Notices

© Agilent Technologies, Inc. 2006-2015
No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number
G4208-90008

Edition
04/2015

Printed in Germany
Agilent Technologies
Hewlett-Packard-Strasse 8
76337 Waldbronn, Germany

Warranty
The material contained in this document is provided “as is,” and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses
The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend
If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as “Commercial computer software” as defined in DFAR 252.227-7014 (June 1995), or as a “commercial item” as defined in FAR 2.101(a) or as “Restricted computer software” as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies’ standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Safety Notices

CAUTION
A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

WARNING
A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

Agilent Instant Pilot Users’s Guide
In This Guide...

This book describes how to operate the Agilent 1100/1200/1260/1290 Series modules and systems for HPLC using the handheld control module Agilent Instant Pilot G4208A.

The Instant Pilot provides complete local control and monitoring of a single module or an entire Agilent 1100/1200/1260 and 1290 Series HPLC system. There is no data evaluation in the Instant Pilot. The Instant Pilot allows you to do a variety of HPLC tasks including automated sample preparation and injection, isocratic, gradient and multiple method analyses and basic diagnostics and maintenance.

NOTE If additional details are required on a specific topic/function/parameter not mentioned in this document, please use the Instant Pilot’s Online Information System (i), see “The i (info) key - Online Information System” on page 27.
Chapter Overview

Part 1 Using the Agilent Instant Pilot

This part describes the Agilent Instant Pilot, its features and its functionality.

1 Start-up Information

This chapter provides general information around the Agilent Instant Pilot.

2 Working with the Instant Pilot

This chapter describes the operation of the Instant Pilot.

Part 2 Using the Agilent Series LC System With Control Module

This part describes how to run isocratic and multiple-vial analyses using a single method or more than one method.

3 Running an Isocratic Analysis

This chapter describes how to analyze the Agilent Technologies isocratic standard sample using a single injection analysis.

4 Running Multiple-Vial Analyses

This chapter describes how to setup multiple vial analyses using the same method and different methods.

Part 3 Support of the Instant Pilot

5 Maintenance and Repair

This chapter describes how to perform firmware updates, troubleshooting and replacements.

6 Appendix

This chapter provides safety and other general information.
Contents

1 Start-up Information 11
 Instant Pilot Features 12
 Features and Benefits 14
 Requirements for the Instant Pilot 15
 Physical Specifications 17
 Cleaning 18
 Holder Versions for the Instant Pilot 19
 Adding the Instant Pilot to an Agilent HPLC Module 20
 1100/1200/1200 Infinity Series 21
 1200 Infinity II Series 22
 Removing the Instant Pilot 24
 Instant Pilot Display and Keyboard Layout 25
 The i (info) key - Online Information System 27
 Basic Operational Concept of the Instant Pilot 30
 Getting Started 31
 System Information 37
 Method Information 38
 Sequence Information 40
 Status Information 42
 Setup of a Status Information Screen 44
 Logbook Information 47
 Configuration 49
 Maintenance Information 50
Contents

Early Maintenance Feedback (EMF) 53
Product Number and Serial Number Change 54

Diagnosis Information 55

Turning Modules ON/OFF/Standby 56

Start Analysis Screen 57

Switching from G1323A/B Control Module to Instant Pilot 58

Information on Firmware 60

2 Working with the Instant Pilot 61

Using a USB Flash Drive 62
 Handling of Unsupported USB Flash Drive Formats 63

Printing To USB Flash Drive 65

Working with Methods 70
 Loading a Method 72
 Modifying a Method 73
 Filtering Method Information 74
 Compare Methods 75
 Method Timetable 76
 Method Properties 78
 Method File Protection 79

Saving a Method 81

Transfer of Methods 83

Offline Work on Methods 84

Import of Methods 85

Injector Program 86

Sequence - Automating Analyses 91
 Using the Sequence Wizard 93
 Saving a Sequence 95
 Sequence - File Protection 96

Tray View 97

Starting and Stopping a Sequence 98
3 Running an Isocratic Analysis 115
 What You Will Need 116
 Preparing the LC System 117
 Entering Settings 118
 Saving Settings in a Method 118
 Creating a Sequence 119
 Selecting a Signal 119
 Observing the Chromatogram 120

4 Running Multiple-Vial Analyses 123
 Analyzing Multiple Vials Using the Same Method 124
 Analyzing Multiple Vials Using Different Methods 125
 Single-Level Calibration Sequences 127
Contents

Multiple-Level Calibration Sequences 129
Re-calibrating With the Same Group of Standards 129
Re-calibrating With Multiple Groups of Standards 133

Synchronizing Analyses with External Devices 137
Standard Mode 138
Send Single Start Request 139
Send Multiple Start Request (external controlled injector) 140
Wait for Single (External) Start Request 141
Wait for Multiple Start Request (Instant Pilot controls injector) 142

5 Maintenance and Repair 145

Firmware Updates 146
Updating the Firmware Using The Single Mode 149
Updating the Firmware Using The Wizard 151
Update Information for A.05.13 Firmware 153
Using the Instant Pilot 153
Using the Agilent Lab Advisor 154
Using the LAN/RS-232 Firmware Update Tool 156
Errors During Firmware Updates 160

Troubleshooting 161
Troubleshooting the Instant Pilot 161
USB Flash Drive not recognized 161
Instant Pilot not recognized by Firmware Update Tool 162
Contact Agilent 162

Repairing the Instant Pilot 163
Parts Identification 163
Exchanging the CAN Cable 164

6 Appendix 167

Safety Information 168
Safety Symbols 168
General 169
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>169</td>
</tr>
<tr>
<td>Radio Interference</td>
<td>171</td>
</tr>
<tr>
<td>Test and Measurement</td>
<td>171</td>
</tr>
<tr>
<td>Agilent Technologies on Internet</td>
<td>172</td>
</tr>
</tbody>
</table>

Index 173
Contents
1 Start-up Information

This chapter provides general information around the Agilent Instant Pilot.
Instant Pilot Features

The Agilent Instant Pilot (IP) provides complete local control and monitoring of a single module or an entire Agilent 1100/1200/1260/1290 Series HPLC system. You have easy access to every supported function, you can easily control all parameters and settings and you can configure various communication channels with other devices, in order to comfortably analyze the generated data.

- Color TFT display, size 13.1 x 9.9 cm (5.0 x 3.8 inch), 640 x 480 dots
- Processor: 400 MHz, 64 MB RAM (32bit)
- Install any desired configuration of Agilent 1100/1200/1260/1290 Series HPLC modules. The Instant Pilot software will reflect which modules are present in the LC system and adjust the screens accordingly.
- Enter parameter settings for every module, perform on/off functions as well as calibration and configuration settings in a self-explanatory and intuitive way.
- Define automated analyses including methods, timetables, method sequences and automated calibration settings using the Instant Pilot.
• Use the configurable status screen to monitor various activities on a single screen.
• Easy configuration of the system and/or modules.
• Protect your method from any inadvertent keyboard changes by setting method file protection.
• Use USB Flash Drive to store and transfer methods and sequences between Agilent systems.
• Monitor all operations and error events using the self-updating logbooks.
• Use the context-sensitive online information system to get further information on all topics.
• To help comply with Good Laboratory Practice (GLP) regulations, select a variety of module tests that will check the performance of the LC system.
• Use the early maintenance feedback (EMF) limits for scheduling maintenance work.
• Display data graphically using the Plot screen, where as many as four different signals can be monitored at the same time.
• Printing to an USB Flash Drive.

NOTE

Firmware revision A.05.13/14 does not run on Instant Pilot modules with serial numbers starting with MY due to new flash ROM type that does not allow downgrades to B.02.07 and below. This was fixed with firmware A.05.15 and B.02.15.
Features and Benefits

Table 1 Features and Benefits

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large size, color TFT display with background light, high resolution and contrast</td>
<td>Better readability and usability.</td>
</tr>
<tr>
<td>USB port / USB Flash Drive</td>
<td>Faster and more flexible method and sequence transfer to other Agilent systems, handling for unsupported formats / formatting</td>
</tr>
<tr>
<td>State of the art electronic</td>
<td>Faster application, large number of Agilent modules connectable, all detector signals available in plot.</td>
</tr>
<tr>
<td>System visualization with status display in start screen</td>
<td>Fast overview of configuration and state of system</td>
</tr>
<tr>
<td>Flat dialog structure; easy to understand icons</td>
<td>Much faster confidence and usability, less training required</td>
</tr>
<tr>
<td>Automatic, context sensitive help in status line ("Tool Tip")</td>
<td>Easier parameter input through given ranges</td>
</tr>
<tr>
<td>Diagnosis with passed/failed</td>
<td>No user interpretation necessary, clear result</td>
</tr>
<tr>
<td>Setup wizards</td>
<td>Easier system configuration and sequence setup</td>
</tr>
<tr>
<td>Dynamic adjustment to changed system configuration</td>
<td>No restart necessary when system configuration changes, e.g. different detector</td>
</tr>
<tr>
<td>Method on- and offline editable</td>
<td>Methods can be changed during runs</td>
</tr>
<tr>
<td>New sequence: wizard, table view, priority sample, insert method, parameter, ...</td>
<td>Simpler and more flexible, better overall view</td>
</tr>
<tr>
<td>Printing to USB Flash Drive</td>
<td>The files can be opened using Microsoft Internet Explorer and printed from there.</td>
</tr>
</tbody>
</table>
Requirements for the Instant Pilot

The Agilent Instant Pilot can be attached to a modular Agilent HPLC system or a single Agilent HPLC module. Depending on the system, the following firmware requirements must be fulfilled.

Table 2 Pre-requisites / Compatibility vs. Modules

<table>
<thead>
<tr>
<th>Agilent HPLC Modules</th>
<th>Instant Pilot Firmware Revision</th>
<th>Instant Pilot Firmware Revision</th>
<th>Instant Pilot Firmware Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A.05.13/14/15</td>
<td>B.01.02/03/04</td>
<td>B.02.01 and above</td>
</tr>
<tr>
<td>1200 Infinity Series</td>
<td>not compatible</td>
<td>not compatible</td>
<td>B.02.17 or above</td>
</tr>
<tr>
<td>• G7104A Flexible Pump</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• G7114B VWD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• G7116B Multi Column Thermostat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• G7117A/B DAD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• G7120A High Speed Pump</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• G7129B Vial sampler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• G7129A Autosampler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• G7162A RID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• G7167A/B Multi Sampler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1260 Infinity Series</td>
<td>not compatible</td>
<td>not compatible</td>
<td>B.02.11 or above</td>
</tr>
<tr>
<td>1220 Infinity Series LC Systems</td>
<td>not compatible</td>
<td>not compatible</td>
<td>not compatible</td>
</tr>
<tr>
<td>1290 Infinity System</td>
<td>not compatible</td>
<td>not compatible</td>
<td>B.02.08 or above</td>
</tr>
<tr>
<td>• G4212A DAD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• G4220A Binary Pump</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• G4226A Autosampler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• G1316C TCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1120 Compact LC</td>
<td>not compatible</td>
<td>not compatible</td>
<td>not compatible</td>
</tr>
</tbody>
</table>
Start-up Information

Requirements for the Instant Pilot

Newer Series 1100/1200 modules that required special versions of Instant Pilot
- **G1315C DAD-SL**
 - Firmware Revision: A.05.13/14/15
 - Instant Pilot: not compatible
 - Instant Pilot: B.01.02 or above
 - Instant Pilot: B.01.02 or above

- **G1365C MWD-SL**
 - Firmware Revision: A.05.13/14/15
 - Instant Pilot: not compatible
 - Instant Pilot: not compatible
 - Instant Pilot: B.02.07 or above

- **G1315D DAD**
 - Firmware Revision: A.05.13/14/15
 - Instant Pilot: not compatible
 - Instant Pilot: not compatible
 - Instant Pilot: B.02.07 or above

- **G1365D MWD**
 - Firmware Revision: A.05.13/14/15
 - Instant Pilot: not compatible
 - Instant Pilot: not compatible
 - Instant Pilot: B.02.07 or above

- **G1314D VWD**
 - Firmware Revision: A.05.13/14/15
 - Instant Pilot: not compatible
 - Instant Pilot: not compatible
 - Instant Pilot: B.02.07 or above

- **G1314E VWD SL Plus**
 - Firmware Revision: A.05.13/14/15
 - Instant Pilot: not compatible
 - Instant Pilot: not compatible
 - Instant Pilot: B.02.07 or above

- **G1367D ALS SL Plus**
 - Firmware Revision: A.05.13/14/15
 - Instant Pilot: not compatible
 - Instant Pilot: not compatible
 - Instant Pilot: B.02.07 or above

1100/1200/1260 ChipCube (G4240A)
- **Firmware Revision:** A.05.13/14/15
- **Instant Pilot:** not compatible
- **Instant Pilot:** not compatible
- **Instant Pilot:** not compatible

Series 1200 standard modules (includes all modules not mentioned below)
- **Firmware Revision:** A.05.09/10
- **Instant Pilot:** A.06.02 or above
- **Instant Pilot:** A.06.02 or above

Series 1100 standard modules (includes all modules not mentioned below)
- **Firmware Revision:** A.05.09/10
- **Instant Pilot:** A.06.02 or above
- **Instant Pilot:** A.06.02 or above

NOTE

Since USB Flash Drives may vary from vendor to vendor or from type to type, incompatibilities can occur. In general, USB Flash Drives from Sandisk and Kingston should work. The USB Flash Drive must be FAT-16 formatted and without encryption. See “USB Flash Drive Kit” on page 163.

CAUTION

The operator of this instrument is advised that if the equipment is used in a manner not specified in this manual, the protection provided by the equipment may be impaired.

NOTE

The Instant Pilot may be used only with the Agilent instruments.

