the **Stoptime** to **As Injector/No Limit** (infinite run time). The actual stoptime will be specified when the method is used.

**Isocratic Pump (G1310B)**

Make-up pump for splitter used with separated preparative MSD instrument.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Stoptime</strong></td>
<td>Select <strong>As Injector/No limit</strong></td>
</tr>
<tr>
<td><strong>Pressure Limits</strong></td>
<td>Consider Active Splitter pressure limit (69 bar).</td>
</tr>
</tbody>
</table>

**Quaternary Pump (G1311B)**

Make-up pump for splitter and analytical pump for combined analytical and preparative MSD instrument.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Stoptime</strong></td>
<td>Select <strong>As Injector/No limit</strong></td>
</tr>
</tbody>
</table>
| **Pressure Limits** | • Because of the 400-bar pressure limit of the preparative system, set the upper limit for analytical scouting runs to 400 bar or lower.  
|                  | • Consider Active Splitter pressure limit (69 bar) when used as make-up pump. |

**Prep Pump Cluster (G1361A and G1391A)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
</table>
| **Solvent**     | • Channel A: Water  
| description texts | • Channel B: Acetonitrile |
| **Solvent B**   | 2 %                                          |
| **Pressure Limits** | Set **Max.** limit. Find the pressure limit of the used columns (for example, 21.2 mm guard system seals finger-tight up to 135 bar; 21.2 mm prep column without the guard up to 350 bar). |
| **Stoptime**    | Select **As Injector/No limit**              |
Preparing Default Purification Methods

General Method Settings

Advanced Channel A
Set **Compressibility** to 46 (Water)

Advanced Channel B
Set **Compressibility** to 115 (Acetonitrile)

**Prep Pump (G7161A)**

**Solvents**

A
Select **Aqueous** and type the description text **Water**.

B
Mark the check box, enter 2 %, select **Acetonitrile**, and type description text **Acetonitrile**.

**Pressure Limits**

Set **Max limit**: find the pressure limit of the columns used (for example, 21.2 mm guard system seals finger-tight up to 135 bar; 21.2 mm prep column without the guard up to 350 bar).

**Advanced**
In **Compressibility**, keep the check box **Use Solvent Types** marked

**Prep Pump (G7161B)**

**Solvents**

A
Select solvent line 1 or 2, select **Aqueous** and type the description text **Water**.

B
Mark the check box, select solvent line 1 or 2, enter 2 %, select **Acetonitrile**, and type description text **Acetonitrile**.

**Pressure Limits**

Set **Max limit**: find the pressure limit of the columns used (for example, 21.2 mm guard system seals finger-tight up to 135 bar; 21.2 mm prep column without the guard up to 350 bar).

**Advanced**
In **Compressibility**, keep the check box **Use Solvent Types** marked
Dual Loop Autosampler (G2258A)

**Needle Wash**
Enable Needle Wash with **Mode: Flush Port** and **Time** 15 s (to avoid contamination of injection seat, do not use less than 10 s). The wash procedure requires needle wash solution.

**Stoptime**
Select **As Pump/No limit**

**Advanced**
In **Auxiliary**, mark **Vial/Well bottom sensing** only if the vessels used are suitable for this function, such as flat-bottomed glass vials; see the Dual Loop Autosampler manual for more information.

Prep Sampler (G7157A)

**Needle wash**
Set **Time** 15 s. The wash procedure requires needle wash solution.

**Stoptime**
Select **As Pump/No Limit**.

Valve 2/10 (G1170A and G4730A)

Selection of a flow path with a certain column.

**Position**
Select **Use valve position**

**Position switch at end of run**
Select **Do not switch**

**Position Names**
Enter description of preparative and analytical positions. For the combined setup, set Position 1: Analytical, Position 2: Preparative.

Other Valves

**Position**
Select **Use valve position** (if applicable)
2 Preparing Default Purification Methods

General Method Settings

UV (DAD, MWD, VWD)

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>DAD and MWD</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Set Signal A Wavelength</strong> to 263 nm, <strong>Bandwidth</strong>: 4 nm, clear <strong>Reference</strong> wavelength.</td>
<td></td>
</tr>
<tr>
<td><strong>VWD</strong></td>
<td>Set <strong>Signal</strong> to 263 nm.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peakwidth</th>
<th>DAD and MWD</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Hz (&gt; 0.013 min)</td>
<td></td>
</tr>
<tr>
<td><strong>VWD</strong></td>
<td>40 Hz (&gt; 0.013 min)</td>
</tr>
</tbody>
</table>

**Advanced > Spectrum** (optional for DAD)

| Store: All, Range | from: 200 nm to 400 nm, **Step**: 2 nm |

| Autobalance | Mark Prerun. |

| Lamps on required for acquisition (DAD and MWD) | Mark UV Lamp. |

| Miscellaneous VWD | Mark Lamps on required for acquisition. |

| Stoptime | Select As Pump/Injector |

UIB II (G1390B)

- If an auxiliary detector is connected via the UIB II box, set all related parameters in the UIB II method.
- If there is no detector connected via UIB II box, clear both **Analog In** check boxes in **Advanced > Analog In Port Settings**
- Set **Stoptime** to **As Pump/Injector**

Fraction Collectors (G1364B, G1364E, G7159B, G7166A and FCC*)

* FCC is a Fraction Collector Cluster of two or more modules.
- **G1364E, G7159B, G7166A and FCC**: Set **Collection Behavior** to **Disable Fraction Collection**
- Set **Stoptime** to **As Pump/Injector**
Flow Modulator (G7170B)

Splitting Operation

Select Splitting disabled.

MSD

Access by Method > Edit entire method or by right click on MSD icon

Set Up MSD Signals

General

Peakwidth: 0.1 min (this defines the MSD data rate; make sure that it is sufficient).

Active Signals: Mark 1 and 2 signals and name them, for example, Positive and Negative

MSD Signal Settings

Signal: 1, Mode: Scan, Polarity: Positive, Mass range: 125 – 725, Step size: 0.1

Signal: 2, Mode: Scan, Polarity: Negative, Mass range: 125 – 725, Step size: 0.1

MSD type-specific settings

- MSD G6120B/G6125B
  
  If the actual cycle time is above 0.9 s, consider decreasing it by using only one scanning polarity (lower cycle time will require less delay coil volume):
  
  - General > Active Signals > clear Signal 2
  - MSD Signal Settings > Signal 1 > specify polarity
  - MSD G6130B/G6135B

  General > Peakwidth > 0.07 min

Save the method as

General_Purification

- Method > Save Method as
Analytical Method Settings

Only for the combined analytical and preparative system.

Load the general settings of the purification method: 
*General_Purification* (*General Method Settings* on page 11)

Save the method as 
*Analytical_Purification*:

- Method > Save Method As.

**Quaternary Pump (G1311B)**

Flow 1.0 mL/min

Advanced Set Maximum Flow Gradient to about 10 times the target flow.

**Prep Pump Cluster (G1361A and G1391A)**

Flow 0 mL/min

**Prep. Pump (G7161A)**

Flow 0 mL/min

**Prep. Pump (G7161B)**

Flow 0 mL/min
Dual Loop Autosampler (G2258A)

**Injection Loop**
Lower

**Injection mode**

- Depends on installed loop volume and injection volume.
  - Loop equal to injected volume: set **Full loop with overfill factor 5**, disable **Plug Settings**
  - Loop larger than injected volume: set **Partial loop filling** and set **Plug Settings** to maximum Plug volume:
    - **Mark Draw Plug before and after the sample**
    - **Plug Volume**: set the volume later in the method based on injection volume: Plug volume = \( \frac{1}{2}[(\text{Loop volume}) - (\text{Injection volume})] \)
    - **Draw Plug from**: select **Location**, specify vial location

**NOTE**

The application of the Plug removes up to 27 µL of the purge solvent from the lower loop that is introduced by the seat capillary in front of the loop, which is purged after each run. The purge solvent has typically high elution strength by design; therefore, the removal of this solvent from the lower injection loop by the Plug feature is highly recommended.

**Injector Cleaning**

- **Rinse volume** to 15

**Advanced**

- **Draw speed** and **Eject speed** to 1000.0 µL/min.

Valve 2/10 (G1170A and G4730A)

**Position**

- **Use valve position**: set analytical position

**UB II (G1390B)**

**Expected ERI Mode**

- No mode check

If the Active Splitter is connected to the external contacts of the UB II:
- **Timetable**: Empty
- **External Contacts**: **Contact A**: mark **Closed**
2 Preparing Default Purification Methods

Analytical Method Settings

Save the method changes:

- **Method > Save Method.**
Preparative Method Settings

Load the general settings of the purification method:  
*General_Purification* ("General Method Settings" on page 11)

Save the method as  
*Prep_Purification*:
- Method > Save Method As.

**Isocratic Pump (G1310B)**

Separated preparative MSD system — make-up pump

- **Flow**: 1.5 mL/min  
  - **Advanced**: Set *Maximum Flow Gradient* to about 10 times the target flow.

**Quaternary Pump (G1311B)**

Combined analytical and preparative MSD system — as make-up pump:

- **Channel D**: 100 %  
  - **Flow**: 1.5 mL/min  
  - **Advanced**: Set *Maximum Flow Gradient* to about 10 times the target flow.

**Prep Pump and Prep Pump Cluster (G7161A/B, G1361A and G1391A)**

- **Flow**: 20 mL/min (scale-up of 4.6 × 50 mm to 21.2 × 50 mm columns with 5 µm particle size).  
  - **Advanced Channel A and B**: In *Maximum Flow Gradient*, set both *Flow ramp up* and *Flow ramp down* to about 10 times the target preparative flow.
Preparing Default Purification Methods

Preparative Method Settings

Dual Loop Autosampler (G2258A)

Injection Loop  Upper
Injection mode  Partial Loop Filling
Injector Cleaning  Rinse volume: 1 (increase to 5 for injections below 200 µL)
Advanced  Draw speed and Eject speed: 8000.0 µL/min (decrease to 3000.0 for injections below 200 µL)

Prep Sampler (G7157A)

Advanced  Set Draw Speed to 3000.00 µL/min.

Valve 2/10 (G1170A and G4730A)

Position  Use valve position: set the preparative position

UV (DAD, MWD, VWD)

- For instruments with Agilent active splitter or if using the slope-based collection mode, set Peakwidth to:
  - for DAD and MWD: > 0.1 min (2 s response time) (2.5 Hz)
  - for VWD: > 0.2 min (4 s response time) (2.5 Hz)

UIB II (G1390B)

If an MSD is configured:
- G1364B: Expected ERI Mode: MSD
- G7159B: No mode check

If the Agilent Active Splitter (G1968D) is connected to the external contacts of the UIB II:
- Timetable:
  - 0, Change contacts, Contact A state: Closed
  - 0.01, Change contacts, Contact A state: Open.
- External Contacts: Contact A: mark Closed
If the active splitter is activated by a contact other than contact A, use this contact instead.

### Fraction Collector (G1364B and its cluster unit)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction Trigger Mode</td>
<td>Peak Based, max. peak duration: 1 min</td>
</tr>
<tr>
<td>Peak Detector</td>
<td>G1390B (UIB II)</td>
</tr>
<tr>
<td></td>
<td><strong>Mode</strong>: Off (if no auxiliary detector is connected to UIB II box)</td>
</tr>
<tr>
<td></td>
<td><strong>Mode</strong>: On (if auxiliary detector is connected to UIB II box)</td>
</tr>
<tr>
<td></td>
<td>UV detector</td>
</tr>
<tr>
<td></td>
<td><strong>Mode</strong>: Set one of modes and related values</td>
</tr>
<tr>
<td>Use MSD for mass-based Fraction Collection</td>
<td>Mark this check box for mass-based collection.</td>
</tr>
<tr>
<td>Fraction is collected when a peak is detected by</td>
<td>Select all peak detectors</td>
</tr>
</tbody>
</table>

In the module **Configuration**, verify that the preparative pump is linked.

### Fraction Collector (G1364E, G7159B, G7166A and cluster unit)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collection Behavior</td>
<td>Select Enable Fraction Collection.</td>
</tr>
<tr>
<td>Peak Triggers</td>
<td>Use</td>
</tr>
<tr>
<td></td>
<td>Mark the check box</td>
</tr>
<tr>
<td>Peak Detection Mode</td>
<td>Select a peak detection mode and set the related values.</td>
</tr>
<tr>
<td>Use MSD for mass-based Fraction Collection</td>
<td>Mark this check box for mass-based collection.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger Combinations</td>
<td>Select <strong>AND</strong>.</td>
</tr>
</tbody>
</table>

In the module **Configuration**, verify that the preparative pump is linked.

### Flow Modulator (G7170B)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Splitting Operation</td>
<td>Select <strong>Splitting enabled</strong>.</td>
</tr>
</tbody>
</table>
2 Preparing Default Purification Methods
Preparative Method Settings

Intended Pump Flow  Set Main Flow and Makeup Flow.
Split Mode  Select the target split mode.

MSD

Access by Method > Edit entire method or by right click on MSD icon

Fraction Collection  FC Mode
Use sample target masses
MS Signals
Mark active signals (Signal 1, and Signal 2 if used)
Positive adducts
Mark M+H(1) if positive polarity is active
Negative adducts
Mark M-H(1) if negative polarity is active

Save the method changes:
• Method > Save Method.
Agilent Active Splitter (G1968D/E/F)

To start the Agilent active splitter automatically with the preparative method:

- Set the external contacts and related timetable as in the UIB II method settings.
- Set the Agilent active splitter to Local (communication with External Contacts).
- Set the split ratio of the splitter manually (refer to the MRA Operating Manual).
Critical Method Parameters

In some situations, incorrect settings of the following parameters can cause incorrect functioning of the Purification software, incorrect fraction collection, or damage or contamination to some parts of the system. Therefore, if the purification system does not work correctly, ensure that the following parameters are set correctly:

**Configuration**
- Fraction collector: **Linked pump** > select preparative pump

**General default method**
- Pump: **Pressure limits** (to avoid column damage)
- Autosampler: **Needle wash** (to avoid autosampler seat contamination)
- Autosampler: **Vial/Well Bottom Sensing** (use only with suitable sample wells or vials)
- Valve: **Position** > **Use valve position** (necessary for Purification software)
- Valve: **Position switch at end of run** > **Do not switch** (to avoid system overpressure due to flow path switch on the 2/10 valve)
- UV Detector: **Signals** > **Set Signal A** (set a wavelength suitable for analyzed compounds)
- MSD: **Set Up MSD Signals** > **General** > mark **Active Signals** (to collect MSD data)
- MSD: **MSD Signal Settings** > **Mode** > **Scan** (necessary for Purification software)

**Analytical default method (combined system)**
- Valve 2/10 > **Position** > **Use valve position** > select correct analytical position
- Iso. Pump: **Flow** > 0 mL/min (make-up not used in analytical; flow can cause leak sensor error)
- UIB II: **Expected ERI Mode** > **No mode check** (for use with MSD, to avoid not ready state in some cases)
- Autosampler Plug: Plug solvent should contain only minimum amount of organic solvent to avoid unwanted partial elution of the sample on the column causing peak distortion and/or elution time variability
Critical Method Parameters

Preparative default method (Purification software base method)

- Valve 2/10: **Position** > **Use valve position** > select correct preparative position
- Iso. Pump (with splitter): **Flow** > target make-up flow must be set before use
- UIB II (with MSD): **Expected ERI Mode** > **MSD** (for MS based fraction collection)
- UIB II (with active splitter): **Timetable** > set for correct active splitter operation
- UIB II (with active splitter): **External contacts** > set for correct active splitter operation
- Set up active splitter split ratio and operation mode to **Local**

Note that some points also apply to stand-alone analytical systems.
Preparing Default Purification Methods

Critical Method Parameters
This chapter gives step-by-step instructions on setting up the analytical system and the preparative system in the Automated Purification software.