NOTE

The Instant Pilot is designed to operate in a typical electromagnetic environment (EN61326-1) where RF transmitters, such as mobile phones, should not be used in close proximity.
Physical Specifications

Table 3 Physical Specifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>0.8 kg (1.76 lbs)</td>
<td></td>
</tr>
<tr>
<td>Dimensions (width × depth × height)</td>
<td>130 × 225 × 35 mm</td>
<td>(5.1 × 8.9 × 1.4 inches)</td>
</tr>
<tr>
<td>Line voltage</td>
<td>22 VDC, ± 10 %</td>
<td>via CAN</td>
</tr>
<tr>
<td>Power consumption</td>
<td>6 W / 20.5 BTU/hour</td>
<td>Maximum</td>
</tr>
<tr>
<td>Ambient operating temperature</td>
<td>0 – 55 °C (32 – 131 °F)</td>
<td></td>
</tr>
<tr>
<td>Ambient non-operating temperature</td>
<td>-40 – 70 °C (-40 – 158 °F)</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>< 95%, at 25 – 40 °C (77 – 104 °F)</td>
<td>Non-condensing</td>
</tr>
<tr>
<td>Operating altitude</td>
<td>Up to 2000 m (6562 ft)</td>
<td></td>
</tr>
<tr>
<td>Non-operating altitude</td>
<td>Up to 4600 m (15092 ft)</td>
<td>For storing</td>
</tr>
</tbody>
</table>

NOTE This product contains an TFT LCD assembly which is backlit by a mercury fluorescent lamp which contains mercury, and must be managed, recycled, and/or disposed in accordance with all applicable laws, ordinances, and regulations. For information on how to recycle or dispose of the mercury lamp contained in this product, or if you have additional questions on the mercury contained within this product, contact Agilent customer service.
Cleaning

The module case should be kept clean. Cleaning should be done with a soft cloth slightly dampened with water or a solution of water and mild detergent. Do not use an excessively damp cloth allowing liquid to drip into the module.

WARNING

Do not let liquid drip into the module. It could cause shock hazard and it could damage the module.
Holder Versions for the Instant Pilot

Mid of 2007, the holder of the Instant Pilot was introduced with a revised design.

Features of new holder are

- easy to use
- safe placement of the Instant Pilot
- stable mechanism
- easy upgrade of all Instant Pilot's with old holder version possible (see “Parts Identification” on page 163).

Figure 3 shows all holder versions. In the actual versions, the Instant Pilot is hanging in the new holder and standing in the obsolete holder.
Adding the Instant Pilot to an Agilent HPLC Module

CAUTION
The CAN connectors are similar to LAN adapter connectors. Do not insert LAN connectors into the CAN or vice versa, since the CAN uses 24 V and might damage the LAN card.

NOTE
Preferred orientation of the Instant Pilot is hanging at the HPLC modules.

NOTE
When inserting the adapter to an Agilent Wellplate Autosampler or Fraction Collector, the Instant Pilot must be removed first. Otherwise the Autosampler door cannot be opened.

To attach the Instant Pilot to an Agilent HPLC module, the provided adapter plate is required.
1100/1200/1200 Infinity Series

1. Slide the adapter plate (delivered with the Instant Pilot) from the front onto the top cover of the Agilent HPLC module.

2. Assure that it is fixed by pressing onto the adapter plate.

3. Insert the Instant Pilot into the holder.

4. Insert the Instant Pilot into the holder.

5. The Instant Pilot in its final position.

6. Connect the CAN cable of the Instant Pilot into a free CAN connector at the rear of the module.
1200 Infinity II Series

Content of Holder Infinity II Kit

The kit 5067-5955 (part of the Instant Pilot G4208A from May 2015) includes

- Holder Infinity II
- Screw
- Installation Note

Procedure

Refer to the User Manual of your Infinity II module.

1. Remove the right door of module.

2. Remove the top leak panel.

3. The holder must be clipped into the top cover.

4. Insert the nose in the bottom of the cover into the slit in the holder and fit the holder on the cover.
5 Fix the holder with the screw.

6 Re-install the Leak Interface Top and the door.

7 Insert the Instant Pilot into the holder.

8 Connect the CAN cable of the Instant Pilot into a free CAN connector at the rear of the module.
Removing the Instant Pilot

To remove the Instant Pilot, slightly angle the Instant Pilot and then lift it from the holder.

Figure 4 Removing the Instant Pilot
Instant Pilot Display and Keyboard Layout

Figure 5 shows the layout of the display and the keys. All has been arranged in functional groups around the display.

![Figure 5](image_url)

Figure 5 The Agilent Series Instant Pilot - Layout

NOTE

The displayed module’s naming may change depending on the installed firmware and the connected modules (1100/1200/1260/1290).
Start-up Information

Instant Pilot Display and Keyboard Layout

Table 4 Instant Pilot Display and Keyboard Layout

<table>
<thead>
<tr>
<th>Item</th>
<th>Key Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Action keys</td>
<td>trigger a variety of functions. The available functions depend on the screen you are working with.</td>
</tr>
<tr>
<td>2</td>
<td>Navigation keys</td>
<td>allow you to switch between the dialogs. Within these dialogs, the relevant parameters can be set, and certain functions can be accessed. The Navigation keys always correspond to a button displayed above them on the screen. The dialogs accessed via the buttons vary according to the screen you are working with. In some cases, pressing a button causes a popup menu to appear. From there, you must make a choice in order to proceed.</td>
</tr>
<tr>
<td>3</td>
<td>Direction keys</td>
<td>you can move back (left arrow) and forward (right arrow) between the entry fields and up and down and scroll in lists.</td>
</tr>
<tr>
<td></td>
<td>Esc key</td>
<td>allows you to exit the current window or screen and leads you back to the last window or screen you were working with. In an edit field, the previous value can be restored by pressing the Esc key.</td>
</tr>
<tr>
<td></td>
<td>OK key or 8</td>
<td>you accept a current entry or action. When entering a parameter into a certain field, the OK key leads you on to the next accessible entry field. In this case it has the same function as the right Direction key.</td>
</tr>
<tr>
<td></td>
<td>i (info) key</td>
<td>provides context-specific information for current item selected.</td>
</tr>
<tr>
<td>4</td>
<td>LED</td>
<td>status LED (green if Instant Pilot is connected via CAN and has booted)</td>
</tr>
<tr>
<td>5</td>
<td>Numeric keys</td>
<td>enter numbers 0 to 9.</td>
</tr>
<tr>
<td></td>
<td>Alphanumeric keys</td>
<td>allow you to enter numeric values in parameter entry fields. In certain fields where alphabetical characters may be entered, you can use the Numeric/Alphanumeric keys to do so. Pressing them several times in sequence changes the current value (e.g. 1 A B C, 2 D E F, 3 G H I,...).</td>
</tr>
<tr>
<td>6</td>
<td>Start / Stop keys</td>
<td>starts or stops running applications.</td>
</tr>
<tr>
<td>7</td>
<td>On-line information</td>
<td>gives addition information about the topic that is selected.</td>
</tr>
<tr>
<td>8</td>
<td>USB icon</td>
<td>shows whether the USB Flash Drive is inserted and active. Not present - grey, present - blue, active - yellow with red dot (do not unplug!).</td>
</tr>
<tr>
<td>9</td>
<td>Time</td>
<td>displays the current time.</td>
</tr>
</tbody>
</table>
The i (info) key - Online Information System

The online information system provides a quick and convenient way to look up information about a task you are doing or a feature or screen you would like to know more about. The online information system is context-sensitive and provides information related to the current topic.

You can access the online information system by using the i (info) key on the Instant Pilot’s keyboard.

![Online Information System - Entry Screen](image)

Figure 6 Online Information System - Entry Screen

On the following screen, different views are shown within the Online Information System.
1 Start-up Information

The i (info) key - Online Information System

Figure 7 Online Information System - Content (left) / Home (right)

Figure 8 Online Information System - Index (left) / Details (right)
Table 5
Online Help - Functions of Keys

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK key or 8</td>
<td>navigates to the selected (focused) link</td>
</tr>
<tr>
<td>Esc</td>
<td>exits the online help</td>
</tr>
<tr>
<td>← or →</td>
<td>moves the cursor to previous or next link</td>
</tr>
<tr>
<td>↑ or ↓</td>
<td>moves the cursor up or down to a link</td>
</tr>
<tr>
<td>Content</td>
<td>shows the content as book structure (How Tos, Reference, Concepts, Error</td>
</tr>
<tr>
<td></td>
<td>Messages/Troubleshooting)</td>
</tr>
<tr>
<td>Home</td>
<td>start page of the online information system</td>
</tr>
<tr>
<td>Index</td>
<td>opens the alphabetical index</td>
</tr>
<tr>
<td>Back</td>
<td>goes to previous screen (toggle back)</td>
</tr>
<tr>
<td>Forward</td>
<td>goes to next screen (toggle forward)</td>
</tr>
</tbody>
</table>
Basic Operational Concept of the Instant Pilot

Below are the new operation concept of the Instant Pilot described.

Configuration
These parameters allow setup of the instrument configuration. Typically, these configurations are linked to properties of the instrument (e.g. module names, flow path volumes, analog output configuration, LAN address) that are set up only at installation or after modification of the instrument setup.

Method & Timetable
All parameters that have an influence on the analysis result. Chemists change these parameters to set up optimal conditions for a certain analysis.

Control Button
All control menu items directly trigger a day-to-day action on the instrument outside an analysis. The control menu can be opened in major screens via the Control button. Typical functions are detector balancing, or getting the instrument in a “ready for analysis” state.

Diagnosis
Diagnosis tests allow the checking of proper operation. They only report the state of a module with a passed / failed result and do not modify anything on the instrument.

Maintenance
Maintenance shows the logs for maintenance-relevant events, allows access to EMF (early maintenance) settings and functions needed for maintenance tasks (e.g. calibration routines, parts information).
Getting Started

Starting the Instant Pilot the first time displays the Setup Wizard shown in Figure 9.

![Setup Wizard]

Status LED summarizes the status of all modules
leaves the setup wizard
to next screen

The display shows the actual connected (and powered up) Agilent modules. The color gives the current STATUS (yellow = not ready, gray = ready, green = run, red = error).

In the bottom right, the current time and the USB Flash Drive icon is shown. If a USB Flash Drive is connected, the icon is shown as active (blue).

Select **Continue** to continue the setup or **Abort** to close the Setup Wizard.

NOTE
If additional details are required on a specific topic/function/parameter not mentioned in this document, please use the Instant Pilot’s Online Information System (i), see “The i (info) key - Online Information System” on page 27.
The next setup screens allow you to change the Date & Time, Units & Formats and the Display. Use the Direction keys for moving to the fields and **Edit** or **OK** to open the selection fields.

![Setup Wizard - Date & Time](image)

Figure 10 Getting Started - Setup Wizard - Date & Time

NOTE

Upon startup, the modules synchronize their internal clocks. The clocks can also be synchronized by an external chromatographic data system, like the Agilent ChemStation.
A system name will be displayed on screens and printouts as identifier.

Figure 11 Getting Started - Setting a System Name

System name can be entered

Figure 12 Getting Started - Setup Wizard - Units & Formats

- 24/12 h
- Month/Day/Year
- Day.Month.Year
- Bar / PSI / kPa
- Celsius / Fahrenheit / Kelvin
1 Start-up Information
Getting Started

The next screen shows the LAN settings of an additional MIO card that has been identified in the system (may not be connected to LAN).

![Setup Wizard / Display](image)

Figure 13 Getting Started - Setup Wizard - Display

- After 1 / 10 / 30 / 60 minutes / No shutoff
- 10 / 20 / 30 / 40 / 50 / 60 / 70 / 80 / 90 / 100%

allows modifications of the settings. For parameters, refer to the installed LAN card’s documentation.

![Setup Wizard / LAN Settings](image)

Figure 14 Getting Started - Setup Wizard - LAN settings

The next screen shows the actual LAN settings used for communication with the system/module.
to change the settings move to the line and press OK to edit the settings. Then press Done to write down the new values.

closes the setup

Figure 15 Getting Started - Setup Wizard - LAN setup
Finally, the Welcome or the Configuration screen is displayed.

![Figure 16 Getting Started - Welcome Screen](image)

The next time the Instant Pilot is started, it will start with the Welcome screen. To activate the setup wizard again, select More, 1 - Configure, System, Setup to open the Setup Wizard or use System or Controller or a module to change the parameters.
System Information

To gather information about the Instant Pilot and the Agilent modules, press the **Details** button from the Welcome screen.

![System Info Screen](image)

Figure 17 Getting Started - System Infuse

The screen contains information about serial numbers and firmware revisions, On-time and Board ID) of the modules. Some modules may show additional information (e.g. the G1316A Column Compartment shows an installed column switching valve or a module with installed LAN interface card shows the LAN address).

Depending on the number of modules, you may have to scroll through the display.

Using the **Print** button, all displayed information is saved to the USB Flash Drive into folder \PRINTOUT as SYSINFO.MHT.
Method Information

To view/edit the method information, press the **Method** button from the Welcome screen.

![Method Screen](image)

Figure 18 Method Screen

The screen displays complete or filtered information about module settings and parameters of all modules.

Depending on the number of modules, you may have to scroll through the display.

To change a parameter, scroll down to the field and press **Edit** or **OK**.

Using the **Toggle** button switches between filtered and unfiltered view.