In order to perform purification runs, an analytical and a preparative system need to be defined. An analytical system is either part of a separate analytical instrument or part of a combined analytical and preparative instrument. Here, the meaning of a system is the relevant parameters in the purification workflow, which comprise both instrument configuration and operating parameters. These parameters are mandatory for the automatic purification run calculations.
Setting up an analytical system

You can either create a new analytical system from scratch or, if you have already created a similar system, set up a clone of an existing system.

1 In the Chemstation Method and Run Control view, open the Purification menu and select Systems.

   The Setup Systems Parameters dialog box is displayed. The analytical system parameters are displayed in the left panel; the preparative system parameters are displayed in the right panel. These instructions are for the analytical system parameters in the left panel.

2 If no analytical system has already been set up, click Add System and provide a name and analytical flow rate.

   OR

   If at least one analytical system has already been set up, select one that corresponds closely with your new system and click Add System.

   A new analytical system is created or cloned.

3 In the Pumps & Detectors tab:

   - Select the system type to which your analytical parameters belong. If they are part of a combined analytical and preparative instrument, then your choices for pumps and detectors are based on the current instrument configuration. If your analytical system parameters describe a separate analytical instrument, then you need to choose one method from that instrument. Your choices for pumps and detectors are then based on the instrument configuration as read from that example method. As such, any method parameters are ignored; only the configured pumps and detectors are used from that method.

   - In the Pumps section, if there is more than one pump in the instrument, select the analytical pump delivering the main flow. Specify the pump channels for organic solvent and water for the selected pump. The analytical flow rate needs to be set according to your planned analytical

   Make sure that you choose a system name that helps you and other operators identify your system among others; for example, use the laboratory and instrument name/number and key operating parameters within the system name.
runs. The preparative flow rate can be calculated from the analytical flow considering the different column geometry in order to maintain the same chromatographic conditions. It is also possible to adapt the analytical flow rate according to a given preparative flow rate from the selected preparative system in the right panel of the Setup Systems Parameters dialog box.

4 In the Detectors section, select the relevant detectors from the available detectors in the instrument configuration. The system schematics graphic corresponds to the selected detectors.

5 In the Sampler tab:
   - The tab is present only for flow-through samplers such as the G7157A 1260 Infinity II Prep Autosampler. There, the volumes of the sample loop and seat capillary contribute to the time that the sample needs to reach the column. If the analytical system is separate from the preparative system, such volumes are read from the method as specified in the Pumps & Detectors tab. For combined instruments, the volumes must be imported from the current instrument configuration. Previously created analytical system settings may refer to a different sample loop or seat capillary and then will be displayed with a warning sign.

6 Switch to the Column tab and provide details of the analytical column.

7 Click Save System to save the analytical system parameters.
Setting up a preparative system

The process of setting up a preparative system is very similar to that for setting up the analytical system, but since the Automated Purification software is installed on the preparative system, it is able to determine the current instrument configuration and show a warning if the system does not match the instrument configuration.

1. In the Chemstation Method and Run Control view, open the Purification menu and select Systems.

   The Setup Systems Parameters dialog box is displayed. The preparative system parameters are displayed in the right panel; the analytical system parameters are displayed in the left panel. These instructions are for the preparative system parameters in the right panel.

2. Click Add System and provide a name.

   Make sure that you choose a system name that helps you and other operators identify your system among others; for example, use the laboratory and instrument name/number and key operating parameters within the system name.

   You can also clone an existing preparative system.

3. In the Pumps & Detectors tab:

   - The settings are based on the available modules in the current instrument configuration. This is either a preparative-only or a combined analytical and preparative instrument.

   - In the Pumps section, if there is more than one pump in the instrument, select your preparative pump for the main flow. Specify the pump channels for organic solvent and water for the selected pump. The preparative flow rate needs to be set according to your planned preparative runs. The preparative flow rate can be set as calculated from the analytical flow (of the selected analytical system in the left panel) considering the different column geometry in order to maintain same chromatographic conditions. If a second pump is configured in the instrument and an MSD or auxiliary detector is set up for the preparative system, you can also select a make-up pump, which delivers the flow to the MSD or auxiliary detector.
• In the **Detectors** section, select the relevant detectors from the available detectors in the instrument configuration. The system schematics graphic corresponds to the selected detectors.

4 In the **Sampler** tab

• The tab is present only for flow-through samplers such as the G7157A 1260 Infinity II Prep Autosampler. There, the volumes of the sample loop and seat capillary contribute to the time that the sample needs to reach the column. The volumes must be imported from the current preparative instrument configuration. Previously created preparative system settings may refer to a different sample loop or seat capillary and then are displayed with a warning sign.

5 In the **Delay Volumes** tab:

• Select the tubing by selecting a system type.

If you select a custom system type, you need to determine the tubing volumes. For details about determining delay volumes and times, see Characterizing the delay volumes and Fraction collector delay time and volume calibration (“Characterizing the tubing volumes: Mixing point to UV detector and Column to UV detector” on page 48, “System Configuration and Delay Time Calibration” on page 71).

• Specify the additional detectors that are used. If an MSD is part of the system, specify the delay time between the UV detector and the MSD, and click **Do calibration run** to determine the delay time between the UV detector, fraction collector and MSD.

6 Switch to the **Column** tab and provide details of the preparative column.

7 Click **Save System** to save the preparative system parameters.
3 Setting Up an Analytical and Preparative System
Setting up a preparative system
4
Setting Up and Running a Purification Task

Setting up a purification task  34
Configuring a new task  35
System Suitability Tests  38
Running a task  39
Processing partial data and cloning tasks  40
Reviewing analytical results  42

This chapter gives instructions for the most important steps for setting up and running a Purification Task.
Setting up a purification task

The purification task holds the complete data of the purification job, including the analytical and preparative systems, the analytical and preparative run conditions and parameters, and the analytical and preparative results once they are available.

Purification tasks are managed in the purification task screen, which is thus the center for the execution of all purification work:

- configuration of the purification job (samples and operating setup)
- submission of the analytical and preparative runs (including progress indication and stop)
- review and modification of the target identification from the analytical run
- review and export of the purification results (collected fractions)

1. In the ChemStation Method and Run Control view, open the Purification menu and select Tasks.

   The purification task screen is shown, displaying in its upper region a list of all tasks in the selected task folder. Details of the selected task (setup and result info) are displayed in the lower region. By default, the configuration tab with the Select System page of the selected task is displayed.
Configuring a new task

A new empty task can include information from an analytical run, which is either specified to run on a combined analytical and preparative instrument or which has been run on a separate analytical instrument. This is an analytical-to-preparative workflow task. It includes the upscaling of analytical conditions to the preparative instrument. A preparative-only (workflow) task does not include an analytical run and therefore has no upscaling. It defines a preparative run on the preparative instrument only. System suitability tasks are discussed in “System Suitability Tests” on page 38.

The following description is for an analytical-to-preparative task, which requires the completion of all configuration screens.

1 Click Add Task to create a new default purification task, template-based purification task or a copy/clone of the currently selected purification task. Provide a name for your new purification task.

2 Verify that the Analytical System matches the system providing the analytical run, and that the Preparative System corresponds to the current preparative instrument configuration.

   The current instrument configuration of the preparative system is displayed in the table.

   If one of the systems does not match, choose another template to create your task. If there is no matching template, create a new task with matching systems and save it as a template.

3 Select each of the subpages, Pumps & Detectors, Sampler, Delay Volumes and Columns, and verify that the parameters are correct. If they are not, select a suitable system.

4 Select the Ion Species page and select the ion species of interest for the analytical run. If necessary, select the charge states. For the preparative run, select what to do with the ion species.

5 Select the Analytical Run page and specify the source of the analytical run:
   - To run an analytical scouting sequence on a combined analytical and preparative system, select an existing ChemStation sequence or prepare a sequence from scratch. Select the path and name of an existing
4 Setting Up and Running a Purification Task
Configuring a new task

ChemStation sequence in the text input field or click Edit sequence to start editing a sequence from scratch or modifying a selected sequence. You can also import a sequence as a text (CSV or TXT) file.

- To use analytical results that have already been acquired on a stand-alone system, specify the location of the source files (result set or single sample results) in the text input field.
  
  Select data files using the Process? check box in the sequence table.

6 Select the Scale Up page and verify that the Analytical Signal Correlation and Purification of Target parameters are correct. Make any necessary changes.

In the Gradient tab of the Scale Up page, the gradient profile can be adjusted. The default settings should deliver reasonable purification results. The software design allows an experienced Method Developer to optimize the default settings to obtain the best purification results.

NOTE Any changes of the gradient profile in the task configuration page are applied to all samples of the task. The parameters are maintained when you save the task as a template, and use the template to create new tasks.

7 Select each of the subpages, Integration and Gradient, and verify that the parameters are correct. Make any necessary changes.

8 Select the Preparative Run page and specify a Preparative base method. If you want to review the analytical results before starting the preparative run, mark the Review analytical results before purification check box.
Mark this check box, if:

- you want to review the automatic target identification of individual samples and eventually correct it by manual target assignment or by changing the target identification parameters for all samples (in the Task Configuration tab) or for individual samples (in the Analytical Results tab)
- you want to modify integration parameters, gradient profiles, or target masses for individual samples
- you want to revise the automatic decision of samples to purify
- you want to adjust fraction collection thresholds or fraction collection conditions for specific targets
- you are not using an MSD for target identification

Clearing the check box starts the purification step automatically when the target compounds have been identified.

9 Enter the injection volumes and vial locations for the preparative run into the table.

You can also use the Location Mappings subpage for this task, or to make any adjustments.

10 Select each of the subpages, Fraction Collection and Location Mappings, verify that the parameters are correct, and make any necessary adjustments.

Parameters that have been changed in the Task Configuration page are applied as global settings for all samples from a task. They are also applied in all further tasks that you create if you save and use this task as a template.
System Suitability Tests

The system suitability tests are specific tasks of the preparative-only workflow. They are used to purge the autosampler, flush the instrument and submit a run of at least one known standard sample in order to verify that the compounds in the sample are still eluting within the expected retention time range and that their ion masses can still be detected. As such, the system suitability tasks verify that the preparative instrument is (still) ready to run. We recommend that you submit such task every morning before starting purification. A system suitability task run should be repeated if you feel that the instrument is not operating as it should. If a system suitability test fails, then no regular tasks can be submitted until you fix the instrument and a repeated system suitability run confirms the system readiness. As a method developer, you can also classify a failed system suitability test run as accepted to release the instrument for further task runs if you judge that the instrument is capable of performing the required purification tasks.
Running a task

1. Click **Run** in the top toolbar of the **Task** dialog box to start the purification run.

   If the analytical sequence has not yet been run, it will be submitted to the ChemStation run queue.

   If the analytical run is already available, the process will start with the evaluation of the analytical results.

   The buttons in the top toolbar also allow you to stop a run in progress or unschedule a scheduled run that has not yet started. If the run queue is paused (for example, after a stop) you can resume it using the **Resume** item in the **Task** toolbar. Note that the **Resume** items can be helpful if the run gets stuck or lost for any reason.

   The run progress is displayed in the bottom line of the **Task** screen. Run state events and important processing events are displayed in the **Logbook** tab.
Processing partial data and cloning tasks

You are dealing with partial data under the following conditions:

- You stopped your analytical or preparative run, or your run was stopped due to an instrument error (such as solvent bottles running empty). In such a case, some of the planned samples were executed but others were missed.

- You have a large set of analytical data from a separate analytical instrument, but you want only a subset of it to be purified in one task. For example, your preparative plate does not have the capacity to hold all samples.

Task cloning (or copying) means creating a new task with the same settings and analytical data as another task. The preparative results are not cloned.

1. Select the task to be cloned in the task list of your purification task dialog box.

2. Create a new task as a clone of the selected task by choosing **Add clone of currently selected task** in the **Add Purification Task** dialog box.

If you want to repeat a (previous) system suitability test run, you can clone the system suitability test task and let it run. This way, operator users can also repeat system suitability task runs. Operator users cannot create a new system suitability task from scratch.

If your analytical run was stopped or aborted, the successfully processed samples remain as analytical result data with the task. Purification proceeds with those samples only. If you want to process the remaining/missed samples from such a task:

1. Create a clone of the incomplete task.

2. In the new cloned task, go to the **Analytical Run** page of the **Task Configuration** and click **Revert to sequence**.

   This restores your original sequence.

3. Click **Edit Sequence** and remove the samples that already ran successfully.

4. Click **Accept changes** to save your modified sequence with the task.

If your preparative run was stopped or aborted, the successfully processed samples are saved with the task, which is now in a **completed** state, and no further modifications can be made. You can proceed to reviewing your
purification results and export fractions as described in “Reviewing Purification Results” on page 43. To process the missed samples of the purification run:

1. Create a clone of the partially processed task.

2. In the new cloned task, go to the Analytical Results tab and select the samples to be purified by marking the check boxes in the Purify? column.

3. Re-submit the purification run for the selected (missed) samples.

If you want to process only a subset of the samples from your available analytical data, select the analytical data (result set folder or folder of your single sample results) in the Analytical Run page of Task Configuration of a new task.

1. Select those samples that you would like to be evaluated and purified in the Process? column of your analytical samples table.

2. Create a new task as a clone of your previous task to run another subset of samples from your analytical data and select the next subset of samples.

Make sure that all tasks that refer to the same analytical data are stored in the same root folder, because the analytical results are copied into the same root folder.

This avoids unnecessary copies of your analytical data. For example, the default root folder is C:\Users\Public\Documents\ChemStation\1\Purify\Tasks. The analytical results are then stored in C:\Users\Public\Documents\ChemStation\1\Purify\Tasks\AnalyticalResults.
Reviewing analytical results

1. If you have selected to review the analytical results before starting the preparative run, the purification run stops after the evaluation of the analytical results. Select the **Analytical Results** tab to review the results.

   You can make any adjustments to the scale-up parameters and preparative run conditions before continuing with the purification step.

   In the **Analytical Results** tab, the identified target compound and the calculated gradient profile are visualized. Spectral data of each peak is displayed in the **Spectra** tab. Scale-up, integration and fraction collector thresholds can be adjusted for each sample individually. Target masses or formulas can be corrected.

   **NOTE**
   
   All changes in the **Analytical Results** tab apply to the selected sample, so you must step through all samples that you want to review or for which you want to change settings. If settings have to be adjusted for all samples, return to the **Task Configuration** tab to change the global settings, then restart the evaluation of the analytical results.

2. When you are satisfied with the results, click **Run** in the top toolbar of the **Task** dialog box to start the preparative run.

3. When the preparative run is finished, select the **Preparative Results** tab to review the results.
5

Reviewing Purification Results

This chapter describes how to review the results of a Purification Task.

The purification results can be reviewed either in the Preparative Results tab or in the stand-alone Preparative Results window. The functionality of both review methods is the same, but the Preparative Results window does not contain task-specific information such as sample purity or target formula.

1. To display the purification results, click the Preparative Results tab.

OR

Open the Purification menu in the Chemstation Data Analysis view and select Results.

The purification results are shown in a window with four sections:

- Upper left: the samples list. You can choose to view the samples either as a tabular display or as a graphical representation of the autosampler tray.

- Upper right: the fractions collected. You can choose to view the fractions either as a tabular display or as a graphical representation of the fraction collector.

- Lower left: the signals display, which shows all collected chromatograms from the selected sample. The peaks are annotated with start and end ticks and retention times, and the collected fractions are denoted by colored bands.

- Lower right: the spectra display, which shows the spectra for the selected fraction.

The Preparative Results tab displays the location of the injected samples in the autosampler and the location of the collected fractions in the fraction collector. It indicates the collected fractions in the chromatograms and the corresponding spectral data that have been acquired. The display of spectral data is an interactive process: clicking on a peak of the chromatogram displays the spectral data, or clicking on a collected fraction displays the spectral data and the chromatographic information. Select
fractions to export by CTRL-clicking fractions in the graphics or the table. Selected fractions can be exported as a re-analysis sequence file or a liquid handler pooling file by clicking in the Purification Task toolbar.
6

Calibration Procedures

Characterizing the tubing volumes: Mixing point to UV detector and Column to UV detector 48

- Tubing Volumes for Predefined Systems 48
- Calculation of tubing volume: Sampler valve to column 51
- Calculation of tubing volume: Column to UV detector 51
- Calculation of tubing volume: Mixing point to UV detector 53
- Experimental measurement of delay volume: Mixing point to UV detector 58
- Determining the elution time of acetone 62

Characterizing the column volume 64

- Column Volume: Standard Analytical System 64
- Combined Analytical and Preparative System 67

System Configuration and Delay Time Calibration 71

- Running conditions for calibration procedures 72
- Configuring the Analytical and Preparative Systems 74
- Delay time determination for Analytical systems (MSD and/or auxiliary detectors) 75
- Configuring the Preparative System Parameters 76
- Delay time calibration for Preparative Systems 78
- Insufficient UV-to-FC delay time or MSD-to-FC delay time 81

This chapter gives step-by-step instructions for the important calibration procedures for the Purification system.

Before starting the calibration procedure(s), check that all prerequisites are available (solvents, samples and others). The list is placed in the beginning of each document.
The calibration procedures are a set of measurements and calculations that calibrate all required parameters for the Purification software. The work-flow is as follows:

1. Create default methods, see “Preparing Default Purification Methods” on page 9
   “Critical Method Parameters” on page 24 summarizes parameters of the purification LC system that are critical for correct function of the LC system and Purification software.

Set up default methods for the purification instrument:

   - General
   - Analytical (only for combined analytical and preparative instrument)
   - Preparative
   - Agilent Active Splitter

2. Determine instrument tubing volumes (Mixing point to UV and Column to UV), see Characterizing the tubing volumes (“Characterizing the tubing volumes: Mixing point to UV detector and Column to UV detector” on page 48)

Characterization of tubing volumes between the mixing point-to-UV and the column-to-UV that include volumes of tubing and some modules. For the standard analytical system, it is recommended to calculate the Mixing point-to-UV detector tubing volume if the void volumes of the modules are available. For the purification system, it is recommended to perform both measurement and calculation of the instrument Mixing point-to-UV detector tubing volume. Comparison of these two values can serve as a test for the correct tubing set-up, and that it is free of air bubbles; if the deviation is significant (more than about 10%), check the tubing connection and/or flush the tubing with a high flow rate to remove air bubbles (typically in the mixer).

If you are using custom tubing systems:

   - Calculate the Column-to-UV detector tubing volume for:
     - Analytical flow path (combined or standard analytical system)
     - Preparative flow path
   - Calculate Mixing point-to-UV detector tubing volume for:
     - Analytical flow path (combined or standard analytical system)
     - Preparative flow path
Calibration Procedures
Reviewing analytical results

- Measure the Mixing point-to-UV detector tubing volume for:
  - Preparative flow path (bypass the splitter, if you are using the combined system)

NOTE Do not forget to remove the column from the flow path.

3 Determine the column void volume, see “Characterizing the column volume” on page 64

Determination of the column Porosity parameter for Purification software. In the Purification software, the Porosity equals the column void volume divided by the column geometric volume. A typical value for 4.6 mm and 21.2 mm ID ZORBAX StableBond (SB) C18 columns is 50%.

4 Determine the delays for the analytical system and measure the fraction collector delays for the preparative system, see “System Configuration and Delay Time Calibration” on page 71

- Configure the purification systems in the Purification software.
- Determine the delay time for the Analytical systems.
- Calibrate the delay time for the Preparative systems.

5 Check-out sample test in Purification software, see “Checkout Procedure” on page 85

a Acquire analytical run(s) in a ChemStation sequence.

b Set up and measure a focused gradient in Purification software for separated analytical and preparative UV-only instrument.

c Set up and measure a focused gradient in Purification software for combined and separated analytical and preparative MSD instruments.
Characterizing the tubing volumes: Mixing point to UV detector and Column to UV detector

Chemicals (needed only if values are measured; all solvents degassed)

- Preparative or combined system (measurement recommended):
  - Solvent A: Water
  - Solvent B: 1% acetone in water as a UV tracer
  - Solvents can contain additives.

The Mixing point to UV detector tubing volume is used to correct the HPLC elution times for the dead volumes of the tubing and a mixer. The Column to UV detector tubing volume is the dead volume of the tubing between the end of the column and the UV cell. The difference between these tubing volumes is called the dwell volume, which serves as a correction of the gradient-related calculations for the delay of the gradient to the column. It causes a delay of the programmed gradient to the column, and it negatively influences the performance of gradient-based separations. Therefore, it is an important parameter for the calculation and optimization of generic and focused gradients. The Sampler valve to column tubing volume is the volume between the sampler valve outlet port and the column inlet. It expresses the delay of the sample to the column.

Tubing Volumes for Predefined Systems

The Volume Sampler valve to Column, Volume Column to UV detector and Volume Mixing point to UV detector for predefined systems can be selected for each analytical and preparative system from the Tubing drop-down list in the in the Delay Volumes tab of the Analytical Systems or Preparative Systems dialog box. Predefined systems are several default supported configurations defined in the M8368-90302 System User Guide for the 1260 Infinity Purification System and Infinity II preparative capillary kit documentation, which have modules connected using the following capillary kits:

- For the Combined UV/MSD and Preparative UV/MSD systems: 5067-6176 Capillary Kit for Mass-based Systems
Characterizing the tubing volumes: Mixing point to UV detector and Column to UV detector

- For the Preparative UV-only system: *5067-6175 Capillary Kit for UV-based Systems*
- Infinity II Prep UV and UV/MS systems. Capillary kits: 5067-6858, 5067-6859, 5067-6860 or 5067-6809 with the optional MS upgrade capillary kit 5067-6861.

For the combined preparative and analytical MSD default setup, the tubing volumes of the analytical flow path are dependent on pressure, solvent type and composition. This is due to the presence of the dampener in the quaternary pump G1311A/B/C used with this system. Therefore, by selecting one of the predefined combined systems, an **Initial pressure** field is provided in the in the **Delay Volumes** tab of the **Analytical Systems** dialog box. The **Volume mixing point to UV detector** tubing volume is updated based on the value of **Initial pressure**.

**Table 1**  
List of predefined combined setups in Analytical Systems dialog box

<table>
<thead>
<tr>
<th>Setup</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined UV/MSD, G1311B, ACN</td>
<td>Analytical flow path of the default combined UV/MSD analytical-to-preparative instrument setup with G1311B quaternary pump and 50 µL loop in the dual-loop autosampler (G2258A). Acetonitrile or methanol as solvent for the pump channel B.</td>
</tr>
<tr>
<td>Combined UV/MSD, G1311B, MeOH</td>
<td>Analytical flow path of the default combined UV/MSD analytical-to-preparative instrument setup with G1311B quaternary pump and 50 µL loop in the dual-loop autosampler (G2258A). Acetonitrile or methanol as solvent for the pump channel B.</td>
</tr>
<tr>
<td>Combined UV/MSD, G1311A/C, ACN</td>
<td>Analytical flow path of the default combined UV/MSD analytical-to-preparative instrument setup with G1311A or G1311C quaternary pump and 50 µL loop in the dual-loop autosampler (G2258A). Acetonitrile or methanol as solvent for the pump channel B.</td>
</tr>
</tbody>
</table>

**Table 2**  
List of predefined MSD-based setups in Preparative Systems dialog box

<table>
<thead>
<tr>
<th>Setup</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined UV/MSD</td>
<td>Preparative flow path for the default combined UV/MSD analytical-to-preparative instrument setup with 3 mm preparative UV cell and 5 mL loop in the dual-loop autosampler (G2258A).</td>
</tr>
<tr>
<td>Preparative UV/MSD default setup; 3 mm UV cell</td>
<td>Preparative UV/MSD instrument setup with 3 mm preparative UV cell and 5 mL loop in the dual-loop autosampler (G2258A).</td>
</tr>
</tbody>
</table>
6 Calibration Procedures

Characterizing the tubing volumes: Mixing point to UV detector and Column to UV detector

Table 3  List of predefined UV-only setups in Preparative Systems dialog box

<table>
<thead>
<tr>
<th>Setup</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparative UV-only default setup; 3 mm UV cell</td>
<td>Preparative UV instrument setup with 3 mm preparative UV cell and 5 mL loop in the dual-loop autosampler (G2258A).</td>
</tr>
</tbody>
</table>

Infinity II Preparative default setups

There is a wide selection of default preparative systems available for the following instrument/capillary kit combinations:

- contains a G7161A or G7161B pump
- contains a G7157A autosampler
- the autosampler may optionally contain a 5 mL extension loop (G7157-68711)
- the capillary kit for the default setups is used: 5067-6858, 5067-6859, 5067-6860 or 5067-6809
- contains a DAD (G7115A) or MWD (G7165A) with appropriate cell inlet tubing for the desired flow rate, or contains a VWD (G7114A)
- optionally contains an MSD (G6125B or G6135B) connected using the default MS upgrade capillary kit, 5067-6861

Default capillaries, UV cells and sample loops are listed in the tables in “Calculation of tubing volume: Column to UV detector” on page 51 and “Calculation of tubing volume: Mixing point to UV detector” on page 53. The capillaries are delivered in the respective capillary kits, which are flow-dependent

- 4 – 8 mL/min (P/N 5067-6858)
- 15 – 40 mL/min (P/N 5067-6859)
- 40 – 80 mL/min (P/N 5067-6860)
- 80 – 200 mL/min (P/N 5067-6809)

The use of the respective capillary must be considered in all tubing volume calculations. If you have a custom tubing setup, use the tables as templates.
**Calculation of tubing volume: Sampler valve to column**

This is the volume between the autosampler outlet (that is, the outlet port of the autosampler valve) and the column inlet. If the G7157A extension loop is installed, it is not included in this volume.

**Calculation of tubing volume: Column to UV detector**

The tables provided below give some examples of predefined capillaries, UV cells and sampler loop configurations, and can be used to calculate custom setups. The Volume column to UV detector tubing volume consists of all tubing between the column and UV detector cell (including the UV cell inlet tubing).

For a standard analytical system the Volume column to UV detector typically consists of the following volumes:

- Column to UV detector capillary
- Inlet capillary of the UV detector cell
- Dead volume of the UV detector cell

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Volume in µL per mm of some stainless steel and PEEK capillaries</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Stainless Steel</strong></td>
<td></td>
</tr>
<tr>
<td>ID [mm]</td>
<td>µL/mm</td>
</tr>
<tr>
<td>0.12</td>
<td>0.0113</td>
</tr>
<tr>
<td>0.17</td>
<td>0.0227</td>
</tr>
<tr>
<td>0.25</td>
<td>0.0491</td>
</tr>
<tr>
<td>0.5</td>
<td>0.196</td>
</tr>
<tr>
<td>0.7</td>
<td>0.385</td>
</tr>
<tr>
<td>0.94</td>
<td>0.694</td>
</tr>
<tr>
<td>1.0</td>
<td>0.785</td>
</tr>
</tbody>
</table>

Example calculation of the Column to UV detector delay volume of predefined Infinity purification systems:
Calibration Procedures

Characterizing the tubing volumes: Mixing point to UV detector and Column to UV detector

### Table 5
UV/MSD-based combined analytical and preparative 1260 LC system

<table>
<thead>
<tr>
<th>Analytical</th>
<th>Volume, mL</th>
<th>Preparative with bypassed splitter</th>
<th>Volume, mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column to valve (0.17 × 400 mm)</td>
<td>0.009</td>
<td>Column to splitter (0.5 × 600 mm)</td>
<td>0.118</td>
</tr>
<tr>
<td>Valve to UV (0.17 × 400 mm)</td>
<td>0.009</td>
<td>Splitter bleed bypass (2 × 0.25 × 80 mm)</td>
<td>0.008</td>
</tr>
<tr>
<td>UV inlet tubing for 3 mm Prep Flow Cell (0.5 × 250 mm)</td>
<td>0.050</td>
<td>Splitter to valve (0.18 × 1400 mm)</td>
<td>0.034</td>
</tr>
<tr>
<td>Valve to UV (0.17 × 400 mm)</td>
<td>0.009</td>
<td>UV inlet tubing for 3 mm Prep Flow Cell (0.5 × 250 mm)</td>
<td>0.050</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>0.068</strong></td>
<td><strong>Total</strong></td>
<td><strong>0.219</strong></td>
</tr>
</tbody>
</table>

### Table 6
UV/MSD-based system with UV detector in front of splitter or UV-based preparative 1260 LC system

<table>
<thead>
<tr>
<th>Preparative with bypassed splitter</th>
<th>Volume, mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column to UV (0.5 × 600 mm)</td>
<td>0.118</td>
</tr>
<tr>
<td>UV inlet tubing for 3 mm Prep Flow Cell</td>
<td>0.050¹</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>0.168</strong></td>
</tr>
</tbody>
</table>

¹ Note that the inlet tubing of 0.06 mm (or 0.3 mm) preparative UV cell does not have a fixed length (the tubing 0.5x800 or 0.8x2000 mm provided should be cut before use). UV inlet tubing cell volume has to be adjusted in the table.