The **Properties** button opens the history / protection of the current method, see “Method File Protection” on page 79.
Table 6 Method - Functions of Keys

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit or OK</td>
<td>lets you edit a parameter field</td>
</tr>
<tr>
<td>Control</td>
<td>opens a menu to control certain module/system activities (depends on the connected modules).</td>
</tr>
<tr>
<td>Toggle</td>
<td>switches between filtered and unfiltered view.</td>
</tr>
<tr>
<td>Exit or Esc</td>
<td>exits the method screen</td>
</tr>
<tr>
<td>Filter</td>
<td>used to create and edit filters. Filters are stored together with the method. When a filter is selected, only the parameters that were selected in this filter are shown on the method screen.</td>
</tr>
<tr>
<td>Compare</td>
<td>a tool that allows you to compare two methods. The differences are shown in a list by displaying the values from both methods. Using the same color for method names and method parameters does the mapping between them. You can copy parameters between the two selected methods using the Copy buttons.</td>
</tr>
<tr>
<td>Time Table</td>
<td>used in the currently shown method. The timetable can be edited in the timetable screen and is stored together with the method. You can edit lines, copy / paste lines, delete lines and insert new lines. You can choose if the list should be ordered by module (default) or time.</td>
</tr>
<tr>
<td>Properties</td>
<td>The properties of a method can be reviewed in the Properties screen. You can view changes and the reasons for them and change also the protection of the current method.</td>
</tr>
</tbody>
</table>
| File | Method parameter sets can be accessed in the internal flash disc or on a USB Flash Drive using the file dialog. Method definitions from a G1323 Control Module can be imported. They will be transferred to internal flash disc instead.
| | Another feature is the ability to edit methods offline. It is possible to edit methods that were not actually loaded onto the modules. You can select the method you want to edit in the Files dialog and load it into editor by pressing **Load**.
| | You can move files between storage locations by using Copy and Paste buttons.
| | **Print** saves all displayed information to the USB Flash Drive into folder \\PRINTOUT as METHOD.MHT.
| | moves the curser up or down in a content list. |
| OK key or 8 | starts the editing of the selected parameter. |
To view/edit the sequence information, press **Sequence** from the **Welcome** screen.

A sequence consists of a list of items that should be processed from top to bottom. The items are inserted in the list using the **Insert** button or in case of samples and calibration samples by using the **Wizard**. The Sequence can be edited using the **Edit**, **Delete** or **Copy** buttons.

The **Tray View** button shows the current sequence's status graphically.

The **Properties** button opens the history / protection of the current sequence, see “Sequence - File Protection” on page 96.
Table 7 Sequence - Functions of Keys

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit</td>
<td>inserts a new line with an actions from a menu (for details refer to Instant Pilot’s Info System).</td>
</tr>
<tr>
<td>Delete</td>
<td>deletes a selected sequence line</td>
</tr>
<tr>
<td>Copy</td>
<td>copies a selected sequence line</td>
</tr>
<tr>
<td>Exit or Esc</td>
<td>exits the screen</td>
</tr>
<tr>
<td>Tray View</td>
<td>shows the current sequence’s status graphically.</td>
</tr>
<tr>
<td>Properties</td>
<td>The properties of a sequence can be reviewed in the Properties screen. You can view changes and the reasons for them and change also the protection of the current sequence. See also “Sequence - File Protection” on page 96.</td>
</tr>
<tr>
<td>Wizard</td>
<td>The wizard allows easy definition of sample ranges and calibration processing. It starts with the input of the location.</td>
</tr>
<tr>
<td>File</td>
<td>Sequence parameter sets can be accessed in the internal flash disc or on a USB Flash Drive using the file dialog.</td>
</tr>
<tr>
<td>↑ ↓</td>
<td>moves the cursor up or down in a content list.</td>
</tr>
<tr>
<td>OK key or 8</td>
<td>opens the selected parameter.</td>
</tr>
</tbody>
</table>
Status Information

To view/edit the Status information, press Status from the Welcome screen.

The Status screen is a configurable overview of the instrument status. You can view actual values/states and edit parameters.

The screen is divided into four tiles. Each tile itself can also hold up to four smaller tiles. The Instant Pilot automatically chooses the size of the tiles based on the selection.

The display shows the actual connected (and powered up) Agilent modules. The title color gives the current STATUS (yellow = not ready, gray = ready, green = run, red = error).

The dialog title shows the instrument status in color and with text.

NOTE
When this screen has not been setup before, it will show from each module in the system one or more signals/parameters. For optimization of the view use “Setup of a Status Information Screen” on page 44.
Table 8 Status - Functions of Keys

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot</td>
<td>shows different signals of the connected modules over time. The signals are user-selectable, can automatically be rescaled for best on-screen fitting.</td>
</tr>
<tr>
<td>Setup</td>
<td>lets you set up the views.</td>
</tr>
<tr>
<td>Select</td>
<td>one of the last 4 setups can be loaded.</td>
</tr>
<tr>
<td>Control</td>
<td>opens a menu to control certain system activities (for details refer to Instant Pilot’s Info System).</td>
</tr>
</tbody>
</table>

Exit or Esc	exits the Status screen
≤ →	moves the curser up or down to an editable field
↑ ↓	moves the curser up or down in a content list
OK key or 8	edits the selected parameter
Setup of a Status Information Screen

When the Status Information screen has not been setup before, it will show from each module in the system one or more signals/parameters (default).

Press the **Setup** button.

![Status Screen (Setup)](image)

Figure 21 Status Screen (Setup)

The status view setup shows tile types as "... - editable" and "Analysis" (see **Figure 22**). Entering the setup select dialog now focuses the currently selected tile's entry in the list or - if it is an empty tile - the last selected entry.

In the selection list the tile types have the same naming as in the setup dialog. "... - editable" to have a large or small tile editable and "Analysis" for the large analysis tiles.

In the setup dialog it is checked on "Done" that an analysis tile is alone in a large quadrant.

Move to a field and press **Select**.
From this list select a signal/parameter and press Select. The selection will be taken for the selected window.

Figure 23 shows the relation of the windows in the Setup screen versus displayed windows.

Figure 22 Status Screen (Select)

Figure 23 Status Screen (Selection vs. Displayed)
Press **Properties** on the **Setup** screen to access the history of the current status view changes and the protection of the status view.

![Status Screen (Properties / History)](image1)

Figure 24 Status Screen (Properties / History)

![Status Screen (Protection)](image2)

Figure 25 Status Screen (Protection)
Logbook Information

To view/change the Logbook information, press Logbook from the Welcome screen.

The Logbook screen is a configurable overview of the information, internal sequences, error, maintenance, system and Early Maintenance Feedback (EMF) messages.

To configure the view, press Filter.

Control opens a menu to control certain system setting/activities.

To leave the screen, press Exit or Esc.

Press Print. The logbook is saved to a connected USB Flash Drive. The text is written and saved into folder \PRINTOUT as LOGBOOK.MHT or LOGBOOK.HTM (see Figure 27 on page 48), defined in the Configuration settings (see “Printing To USB Flash Drive” on page 65). Printing can then be performed by opening the file with a PC.

Table 9 on page 48 shows the possible icons/events.
1 Start-up Information

Logbook Information

Table 9 Legend of Logbook Icons/Entries

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>status change event</td>
</tr>
<tr>
<td></td>
<td>Info event</td>
</tr>
<tr>
<td></td>
<td>error event</td>
</tr>
<tr>
<td></td>
<td>EMF (Early Maintenance Feedback) event</td>
</tr>
<tr>
<td></td>
<td>sequence event</td>
</tr>
</tbody>
</table>

Figure 27 Logbook Screen - saved to USB Flash Drive
Configuration

To view/change the configuration, press More from the Welcome screen and select Configuration from the menu.

![Configuration of System](image)

Figure 28 Configuration of System

To change the system configuration, move to the line you want to change and press Edit. After doing the changing, press OK or Done.

The Instrument Name will appear as identifier on the screens (e.g. Welcome) or printouts/reports.

To start the Setup Wizard (see also “Getting Started” on page 31), press Setup (in system).

To change a module specific setting, select the appropriate module view.
The Instant Pilot provides basic maintenance and diagnostic functions only. The Agilent LabAdvisor software provides the full maintenance and diagnostic capabilities.

To view/change the Maintenance information, press More from the Welcome screen and select Maintenance from the menu.

<table>
<thead>
<tr>
<th>Module</th>
<th>Product #</th>
<th>Serial #</th>
<th>Firmware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller</td>
<td>G1326A</td>
<td>DES5000002</td>
<td>B.02.01 [0001]</td>
</tr>
<tr>
<td>Quat Pump</td>
<td>G1311A</td>
<td>DE23923124</td>
<td>A.06.01 [012]</td>
</tr>
<tr>
<td>Autosampler</td>
<td>G1329A</td>
<td>DE91609245</td>
<td>A.06.01 [012]</td>
</tr>
<tr>
<td>Col Comp</td>
<td>G1316A</td>
<td>DE14923885</td>
<td>A.06.01 [012]</td>
</tr>
<tr>
<td>DAD</td>
<td>G1315B</td>
<td>DE03010634</td>
<td>A.06.01 [012]</td>
</tr>
</tbody>
</table>

Figure 29 Maintenance Screen

The Maintenance System screen shows a list of all modules in the system with their names, product and serial numbers, and the firmware revision.

You can update the firmware using Update Wizard, which allows updating all modules of the system at once, or using Single to update a selected module. The firmware must be on an inserted and activated USB Flash Drive in its root directory.
On the module-specific screens you can

- see the Early Maintenance Feedback (EMF), error and maintenance events,
- set the EMF limits (see “Early Maintenance Feedback (EMF)” on page 53),
- do module maintenance (e.g. calibrations),
- add maintenance activities into the permanent log,
- identify the module in the stack (flashing LED).

Press the **Exit** button or **Esc** key to leave the screen.
1 Start-up Information
 Maintenance Information

![Maintenance Screen - Select Maintenance Activity](image)

Figure 31 Maintenance Screen - Select Maintenance Activity

- Select maintenance activity from list
- Saves the maintenance activity
Early Maintenance Feedback (EMF)

In case you have set the EMF limits and the limit has been reached, a message pops up.

![Early Maintenance Feedback (EMF) - Message]

The limits can be set in the **EMF Setup** screen.

![Early Maintenance Feedback (EMF) - Setting the limits]

- actual, changes the color depending on state:
 - green - below limit
 - yellow - limit exceeded
 - red - far above limit
Product Number and Serial Number Change

When the main board has to be replaced, the new board does not have a serial number. For some modules (e.g. pumps or auto samplers) the type has to be changed (multiple usage boards). Use the information from the serial number plate of your module. The changes become active after the reboot of the module.

This function should be used by Agilent trained personnel only. Otherwise, the module may be no longer accessible.

Details can be found in the manual provided with the HPLC module.

Figure 34 Maintenance Screen - Product Number and Serial Number Change
Diagnosis Information

The Instant Pilot provides basic maintenance and diagnostic functions only. The Agilent LabAdvisor software provides the full maintenance and diagnostic capabilities.

To perform a module-specific test, press More from the Welcome screen and select Diagnosis from the menu.

![Diagnosis Screen](image)

Figure 35 Diagnosis Screen

The Diagnosis screen shows a list of all modules in the system with their available tests.

To select a test, scroll down to the list and press Exec or OK to start the test.

A test report is shown at the end of the test.

Press Exit or Esc to leave the screen.
Turning Modules ON/OFF/Standby

To switch a module ON or OFF or into STANDBY, press Control from the Welcome/Method/Status/Logbook screen.

The three on/off states - off, init/ignition and on - are grouped vertically to have a fast overview of the system’s on/off state.

The modules are grouped by modules types - Pumps, TCC (temperatures) and Detectors (lamps) - with a frame next to the buttons on the right side. The correlation to the buttons on the right side gets only lost, if pumps or temps group has more then 2 modules. Then the following groups are shifted downwards to free up the required space. For high numbers of modules, the overall modules list gets a scroll bar.
Start Analysis Screen

With firmware revision B.02.01 and A.05.11 (November 2006) the Start Analysis screen, known from the G1323B Control Module, has been enhanced. It allows to set up a simple analysis by:

- pressing the START key
- adding the vial range and number of injections
- selecting the current or a different method (internal or from USB Flash Drive)
- use of current sequence (if active)
- resume paused sequence
- use Blank Run
- Start from selected line

![Start Analysis Screen](image)

Figure 37 Analysis Start Screen
The Instant Pilot is a further development of the G1323A/B Control Module which has been reworked and structured in a new modern way (more like an Agilent ChemStation). Therefore some areas of the G1323A/B Control Module appear in different areas. Table 10 shows the main changes.

Table 10 G1323A/B Control Module vs. Instant Pilot Functions

<table>
<thead>
<tr>
<th>G1323A/B Control Module</th>
<th>G4208A Instant Pilot</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis screen</td>
<td>Welcome screen - Status</td>
<td></td>
</tr>
<tr>
<td>Analysis screen - Settings / Method</td>
<td>Welcome screen - Method</td>
<td></td>
</tr>
<tr>
<td>Analysis screen - Time Table</td>
<td>Welcome screen - Method - Time Table</td>
<td></td>
</tr>
<tr>
<td>Analysis screen - Sequence</td>
<td>Welcome screen - Sequence</td>
<td></td>
</tr>
<tr>
<td>Analysis screen - Vial range</td>
<td>Start button - Sample Range</td>
<td></td>
</tr>
<tr>
<td>Analysis screen - ON/OFF (on various screens)</td>
<td>Control button - System ON/OFF and System: Get Ready (on various screens)</td>
<td></td>
</tr>
<tr>
<td>System screen</td>
<td>Welcome screen - Logbook</td>
<td></td>
</tr>
<tr>
<td>System screen - Control</td>
<td>Control button (on various screens)</td>
<td></td>
</tr>
<tr>
<td>System screen - Configuration</td>
<td>Welcome screen - More - Configuration</td>
<td></td>
</tr>
<tr>
<td>System screen - Records</td>
<td>Welcome screen - Details</td>
<td>System Info Product number, serial number, board ID and firmware revision</td>
</tr>
<tr>
<td></td>
<td>Welcome screen - More - Maintenance - System</td>
<td></td>
</tr>
<tr>
<td>System screen - Records - Logbooks</td>
<td>Welcome screen - Logbook</td>
<td>System, Controller, Modules EMF Events, Errors Events and Maintenance Entries</td>
</tr>
<tr>
<td></td>
<td>Welcome screen - More - Maintenance - [Module]</td>
<td></td>
</tr>
</tbody>
</table>
Table 10 G1323A/B Control Module vs. Instant Pilot Functions

<table>
<thead>
<tr>
<th>G1323A/B Control Module</th>
<th>G4208A Instant Pilot</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status screen</td>
<td>Welcome screen - Status</td>
<td></td>
</tr>
<tr>
<td>Plot screen</td>
<td>Welcome screen - Status - Plot</td>
<td></td>
</tr>
<tr>
<td>Spectrum (DAD/MWD/VWD/FLD)</td>
<td>Control button (on various screens)</td>
<td></td>
</tr>
</tbody>
</table>
Information on Firmware

Use always the latest version of the Instant Pilot firmware. It is always backward compatible with all previously released versions.