**NOTE**

The inlet tubing of the 0.06 mm (or the 0.3 mm) Preparative UV flow cell does not have a fixed length. We suggest that you cut the 0.5 × 800 mm and 0.8 × 2000 mm tubing provided before use.
Calculation of tubing volume: Mixing point to UV detector

The tables provided in these sections describe the predefined capillaries, UV cells and sampler loop configurations, and can be used to calculate custom setups. An approximate value of the *Mixing point to UV detector* tubing volume can be calculated if the volumes of all modules and capillaries are known:

**Table 7**  
Volume in µL per mm of some stainless steel and PEEK capillaries

<table>
<thead>
<tr>
<th>ID [mm]</th>
<th>µL/mm</th>
<th>ID [mm]</th>
<th>µL/mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stainless Steel</td>
<td></td>
<td>PEEK</td>
<td></td>
</tr>
<tr>
<td>0.12</td>
<td>0.0113</td>
<td>0.1 (0.004&quot;)</td>
<td>0.0081</td>
</tr>
<tr>
<td>0.17</td>
<td>0.0227</td>
<td>0.13 (0.005&quot;)</td>
<td>0.0127</td>
</tr>
<tr>
<td>0.25</td>
<td>0.0491</td>
<td>0.18 (0.007&quot;)</td>
<td>0.0248</td>
</tr>
<tr>
<td>0.5</td>
<td>0.196</td>
<td>0.25 (0.01&quot;)</td>
<td>0.0507</td>
</tr>
<tr>
<td>0.7</td>
<td>0.385</td>
<td>0.51 (0.02&quot;)</td>
<td>0.203</td>
</tr>
<tr>
<td>0.94</td>
<td>0.694</td>
<td>0.76 (0.03&quot;)</td>
<td>0.456</td>
</tr>
<tr>
<td>1.0</td>
<td>0.785</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Standard Analytical System**

Due to the damper used in the 1100 and 1200 series pumps (G1311A/B and G1312A/B), the pump's dead volume is dependent on pressure, solvent type and composition. The following table summarizes the volumes of some 1100, 1200, 1260 and 1290 pumps and autosamplers with their optional set-ups. All listed autosamplers except the dual loop autosampler (G2258A) have their metering devices in the main flow path; therefore, their volumes vary with the sample injection volume.

The calculation of the *Mixing point to UV detector* tubing volume consists of the following volumes:

- Pump (including mixer, if installed)
- Autosampler (Injector)
- Capillaries
  - Pump to autosampler
6 Calibration Procedures
Characterizing the tubing volumes: Mixing point to UV detector and Column to UV detector

- Autosampler to column
- If used, heat exchange capillary in the thermostat of the column compartment (TCC)
- Column to detector
- Inlet capillary of the UV detector cell
- Dead volume of the UV detector cell

Dead volumes of Agilent pumps

The dead volume of some modules is dependent on pressure and solvent; therefore, the table contains a calculation of the dead volumes for Water/Acetonitrile and Water/Methanol gradients using the initial pump pressure ($p_0$, bar) at the beginning of the gradient.

<table>
<thead>
<tr>
<th>Pump</th>
<th>Volume, mL Water/ACN ($p_0$, bar)</th>
<th>Volume, mL Water/MeOH ($p_0$, bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1311A/C</td>
<td>$p_0/2000 + 0.76$</td>
<td>$p_0/4000 + 0.82$</td>
</tr>
<tr>
<td>G7111A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1120 Compact LC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1220 VL Compact LC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1311B</td>
<td>$p_0/2760 + 0.742$</td>
<td>$p_0/6060 + 0.787$</td>
</tr>
<tr>
<td>G7111B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1220 Compact LC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G5611A</td>
<td>$p_0/2860 + 0.725$</td>
<td>$p_0/2860 + 0.725$</td>
</tr>
<tr>
<td>G1312A/C</td>
<td>$p_0/3330 + 0.76$</td>
<td>0.865</td>
</tr>
<tr>
<td>G1312B</td>
<td>No mixer: $p_0/20000 + 0.205$</td>
<td>No mixer: 0.225</td>
</tr>
<tr>
<td>G7112B</td>
<td>Mixer: $p_0/4000 + 0.77$</td>
<td>Mixer: $p_0/6670 + 0.83$</td>
</tr>
<tr>
<td>G4204A</td>
<td>No mixer: 0.46</td>
<td>No mixer: 0.46</td>
</tr>
<tr>
<td>G7104A/C</td>
<td>V380: 0.85</td>
<td>V380: 0.85</td>
</tr>
<tr>
<td>G4220A/B</td>
<td>No mixer: 0.033</td>
<td>No mixer: 0.033</td>
</tr>
<tr>
<td>G7120A</td>
<td>V35: 0.075</td>
<td>V35: 0.075</td>
</tr>
<tr>
<td></td>
<td>V100: 0.16</td>
<td>V100: 0.16</td>
</tr>
<tr>
<td></td>
<td>V380: 0.39</td>
<td>V380: 0.39</td>
</tr>
</tbody>
</table>

Dead volumes of Agilent autosamplers

Because of the flow-through design, the injected volume must be added to the module’s dead volume.
### Calibration Procedures

**Characterizing the tubing volumes: Mixing point to UV detector and Column to UV detector**

<table>
<thead>
<tr>
<th><em>Autosampler</em></th>
<th><strong>Syringe: Volume, mL</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>G7129A/B/C</td>
<td>40 µL: 0.04 + injected volume</td>
</tr>
<tr>
<td>G7167A/B</td>
<td>100 µL: 0.062 + injected volume</td>
</tr>
<tr>
<td></td>
<td>900 µL: 0.177 + injected volume</td>
</tr>
<tr>
<td>G4226A</td>
<td>20 µL: 0.08 + injected volume</td>
</tr>
<tr>
<td></td>
<td>40 µL: 0.118 + injected volume</td>
</tr>
<tr>
<td></td>
<td>100 µL: 0.3 + injected volume</td>
</tr>
<tr>
<td>G1377A</td>
<td>8 µL: 0.048 + injected volume</td>
</tr>
<tr>
<td></td>
<td>40 µL: 0.142 + injected volume</td>
</tr>
<tr>
<td>G1367E</td>
<td>40 µL: 0.118 + injected volume</td>
</tr>
<tr>
<td></td>
<td>100 µL: 0.3 + injected volume</td>
</tr>
<tr>
<td>G1367D</td>
<td>40 µL: 0.142 + injected volume</td>
</tr>
<tr>
<td></td>
<td>100 µL: 0.3 + injected volume</td>
</tr>
<tr>
<td>G1313A</td>
<td>100 µL: 0.3 + injected volume</td>
</tr>
<tr>
<td>G1329A/B</td>
<td>100 µL: 0.062 + injected volume</td>
</tr>
<tr>
<td>G1367A/B/C</td>
<td>100 µL: 0.3 + injected volume</td>
</tr>
<tr>
<td>G5667A</td>
<td>100 µL: 0.3 + injected volume</td>
</tr>
<tr>
<td>1120 Compact LC</td>
<td>100 µL: 0.3 + injected volume</td>
</tr>
<tr>
<td>1220 VL Compact LC</td>
<td>100 µL: 0.3 + injected volume</td>
</tr>
<tr>
<td>1220 Compact LC</td>
<td>100 µL: 0.3 + injected volume</td>
</tr>
<tr>
<td>G5668A</td>
<td>100 µL: 0.062 + injected volume</td>
</tr>
</tbody>
</table>

**Example of the calculation of the Mixing point to UV detector delay tubing volume**

Calculation for a custom 1290 Infinity binary system in a set-up using a thermostat capillary in the TCC module:

<table>
<thead>
<tr>
<th><strong>Part</strong></th>
<th><strong>Description</strong></th>
<th><strong>Volume, mL</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump</td>
<td>1290 Infinity Binary Pump with V100 mixer</td>
<td>0.160</td>
</tr>
<tr>
<td>Capillary</td>
<td>Pump to autosampler (0.17 × 200 mm)</td>
<td>0.005</td>
</tr>
<tr>
<td>Autosampler</td>
<td>1290 Infinity Autosampler with 20 µL loop</td>
<td>0.080 + injected volume</td>
</tr>
<tr>
<td>Capillary</td>
<td>Autosampler to TCC (0.12 × 340 mm)</td>
<td>0.004</td>
</tr>
<tr>
<td>Capillary</td>
<td>TCC to column (0.12 × 150 mm)</td>
<td>0.002</td>
</tr>
<tr>
<td>Thermostat</td>
<td>Thermostat (3 µL)</td>
<td>0.003</td>
</tr>
<tr>
<td>Capillary</td>
<td>Column to UV detector (0.12 × 280 mm)</td>
<td>0.003</td>
</tr>
</tbody>
</table>
6 Calibration Procedures

Characterizing the tubing volumes: Mixing point to UV detector and Column to UV detector

Preparative System

The *Mixing point to UV detector* tubing volume of the preparative system or combined analytical and preparative 1260 system is calculated between the T-connection that connects the preparative pumps and the UV detector cell. The calculation of the *Mixing point to UV detector* tubing volume comprises two steps (modify the tables in these steps for a customized setup):

1. Calculate *Mixing point to column* delay volume

Table 8  
Preparative flow path of combined instrument:

<table>
<thead>
<tr>
<th>Item</th>
<th>Volume, mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-connection (preparative pumps)</td>
<td>0.002</td>
</tr>
<tr>
<td>T to mixer (0.6 × 40 mm)</td>
<td>0.011</td>
</tr>
<tr>
<td>Mixer (79835-87330)</td>
<td>0.75</td>
</tr>
<tr>
<td>Mixer to 2/10 valve (0.5 × 800 mm)</td>
<td>0.156</td>
</tr>
<tr>
<td>Valve to autosampler (0.5 × 600 mm)</td>
<td>0.117</td>
</tr>
<tr>
<td>Dual loop autosampler(G2258A), 5 mL loop</td>
<td>5.13</td>
</tr>
<tr>
<td>Autosampler to 2/10 valve (0.5 × 600 mm)</td>
<td>0.117</td>
</tr>
<tr>
<td>Valve to column (0.5 × 600 mm)</td>
<td>0.117</td>
</tr>
<tr>
<td><strong>Total Preparative (mixing point to column)</strong></td>
<td><strong>6.40</strong></td>
</tr>
</tbody>
</table>

Table 9  
Analytical flow path of combined instrument:

<table>
<thead>
<tr>
<th>Item</th>
<th>Volume, mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quat. Pump G1311B, Water/ACN gradient(^1)</td>
<td>(p_0/2760 + 0.742)</td>
</tr>
<tr>
<td>Quat. pump to 2/10 valve (0.17 × 700)</td>
<td>0.016</td>
</tr>
<tr>
<td>Valve to autosampler (0.5 × 600 mm)</td>
<td>0.118</td>
</tr>
</tbody>
</table>
Characterizing the tubing volumes: Mixing point to UV detector and Column to UV detector

**Table 9**  
Analytical flow path of combined instrument:

<table>
<thead>
<tr>
<th>Item</th>
<th>Volume, mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual loop autosampler (G2258A), 50 µL loop</td>
<td>0.05</td>
</tr>
<tr>
<td>Autosampler to 2/10 valve (0.5 × 600 mm)</td>
<td>0.118</td>
</tr>
<tr>
<td>Valve to column (0.17 × 400 mm)</td>
<td>0.009</td>
</tr>
<tr>
<td>Total Analytical (mixing point to column)</td>
<td>$p_0/2760 + 1.053$</td>
</tr>
</tbody>
</table>

1 For different pump use volumes from tables in Standard analytical system section.

**Table 10**  
UV/MSD-based instrument with UV detector in front of splitter (that is, in preparative flow) or UV-based preparative instrument

<table>
<thead>
<tr>
<th>Item</th>
<th>Volume, mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-connection</td>
<td>0.002</td>
</tr>
<tr>
<td>Capillary to mixer (0.6 × 40 mm)</td>
<td>0.011</td>
</tr>
<tr>
<td>Mixer (79835-87330)</td>
<td>0.75</td>
</tr>
<tr>
<td>Capillary to autosampler (0.6 × 400 mm)</td>
<td>0.113</td>
</tr>
<tr>
<td>Dual loop autosampler(G2258A), 5 mL loop</td>
<td>5.13</td>
</tr>
<tr>
<td>Capillary to Column (0.5 × 800 mm)</td>
<td>0.156</td>
</tr>
<tr>
<td>Total Preparative (mixing point to column):</td>
<td>6.162</td>
</tr>
</tbody>
</table>

2 Calculate the final *Mixing point to UV detector tubing volume* as the sum of:

- *Mixing point to column tubing volume*: step 1
- *Column to UV detector tubing volume*: see “Calculation of tubing volume: Column to UV detector” on page 51
Calibration Procedures
Characterizing the tubing volumes: Mixing point to UV detector and Column to UV detector

NOTE: Because of piece-to-piece variations noted in preparative tubing, the calculated Mixing point to UV detector tubing volume can deviate from the actual value, typically by 5 – 10 %. For this reason, consider measuring this value for the preparative flow path experimentally as described in “Experimental measurement of delay volume: Mixing point to UV detector” on page 58 to minimize the error.

Because of the presence of the damper and degasser, it is not recommended that this value is measured experimentally for any analytical system.

Table 11  Dead volumes of some Agilent preparative modules.

<table>
<thead>
<tr>
<th>Module</th>
<th>Module Volume, mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>G7157A Autosampler</td>
<td>1.73 + injected volume</td>
</tr>
<tr>
<td></td>
<td>5 mL Extension loop: 6.86 + injected volume</td>
</tr>
<tr>
<td>G7161A/B Pump</td>
<td>No Mixer: 0.68</td>
</tr>
<tr>
<td></td>
<td>With Mixer (G1312-87330): 1.12</td>
</tr>
<tr>
<td>G7115A DAD</td>
<td>Inlet capillary and cell body:</td>
</tr>
<tr>
<td>G7165A MWD</td>
<td>• 4 – 8 mL/min: 0.02</td>
</tr>
<tr>
<td></td>
<td>• 15 – 40 mL/min: 0.05</td>
</tr>
<tr>
<td></td>
<td>• 40 – 80 mL/min: 0.07</td>
</tr>
<tr>
<td></td>
<td>• 80 – 200 mL/min: 0.17</td>
</tr>
<tr>
<td>G7114A VWD</td>
<td>Inlet capillary and cell body: 0.06</td>
</tr>
</tbody>
</table>

Experimental measurement of delay volume: Mixing point to UV detector

Because of the presence of the damper and degasser in analytical pumps, it is not recommended that this value is measured by this procedure for any analytical system. Use calculation based on the known volumes of individual modules and capillaries as described in “Calculation of tubing volume: Mixing point to UV detector” on page 53.

Experimental characterization of the Mixing point to UV detector tubing volume is based on a step response of acetone as a UV tracer that is added to solvent B. The LC system without a column is first preconditioned to a starting percentage of solvent B and, during a run, a step change of % B is programmed in the pump timetable. The time offset between the recorded and
programmed positions of the tracer’s step in the UV signal is the *Mixing point to UV detector* tubing volume, as shown in the following figure:

![UV Signal Graph](image)

The figure shows an example of the measurement of *Mixing point to UV detector tubing volume* by step boundary using 1% acetone as UV tracer. The programmed profile of solvent B (is shown in red; the UV profile of the tracer is shown in blue. Instrument in analytical flow path of combined analytical and preparative system with 10 μL sample loop in flow path; flow 2 mL/min. Note that the current procedure uses a step of 40 – 60 % B.

**Preparative system**

For the analytical flow path of the combined analytical and preparative instrument, use the calculation described in “Calculation of tubing volume: Mixing point to UV detector” on page 53.

1. Switch off all pumps.
2. Prepare the flow path:
   a. Replace the column by a union.
   b. If the flow path includes a splitter with a UV detector after it in the make-up flow, bypass the splitter by connecting the following tubing with a union (predefined combined instrument only):
      - HPLC stream inlet tubing from the preparative pump (port 1 in the MRA manual)
      - Make-up outlet tubing to the UV detector (port 4 in the MRA manual).
   c. Recommended: place a back-pressure regulator (2 – 7 bar, 40 – 100 psi) after the UV detector.
3 Prepare the solvents (solvents can contain additives):
   a Solvent A: water
   b Solvent B:
      • 1 % acetone in water as a UV tracer for 3 mm and 10 mm UV cells.
      • 10 % acetone in water as a UV tracer for 0.3 mm and 0.06 mm UV cells.
   c Degas both bottles in an ultrasonic bath for 10 min if the back-pressure regulator is not used.
   d Purge the solvent lines with the new solvents.

4 Set up a method as follows:
   • Use the *General_Purification* method settings as described in Default Purification Method (“Preparing Default Purification Methods” on page 9).
   • Save the Method as *Prep_Mixing_Point_To_UV*.
   • Set *Stoptime* to *No Limit* for all modules (infinite run time).
   • For the combined instrument, set the 2/10 port valve in the method to the preparative flow path.
   • Dual-loop autosampler if used:
      • Set the Injection loop: *Upper*
      • Make sure that the upper loop is in the main pass. Right-click on the autosampler diagram and check if the command *Switch Valve to Upper or Lower Loop* refers to the lower loop; if not, change to the upper loop using this command.
   • Set the UV detector wavelength to 263 nm with 4 nm bandwidth and without a reference.
   • Prep Pump Cluster:
      • Set the flow to 2 mL/min.
      • Set the solvent composition to 40 % B.
      • In the *Advanced Channel A* section, set the *Compressibility* to 46.
      • In the *Advanced Channel B* section, set the *Compressibility* to 46.
      • Set following pump time table:
Characterizing the tubing volumes: Mixing point to UV detector and Column to UV detector

5 Display the 263 nm UV profile (signal A) in the Online Plot.

6 Switch on all modules.

7 Equilibrate the system with 40 % solvent B at 2 mL/min for 5 min.

8 If the pressure is below 20 bar, place a restriction capillary of known volume (0.12 × 2000 mm) in the position of the column and equilibrate the system again.

9 Open the Sample Info dialog box, clear Vial/Location (blank run), enter a run name and click Run Method.

10 Stop the run 2 min after the acetone UV signal has reached maximum absorption.

11 Evaluate the collected data (time in min and flow in mL/min):

a Determine the elution time of acetone (t₁) at one half of its UV signal height. See Determining the elution time of acetone for more details (“Determining the elution time of acetone” on page 62).

b Calculate the Volume mixing point to UV detector (t_{MIX/UV}) as the difference between the programmed and the actual elution times (subtract 2 min in this case) and multiply the result by the flow rate (2 mL/min): V_{MIX/UV} = 2 × (t₁ – 2).

c Subtract the volume of the restriction capillary, if used (0.12 × 2000 mm is 0.023 mL).

12 Run the procedure twice, and check if the determined volumes differ by less than 5 %. If not, repeat the procedure until the values are reproducible.

<table>
<thead>
<tr>
<th>Time [min]</th>
<th>A [%]</th>
<th>B [%]</th>
<th>Flow [mL/min]</th>
<th>Max. Pressure Limit [bar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>60.0</td>
<td>40.0</td>
<td>2.000</td>
<td>200.00</td>
</tr>
<tr>
<td>1.99</td>
<td>60.0</td>
<td>40.0</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2.00</td>
<td>40.0</td>
<td>60.0</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

• Save the method changes.
**Calibration Procedures**

Characterizing the tubing volumes: Mixing point to UV detector and Column to UV detector

---

**NOTE**

The reason for temporal irreproducibility of the measured volume can be, for example, the presence of air bubbles in the system (especially in the mixer or pump pistons) that can happen in a new or modified system, or when solvent bottles were exchanged. To improve performance, purge the pumps with a high flow, remove the restriction capillary (if present) and then set an acceptably high flow (respecting the UV cell pressure limit) to the whole system for a few minutes to flush out potential bubbles.

---

**13** Repeat the procedure for the other flow path.

---

**Determining the elution time of acetone**

1. Open the appropriate data file with the recorded acetone UV trace (263 nm without reference).

2. Determine the absorbance at half the acetone UV signal height ($A_{1/2}$) with precision of about 0.1 mAU:
   - Zoom in to the baseline before the elution of acetone and note this absorbance as $A_1$.
   - Zoom in to the signal after the elution of acetone and note the absorbance approximately 1 min after the signal rises as $A_2$. 
Characterizing the tubing volumes: Mixing point to UV detector and Column to UV detector

- Calculate $A_{1/2} = \frac{(A_1 + A_2)}{2}$

3. Zoom in several times to the curve around $A_{1/2}$ and note the elution time with a precision of three decimal places.

**NOTE**
The signal after the elution of acetone is typically not completely stable, so it is sufficient to have only an approximate reading.
6 Calibration Procedures
Characterizing the column volume

Characterizing the column volume

Chemicals
Both standard analytical system and preparative or combined system:
• Solvent A: water (optionally with 0.1 % formic acid)
• Solvent B: acetonitrile (optionally with 0.1 % formic acid)
• Needle and purge wash solution (degas in ultrasonic bath): 80 % acetonitrile or another suitable solution

Sample
• Thiourea or uracil in 75 % acetonitrile (in water); concentration based on the UV detector flow cell used. Read the MSDS data sheet for thiourea before preparing the sample from a powder.
• Recommended: For best column performance and lifetime, filter the sample before use with a regenerated cellulose syringe filter (5190-5108)

The characterization of the column volume is based on the elution of a non-retained compound (marker), thiourea or uracil. In the first step, the column is replaced by a zero-dead-volume connection, and the marker is eluted using as low a flow as possible with reliable performance. The retention time in this setup gives the volume of the tubing between the points of injection and detection. In the second step, the target column is installed and equilibrated with 75 % acetonitrile. The difference between the retention volumes of the marker in the setup with and without the column gives the target column volume. For best results, measure column volumes on a standard analytical LC system if available.

Characterization of the column volume using thiourea or uracil was optimized for ZORBAX StableBond C18 columns. A different type of stationary phase may require adjustment to the solvent composition or a different marker.

Column Volume: Standard Analytical System

1 Prepare a sample vial containing thiourea or uracil at the following concentration, and place it in the autosampler:
Characterizing the column volume

- 3 mm flow cell: 0.5 mM thiourea or uracil in 75 % acetonitrile.
- 10 mm flow cell: 0.3 mM thiourea or uracil in 75 % acetonitrile.
- 60 mm flow cell: 0.04 mM thiourea or uracil in 75 % acetonitrile.

2 Recommended: Filter the sample before use with the regenerated cellulose syringe filter.

3 Replace the column by a zero-dead-volume union.

4 Prepare the solvents:
   - Solvent A: water (optionally with 0.1% formic acid).
   - Solvent B: acetonitrile (optionally with 0.1% formic acid).
   - Needle wash solution: 80 % acetonitrile or other suitable solution.
   - Purge the solvent lines with the new solvents if not yet done.

5 Set up the method:
   - Set the **StopTime** to **No Limit** in all modules (infinite run time).
   - Pump:
     - Set **Solvents**: 75 % B.
     - Clear the **TimeTable**.
   - Autosampler: Set the injection volume to 1 μL.
   - UV detector:
     - Thiourea: Set Signal A wavelength to 242 nm with 4 nm bandwidth and without a reference.
     - Uracil: Set Signal A wavelength to 260 nm with 4 nm bandwidth and without a reference.

6 Display the relevant UV wavelength profile (242 nm or 260 nm) in the **Online Plot**.

7 Equilibrate the system with 75 % B at 1 mL/min (if possible) for 2 min.

8 Set the flow to 0.2 mL/min.

---

**NOTE**

Use a restriction capillary of known volume to maintain the backpressure above 20 bar if necessary.

9 Open the **Sample Info** dialog box.
Characterizing the column volume

- Enter the **Vial/Location** of the sample vial
- Enter a run name.
- Run the method.

10 Stop the run after the delay marker peak has been detected.

11 Repeat twice.

12 Install the target column.

13 Equilibrate the column until the pressure and UV signal are stable.

14 Set a suitable flow in the range 0.2 – 4 mL/min in a way that the marker elutes at 1 min or later. Since the expected column volume is around one half of a geometric column volume (cross-sectional area multiplied by length), set the flow to around one half of a geometric column volume in mL (for example, the geometric volume of a 4.6 × 50 mm column is \(3.14 \times 4.6 \times 4.6 \times 50 \div 4000 = 0.83\) mL, which suggests a flow rate of \(1/2 \times 0.83\) mL / 1 min = 0.4 mL/min).

15 Adapt the injection volume to the applied flow (and column volume):
- Flow 0.2 – 0.5 mL/min: inject 1 μL.
- Flow 0.5 – 1.0 mL/min: inject 2 μL.
- Flow 1 – 2 mL/min: inject 5 μL.
- Flow > 2 mL/min inject 10 μL.

16 Note the applied flow rate and injection volume.

17 Open the **Sample Info** window, update the run name and run the method.

18 Stop the run after the delay marker peak has been detected.

19 Repeat twice; it is sufficient to measure runs longer than 5 min once or twice.

20 Evaluate the data:
   a Read the elution time of all peaks at the apex.
   b The elution volume without the column:
      - Calculate the average elution time of data without the column.
      - Multiply it by the applied flow rate.
      - Subtract the volume of the restriction capillary if used and one half of the injection volume.
   c The final column volume:
      - Calculate the average elution time with the column.
Characterizing the column volume

- Multiply it by the applied flow rate.
- Subtract the elution volume without the column and one half of the injection volume.

Combined Analytical and Preparative System

NOTE Do not use the combined preparative system to determine the column volume of columns with ID smaller than 4.6 mm (column volume too low) and particle sizes below 3.5 µm (back pressure too high).

1 Prepare a sample vial containing thiourea or uracil at the following concentration, and place it in the autosampler (if the sample cannot be dissolved in 75 % acetonitrile under the given conditions, use pure water):
   - 3 mm preparative flow cell: 0.5 mM thiourea or uracil in 75 % acetonitrile.
   - 0.3 mm preparative flow cell: 5 mM thiourea or uracil in 75 % acetonitrile.
   - 0.06 mm preparative flow cell: 25 mM thiourea or uracil in 75 % acetonitrile.
2 Recommended: Filter the sample before use with the regenerated cellulose syringe filter.
3 Replace the column by a zero-dead-volume union.
4 Prepare the solvents:
   - Solvent A: water (optionally with 0.1% formic acid).
   - Solvent B: acetonitrile (optionally with 0.1% formic acid).
   - Needle wash solution (degas in ultrasonic bath): 80 % acetonitrile or other suitable solution (methanol should not be used with dual-loop autosampler due to peristaltic pump tubing – check the dual-loop autosampler manual).
   - Purge the solvent lines with the new solvents if not yet done.
5 Set up the method:
   - Use the Analytical_Purification method settings (see “Preparing Default Purification Methods” on page 9 for details).
6 Calibration Procedures
Characterizing the column volume

- Save the Method as
  Column_Volume.
- Set the Stoptime to No Limit for all modules (infinite run time).
- Pump:
  - Set Solvents: 75 % B.
  - Clear the TimeTable.
- Injection volume 2 μL (important: increase the volume if the marker
  signal is too low).
- If you are using the dual loop autosampler:
  - Select Lower injection loop.
  - Select Partial loop filling.
  - Use Plugs settings as described in “Analytical Method Settings” on
    page 16 of the Default Purification Method.
- UV detector:
  - Thiourea: Set the Signal A wavelength to 242 nm with 4 nm bandwidth
    and no reference.
  - Uracil: Set the Signal A wavelength to 260 nm with 4 nm bandwidth
    and no reference.
  - Save the method changes.