- A.05.15 or later for firmware platform A.05xx
 - Update main part only.
- B.02.17 or later for firmware platform A.06.xx / B.01.xx or later.
 - Update always main and resident part.

The firmware can be downloaded from the Agilent web

This chapter describes the operation of the Instant Pilot.
Using a USB Flash Drive

You can use many USB Flash Drive with USB 1.1 support that can be physically inserted while the Instant Pilot is attached to the Agilent system.

Since USB Flash Drives may vary from vendor to vendor or from type to type, incompatibilities can occur. In general, USB Flash Drives from Sandisk and Kingston should work. The USB Flash Drives must be FAT-16 formatted and without encryption. See “USB Flash Drive Kit” on page 163.

See also “Handling of Unsupported USB Flash Drive Formats” on page 63.

1. Open the USB cover.
2. Insert the USB Flash Drive.

 The display shows whether the USB Flash Drive is inserted and active by an icon.

 not present - grey,
 present - blue,
 active - yellow with red dot (do not unplug!)
Handling of Unsupported USB Flash Drive Formats

If a unsupported format on a newly inserted USB Flash Drive is found, the Instant Pilot brings up a warning and asks the user to format the drive in a proper way.

![Unsupported USB Flash Drive](image)

When selecting "No", the USB Flash Drive will be ignored/can not be used in the Instant Pilot, even it is still inserted.
When selecting "Yes", there are two possible responses: formatting succeeds or fails.

During the format of the USB Flash Drive all stored data currently will be lost.

NOTE

During the format of the USB Flash Drive all stored data currently will be lost.

![USB Drive Format Success and Failure Screenshots](image)

Figure 40 Format of USB Flash Drive succeeded or failed

In case it failed, try a different type of USB Flash Drive or use the Agilent recommended “USB Flash Drive Kit” on page 163.
There is no direct printing via a printing device connected to the 1100/1200/1260/1290 system possible. But certain information can be printed to a file that is saved to an USB Flash Drive into a folder \ PRINTOUT.

The files are of type .MHT or .HTM, depending on the setting in Configuration/Controller/"Print document as". The difference is:

- .MHT: all files of a printout are in a single archive file (preferred)
- .HTM: a htm file plus all graphic files are saved separately in a folder with the name of the printout.

The files can be opened with a PC using Microsoft Word or Internet Explorer and printed from there.

The printouts have a header containing date and time, see Figure 41.
Working with the Instant Pilot

Printing To USB Flash Drive

Figure 41 Example of a Printed Document - Instrument Logbook

<table>
<thead>
<tr>
<th>Class</th>
<th>Date</th>
<th>Time</th>
<th>Module</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>04/13/07</td>
<td>12:51:07</td>
<td>DAD SL</td>
<td>Lamp off</td>
</tr>
<tr>
<td>3</td>
<td>04/13/07</td>
<td>12:51:07</td>
<td>DAD SL</td>
<td>VIS lamp off</td>
</tr>
<tr>
<td>3</td>
<td>04/13/07</td>
<td>12:51:18</td>
<td>TCC</td>
<td>Temperature off</td>
</tr>
<tr>
<td>3</td>
<td>04/13/07</td>
<td>12:51:18</td>
<td>TCC</td>
<td>Column ID (left) data valid</td>
</tr>
<tr>
<td>3</td>
<td>04/13/07</td>
<td>12:51:18</td>
<td>TCC</td>
<td>Column ID (right) data valid</td>
</tr>
<tr>
<td>3</td>
<td>04/13/07</td>
<td>12:51:14</td>
<td>Quat Pump</td>
<td>Per run</td>
</tr>
<tr>
<td>3</td>
<td>04/13/07</td>
<td>12:51:14</td>
<td>Quat Pump</td>
<td>No analysis</td>
</tr>
<tr>
<td>3</td>
<td>04/13/07</td>
<td>12:51:18</td>
<td>TCC</td>
<td>Calibration done</td>
</tr>
<tr>
<td>3</td>
<td>04/13/07</td>
<td>12:51:14</td>
<td>Quat Pump</td>
<td>Pump off</td>
</tr>
<tr>
<td>3</td>
<td>04/13/07</td>
<td>12:51:18</td>
<td>TCC</td>
<td>Valve switched to column 2</td>
</tr>
<tr>
<td>3</td>
<td>04/13/07</td>
<td>12:51:14</td>
<td>Quat Pump</td>
<td>Composition ramp off</td>
</tr>
<tr>
<td>3</td>
<td>04/13/07</td>
<td>12:51:14</td>
<td>Quat Pump</td>
<td>Flow ramp off</td>
</tr>
<tr>
<td>3</td>
<td>04/13/07</td>
<td>12:51:04</td>
<td>Autosampler</td>
<td>No service mode</td>
</tr>
<tr>
<td>3</td>
<td>04/13/07</td>
<td>12:51:18</td>
<td>FLD</td>
<td>Lamp off</td>
</tr>
<tr>
<td>3</td>
<td>04/13/07</td>
<td>12:51:18</td>
<td>FLD</td>
<td>Reference on</td>
</tr>
<tr>
<td>3</td>
<td>04/13/07</td>
<td>12:51:18</td>
<td>FLD</td>
<td>Calibration done</td>
</tr>
<tr>
<td>3</td>
<td>04/13/07</td>
<td>12:51:04</td>
<td>Autosampler</td>
<td>Initialization done</td>
</tr>
</tbody>
</table>
The following information can be "printed".

Table 11 Overview of Printable Information

<table>
<thead>
<tr>
<th>Dialog Name</th>
<th>Button</th>
<th>File Name in PRINTOUT</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Details</td>
<td>Print</td>
<td>SYSINFO.MHT</td>
<td>via Details button, see Figure 41 on page 66</td>
</tr>
<tr>
<td>Method</td>
<td>File - Print</td>
<td>METHOD.MHT</td>
<td>Contains Method, Timetable, Inj.Programm</td>
</tr>
<tr>
<td>Sequence</td>
<td>File - Print</td>
<td>SEQUENCE.MHT</td>
<td></td>
</tr>
<tr>
<td>Logbook</td>
<td>Print</td>
<td>LOGBOOK.MHT</td>
<td></td>
</tr>
<tr>
<td>Plot</td>
<td>Print</td>
<td>PLOT.MHT</td>
<td>via Status button single or multiple, pressure, composition, temperature, detector signals</td>
</tr>
<tr>
<td>SCANs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DAD/MWD Scan</td>
<td>DETSCAN.MHT</td>
<td>sample scan</td>
</tr>
<tr>
<td></td>
<td>VWD Scan</td>
<td>DETSCAN.MHT</td>
<td>blank (reference) and sample scan</td>
</tr>
<tr>
<td></td>
<td>FLD Scan</td>
<td>DETSCAN.MHT</td>
<td>Excitation or Emission scan</td>
</tr>
<tr>
<td>Calibrations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DAD Calibration</td>
<td>DADCALIB.MHT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MWD Calibration</td>
<td>MWDCALIB.MHT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VWD Calibration</td>
<td>VWDCALIB.MHT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLD Calibration</td>
<td>FLDCALIB.MHT</td>
<td>not implemented yet</td>
</tr>
<tr>
<td>Diagnostic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DAD/MWD Intensity</td>
<td>DIAGRES.MHT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DAD/MWD Holmium</td>
<td>DIAGRES.MHT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DAD/MWD Dark Current</td>
<td>DIAGRES.MHT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DAD/MWD Cell Test</td>
<td>DIAGRES.MHT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VWD Intensity</td>
<td>DIAGRES.MHT</td>
<td>with Raw Sample / Reference Signal Counts</td>
</tr>
<tr>
<td></td>
<td>VWD Holmium</td>
<td>DIAGRES.MHT</td>
<td></td>
</tr>
</tbody>
</table>
Working with the Instant Pilot

Printing To USB Flash Drive

Table 11 Overview of Printable Information

<table>
<thead>
<tr>
<th>Dialog Name</th>
<th>Button</th>
<th>File Name in <code>PRINTOUT</code></th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>• FLD Intensity</td>
<td>Print</td>
<td>DIAGRES.MHT</td>
<td></td>
</tr>
<tr>
<td>Pressure Tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• ISO Pump, Bin Pump, Micro Pump</td>
<td>Print</td>
<td>DIAGRES.MHT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal, Quad Press</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• High Flow Pump Press</td>
<td>Print</td>
<td>DIAGRES.MHT</td>
<td></td>
</tr>
<tr>
<td>• Micro Pump Micro Press Test</td>
<td>Print</td>
<td>DIAGRES.MHT</td>
<td></td>
</tr>
<tr>
<td>Leak Tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• ISO Pump, Bin Pump, Quad Press</td>
<td>Print</td>
<td>DIAGRES.MHT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal, Nano Pump, Prep Pump</td>
<td></td>
<td>Preparation is described in Help. Preparation steps (like purging the pump) are NOT included in the automatic actions list itself.</td>
</tr>
</tbody>
</table>

NOTE

If reports of the same type generated, the files are named DIAGRES.MHT, DIAGR~1.MHT, DIAGR~2.MHT and so on (DOS-8-character naming convention). Can be renamed.

NOTE

For saving/printing of screen shots refer to “Saving a Screenshot to USB Flash Drive” on page 114.
Holmium Test

Diode Array Detector SL: PP00000024

<table>
<thead>
<tr>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Press continue to start</td>
<td>Done</td>
</tr>
<tr>
<td>Wait until lamp(s) ON</td>
<td>Done</td>
</tr>
<tr>
<td>Perform holmium test</td>
<td>Done</td>
</tr>
<tr>
<td>WL 1: 360.0 nm...362.0 nm - measured: 360.8</td>
<td>Passed</td>
</tr>
<tr>
<td>WL 2: 452.7 nm...454.7 nm - measured: 453.0</td>
<td>Passed</td>
</tr>
<tr>
<td>WL 3: 535.7 nm...537.7 nm - measured: 536.4</td>
<td>Passed</td>
</tr>
<tr>
<td>Finished</td>
<td>Passed</td>
</tr>
</tbody>
</table>

Executed by: ___________________________

Date: ________________________________

Signature: ___________________________

Figure 42 Example of a Printed Document - DAD Holmium Test
Working with Methods

A method contains a complete set of injection, separation and detection parameters, including the timetable and injector program. The sample position information is not part of the method.

There are two types of methods:

- The Instant Pilot method. The method is stored in the internal memory of the Instant Pilot. The actual method’s parameters are stored in the individual LC modules. A method that is stored in the individual LC modules can be loaded, modified, saved and run from the Instant Pilot.

- The USB Flash Drive method. The method parameters are stored on a USB Flash Drive. A method that is stored on the USB Flash Drive can be loaded to the LC modules or transferred to another LC system. Methods cannot be run directly from the USB Flash Drive. The method must first be loaded from the USB Flash Drive before it can be run. When the USB Flash Drive method is loaded, it becomes the current module method.

Unless stated otherwise, the following sections refer to module methods.

To view/edit the method information, press **Method** from the **Welcome** screen.

NOTE
If additional details are required on a specific topic/function/parameter not mentioned in this document, please use the Instant Pilot’s Online Information System (i), see “The i (info) key - Online Information System” on page 27.
Figure 43 Method Screen
Loading a Method

A method can be loaded pressing **File** in the **Method** screen:

1. Enter the **Method** screen.
2. The current parameters are displayed.
3. Press **File**.
4. Select option 1 - **Load**.
5. Select a method from the list.
6. Press **OK** or **Load**.

The Method/Module screen lists all methods that are stored in the modules. For each method there is a date when the method was last changed. When a method is loaded it becomes the current method.

![Method - File Load Screen](image)

Figure 44 Method - File Load Screen

- Deletes the selected method
- Duplicates the selected method
- Protect/unprotect a method and adds a lock icon
- Leaves this screen
- Loads a selected method
- Properties: name, comment, change history
Modifying a Method

A method can be modified by changing the settings in the Method screen.

1. Scroll to the line you want to change.
2. Press Edit or OK.
3. Enter the new value.
4. Press Done.

If you change a method setting, the value is immediately downloaded to the LC module.

An asterisk (*) will appear next to the method name to indicate that the current method has been modified.

An hash (#) will appear next to the method name to indicate that the method is from a different configuration (setup with other modules).

Modules marked red are missing or not switched on.
Filtering Method Information

When a Filter is selected, only the parameters that are selected in this filter are shown on the Method screen.

![Method - Filter screen](image)

Figure 46 Method - Filter screen

Using **Default** resets the filter selection to factory settings.

Using **File**, the filter settings can be stored and or stored filter setting can be loaded.

If a filter is set, the Method screen will show the information “Method - name filtered”.