6 Display the relevant UV wavelength profile (242 nm or 260 nm) in the Online
Plot.

7 If you are using the dual loop autosampler:
- equilibrate the upper loop:
  - Switch the valve to the upper loop
    - Right-click on the autosampler diagram and click Switch Valve to
      Upper Loop, If the command is not available, the upper loop is
      already selected.
  - Apply a pump flow of 4 mL/min for 3 min.
  - Switch the valve to the lower loop.
- Wash the needle:
  - right-click on autosampler diagram
  - Wash Needle > Flush Port 15 s
- Purge the needle:
Characterizing the column volume

- Right-click on autosampler diagram
- **Start Purging** 3 times

8 Set the flow to 1 mL/min.

**NOTE** Use a restriction capillary of known volume to maintain the backpressure above 20 bar if necessary.

9 Open the **Sample Info** dialog box.
   - Enter the **Vial/Location** of the sample vial
   - Enter a run name.
   - Run the method.

10 Stop the run after the delay marker peak has been detected.

11 Important: if the marker signal in the detector is too low, increase the injection volume or concentration of the sample.

12 Repeat twice.

13 Install the target column.

14 Equilibrate the column until the pressure and UV absorbance are stable.

**NOTE** Use 1 – 4 column volumes to flush the column with a flow of 1.5 – 4 mL/min depending on size of the column. For example

- for a column 4.6 × 50 mm, use 1.5 mL/min for 2 min
- for a column 4.6 × 150 mm, use 2 mL/min for 3 min
- for a column 21.2 × 50 mm, use 4 mL/min for 7 min
- for a column 21.2 × 150 mm, use 4 mL/min for 20 min

15 Set the flow and injection volume considering inner diameter and length of the column:
   - 50 mm long analytical columns: flow 1 mL/min and injection volume 2 μL.
   - Longer analytical columns and preparative columns below 12 mm internal diameter: flow 2 mL/min and injection volume 5 μL.
   - Other preparative columns: flow 4 mL/min and injection volume 10 μL.
6 Calibration Procedures
Characterizing the column volume

If the injection volume is close to or exceeds the volume of the sample loop, use Injection Mode Full loop with overfill factor and set the factor to 5.

16 Note the applied flow rate and injection volume.
17 Open the Sample Info window, update the run name and run the method.
18 Stop the run after the delay marker peak has been detected.
19 Important: if the marker signal in the detector is too low, increase the injection volume or concentration of the sample.
20 Repeat twice; it is sufficient to measure runs longer than 5 min once or twice.
21 Evaluate the data:
   • Read the elution time of the peak at the apex.
   • The elution volume without the column:
     • Calculate an average elution time of data without the column.
     • Multiply it by the applied flow rate.
     • Subtract the volume of the restriction capillary if used and one half of the injection volume.
   • Final column volume
     • Calculate the average elution time with the column.
     • Multiply it by the applied flow rate.
     • Subtract the elution volume without the column and one half of the injection volume.
System Configuration and Delay Time Calibration

Chemicals

- Solvent A: water with 0.1 % formic acid
- Solvent B: acetonitrile with 0.1 % formic acid
- Make-up solvent: 80 % acetonitrile in water with 0.1 % formic acid
- Needle purge and wash solution (degas in ultrasonic bath): 80 % acetonitrile or another suitable solution

Sample  For G1364B

- Prep LC Standards #2 (5190-6887) containing blue dye thionine acetate. Dilute the sample with pure water based on purification instrument setup, and it is recommended that you filter the sample with the regenerated cellulose syringe filter (5190-5108).
  - Preparative UV or UV/MSD instrument with 3 mm UV cell:
    Dilute 20 times (1 mL = 50 μL sample + 950 μL water).
  - Preparative UV or UV/MSD instrument with 0.3 or 0.06 mm UV cell:
    Dilute 10 times (1 mL = 100 μL sample + 900 μL water).
  - Combined preparative instrument:
    Dilute five times (1 mL = 200 μL sample + 800 μL water).

For G7159B, G1364E and G7166A

- Agilent Delay and Checkout Calibrant (5190-8223) containing a mixture with Patent Blue VF dye. It is recommended that you filter the sample with the PTFE syringe filter (5190-5084).

The delay time calibration determines a delay of a signal between a fraction collector (FC) and a detector.
Calibration Procedures
System Configuration and Delay Time Calibration

If a flow splitter is used, then the delay calibration is valid only for the specific combination of preparative and make-up pump flows. If one of the flows is changed, or if tubing after the splitter is modified, then the delay calibration must be rerun. This is because the sample signal is split into two independent flow paths, splitter to FC and splitter to detectors, that generally have different flows. If one or both flows are changed, then the resulting delays (UV to FC and UV to MSD) cannot simply be recalculated to the new conditions.

A similar approach applies for a system without a splitter: it is recommended to re-measure the delay when either the preparative flow or the delay tubing is changed. The main reason is a possible change of a hydrodynamic velocity profile in the tubing when the flow is changed significantly, or the material or shape of the tubing is modified.

The following example illustrates the change of the delay time in the UV-to-FC calibration when the preparative flow is changed and a splitter is used. It is assumed that the splitter-to-FC flow path volume is 5 mL, with a flow of 30 mL/min, and the splitter-to-UV detector flow path volume is 50 μL, with a flow of 1.5 mL/min. Under these conditions, sample arrives from the splitter to the FC in 10 s, and from the splitter to the UV detector in 2 s. The delay time is then 10 – 2 = 8 s.

Now, if the preparative flow is changed from 30 mL/min to 60 mL/min, the resulting delay is 5 – 2 = 3 s.

So, in this example, by increasing the preparative flow from 30 mL/min to 60 mL/min, the delay time is reduced from 8 s to 3 s. Also, there are combinations of preparative and make-up flows that cannot be used; for example, if the preparative flow of 60 mL/min (that is, a 5 s delay from splitter to FC) and a make-up flow of 0.5 mL/min (that is, a 6 s delay from splitter to detector) are used, the resulting delay time becomes negative.

Running conditions for calibration procedures

Calibration results are unique for each set of preparative and make-up flows, MSD cycle time, and tubing. If one or more of them changes, the procedure has to be repeated. Therefore, before starting the procedure decide the final set-up of:

- Preparative flow
The Purification software offers the function of a scale-up from the analytical to the preparative flow or back using parameters of analytical and preparative columns. Since the results of the FC delay calibration are required for the initial setup of the software, it is easier to do a manual flow scale-up using one of following equations:

- For columns of the same porosity:
  \[ F_{\text{prep}} = F_{\text{anal}} \frac{d_{\text{prep}}^2}{d_{\text{anal}}^2} \frac{d_{p,\text{anal}}}{d_{p,\text{prep}}} \]

- For columns of different porosity:
  \[ F_{\text{prep}} = F_{\text{anal}} \frac{V_{0,\text{prep}}}{V_{0,\text{anal}}} \frac{L_{\text{anal}}}{L_{\text{prep}}} \frac{d_{p,\text{anal}}}{d_{p,\text{prep}}} \]

where
- \( F \) = flow
- \( d \) = diameter
- \( L \) = column length
- \( V_0 \) = column void volume

subscripts: \( p \) is particle, \( \text{anal} \) is analytical and \( \text{prep} \) is preparative

Porosity, in the context of the Purification software, is ratio of the void column volume to the geometrical column volume.

- **Make-up flow**
  Tubing design is optimized for 1.5 mL/min make-up flow that is split approximately 1:5 by a T-junction in front of the MSD in order to have the final flow to the MSD close to 0.2 – 0.3 mL/min. Note that decreasing the make-up flow increases the MSD-to-FC delay; increasing it decreases the signal response in all detectors after the splitter.

- **MSD cycle time** if MSD is used
  The MSD cycle time is a decisive parameter in ensuring that the calibrated delays for UV to FC and UV to MSD are sufficient. For a default setting follow the *Peakwidth* recommendation in the “Preparing Default Purification Methods” on page 9, and consider further optimization of the value as suggested in “Insufficient MSD-to-FC delay time” on page 82.
Example of \( F_{\text{prep}} \) calculation for two columns of the same porosity:

- Analytical column 4.6 x 50 mm (\( d_{\text{anal}} = 4.6 \text{ mm} \)) with \( d_{\text{p,anal}} = 5 \text{ μm} \) particle diameter
- Preparative column 21.2 x 50 mm (\( d_{\text{prep}} = 21.2 \text{ mm} \)) with \( d_{\text{p,prep}} = 5 \text{ μm} \) particle diameter
- Analytical flow \( F_{\text{anal}} = 1 \text{ mL/min} \)

The resulting scaled-up preparative flow \( F_{\text{prep}} = 1 \times 21.2^2 / 4.6^2 \times 5 / 5 = 21 \text{ mL/min} \).

### Configuring the Analytical and Preparative Systems

In the **Purification** menu of the Chemstation, select **Systems** to open the **System Parameters** dialog box. The analytical system parameters are on the left of the divided window. Click **Add system** to add a new system, and set the following:

1. **List of systems:**
   - Name and description of the system

2. **Pumps and Detectors** tab:
   - Select the **System Type**
   - In the **Pumps** section:
     - Select the **Main Pump**
     - Select the analytical pump module and specify the solvent channels.
     - Set the analytical flow.

3. **Delay Volumes** tab:
   - Tubing
     - Select the instrument setup from the drop-down list:
       - Selecting a predefined system fills tubing volumes and the position of the UV detector in relation to the splitter if an MSD is used.
       - If you are using a custom system, measure and/or calculate the tubing volumes as described in “Characterizing the tubing volumes: Mixing point to UV detector and Column to UV detector” on page 48.
• **Initial Pressure**: the 1260 quaternary analytical pump has a dwell volume dependent on the actual pressure. In order to minimize any possible discrepancy, enter the initial pressure on the pump at the gradient start conditions.

• Delays
  • If the delays for Analytical systems are required for MSD and/or auxiliary detectors, follow the instructions in “Delay time determination for Analytical systems (MSD and/or auxiliary detectors)” on page 75

4 **Column** tab:
  • Enter the name and parameters of the column.
  • Void volume and porosity are recalculated to each other when edited using the diameter of the column (porosity is the ratio of void and geometrical column volume).

---

**Delay time determination for Analytical systems (MSD and/or auxiliary detectors)**

1 Acquire an analytical run in Chemstation as described in “Acquire an analytical run using the Chemstation sequence” on page 87.

2 Go to **Data Analysis** in Chemstation and load the acquired data.

3 Calculate the delays, for example, using the caffeine peak (the first major analyte peak) based on the elution times in all detectors used:
  • Based on the extracted EIC 195 ion trace from MSD1 TIC signal calculate: Time UV detector to MSD = MSD1 EIC 195 signal – UV detector signal
  • Time UV detector to auxiliary detector = UIB1 A (Analog In) – UV Detector signal

4 Enter the values into the respective fields in the **Analytical systems** dialog box.
Configuring the Preparative System Parameters

In the Purification menu of the Chemstation, select Systems to open the System Parameters dialog box. The preparative system parameters are on the right of the divided window. Click Add system to add a new system, and set the following:

1 List of systems:
   - Name and description of the system

2 Pumps and Detectors tab:
   - In the Pumps section:
     - Select the Main Pump.
     - Select the preparative pump module (cluster) and specify the solvent channels.
     - Set the preparative flow.
     - If a make-up splitter is used, mark Use make-up pump and select the pump module. Select the make-up solvent Channel and set the make-up Flow.
   - In the Detectors section:
     - Mark the Use MSD check box if the MSD is used to trigger fraction collection.
     - Mark the Use auxiliary detector check box if an auxiliary detector is used, and select the module.
     - Select the UV detector module that will be used for evaluation of the preparative UV signal. This detector can be located in the preparative flow path or in the make-up flow path, depending on the instrument configuration.
     - Select the Peak width mode of the UV detector. The recommended frequency value is 2.5 Hz if the Agilent active make-up splitter or slope-based fraction triggering are used. Otherwise, 20 Hz is recommended.
     - Mark the UV detector located behind splitter check box if the UV detector is located in the make-up flow path. This check box can be set only if Custom Tubing is selected in the Delay Volumes tab.

3 Delay Volumes tab:
   - Tubing
Calibration Procedures
System Configuration and Delay Time Calibration

- Select the instrument tubing setup from the drop-down list:
  - Selecting a predefined system fills tubing volumes and the position of the UV detector in relation to the make-up splitter if an MSD is used.
  - If you are using a custom system, measure and/or calculate the tubing volumes as described in Characterizing the tubing volumes (“Characterizing the tubing volumes: Mixing point to UV detector and Column to UV detector” on page 48).

- Delays and fraction collector calibration
  - Choose the **automated** option in **Fraction collector calibration** to perform a calibration run as described in “Delay time calibration for Preparative Systems” on page 78.
  - Delay fields are editable only if the **manual** option is selected. Also, if an MSD or auxiliary detectors are not set up, the related fields are not editable.
  - To enable the entry of known delays in Preparative systems, **Fraction collector calibration** must be set to **manual**.
  - If the **manual** option is selected and **Calculate delays to fraction collector** is marked, then **Time MSD to fraction collector** and **Time auxiliary detector to fraction collector** are calculated from other delays (UV to FC and UV to detector). If **Calculate delays to fraction collector** is cleared, then they can also be edited, and you must ensure integrity of entered delays (due to interconnection of UV to FC, UV to detector and detector to FC).
  - **Write delay times** stores the entered detector-to-fraction collector delay times to the instrument.

**NOTE**
The **Write delay times** action is not mandatory but then the delay time values have to be written to the instrument at the beginning of every task and the original values are restored after the task is finished. This can significantly prolong the overall run time.

4 **Column** tab:
  - Enter the name and parameters of the column.
  - Void volume and porosity are recalculated to each other when edited using the diameter of the column (porosity is the ratio of void and geometrical column volume).
Delay time calibration for Preparative Systems

If a flow splitter is used, the calibrated values can be used only for runs with identical tubing and settings of preparative and make-up pump flow. In addition, a change of the data rate (that is, peakwidth for UV or cycle time for MSD), of the detector that is used for fraction collection, can cause previously measured delay times to be insufficient.

Preparation

1 Prepare the solvents:
   - Solvent A: water with 0.1 % formic acid
   - Solvent B: acetonitrile with 0.1 % formic acid
   - Make-up solvent: 80 % acetonitrile in water with 0.1 % formic acid
   - Needle purge and wash solution (degas in ultrasonic bath): 80 % acetonitrile or another suitable solution (methanol should not be used with dual-loop autosampler due to peristaltic pump tubing – check the dual-loop autosampler manual).

2 If not yet done, install the preparative column (recommended SB-C18 21.2 × 50 mm).

3 Prepare a sample:
   * G1364B, G1364E and G7166A:
     - Dilute the Prep LC Standards #2 (5190-6887) sample with water, depending on the purification instrument setup, and filter the sample before use with the regenerated cellulose syringe filter (5190-5108):
       - Preparative UV or UV/MSD instrument with 3 mm UV cell: Dilute 20× (1 mL = 50 μL sample + 950 μL water).
       - Preparative UV or UV/MSD instrument with 0.3 mm or 0.06 mm UV cell: Dilute 10× (1 mL = 100 μL sample + 900 μL water).
       - Combined preparative instrument: Dilute 5× (1 mL = 200 μL sample + 800 μL water).
   * G7159B:
     - Use undiluted Agilent Delay and Checkout Calibrant (5190-8223). It is recommended that you filter the sample with the PTFE syringe filter (5190-5084).

4 Place at least 1000 μL of diluted sample in a vial and place it in the injector.
5 For G1364B and G1364E: place an empty vial tray or well-plate tray in the fraction collector.

**FC Delay Calibration**

1 From the Purification menu in the Chemstation, open the System Parameters dialog box.
2 Select the preparative system configured in “Configuring the Preparative System Parameters” on page 76.
3 In the Fraction collector calibration section, select the automated mode and click Do calibration run.
4 In the Setup fraction collector delay calibration dialog box, enter the following:
   - **Location of calibration sample**: the location of the Prep LC Standards #2 vial.
   - **Amount of calibration sample**: an injection volume of 80 mL. Adjust if necessary.
   - **Calibration base method**: browse for the Prep_Purification method created in “Preparing Default Purification Methods” on page 9.
   - Set the **Calibration run duration** according to the flow and column. For a 21.2 × 50 mm column and 20 mL/min, use 1.5 min.
   - If you are running the first calibration run, mark the Clean sampler and equilibrate column before calibration check box. For subsequent calibration runs, it is not necessary to repeat the cleaning.
5 Click **Start calibration** and then follow the instructions during the run.
6 When the calibration run is finished, click **Evaluate**.
7 In the Delay calibration data evaluation dialog box:
   a Ensure that the peaks in the UV detector, fraction collector sensor signals and, if present, the MSD and auxiliary signals are integrated and identified (the integrated peak area is dark blue).
   b MSD signal ion masses are predefined in the automatic evaluation procedure for each calibration sample. If multiple ion masses are expected, the procedure selects the most abundant one for the evaluation:
      - G1364B with Prep LC Standards #2 (5190-6887):
         - Positive polarity: M+H (228.1).
         - Negative polarity: M-H (226.1).
6 Calibration Procedures
System Configuration and Delay Time Calibration

- G7159B and G1364E with Agilent Delay and Checkout Calibrant (5190-8223):
  - Positive polarity: M+H (545.2), M+Na (567.2) and M+2Na (589.2).
  - Negative polarity: M-H (543.2).
- If another ion mass is required for the evaluation under given conditions, select the relevant MSD signal in Selected signal and modify the ionic mass value.

c If all acquired delay times are valid (no red error icon is shown next to the value), click Accept to write them into the respective boxes in the Preparative systems dialog box.

d If any of the acquired delay times are invalid, click on the adjacent error icon and follow the instructions provided.

e If the UV, MSD or fraction collector sensor signal is too low or too high, adjust the injection volume between 20 μL and 200 μL, or adjust the sample dilution. Repeat the calibration.

f If it is still not possible to calibrate all detector signals at once, then there is a possibility to run the calibration piecewise:
  - It is necessary to obtain the detector-to-fraction collector delay for at least one detector signal in this window, which means that the fraction collector signal and one more signal must be capable of being evaluated. Note the correct delay value(s).
  - Under identical flow conditions, and MSD and UV detector peakwidth settings, acquire the signal data in Chemstation with another suitable sample.
  - Manually evaluate elution times, and from their differences together with already noted delay values, calculate all missing delay values.
  - Enter the delay values manually in the Delay Volumes tab.

g It is recommended that you repeat the calibration at least once to avoid error from various sources such as bubbles in the instrument or its insufficient equilibration.

8 In the Preparative systems dialog box, click Write delay times to write the UV-to-fraction collector and auxiliary-to-fraction collector delays to the firmware of all fraction collectors.

This prevents a warning that the preparative system contains a different delay value than the collectors, and also avoids extra run time before and
after the preparative sequence when the delay value needs to be written to the collectors.

**Insufficient UV-to-FC delay time or MSD-to-FC delay time**

**Insufficient UV-to-FC delay time**

The minimum required delay time for UV detector triggered collection is: 4/frequency + Response time. The term 4/frequency stands for four data points, which are needed in the slope-based collection.

There are several reasons why the UV-to-FC delay time may be too low:

- The UV detector data rate is too low. A low UV data rate, especially in combination with a high flow rate, may require a delay coil to ensure that the UV detector has enough time to evaluate the FC trigger signal.
- The volume of delay tubing in front of the fraction collector is too low.
- The make-up flow is too low for the applied preparative flow. There are limitations for combinations of preparative and make-up flows; see the example in “System Configuration and Delay Time Calibration” on page 71.
- The volume of tubing between the splitter and the detector(s) is too high.

There are several ways to increase the UV-to-FC delay time, but some of them can have a certain disadvantage (given in parentheses), so consider the most suitable option for the given situation:

- Increase the UV data rate (a higher data rate typically has higher noise, so in combination with the Slope mode for collection, the higher detector noise can cause a false FC start/stop signal if the noise is visible along a collected peak).
- Use a longer delay coil in front of the fraction collector (a higher coil volume causes more dispersion, so use coils with reduced dispersion rate such as knitted coils; also, a longer coil with the same inner diameter will increase back-pressure).
- Decrease the preparative flow (influences chromatographic resolution).
- Increase the make-up flow (increases the speed of the analytes when passing through the detectors, which typically results in narrower and/or smaller peaks, so consider whether or not the detector data rate is sufficient for the signal response).
Calibration Procedures
System Configuration and Delay Time Calibration

- Decrease the volume of tubing between the splitter and the detector(s) in the make-up flow path.

After one or more solutions have been applied, repeat the fraction collector delay calibration from the beginning.

**NOTE**

In general, do not use more than one delay coil kit to ensure that the pressure limit of the coils and other components earlier in the flow path of the system is not exceeded. If the required fraction collection delay is higher than can be satisfied with one delay coil kit, follow the recommendations above to reduce the required delay. If another delay kit is still necessary, make sure that the pressure limits are satisfied for all components in the flow path.

**Insufficient MSD-to-FC delay time**

The minimum required delay time for MSD triggered collection either 5 sec or 6 × (MSD cycle time), whichever is the higher.

The reasons for insufficient MSD-to-FC delay time could be the following:

- The volume of delay tubing in front of the FC is too low.
- The MSD cycle time is too high.
- The make-up flow is too low for the applied preparative flow. There are limitations to the combinations of preparative and make-up flows; see the example in “System Configuration and Delay Time Calibration” on page 71.
- The volume of tubing between the splitter and detector(s) is too high.

The following suggestions are options for increasing the MSD-to-FC delay time, but each of them has a certain disadvantage (given in parentheses) so consider the most suitable way for the given situation:

- Optimize the MSD cycle time in the MSD method (a cycle time higher than 0.83 sec will increase the required delay volume limit):
  - Use only one polarity if suitable (requires detailed knowledge of collected compounds).
  - Optimize peakwidth parameter: decrease it until MSD signal noise is still acceptable.
  - Decrease the MW range or increase the MW step size if suitable: typically, it will not directly decrease the cycle time but it allows further decreasing of the peakwidth parameter (a short MW range hides potential contaminants).
System Configuration and Delay Time Calibration

- Consider using the MSD (ultra)fast mode, which enables a lower cycle time.
- Performing MSD maintenance can also help in optimization of the noise level.
- Use a longer delay coil in front of the FC (a higher coil volume causes more dispersion, so use coils with a reduced dispersion rate such as knitted coils; also, a longer coil with the same inner diameter will increase back-pressure).
- Decrease the preparative flow (influences the chromatographic resolution).
- Increase the make-up flow (increases speed of the analytes when passing through detectors, which typically results in narrower and/or smaller peaks, so consider whether or not the detector data rate is sufficient for the signal response).
- Decrease the volume of tubing between the splitter and the detector(s).

After one or more solutions have been applied, repeat the fraction collector delay calibration from the beginning.

**NOTE**

In general, do not use more than one delay coil kit to ensure that the pressure limit of the coils and other components earlier in the flow path of the system is not exceeded. If the required fraction collection delay is higher than can be satisfied with one delay coil kit, follow the recommendations above to reduce the required delay. If another delay kit is still necessary, make sure that the pressure limits are satisfied for all components in the flow path.
6 Calibration Procedures
System Configuration and Delay Time Calibration
7 Checkout Procedure

Acquire an analytical run using the Chemstation sequence 87
UV-only Workflow: Focused gradient in the Purification software 91
UV/MS Workflow: Focused gradient in Purification software 94

This chapter gives step-by-step instructions on how to carry out a checkout procedure to confirm the correct operation of your Purification system.

**Chemicals**

For all systems (stand-alone analytical, preparative or combined analytical and preparative):

- Solvent A: water with 0.1 % formic acid
- Solvent B: acetonitrile with 0.1 % formic acid
- Make-up solvent (used with splitter): 80 % acetonitrile in water with 0.1 % formic acid
- Needle purge and wash solution (degas in ultrasonic bath): 80 % acetonitrile or other suitable solution
- DMSO (dimethyl sulfoxide) for sample dilution

**Columns**

- Analytical (recommended): 4.6 × 50 mm, 5 μm (846975-902)
- Preparative (recommended): 21.2 × 50 mm, 5 μm (870050-902 with end fittings 820400-901)

**Sample**

- Prep LC Standards #1 (5190-6886) containing check-out mixture. For the analytical run, dilute the sample with DMSO (or other compatible solvent) based on the UV cell length:
  - 3 mm UV cell (10 μL injection with dual-loop autosampler): Dilute 10× (1 mL = 100 μL sample + 900 μL solvent)
  - 10 mm UV cell (10 μL injection with dual-loop autosampler): Dilute 40× (1 mL = 25 μL sample + 975 μL solvent)
7 Checkout Procedure
System Configuration and Delay Time Calibration

- 10 mm UV cell (1 μL injection): Dilute 20× (1 mL = 50 μL sample + 950 μL solvent)
- 60 mm UV cell (1 μL injection): Dilute 100× (1 mL = 10 μL sample + 990 μL solvent)

- Plug vial solvent: 2 % acetonitrile (or Solvent A or other compatible solvent). Refresh the solvent frequently to avoid bacterial growth and injection cross-contamination.

- Recommended: For best column performance and lifetime, filter the sample in DMSO solvent before use with the PTFE syringe filter (5190-5084). Filter other sample solvents (water, acetonitrile) such as the plug solvent with the regenerated cellulose syringe filter (5190-5108). To select the most suitable filter type with the highest sample recovery, filter the sample solvent matrix without the sample first.
Acquire an analytical run using the Chemstation sequence

If the analytical run is to be acquired as a single run for the Purification software, it is important to mark the Save Method with Data check-box in Method > Runtime Check List. This applies to both the combined preparative instrument and the stand-alone analytical instrument.

1. Set up a generic gradient in the analytical method:
   a. If using a combined analytical and preparative system:
      a. Use the Analytical_Purification method setting as described in “Preparing Default Purification Methods” on page 9.
      b. Save the method as Analytical_Gradient.
   b. Enter the recommended generic gradient in the method:
      - **Pump > Solvents > B: 2 %**
      - **Pump > Timetable:**
        For an Agilent 1260 Infinity analytical run using a 4.6 × 50 mm, 5 μm column and a Flow of 1 mL/min:
        | Time (min) | A (%) | B (%) |
        |------------|-------|-------|
        | 0.00       | 98    | 2     |
        | 0.50       | 98    | 2     |
        | 5.30       | 2     | 98    |
        | 6.40       | 2     | 98    |
        | 6.50       | 98    | 2     |
        Stoptime: 9.0 min

   For an Agilent 1290 Infinity analytical run with a binary pump using a 2.1 × 50 mm, 1.8 μm column and a Flow of 0.6 mL/min:
7 Checkout Procedure
Acquire an analytical run using the Chemstation sequence

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>A (%)</th>
<th>B (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>98</td>
<td>2</td>
</tr>
<tr>
<td>0.17</td>
<td>98</td>
<td>2</td>
</tr>
<tr>
<td>1.83</td>
<td>2</td>
<td>98</td>
</tr>
<tr>
<td>2.20</td>
<td>2</td>
<td>98</td>
</tr>
<tr>
<td>2.30</td>
<td>98</td>
<td>2</td>
</tr>
</tbody>
</table>

Stoptime: 3.3 min

Set the recommended Stoptime and Flow as given above.

c Set the injection volume:
- Stand-alone analytical system: 1 μL injection (increase if necessary).
- Combined analytical and preparative system: 10 μL injection. If using the dual-loop autosampler with a 10 μL injection loop, set Full loop with overfill factor 5; otherwise, for larger loops set Partial loop filling to 10 μL and set Plug Settings:
  a Mark Plug Settings > Draw Plug before and after the sample.
  b Set Plug Settings > Plug Volume: Enter the maximum plug volume:
    Plug volume = \( \frac{1}{2} \) [(Loop volume) – (Injection volume)]
    That is, for a 10 μL injection to the 50 μL loop, set the plug volume to 20 μL.
  c Place plug solvent with 2 % acetonitrile (or Solvent A) into the autosampler. Use another solvent if necessary.
  d Enter the position of the plug vial in the autosampler method: Plug Settings > Draw Plug from.

d Save the Method.

2 Dilute the Prep LC Standards #1 sample for analytical run with DMSO (or other compatible solvent) based on the system and UV cell length:
- Combined analytical and preparative system (for 10 μL injection):
  - 3 mm UV cell: dilute 10× (1 mL = 100 μL sample + 900 μL solvent).
  - 10 mm UV cell: dilute 40× (1 mL = 25 μL sample + 975 μL solvent).
- Stand-alone analytical system (for 1 μL injection):
  - 10 mm UV cell: dilute 20× (1 mL = 50 μL sample + 950 μL solvent).
• 60 mm UV cell: dilute 100× (1 mL = 10 μL sample + 990 μL solvent).