The filter can be activated from the Method screen using the **Toggle** button. If no user defined filter is in use, the default filter is chosen.
Compare Methods

The **Compare** screen is a tool that allows you to compare two methods. The differences are shown in a list by displaying the values from both methods side by side. You can copy parameters between the two selected methods using the **Copy** function.

If there are differences in the configuration and/or timetable, a message is shown in the status line, and you can view the differences via **Config**.

NOTE

If the configuration differs, only the differences of the configuration are shown.
Method Timetable

To time-program selected settings during the analysis, you can create a timetable. Using the Timetable screen, you can create a time-based program that will automatically control the modules of a system and external contacts (if an external contact board is used).

In some cases, the settings change instantaneously from the initial value to the value specified after a certain time in the timetable (e.g. wavelength). In other cases (e.g. solvent composition) these changes take place dynamically, approaching the set value in a stepwise and linear manner.

The timetable becomes part of the current method when the method is saved.

The Timetable screen shows the timetable used in the currently shown method. The timetable can be edited in the Timetable screen and is stored together with the method. You can edit lines, insert new lines, copy lines and delete lines. You may choose if the list should be ordered by module (default) or time.

Figure 48 Method - Timetable screen
A timetable line can be inserted by pressing **Insert** and consists of the following:

- **Time**
 Set the time span between the instant of injection and the desired parameter change.

- **Setting**
 Select the parameter to be changed.

- **Value**
 Enter the desired parameter value.

You can edit an existing timetable line by pressing **Edit** or **OK**. Use **Delete** to delete the selected line.

You can copy a timetable line by pressing **Copy**.

Figure 49 Method - Timetable screen

- **Edit a line and change the parameter**
- **Cancels the action and leaves the screen**
- **Saves the settings and leaves the screen**
Method Properties

The properties of a method can be reviewed in the Properties screen. The user can view change history.

- The method’s name. This string is used as unique identification of the method and is also used as the filename.
- The description allows you to describe the method more precisely.
- The history shows all changes done.
- The method can be protected / unprotected with a password.

The method can be protected against inadvertent changes. Any change to the method is not accepted until the method is unprotected, or by saving it again without protection.

Any unauthorized method or instrument changes can be traced by the system logbook.

The Protection button is available in all File operations.

For more information see “Method File Protection” on page 79.
Method File Protection

With firmware revision B.02.05 (May 2007) several additional checks and disabling of functions were added to ensure protected file security - online and offline:

- If a file is protected, the user can not edit the currently loaded method content or its filter settings.
- "Edit", "Filter" and "Save" buttons are disabled.
- Enter edit mode by pressing "Enter" button is disabled.
- "Save As" under a different name is allowed and will be stored under the new name unprotected. Using the same name results in "File Save Failed: Permission denied" error.
- Renaming a protected file is not allowed.
- "Transfer" of protected file is allowed, if not a protected file with the same name already exists in the targeted destination. Then the user has to unprotected the protected file on target first.
- "Import" fails, if a protected method with the same name on the Instant Pilot already exists.
- In the files dialogs, a protected file can be copied, but not renamed or deleted. "Copy" a protected file, makes an unprotected copy under a different name on the same medium.
- To unprotect a file, the user has to enter the correct password.

A password to protect a file can have up to 12 digits. If left empty, no/empty password will be added to the file protection.
2 Working with the Instant Pilot
Working with Methods

![Figure 51](image1.png) Method - Protection

![Figure 52](image2.png) Method - Properties / History
Saving a Method

Methods are stored within the Instant Pilot (internal memory) and/or on an external USB Flash Drive. The currently loaded method is also the active method in the modules. Changes to the method are immediately transferred to the modules. The Instant Pilot generates a list of all available methods that can be loaded.

The number of methods that can be stored depends on the number of timetable and injector program lines included. In general, more than 100 methods may be stored in the Instant Pilot. With differing method contents, the actual amount of methods to be stored may change significantly.

Use a USB Flash Drive in order to store an infinite number of methods for future use or for exchange between LC instruments (see “Transfer of Methods” on page 83).

- **Save** stores the actual method in the Instant Pilot’s internal memory.
- **Save as** allows the selective storage in the Instant Pilot’s internal memory or on the external USB Flash Drive and copy/delete/protection functions.

![Figure 53 Method - File menu](image-url)
2 Working with the Instant Pilot

Working with Methods

1. Press **File** and select the **Save as**.

![Method File Save as dialog box]

- **Delete**: Deletes a method
- **Copy**: Copies a method
- **Protect**: Protect/unprotect the method
- **Cancel**: Exits this screen
- **Save**: Saves the settings and leaves the screen

Figure 54 Method - Save As

2. Choose the location (internal = Instant Pilot or USB = USB Flash Drive) and a name (if not already done).

3. You may delete or copy methods from one location to the other.

4. You may protect/un-protect a method (see “Method Properties” on page 78 and “Method File Protection” on page 79).

The stored method now contains all the current LC system and module settings.

If you disconnect the Instant Pilot from one LC system and connect it to another LC system, the Instant Pilot's current method will get an (*) or (#) because its settings vary from the settings of the new LC system.

To transfer methods from one LC system to another you can use the Instant Pilot or a USB Flash Drive.
Transfer of Methods

The "File Transfer" dialog allows you to transfer files between internal file storage and the connected USB Flash Drive.

1. Select a method.
2. Press **Transfer**. The method is transferred.

Figure 55 Method - Transfer
Offline Work on Methods

The Import dialog gives you the ability to edit methods offline. It is possible to edit methods that were not actually loaded onto the modules. The offline method dialog starts with a copy of the actual method. The “offline mode” is emphasized by the different dialog color.

Figure 56 Method - Save As

All buttons have the same function as in the online method dialog (see “Modifying a Method” on page 73). Only the Control button is removed and the Exit button is replaced with a Done/Cancel.
Import of Methods

This function allows the import of G1323 Control Module methods stored on the instrument or on the USB Flash Drive. Export is not possible.

A window displays the methods that can be imported.

- **Imports a selected method**
- **Deletes a method**
- **Exits the screen**

Figure 57 Method - Import

- **G1323 methods from USB**
 - generated with G1323 Control Module, then transferred via G1323/PC-card/PC/USB Flash Drive to the Instant Pilot

- **G1323 methods from instrument**
 - generated with G1323 Control Module, transferred via HPLC module to the Instant Pilot
Injector Program

With firmware revisions B.02.01 and A.05.11 (November 2006) the Injector Program has been implemented.

The injector program is part of the method. The injector program screen can be accessed by pressing edit on the Injection Mode line and change it to Injector Program in the Method view.

Figure 58 Method Screen - Injector Program
Press the **Default** button to start with a pre-defined injector program. This can be modified or expanded.

![Figure 59 Injector Program - Default Program](image)

Move to a line of the Injector Program and press **Edit** button to view the current settings or start a new line.

![Figure 60 Injector Program - Setup Screen](image)
Press the **Insert** button and select an action item.

![Injector Program - Setup Screen](image1)

Figure 61 Injector Program - Setup Screen

Move to line “End of User Defined Injector Program”, press the **Insert** button and select additional action items as required.

Via the **Edit** button you can change the parameters.

![Injector Program - Modifying a Parameter](image2)

Figure 62 Injector Program - Modifying a Parameter
Table 12 lists all injector program lines that are insertable / editable.

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draw default amount from sample (from actual position)</td>
<td></td>
</tr>
<tr>
<td>Draw default amount from sample plus x vial(s) from actual position</td>
<td></td>
</tr>
<tr>
<td>Draw x µl from vial y</td>
<td></td>
</tr>
<tr>
<td>Draw x µl from seat</td>
<td></td>
</tr>
<tr>
<td>Draw x µl from air</td>
<td></td>
</tr>
<tr>
<td>Draw x µl from flush</td>
<td>DLA only *</td>
</tr>
<tr>
<td>Eject all into seat</td>
<td></td>
</tr>
<tr>
<td>Eject x µl into sample</td>
<td></td>
</tr>
<tr>
<td>Eject x µl into location y</td>
<td></td>
</tr>
<tr>
<td>Eject x µl into seat</td>
<td></td>
</tr>
<tr>
<td>Eject x µl into air</td>
<td></td>
</tr>
<tr>
<td>Mix x µl in seat, z time(s)</td>
<td></td>
</tr>
<tr>
<td>Mix x µl in air, z time(s)</td>
<td></td>
</tr>
<tr>
<td>Mix x µl in air, at y µl/min, at z time(s)</td>
<td></td>
</tr>
<tr>
<td>Mix w µl in location x, offset y, z time(s)</td>
<td>WPS only †</td>
</tr>
<tr>
<td>Inject</td>
<td></td>
</tr>
<tr>
<td>Valve mainpass</td>
<td></td>
</tr>
<tr>
<td>Valve mainpass with start pulse</td>
<td></td>
</tr>
<tr>
<td>Valve bypass</td>
<td></td>
</tr>
<tr>
<td>Needle up</td>
<td></td>
</tr>
<tr>
<td>Needle into seat</td>
<td></td>
</tr>
<tr>
<td>Needle into vial x</td>
<td></td>
</tr>
<tr>
<td>Needle to wash port</td>
<td></td>
</tr>
<tr>
<td>Wash needle in default wash vial, x time(s)</td>
<td></td>
</tr>
</tbody>
</table>
Working with the Instant Pilot
Working with Methods

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wash needle with default wash parameters</td>
<td></td>
</tr>
<tr>
<td>Wash in vial x, y time(s)</td>
<td></td>
</tr>
<tr>
<td>Wash in flush port for x sec</td>
<td>WPS only</td>
</tr>
<tr>
<td>Move vial from sample position to (waste) location 220</td>
<td>ALS only ‡</td>
</tr>
<tr>
<td>Remote ready</td>
<td></td>
</tr>
<tr>
<td>Remote not ready</td>
<td></td>
</tr>
<tr>
<td>Remote start</td>
<td></td>
</tr>
<tr>
<td>Wait x minutes</td>
<td></td>
</tr>
<tr>
<td>Wait for ready, timeout x min</td>
<td></td>
</tr>
<tr>
<td>Wait for start, timeout x min</td>
<td></td>
</tr>
<tr>
<td>Contact x open/close</td>
<td></td>
</tr>
<tr>
<td>Repeat Start, x times</td>
<td></td>
</tr>
<tr>
<td>Repeat End</td>
<td></td>
</tr>
<tr>
<td>Increment actual sample position + x vial(s)</td>
<td>ALS only</td>
</tr>
<tr>
<td>Increment actual sample position + w tray(s), + x plate(s), + y row(s), + z column(s)</td>
<td>WPS only</td>
</tr>
<tr>
<td>Reset actual sample position</td>
<td>ALS only</td>
</tr>
<tr>
<td>Reset actual tray position</td>
<td>WPS only</td>
</tr>
<tr>
<td>Reset actual plate position</td>
<td>WPS only</td>
</tr>
<tr>
<td>Reset actual row position</td>
<td>WPS only</td>
</tr>
<tr>
<td>Reset actual column position</td>
<td>WPS only</td>
</tr>
<tr>
<td>Syringe to home position</td>
<td></td>
</tr>
</tbody>
</table>

* DLA: G2258A
† WPS: G1367X, G1377A, G2258A
‡ ALS: G1313A, G1329A, G1389A, G2260A
Sequence - Automating Analyses

You can use the Sequence screen to create completely automatic unattended analyses, from sample preparation to injection. The Sequence screen is accessed by pressing Sequence in the Welcome screen.

Using the Sequence screen, you can link several methods together. For example, you can first run a method containing an injector program to do sample preparation followed by an analytical run to analyze a batch of samples. You can then run a second method to analyze further samples with different analytical conditions.

Figure 63 Sequence - Start-up screen
When the second method is loaded, it waits for a specified time before starting the analysis, allowing the column to equilibrate to the new conditions. All sequence events can be traced in the Logbook available from the Welcome screen.

At the end of the sequence, you can specify either to load a method (e.g. to flush the LC system to remove buffer salts to avoid crystallization or to program a soft shut-down method) using Insert/Method or turn OFF the LC system using End Actions.

You can set up automatic re-calibration using the Calibration Settings screen. The Calibration Settings screen is accessed by selecting Calibration in the Sequence Wizard screen.

You can re-calibrate using one or more standards and have the flexibility to choose various calibration intervals and patterns. You can define the frequency to re-calibrate and the order of calibration vial analysis using the Alternate and Multi settings. Alternate analyzes the calibration vials alternately. Multi analyzes the calibration vial or vials in complete groups according to the calibration interval.
Using the Sequence Wizard

You may use the Wizard to set up a sequence.

Figure 65 Sequence Wizard - Adding Samples Information

Figure 66 Sequence Wizard - Adding Calibration Information

See Figure 67 and Figure 67 on page 94 for effect of selection “Multi” and “Alternate”
2 Working with the Instant Pilot
Sequence - Automating Analyses

Figure 67 Sequence Wizard - Preview with Calibration Parameter Multi

Figure 68 Sequence Wizard - Preview with Calibration Parameter Alternate
Saving a Sequence

Sequences are stored within the Instant Pilot (internal memory) and/or on an external USB Flash Drive. The sequence is only in the controller. Changes to a sequence line can be when the line is not active (if sequence is running). The Instant Pilot generates a list of all available sequences that can be loaded.

The number of sequences that can be stored depends on the number of timetable and injector program lines included. In general, more than 100 squinches may be stored in the Instant Pilot. With differing sequence contents, the actual amount of sequences to be stored may change significantly.

Use a USB Flash Drive to store an infinite number of sequences for future use or exchange between LC instruments (see “Transfer of Methods” on page 83).

![Sequence - File menu](image)

Figure 69 Sequence - File menu

- **Save** stores the current sequence into the file it was loaded from.
- **Save as** allows the selective storage in the Instant Pilot’s internal memory or on the external USB Flash Drive and copy/delete/protection functions.

1. Press File and select the **Save as**.
Choose the location (internal = Instant Pilot or USB = USB Flash Drive) and a name (if not already done).

You may delete or copy sequences from one location to the other.

Sequence - File Protection

You may protect/un-protect a sequence (see “Method Properties” on page 78 and “Method File Protection” on page 79).

Differences are:

- "Edit", "Insert", "Delete", "Copy", "Wizard" and "Save" buttons are disabled.
- There is no "Import" functionality

To transfer sequences from one LC system to another you can use the Instant Pilot or a USB Flash Drive.
Tray View

The current sequence's status is shown graphically. The sequence samples are shown at their locations on the tray using colors representing their states.

- Green: already processed sample
- Blue: sample to process
- Magenta: calibration sample
- Yellow: aborted sample

The current sample is colored alternating blue (sample) or magenta (calibration sample) and light blue. The currently processed sample location and the method name are also shown textual on the left. The bar graph at the bottom shows the sequence state and overall sequence time.

Figure 71 Sequence - Tray View
Starting and Stopping a Sequence

When you press **Start**, the **Start Analysis** dialog pops up where you can select between

- setting up a sample range,
- starting the current (saved) sequence or
- resuming a paused sequence
- using a blank run
- start from selected line.

If no sequence is currently paused, this function is disabled.

The sample range possibility is for running sequences without parameter changes for the specified method(s).

![Start Analysis dialog](image)

Figure 72 Sequence - Start

You may press **Start** again to bypass the above screen.

If any actions are still required to get the system into a ready state, the **Get Ready** screen will show up (Figure 73 on page 99), otherwise

- the system status changes to green,
- the sequence starts immediately and
- the last screen shows up.

Press **Status** to display the actual system status.
If any activities before the system ready (gray status) are still required, press **Continue** and all actions (e.g. required lamps are turned on) are performed automatically.

When all Get Ready activities are complete

- the system status changes to green,
- the sequence starts immediately and
- the last screen shows up.
Press Status to display the actual system status.

When you press Stop, the Stop Analysis dialog pops up where you can select between aborting immediately or pausing the sequence. Continue aborts or pauses — depending on the selection — the current sequence. A shortcut is to press Stop again.
Displaying Data Graphically

The Plot screen gives you many opportunities to display a wide variety of signals on a graphic display while the analysis is performed or not. The plot screen can show different signals of the connected modules over time. The signals are user selectable, can automatically be rescaled for best on-screen fitting.

The **Print** button allows the print of the plot window to the USB Flash Drive.

Use the **Setup** button to select the signals of interest, see also “Setup of Signals” on page 102.

Use the **Rescale** button to maximize the signals of interest.

You can use the Direction keys to change the Y-range (up/down) or the time scale (left/right).

Use the **Select** button to make a signal active on the Y-axis or use the number keys 1, 2, 3 or 4.
Setup of Signals

Up to four of the available signals can be chosen for graphical display.

1. From the Plot screen, press **Setup** to show the **Selection** screen.

2. Use the Direction and Selection keys to navigate within – and between the available signals and selected signals list boxes.

![Plot screen - Setup signals](image)

- **Selects a signals**
- **Clears all selections**
- **Edit the settings for scaling**
- **Cancels the actions and leaves the screen**
- **Accepts the settings and switch to graphic view**

Figure 77 Plot screen - Setup signals

On the right side of the Selected Signals list box, you can see the legend to the signals.

The different signals can be selected by pressing **Toggle** or **OK**. Depending on which signal is highlighted, you can enter an individual Y-Range setting here using **Edit**.

3. When the signals and their Y (signal unit) ranges have been specified press **Done** to switch to the graphic view.
Rescaling the Plot Screen

Press **Rescale** and select the signal.

X (time) axis

To rescale the X (time) axis, use the Direction keys (left/right).

Y (signal unit) axis

There are several possibilities to rescale the Y (signal unit) axis:

- Via **Setup**, you can specify a Y range separately for each signal. Rescaling directly from the **Plot** screen overwrites these settings.
- Use **Rescale** in the **Plot** screen to adjust the Y axis according to the minimum and the maximum signal value within the set time range. Using this function provides the optimum signal display. It refers to all or to a selected signal from the menu.
- Use the Direction keys (**up**/**down**) to change the scaling of the Y axis by a factor of 2 (**up**) or 1/2 (**down**) of the selected signal.
DAD/MWD/VWD/FLD Spectrum

Via the Control button and More, the DAD/MWD/VWD/FLD spectrum screen is accessible.

![Spectrum - DAD SL](image)

Figure 79 Spectrum - Example DAD

The scan range and step width can be set.

Using the **Single** button, starts a single spectrum.

Using the **Start / Stop** button, starts/stops a continues spectrum.

Using the **Cursor** buttons, the cursor can be moved left or right on the wavelength axis.

Using the **Balance** button, the detector performs a baseline balance.

Using the **Peaks** button, a table with all found peaks is displayed (also part of the printed spectrum).

Using the **Blank** button (VWD only), a blank (background) scan is taken.
FLD Spectrum

Under Control/More the user has two additional options: Excitation Spectrum and Emission Spectrum.

Both screens are similar, only the editable parameters are different according the selected spectra type (see Figure 80). The screen has a "Single" scan mode and a "Continues" mode accessible via "Start". Peaks can be displayed (see Figure 81) and the result can be printed.

![Figure 80](image1.png) Spectrum - FLD

![Figure 81](image2.png) Spectrum - FLD - Peaks
2 Working with the Instant Pilot
DAD/MWD/VWD/FLD Spectrum

Warnings are shown, if the method parameters are not set to produce spectra information and if the lamp is not switched on. Start keys will be kept disabled until valid conditions are reached.

Figure 82 Spectrum - FLD
Connecting External Devices

There are several kinds of interface that enable the Agilent Series modules to communicate with a range of other output devices. For some of them, extra hardware needs to be installed.

Configuration of selected interface parameters is possible and is handled individually for each module, since some interfaces are only available with certain modules (depending on installation).

For further information on interfaces see the corresponding sections in the modules’ user or reference manuals.

APG Remote / Enhanced Remote (Infinity II)

The system can communicate with external devices via APG remote connector (included in all modules) in order to synchronize the analyses. This is necessary when an external device needs some time to get ready for a new analysis and thus the transmission of a start request is required (see also “Synchronizing Analyses with External Devices” on page 137 for details on sequence modes). Detailed descriptions of the APG Remote connector are available in the HPLC modules’ reference manuals.

Among the available signals are:

Power On

This signal is active as soon as all modules connected to the system are switched ON.

Shut Down

When the system has a serious problem (e.g. a leak occurs) this alerts all modules to stop relevant operation in order to reduce safety risks.
Stop

This signal asks all modules to reach the ready state as soon as possible. It works only during the analytical run (controlled by the stoptime setting) and causes the system to begin counting down the postrun time.

Ready

When all Agilent Series modules are ready for the next analysis, this signal is on. Other modules or external devices can now react (e.g. by issuing a start request).

Prepare

This causes the modules to get ready for the next analysis (e.g. the detector performs a balance).

Start Request

This signal causes the modules to get ready for the analysis (e.g. the autosampler will begin the injection cycle). As soon as all conditions to start the analysis (the injection needle is placed in the seat and the valve is in the proper position) are fulfilled, a Start signal is generated to inform the other modules that now the analytical run starts.

Start

In standard mode only the autosampler creates this signal. This sends an order to start run-time controlled activities to all the modules connected to the APG remote bus. From now on (moment of injection), the runtime counts up.

BCD

If the appropriate extension board is part of your system, you can use this output to inform external devices about the vial number currently processed.
External Contacts

With an optional external contacts board, you have various possibilities to synchronize LC activities with external devices.

Communication Interfaces

See also "Simultaneous Execution with Software" on page 111 for further details on how to operate the system using the GPIB interface.

CAN

The module to module communication is done via CAN.

MIO / LAN

This interface enables the Agilent Series modules to communicate with PCs configured as CDS using a local area network (LAN). You can use the MIO interface if the respective extension board (G1369C LAN Interface Card) is installed in one of your modules (detector is recommended) or has on-board LAN and your system is integrated in a LAN.

USB

This interface has been introduced with the Infinity II (Fusion) modules and replaced the RS-232 interface. The USB might be used for the Agilent Lab Advisor (diagnostics and firmware updates) and specific modules function (e.g. dongle for HDR).

Serial / RS-232

The module communication is enabled with the CAN cables. This interface is also used by 3rd-party control software, and can be used for firmware upgrades.
2 Working with the Instant Pilot
Connecting External Devices

GPIB

With the GPIB interface (included in some modules) your system is able to communicate with a Personal Computer configured as the Agilent ChemStation. Connect all HPLC modules with CAN cables and use one of them to connect to the Agilent ChemStation via an GPIB cable. GPIB was removed with the introduction 1200 Infinity modules.
Simultaneous Execution with Software

With Agilent ChemStation

Features

- All user interfaces, the Instant Pilot, the Agilent ChemStation or the Agilent Cerity WorkStation and OpenLab, can be connected to an Agilent Series system at the same time.
- Parameter entry is possible from both user interfaces. Parameters are updated on the other user interface within a few moments.
- An Agilent ChemStation sequence can be stopped and aborted from the Instant Pilot and vice versa.
- The Agilent ChemStation can generate data files from a Instant Pilot method or sequence. In this case, the pre-fix and file name counter in the Single Sample Info section of the Agilent ChemStation must be enabled (protocol mode only).
- If the Instant Pilot starts an analysis, the Agilent ChemStation is the slave/monitor system.
- The Agilent or 3rd-party user interface may block certain functionality, e.g. editing, load, start or others. In such a case, the screen shows a blinking lock-symbol in the top left.

Restrictions

- If a parameter window is open for parameter entry on the Agilent ChemStation, this specific entry field is disabled on the Instant Pilot.
- If an analysis is running with the Instant Pilot, the Agilent ChemStation must not be turned on.
- If the Agilent ChemStation starts an analysis, the Instant Pilot is the slave/monitor system.
- Parameter changes to a method will be identified on the other user interface as modification.
The Instant Pilot and the Agilent ChemStation have a different method handling (Agilent ChemStation method can have more information than the method on the Instant Pilot, e.g. additional DAD parameters that are only accessible from the Agilent ChemStation). To have a method available on both controllers, proceed as follows:

If the method is on the Agilent ChemStation and should be saved on the Instant Pilot or USB Flash Drive, load the method on Agilent ChemStation and then save the method on the Instant Pilot (or USB Flash Drive) with Method — **Save As**.

If the method is on the Instant Pilot or USB Flash Drive and should be saved on the Agilent ChemStation, first load method DEF_LC.M on the Agilent ChemStation (to have no additional parameter in the format) and then load the required method on Instant Pilot. Then save the method on the Agilent ChemStation with the same name.

CAUTION

A method that is available on the Instant Pilot as a protected method can be modified by the Agilent ChemStation and then saved on the Instant Pilot without any warning. The method will be changed in the instruments, but the file cannot be saved anyway.
With 3rd Party Control Software

There may be problems when connecting the Agilent Instant Pilot G4208A to an Agilent 1100/1200//1260/1290 instrument controlled by third party software, if this software generates an error when detecting an unknown module in the configuration. Therefore the Agilent Instant Pilot G4208A can be made invisible to other controllers.

To change the setting open the Configure - Controller screen. Scroll to 3rd Party Software and change to ON.

Backward compatible OFF visible to other controllers (default)
Backward compatible ON invisible to other controllers

![Configure Controller - 3rd Party Software Compatibility](image)

Figure 83 Configure Controller - 3rd Party Software Compatibility

Whenever this setting is changed, the Instant Pilot needs to be rebooted to make the change active.

If the Instant Pilot is in “Backward compatible mode ON”, see “With 3rd Party Control Software” on page 113, it will not be seen by the LAN/RS-232 Firmware Update Tool. For updating firmware reconfigure the Instant Pilot to “Backward compatible mode OFF”.

NOTE
Saving a Screenshot to USB Flash Drive

You may want to create a screenshot for
• adding it to a documentation or
• troubleshooting reasons.

To do so,
• insert the USB Flash Drive.
• wait until the USB Flash Drive has been initiated.
• press the key sequence .i (dot info).

The screenshot is saved as SCR-nn.BMP (where nn is a number) on the USB Flash Drive. The figure can be opened on the PC with any graphic or word processing application.
This chapter describes how to analyze the Agilent Technologies isocratic standard sample using a single injection analysis.
What You Will Need

Instruments
Agilent Series isocratic, binary or quaternary pump, an autosampler and a UV-detector.

Column
A 125 mm × 4.0 mm Hypersil ODS, 5 µm (Agilent Technologies part number 7982618-564).

Solvents
For the isocratic pump, a solvent mixture of LC grade bidistilled water (35 %) and acetonitrile (65 %).

Sample
The Agilent Technologies isocratic standard sample (Agilent Technologies part number 01080-68704). This contains 0.15 wt.% dimethylphthalate, 0.15 wt% diethylphthalate, 0.01 wt.% biphenyl and 0.03 wt.% o-terphenyl dissolved in methanol.

NOTE
The descriptions are based on Agilent 1100/1200 systems. The Agilent 1290 Infinity System may have other requirements on the setup and material.
Preparing the LC System

1. For the isocratic pump, fill the solvent bottle with the mixture of LC-grade bidistilled water (35%) and acetonitrile (65%). For the binary or quaternary pump, fill one solvent bottle with bidistilled water (channel A) and the other with acetonitrile (channel B).

2. Turn on the detector lamp and pump via the Control - System On/OFF screen.

3. For the quaternary pump, turn on the degasser by pressing the line-power switch.

4. Purge the pump.

5. Allow the detector at least 15 minutes to provide a stable baseline.

6. Transfer the contents of an Agilent Technologies isocratic standard sample ampoule into a vial and seal the vial with a cap. Place the vial in position 1 of the autosampler tray.