3 Place 1 mL filtered sample in the autosampler.

4 Create a new sequence: Sequence > New Sequence Template

5 Set Sequence > Sequence Parameters (for example, folder path, shutdown macro).

6 Complete the sequence table: Sequence > Sequence Table:
   • Location: sample position.
   • Sample name: Check-out sample
   • Method name: select the analytical method (Analytical_Gradient)
   • Inj/Location: 1
   • Leave Sample amount field empty
   • Click OK

7 Sequence > Save Sequence Template As Checkout_Sample

8 Display the 263 nm UV profile (signal A) in the Online Plot.

9 Turn on the pump.

10 For the dual-loop autosampler:
   a Equilibrate the upper loop:
      a Switch the valve to the upper loop (right-click on the autosampler diagram and select Switch Valve to Upper Loop; if the command is not available, the upper loop is already selected).
      b Apply a flow of 2 mL/min for 5 min
      c Switch the valve to the lower loop
   b Wash the needle (right-click on the autosampler diagram and select Wash Needle > Flush Port > 15 s)
   c Purge the needle (right-click on the autosampler diagram and select Start Purging > 3×)

11 Set the target analytical flow (default is 1 mL/min for a 4.6 mm ID column and 0.6 mL/min for a 2.1 mm ID column).

12 Equilibrate the column until the pressure and UV signal are stable.

13 RunControl > Run Sequence.

14 Rerun the sample at least once and check the results of the sequence visually (peak shape, resolution). If the UV absorbance of five major peaks
Checkout Procedure

Acquire an analytical run using the Chemstation sequence

is too low (below 100 mAU) or too high (above 1500 mAU), adjust the injection volume or sample concentration and measure the sample again.

15 When the sequence is finished, turn off the pump(s).
UV-only Workflow: Focused gradient in the Purification software

This procedure is the analytical-to-preparative workflow for the standalone UV-only preparative instrument.

1. Place at least 1.5 mL of filtered undiluted *Prep LC Standards #1* sample in the autosampler.

2. For the dual loop autosampler:
   a. Switch the valve to the upper loop (right-click on the autosampler diagram and select *Switch Valve to Upper Loop*; if the command is not available, the upper loop is already selected).
   b. If the autosampler has been idle for more than one hour:
      - Wash the needle (right-click on the autosampler diagram and select *Wash Needle > Flush Port > 15 s*)
      - Purge the needle (right-click on the autosampler diagram and select *Start Purging > 3×*)

3. Precondition the preparative column if it has not been used recently:
   a. Set the preparative flow and set 95% of solvent B (default flow: 20 mL/min for 21.2 × 50 mm column and 1 mL/min analytical run flow).
   b. Turn on all pumps.
   c. Apply 95% of solvent B for approx. 1 min.
   d. Apply 2% of solvent B until UV signal and pressure are stable.
   e. Turn off all pumps.

4. In the Chemstation, open the Tasks dialog box from the Purification menu.

5. Create a new task:
   - Click Add Task.
   - Select Add empty task.
   - Select Analytical to preparative workflow.
   - Click OK

6. In the Task Configuration tab:
   - Select System
     - Select the analytical and preparative systems.
Checkout Procedure
UV-only Workflow: Focused gradient in the Purification software

- Review the analytical and preparative flows in the **Pumps and Detectors** tab if the target flows are set.

  - **Analytical Run**
    - Click **Browse** and select the acquired analytical sequence (**Checkout_Sample**)  

  - **Preparative Run**
    - Select the **Preparative base method** (**Prep_Purification**)  
    - Keep **Review analytical results before purification** marked.
    - Set the preparative vial **Location**.
    - Set the **Inj. volume** to 500 μL.

  - **Fraction collection** tab (in **Preparative Run**)
    - UV detector: select **Trigger mode > Threshold**.

  - **Gradient** tab (in **Scale up**): keep the **Initial concentration**: 2 % check box marked.

7 Click **Run**.

8 Set the parameters in **Analytical Results**:

  - Set a suitable threshold in the **Fraction collection** tab:
    - UV detector: set **Threshold** to 5 or adjust the value to achieve a threshold of about 5 % of the peak height in the preparative run.

9 Review the **Analytical Results** (check the settings and the target peak):

  - Select the first major peak (caffeine) in the chromatogram and click **Assign As Target** above the chromatogram.

10 Click **Run** again to submit the preparative task to the ChemStation run queue.

11 When the preparative task is completed, check in **Preparative Results** that the correct peak was focused and that it is among collected fractions.

12 Create a new task:

  - Click **Add Task**.
  - Select **Add clone of currently selected task** and click **OK**.

13 Review the **Analytical Results**:

  - Select the third major peak (Ethyl 4-hydroxybenzoate) in the chromatogram and click **Assign As Target** above the chromatogram.
14 Click Run.

15 When the preparative task is completed, check in Preparative Results that the correct peak was focused and that it is among collected fractions.
UV/MS Workflow: Focused gradient in Purification software

This procedure is the analytical-to-preparative workflow for the combined analytical and preparative UV/MSD instrument and for standalone preparative UV/MSD instrument.

1. Place at least 1.5 mL of filtered undiluted Prep LC Standards #1 sample in the autosampler.

2. For the dual loop autosampler:
   a. Switch the valve to the upper loop (right-click on the autosampler diagram and select Switch Valve to Upper Loop; if the command is not available, the upper loop is already selected).
   b. If the autosampler has been idle for more than one hour:
      - Wash the needle (right-click on the autosampler diagram and select Wash Needle > Flush Port > 15 s)
      - Purge the needle (right-click on the autosampler diagram and select Start Purging > 3×)

3. Precondition the preparative column if it has not been used recently:
   a. Set the preparative flow and set 95 % of solvent B (default flow:
      20 mL/min for 21.2 × 50 mm column and 1 mL/min analytical run flow).
   b. Turn on all pumps.
   c. Apply 95 % of solvent B for approx. 1 min.
   d. Apply 2 % of solvent B until UV signal and pressure are stable.
   e. Turn off all pumps.

4. In the Chemstation, open the Tasks dialog box from the Purification menu.

5. Create a new task:
   - Click Add Task.
   - Select Add empty task.
   - Select Analytical to preparative workflow.
   - Click OK

6. Select the Task Configuration tab.
   - Select System
Checkout Procedure

UV/MS Workflow: Focused gradient in Purification software

- Select the analytical and preparative systems from “Configuring the Analytical and Preparative Systems” on page 74.
- Review the analytical and preparative flows in the Pumps and Detectors tab if the target flows are set.

- Ion Species
  - Analytical run: mark $+H$ and $-H$ species for the analytical run.
  - Preparative run: mark **Use best performing ion from analytical run**.

- Analytical Run
  - Click **Browse** and select the acquired analytical sequence (**Checkout_Sample**)

- Scale up
  - In Gradient, keep the **Initial concentration**: 2 % check box marked.

- Preparative Run
  - Select the **Preparative base method** (**Prep_Purification**)
  - Keep **Review analytical results before purification** marked.
  - Set the preparative vial **Location**.
  - Set the **Inj. volume** to 500 μL.

- Fraction collection tab (in Preparative Run)
  - Select **Trigger mode > Threshold** for both MSD and UV detectors.

7 Click **Run**.

8 Set the parameters in Analytical Results:
  - Enter a **Target mass** of 166.1 (Ethyl 4-hydroxybenzoate).
  - Click **Re-evaluation** to apply the change.
  - Set suitable thresholds in the Fraction collection tab:
    - MSD detector (if available):
      - Display MSD ion species curve in the graph.
      - Zoom to baseline and determine its highest level.
      - Set the **Threshold** value to five times the determined analytical baseline level or 2000, whichever is higher.
    - UV detector: set **Threshold** to 5 or adjust the value to achieve a threshold of about 5 % of the peak height in the preparative run.

9 Review the **Analytical Results** (check the settings and the target peak):
Checkout Procedure
UV/MS Workflow: Focused gradient in Purification software

- MS-based target identification:
  - Check in the chromatogram that the correct peak was selected: Ethyl 4-hydroxybenzoate (166.1) is the third major peak of the mixture to elute.
  - Also check that the ethyl 4-hydroxybenzoate peak was identified in both the UV detector and the MSD target ion species. If the UV and MSD are not well aligned, then the problem can be in UV/MSD delay value or integration parameters. If the UV signal is saturated, the integration parameters may need to be changed.

10 Click Run again to submit the preparative task to the ChemStation run queue.

11 When the preparative task is completed, check in Preparative Results that the correct peak was collected.

12 Create a new task:
   - Click Add Task.
   - Select Add clone of currently selected task and click OK.

13 Set the parameters in Analytical Results:
   - Enter the Target mass of 194.1 (Caffeine)
   - Scale-Up tab: set Minimal target candidate peak height in EIC to 200000.
   - Click Re-evaluation to apply the change.
   - Set suitable thresholds in the Fraction collection tab:
     - MSD detector:
       - Display MSD ion species curve in the graph.
       - Zoom to baseline and determine its highest level.
       - Set the Threshold value to five times the determined analytical baseline level or 2000, whichever is higher.
     - UV detector: set Threshold to 5 or adjust the value to achieve a threshold of about 5 % of the peak height in the preparative run.

14 Review the Analytical Results (check the settings and the target peak):
   - Check in the chromatogram that the correct peak was selected: caffeine (194.1) is the first major peak of the mixture to elute. Note that caffeine, as a complexing agent, can create ghost peaks in the MSD signal of caffeine on positions of other mixture compounds. For this purpose, the
Minimal target candidate peak height in EIC default value was increased. Change the value if necessary.

- Also check that the caffeine peak was identified in both the UV detector and the MSD target ion species. If the UV and MSD are not well aligned, then the problem can be in UV/MSD delay value or integration parameters. If the UV signal is saturated, the integration parameters may need to be changed.

15 Click Run again to submit the preparative task to the ChemStation run queue.

16 When the preparative task is completed, check in Preparative Results that the correct peak was focused and collected.

The table below lists the compounds in the Prep LC Standards #1 sample, their most abundant isotopic masses, formulas and a typical ion species for MS-based fraction collection:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Most abundant isotopic mass</th>
<th>Formula</th>
<th>Typical Ion species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caffeine</td>
<td>194.1</td>
<td>C₈H₁₀N₄O₂</td>
<td>M+H</td>
</tr>
<tr>
<td>Methyl 4-hydroxybenzoate</td>
<td>152.0</td>
<td>C₉H₈O₃</td>
<td>M-H</td>
</tr>
<tr>
<td>Ethyl 4-hydroxybenzoate</td>
<td>166.1</td>
<td>C₉H₁₀O₃</td>
<td>M-H</td>
</tr>
<tr>
<td>Propyl 4-hydroxybenzoate</td>
<td>180.1</td>
<td>C₁₀H₁₂O₃</td>
<td>M-H</td>
</tr>
<tr>
<td>Benzyl 4-hydroxybenzoate</td>
<td>228.1</td>
<td>C₁₄H₁₂O₃</td>
<td>M-H</td>
</tr>
</tbody>
</table>
**Glossary**

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrator</td>
<td>User who sets up the users of the purification software as Operators or Method Developers in the Agilent OpenLAB Control Panel.</td>
</tr>
<tr>
<td>Analytical run</td>
<td>The analytical (scouting) run scans your samples to find out if your expected target compound is present, and if it exists in a quantity sufficient to proceed with a purification run. Analytical runs operate with low flow rates, low injection volumes and small column diameters.</td>
</tr>
<tr>
<td>Analytical system</td>
<td>Parameters of the analytical instrument and its operation mode that are used in the up-scaling process of analytical-to-preparative runs. Such parameters are maintained in the analytical systems parameters dialog box. Different parameter sets can belong to the same physical instrument, distinguished by different flows, tubing or columns. The analytical system can be part of the analytical flow path of a combined analytical and preparative instrument, or part of a separate physical analytical-only instrument. The analytical system is used for the <em>analytical run</em>.</td>
</tr>
<tr>
<td>ChemStation</td>
<td>OpenLAB CDS ChemStation Edition</td>
</tr>
<tr>
<td>Easy Prep mode</td>
<td>Purification software work mode that focuses on the key data to set up and run purification tasks. ChemStation access is blocked to prevent unintended interaction.</td>
</tr>
<tr>
<td>Expert mode</td>
<td>Purification software work mode that grants full access to all features and functions of the software.</td>
</tr>
<tr>
<td>Method Developer</td>
<td>User who provides the work environment (methods, procedures, systems, master tasks) for Operators. The Method Developer works in <em>Expert</em> mode.</td>
</tr>
<tr>
<td>Operator</td>
<td>User who operates an analytical and/or preparative instrument using predefined methods and procedures. The Operator works in <em>Easy Prep</em> mode.</td>
</tr>
<tr>
<td>Preparative system</td>
<td>Parameters of the preparative instrument and its operation mode that are used in the up-scaling process of analytical-to-preparative runs. Such parameters are maintained in the preparative systems parameters dialog box. Different parameter sets can belong to the same physical instrument, distinguished by different flows, tubing or columns. The preparative system can be part of the preparative flow path of a combined analytical and preparative instrument, or part of a separate physical preparative-only instrument. The preparative system is used for the <em>preparative run</em>.</td>
</tr>
<tr>
<td>Purification run</td>
<td>Also known as <em>Preparative run</em></td>
</tr>
<tr>
<td>Purification task</td>
<td>Entity in the purification software that describes all settings of a purification experiment, including its results once the experiment has completed.</td>
</tr>
<tr>
<td>System</td>
<td>A <em>system</em> within the purification software means a certain set of instrument configuration and operation parameters that describe either the analytical or preparative instrument and run. Such a parameter set provides the relevant settings in the analytical-to-preparative scale-up process.</td>
</tr>
<tr>
<td>System suitability test</td>
<td>Specific preparative-only workflow task, used to purge the auto-sampler, flush the instrument and verify that the compounds in a standard sample are separated as expected.</td>
</tr>
</tbody>
</table>
Glossary

Regular purification tasks can be submitted to run only if the last system suitability test was passed or accepted by a method developer.

Task template  A purification task template that is used to create other tasks for a certain combination of systems. Tasks templates are created in a special folder by the Method Developer. A task template is optimized for a certain system combination and purification experiment using enhanced settings. Operators choose a suitable task template to create the purification task for the planned purification experiment.
Index

A
acetone elution time  62
In This Book

This manual contains information for Method Developers of the Automated Purification software.

The manual describes the following:

- the role of the Method Developer
- how to set up default Purification methods
- how to set up the analytical and preparative systems
- how to set up a Purification task and review the results
- how to calibrate the system and run a checkout sample