7. Pump the water/acetonitrile (35/65%) mobile phase through the column for 10 minutes at a flow rate of 2 ml/min.
3 Running an Isocratic Analysis

Entering Settings

To set up the isocratic analysis, you will set the LC system settings to default and then modify selected settings. The other settings will remain with their default values. You will then save these settings to a method called ISO.

1 Enter the Method screen.
2 Select Control and select System: Set Defaults.
3 Set the Stoptime to 6 minutes.
4 Set the Flow to 1.5 ml/min.
5 Set %B 65, (%C OFF, %D OFF for quaternary pump. If you have a binary pump, set %B to 65.).
6 Set Injection volume to 1 µl.

NOTE
The channels of a pumping system are named A, B, C and D (depending on the pump type). %A is automatically calculated by 100% - (%B + %C + %D). If no values for %B, %C and %D are entered, %A is always 100%.

Saving Settings in a Method

1 Select File in the Method Information screen.
2 Select “Save As”.
3 Enter the method name as ISO using the selection keys (also see “Saving a Method” on page 81).
4 Press Save to save the method.
5 Press Exit to leave the Method screen.
Creating a Sequence

1. Select **Sequence** in the Welcome screen.
2. Press **Insert** and select **Method**.
3. Select Method named **ISO** and press **OK**.
4. Press **Insert** and select **Sample**.
 - If your sample is not in vial 1, you have to modify the vial number (also see “Sequence - Automating Analyses” on page 91).
5. Select **File** and select **“Save As”**.
6. Enter the sequence name as **ISO** using the numeric keys (see also “Saving a Sequence” on page 95).
7. Press **Save** to save the sequence.
8. Press **Exit** to leave the Sequence screen.

Selecting a Signal

1. Setup the signal parameters in the Method Information screen.
2. Select **Status** in the Welcome screen.
3. Press **Plot**.
4. Press **Setup**.
5. Choose a Detector Signal from the Available Signals list.

NOTE
You can choose several signals at a time. The plot function will display all signals that are shown in the Selected Signals list box. Use the selection keys to navigate within the list box and select the signal(s).

6. Press **Done**.
3 Running an Isocratic Analysis
Observing the Chromatogram

Observing the Chromatogram

1 Select the Status screen.
2 Press Start.
3 Select Continue to confirm the start of the analysis.
4 If the system is not ready (yellow), you have to press Continue again.

The modules automatically get ready and start the analysis.
5 Change to the Status screen (if started from here, the plot will be active after start).
6 Press Plot to show the chromatogram

A typical chromatogram for this analysis is shown in Figure 84.

![Chromatogram Image]

Figure 84 Analysis of Isocratic Standard Sample
The exact profile of the chromatogram depends on the column you have used. Differences in retention times and areas of the peaks in your chromatogram and the one shown in Figure 84 might be a result of variations in the concentration of the sample from batch to batch, the quality of the solvents used and the column temperature.

NOTE

You can rescale the plot using **Rescale**, or the cursor keys or you define the plot window within the Setup (see also “Rescaling the Plot Screen” on page 103).
3 Running an Isocratic Analysis
Observing the Chromatogram
This chapter describes how to setup multiple vial analyses using the same method and different methods.
This section describes how to set up a 25-vial analysis with one injection from each vial. You will use a previously created method. The samples are located in positions 1 to 25 of the autosampler tray. For details see “Working with Methods” on page 70.

1. Enter the Sequence screen.
2. Enter Wizard
3. Enter first ...
4. Enter last ...

If the current method is used, loading is not required.
Analyzing Multiple Vials Using Different Methods

This section describes how to set up a 50-vial analysis using three methods which you have previously created called e.g. METH1, METH2 and METH3. For example: METH1 and METH2 have the same analytical settings but differ in the injection volume and stoptime values. METH3 uses a different temperature and requires a wait time of 30 minutes for the LC system to equilibrate.

• The first 20 vials are analyzed using METH1 with one injection per vial,
• the next 20 vials are analyzed using METH2 with two injections per vial,
• the last 10 vials are analyzed using METH3 with three injections per vial.

The vials are located in positions 1 to 50 of the autosampler tray.

The example assumes that the sequence table is empty. If the sequence table is not empty, use the Delete button to delete all lines or use File - New.

1 Select the Sequence screen.
2 Move to line 1 and press Insert.
3 Select Method and then move to METH1 and press Load.
4 Move to the End of sequence list, select the Wizard button and enter:
 Vial Range: 1 to 20
 #Inj.: 1

5 Select Done to accept entries.
6 Move to the End of sequence list and select Insert.
7 Select Method and then move to METH2 and press Load.

NOTE
This way of combining methods is called Sequence.
4 Running Multiple-Vial Analyses
Analyzing Multiple Vials Using Different Methods

8 Move to the End of sequence list, select the **Wizard** and enter:

- **Vial Range**
 - 21 to 40
- **#Inj.**
 - 2

9 Select **Done** to accept the entries.

10 Move to the End of sequence list and select **Insert**.

11 Select **Method** and then move to METH3 and press **Load**.

12 Move to the End of sequence list and select **Insert**.

13 Select **Wait time** and enter:

- **Wait**
 - 30 minutes

14 Select **Done** to accept entries.

15 Move to the End of Sequence list, select the **Wizard** and enter:

- **Vial Range**
 - 41 to 50
- **#Inj.**
 - 3

16 Select **Done** to accept entries.

17 Press **Start** and confirm the start of the sequence.
Single-Level Calibration Sequences

The following procedure describes how to set up a calibration sequence for an analysis which uses single-level calibration.

There is one calibration standard (C) and 9 samples (S).

The analysis requires that:

- each sample is analyzed in duplicate,
- the calibration standard is analyzed once before the samples and re-analyzed once after every 2 samples,
- the calibration standard is located in position 90 and the 9 sample vials are in positions 1 to 9 of the autosampler tray, and
- the method called METH1 is used for the samples and standards.

The example assumes that the sequence table is empty. If the sequence table is not empty, use the Delete button to delete all lines or use File - New.

1. Select the Sequence screen.
2. Move to line 1 and press Insert.
3. Select Method and then move to METH1 and press Load.
4. Move to the End of sequence list, select the Wizard and enter:

<table>
<thead>
<tr>
<th>Vial Range</th>
<th>#Inj.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 9</td>
<td>2</td>
</tr>
</tbody>
</table>

5. Select Calibration to display the Calibration Settings screen.
4 Running Multiple-Vial Analyses
Single-Level Calibration Sequences

6 Change the settings according to Figure 85.

Figure 85 Sequence Calibration Wizard

7 Press **Preview** to view the result.

Figure 86 Sequence Calibration Wizard - Preview

8 Select **Done** to accept entries.

9 Press **Start** and confirm the start of the sequence.
Multiple-Level Calibration Sequences

The following sections describe how to set up calibration sequences for analyses which use multiple-level calibration.

Re-calibrating With the Same Group of Standards

There are three calibration standards of different concentrations (C1, C2, C3) and 15 samples (S). The standards and samples are analyzed using the same method.

The analysis requires that:

• each sample is analyzed twice,
• the calibration standards are analyzed twice before the samples and re-analyzed twice after every 5 samples,
• the calibration standards are located in positions 90 to 92 of the autosampler tray,
• the 15 sample vials are located in positions 10 to 24 of the autosampler tray, and
• the samples and standards are analyzed using a method called METH1.

The example assumes that the sequence table is empty. If the sequence table is not empty, use the Delete button to delete all lines or use File - New.

1 Select the Sequence screen.
2 Move to line 1 and press Insert.
3 Select Method and then move to METH1 and press Load.
4 Move to the End of sequence list, select the Wizard and enter:
 Vial Range 10 to 24
 #Inj. 2
4 Running Multiple-Vial Analyses
Multiple-Level Calibration Sequences

5 Select **Calibration** to display the Calibration Settings screen.
6 Change the settings according to Figure 85.

7 Press Preview to view the result.

8 Select Done to accept entries.

9 Press Start and confirm the start of the sequence.
The autosampler now analyzes:

- the three calibration standards in duplicate,
- sample vials 10 through 14,
- the three calibration standards in duplicate,
- sample vials 15 through 19,
- the three calibration standards in duplicate,
- sample vials 20 through 24, and
- the three calibration standards in duplicate.
Re-calibrating With Multiple Groups of Standards

There are two different types of sample, A and B that need to be analyzed.

The analysis for sample type A requires a 5 µl injection and a stoptime of 8 minutes.

The analysis of sample type B requires a 2 µl injection and a stoptime of 5 minutes.

For sample type A:
- there are 3 calibration standards of different concentrations and 6 samples,
- each sample must be analyzed once,
- the calibration standards must be analyzed in duplicate and re-analyzed after every 2 samples,
- the calibration standards of type A are in positions 1, 2 and 3 of the autosampler tray and the 6 sample vials are in positions 7 to 12, and
- the samples and the calibration standards use the same method called METH1.

For sample type B:
- there are 3 calibration standards of different concentrations and 9 samples,
- each sample must be analyzed once,
- the calibration standards must be analyzed twice and re-analyzed after every 3 samples,
- the calibration standards of type B are in positions 4, 5 and 6 of the autosampler tray and the 9 sample vials are in positions 13 to 21, and
- the samples and calibration standards of type B use different methods.

The samples use METH2 and the calibration standards use METH3. These methods contain the same analytical parameters and differ only in the analysis stoptime.
4 Running Multiple-Vial Analyses
Multiple-Level Calibration Sequences

The example assumes that the sequence table is empty. If the sequence table is not empty, use the **Delete** button to delete all lines or use **File - New**.

1 Select the Sequence screen.
2 Move to line 1 and press **Insert**.
3 Select **Method** and then move to METH1 and press **Load**.
4 Move to the End of sequence list, select the **Wizard** and enter:

 - **Vial Range**: 7 to 12
 - **#Inj.**: 1

5 Select **Calibration** to display the Calibration Settings screen.
6 Change the settings according to **Figure 85**.

 ![Figure 89 Sequence Calibration Wizard](image)

7 You may press **Preview** to view the result.
8 Select **Done** to accept entries.
9 Move to the End of sequence list and press **Insert**.
10 Select **Method** and then move to METH2 and press **Load**.

NOTE

You have to insert METH2/METH3 before/after each calibration sample line(s). Use copy/paste or use insert/parameter/stoptime and only one method.
11 Move to the End of sequence list, select the **Wizard** and enter:

| Vial Range | 13 to 21 |
| #Inj. | 1 |

12 Select **Calibration** to display the Calibration Settings screen.

13 Change the settings according to **Figure 85**.

![Wizard / Calibration](image)

Figure 90 Sequence Calibration Wizard

14 You may press **Preview** to view the result.

15 Select **Done** to accept entries.

16 Press **Start** and confirm the start of the sequence.

The autosampler now analyzes:

- three type A calibration standards in duplicate,
- type A samples in vials 7 and 8,
- three type A calibration standards in duplicate,
- type A samples in vials 9 and 10,
- three type A calibration standards in duplicate,
- type A samples in vials 11 to 12,
4 Running Multiple-Vial Analyses

Multiple-Level Calibration Sequences

- three type B calibration standards in duplicate,
- type B samples in vials 13, 14 and 15,
- three type B calibration standards in duplicate,
- type B samples in vials 16, 17 and 18,
- three type B calibration standards in duplicate,
- type B samples in vials 19, 20 and 21, and
- three type B calibration standards in duplicate.
Synchronizing Analyses with External Devices

With an APG remote connector the system can be connected to external devices in order to synchronize the analyses. This is necessary when an external device needs some time in order to get ready for a new analysis and when transmission of a start request is required (see “Connecting External Devices” on page 107 for further information on interfaces).

The synchronization mode can be chosen in the **Configure - System** screen.

![Figure 91 Choosing the Synchronization mode](image)

In any case, do all the analysis preparation using the Instant Pilot.
Synchronizing Analyses with External Devices

4 Running Multiple-Vial Analyses

Standard Mode

In the standard mode, the analysis is under the command of the Instant Pilot. The Instant Pilot issues a Start command to the autosampler as soon as all modules are ready for the next analysis. The autosampler issues the Start command at the point of injection. With an Agilent Autosampler integrated in the system and no external devices, this is the normal mode of operation.

NOTE

A “Start” command is used to start the analytical run from the point of injection and is usually issued by the autosampler.

A “Start Request” command causes the autosampler to take the next vial and place it under the injection needle (see “APG Remote / Enhanced Remote (Infinity II)” on page 107).

The Start button on the Instant Pilot is used to start sequence analysis.
Send Single Start Request

After you start the analysis with the Instant Pilot, it will generate a single start request on the APG remote lines. This triggers the external device, which starts each injection by sending a start signal. The vial range or sequence is started by the Instant Pilot, but then both systems run free without further synchronization.

![Diagram of Send single external start request](image_url)

Figure 92 Send single external start request
Send Multiple Start Request (external controlled injector)

This will cause the Instant Pilot to generate start requests before each run. The external device starts each injection then by sending a start signal to the APG remote line. That is, after all the programming has been completed on the Instant Pilot and the Start button has been pressed, a Start Request is issued before each run and the external device must give the Start command for the injection process.

Here, too, the module simply tracks the progress of the analysis.

Figure 93 Send multiple external start request
Wait for Single (External) Start Request

After pressing the Start button, the Instant Pilot waits for a single external start request on the APG remote lines. When the start request is received, the complete vial range or sequence is done as in standard mode under the command of the Instant Pilot without further external synchronization.

Figure 94 Wait for single external start request
Wait for Multiple Start Request (Instant Pilot controls injector)

After pressing the Start button, the Instant Pilot waits for an external start requests before injection or sequence. The start requests have to be generated by the external device. This mode is recommended when a device needs extra time to get ready for the next analysis, and thus has to be in charge of the start event. The receive of a Start Request leads first to a Prepeare (e.g. balance of a detector) and afterwards to an injection by the sampler who then sends the Start via APG remote.

Figure 95 Wait for repeated external start request
NOTE

An Agilent variable wavelength detector or diode array detector will perform a balance (assumed that Auto Balance is set to pre-run) when receiving a start command from the Instant Pilot. This will only happen in the Standard and Wait for single (multiple) start request modes. In the Send single (multiple) start request modes, a balance before the run will NOT be performed. If regular balancing is required, set the Auto Balance check box to Postrun.
4 Running Multiple-Vial Analyses
Synchronizing Analyses with External Devices
5 Maintenance and Repair

Firmware Updates 146
 Updating the Firmware Using The Single Mode 149
 Updating the Firmware Using The Wizard 151
 Update Information for A.05.13 Firmware 153
 Using the Agilent Lab Advisor 154
 Using the LAN/RS-232 Firmware Update Tool 156
 Errors During Firmware Updates 160

Troubleshooting 161
Repairing the Instant Pilot 163
Parts Identification 163
Exchanging the CAN Cable 164

This chapter describes how to perform firmware updates, troubleshooting and replacements.
Firmware Updates

The Agilent HPLC modules and the Instant Pilot have firmware installed that will be updated from time to time to add new features and/or remove malfunctions.

The firmware of the instrument consists of two independent sections:
- a non-instrument specific section, called resident system,
- an instrument specific section, called main system.

Resident System
- the complete communication capabilities (CAN, LAN, USB and RS-232C, on the Instant Pilot only CAN),
- memory management,
- ability to update the firmware of the ‘main system’.

Main System
Its properties are:
- the complete communication capabilities (CAN, LAN, USB and RS-232C, on the Instant Pilot only CAN),
- memory management,
- ability to update the firmware of the resident system.

In addition, the main system comprises the instrument functions that are divided into common functions like
- synchronization
- error handling,
- diagnostic functions,
- module specific functions
The firmware of Agilent HPLC modules or the Instant Pilot can be updated using

- Agilent Lab Advisor software (LAN or LAN/USB (Infinity II/Fusion))
- Instant Pilot and a USB Flash Drive
- LAN/RS-232 Update Tool 2.10

NOTE Updates via USB works only on the new 1200 Infinity II series modules with FUSION electronic platform and Lab Advisor B.02.06 and later.

Table 13 Firmware Update Tools

<table>
<thead>
<tr>
<th>Update via Module</th>
<th>Instant Pilot G4208A</th>
<th>LAN/RS-232 Update Tool 2.10 and a PC with LAN or RS-232</th>
<th>Lab Advisor B.02.06 and above and a PC with LAN/RS-232/USB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instant Pilot G4208A</td>
<td>USB Flash Drive</td>
<td>via the HPLC system plus CAN</td>
<td>via the HPLC system plus CAN</td>
</tr>
<tr>
<td>1100/1200/1260/1290 HPLC Modules</td>
<td>USB Flash Drive plus CAN cable</td>
<td>requires LAN / RS-232 plus CAN cable</td>
<td>requires LAN / RS-232/USB plus CAN cable</td>
</tr>
</tbody>
</table>

The installation of older firmware might be necessary:

- to keep all systems on the same (validated) revision, or
- if third-party control software requires a special version.

To upgrade/downgrade the firmware,

1. Download the firmware and the documentation from the Agilent web

NOTE Use one of the above mentioned update tools, see Table 13. The tools are also available via the above-mentioned Agilent web.

NOTE If the Instant Pilot is in “Backward compatible mode ON”, see “With 3rd Party Control Software” on page 113, it will not be seen by the Firmware Update Tool. In this case reconfigure the Instant Pilot to “Backward compatible mode OFF”.

NOTE Updates via USB works only on the new 1200 Infinity II series modules with FUSION electronic platform and Lab Advisor B.02.06 and later.
5 Maintenance and Repair
Firmware Updates

2 Load the firmware into the module(s) as described in “Updating the Firmware Using The Single Mode” on page 149 or “Updating the Firmware Using The Wizard” on page 151.
Updating the Firmware Using The Single Mode

NOTE

Only one firmware revision (set) should be stored on the USB Flash Drive. If more than one firmware version for a module is available, the Instant Pilot always takes the most recent firmware version. In this case, delete those versions not required.

CAUTION

Do not disconnect the Instant Pilot or the USB Flash Drive while a firmware update is running. Otherwise the module may become unusable.

To open the Maintenance - System information, press More from the Welcome screen and select Maintenance.

![Figure 96 Firmware Update Screen - Simple Mode](image)

1. Move the cursor to the module you want to update.
2. Press Single.
In the case of an error, refer to “Errors During Firmware Updates” on page 160.
Updating the Firmware Using The Wizard

NOTE
Only one firmware revision (set) should be stored on the USB Flash Drive. If more than one firmware version for a module is available, the Instant Pilot will always take the most recent firmware version. In this case, delete those versions not required.

CAUTION
Do not disconnect the Instant Pilot or the USB Flash Drive while a firmware update is running. Otherwise the module may become unusable.

To open the Maintenance - System information, press More from the Welcome screen and select Maintenance.

The **Update Wizard** allows you to define the modules to be updated. This screen also shows the installed firmware revision versus the available.

1. Press **Update Wizard** and then **Cont.**, or **Abort** to cancel the update process.
2. The next screen (Figure 100) shows all modules, their installed firmware revisions and the available firmware revisions on the USB Flash Drive.
5 Maintenance and Repair
Firmware Updates

3 Do your selections and press Update, or Cancel to exit the screen.

In the case of an error, refer to “Errors During Firmware Updates” on page 160.
Update Information for A.05.13 Firmware

NOTE
Do not downgrade to firmware revisions A.05.13/14. They are not compatible with G4208A Instant Pilots with serial MY.

NOTE
Before you downgrade to revision A.05.15, upgrade the Instant Pilot to the latest B.xx.xx firmware revision. This will assure that the later upgrade from A.05.15 to B.xx.xx works smoothly.

Using the Instant Pilot

Downgrade to Revision A.05.15

In those cases where a Instant Pilot has to be downgraded from B.xx.xx to A.05.15 to allow the operation with A.05.09/12 firmware installed on Agilent 1100/1200 series modules, follow the procedure below.

1. Copy the firmware file G4208A_A515.dlb to an USB Flash Drive (the A.05.15 has only main firmware, the resident of B.xx.xx resides in the memory).
2. Insert the USB Flash Drive into the Instant Pilot.
3. Start the firmware update.

Upgrade to Revision B.xx.xx

When the Instant Pilot needs to be upgraded to a B.xx.xx firmware to be compatible with Agilent 1100/1200 series modules working on A.06.xx, follow the procedure below.

1. Copy the latest firmware files 4208A_Bxxx_yyy.dlb and res_4208A_Bxxx_yyy.dlb to an USB Flash Drive (the original resident of B.xx.xx in the memory will be overwritten).
2. Insert the USB Flash Drive into the Instant Pilot.
3. Start the firmware update.
Using the Agilent Lab Advisor

1. Start the Lab Advisor.
2. Connect to the HPLC system. The modules will be listed.

3. Select Firmware Update. Then lock the system.
4 Set the correct folder for the firmware (1). Select the firmware version for the Instant Pilot (Main and Resident) and/or the other modules. Use always the latest version. (2). Start the Update (3).

![Figure 104](image1.png) Lab Advisor - Select the firmware

5 The firmware will be updated and shows the below screen when finished.

![Figure 105](image2.png) Lab Advisor - Updated finished

6 Close Lab Advisor.
Using the LAN/RS-232 Firmware Update Tool

Detailed information about the LAN/RS-232 Update Tool 2.10 or above can be found within the documentation of this tool provided via the Agilent web at

Use the latest LAN/RS-232 Update Tool 2.10 only

NOTE
If the Instant Pilot is in “Backward compatible mode ON”, see “With 3rd Party Control Software” on page 113, it will not be seen by the Firmware Update tool. For updating firmware reconfigure the Instant Pilot to “Backward compatible mode OFF”.

NOTE
If your Agilent 1100/1200 system runs on firmware A.05.xx, the Instant Pilot is not recognized by the LAN/RS-232 Update Tool 2.10. In this case either one of the modules or the complete system must be upgraded to A.06.xx/B.0x.xx.

NOTE
Before you downgrade the Instant Pilot to revision A.05.15, upgrade the Instant Pilot to the latest B.xx.xx firmware revision. This will assure that the later upgrade to B.xx.xx works smoothly.

NOTE
The preferred way of updating the Instant Pilot firmware should be the use of a USB Flash Drive. This is much faster than the use of the LAN/RS-232 Update Tool 2.10 (4 minutes vs. 10 minutes via LAN vs. 70 minutes via RS-232).

Use one of the following procedures:

- “Downgrade from B.xx to A.05.1x” on page 157
- “Upgrade from A.05.1x to B.xx” on page 157
- “Upgrade from A.05.11 to A.05.13” on page 158
Downgrade from B.xx to A.05.1x

1. When the Agilent 1100/1200 series modules are on a firmware platform A.06.xx, downgrade the Instant Pilot to A.05.1x first. During the downgrade process the screen is black.

2. After boot of the Instant Pilot,
 - the Instant Pilot shows “Scanning System ...”
 - the LAN/RS-232 Update Tool 2.10 indicates “100% updated” but does not display the result dialog.

3. Press **Cancel** (red cross button) on the LAN/RS-232 Update Tool 2.10 to stop the Update process. The Instant Pilot is no longer listed in the tree view of the Update Tool.

4. Downgrade all 1100/1200 modules together to the target firmware (A.05.11/13 or A.05.09/10).

5. When finished,
 - the LAN/RS-232 Update Tool 2.10 shows all 1100/1200 modules without the Instant Pilot.
 - the Instant Pilot shows all modules of the system in the Welcome screen.

Upgrade from A.05.1x to B.xx

1. When the Agilent 1100/1200 series modules are on a firmware platform A.05.09/1x, then update the modules to platform A.06.xx.

2. Connect the Instant Pilot (with A.05.1x firmware) to one of the modules (if not already done).

3. After boot, enter the Maintenance screen and press the **Controller** button.
5 Maintenance and Repair
Firmware Updates

Press the Transfer button. The Instant Pilot will switch into resident mode (black screen) and the Update Tool will list the Instant Pilot.

Select the Instant Pilot for update to the target firmware revision

Start the update.

When finished, the Instant Pilot boots in main mode and shows all modules of the system in the Welcome screen.

Close the connection and the LAN/RS-232 Update Tool 2.10.

Upgrade from A.05.11 to A.05.13

If the Instant Pilot needs to be updated with a new firmware revision, follow these steps:

Disconnect all 1100/1200 series module from that module that hosts the LAN/RS-232 interface.

Upgrade this module to firmware A.06.xx first (otherwise the Instant Pilot is not visible in the LAN/RS-232 Update Tool 2.10).

After boot, enter the Maintenance screen and press the Controller button.

Press the Transfer button. The Instant Pilot will switch into resident mode (black screen) and the Update Tool lists now the Instant Pilot.

Select the Instant Pilot for update to the target firmware revision.
6 Start the update.

7 After boot of the Instant Pilot,
 - the Instant Pilot shows “Scanning System ...”
 - the LAN/RS-232 Update Tool 2.10 indicates “100% updated” but does not display the result dialog.

8 Press Cancel (red cross button) on the LAN/RS-232 Update Tool 2.10 to stop the Update process. The Instant Pilot is no longer listed in the tree view of the Update Tool.

9 Downgrade the 1100/1200 module to the target firmware (A.05.11/13 or A.05.09/10).

10 When finished,
 - the LAN/RS-232 Update Tool 2.10 shows all 1100/1200 modules without the Instant Pilot.
 - the Instant Pilot shows all modules of the system in the Welcome screen.

11 Close the connection and the LAN/RS-232 Update Tool 2.10.
Errors During Firmware Updates

If an error stops the update process, it is displayed.

Press **Abort** to leave the Update process.

In the above example all modules stay in resident mode (blinking yellow). Restart the firmware update again.
Troubleshooting

Internal diagnostics continuously monitor the module’s condition and record any unusual events in an electronic logbook, see “Logbook Information” on page 47. For example, missing vials or leaking solvent errors and record the errors in the logbook together with the time and date of the occurrence. The logbook is self-updating. All events are listed, even duplicates (up to 1000 entries). This logbook can be saved to the USB Flash Drive. Screenshots also can be saved to the USB Flash Drive, see “Saving a Screenshot to USB Flash Drive” on page 114.

Troubleshooting the Instant Pilot

If your Instant Pilot does not work correctly, disconnect the module CAN connector from the rear of the Agilent Series module it is attached to and reconnect it.

If the problem still remains, then

• power down all connected devices and computers and wait 1 minute and then restart, or
• try to use just one Agilent Series module.

If the problem still remains, call Agilent Technologies.

USB Flash Drive not recognized

NOTE Since USB Flash Drives may vary from vendor to vendor or from type to type, incompatibilities can occur. In general, USB Flash Drives from Sandisk and Kingston should work. The USB Flash Drive must be FAT-16 formatted and without encryption. See “Handling of Unsupported USB Flash Drive Formats” on page 63 and “USB Flash Drive Kit” on page 163.
5 Maintenance and Repair
Troubleshooting

Instant Pilot not recognized by Firmware Update Tool

NOTE If the Instant Pilot is in "Backward compatible mode ON", see “With 3rd Party Control Software” on page 113, it will not be seen by the Firmware Update Tool. In this case reconfigure the Instant Pilot to “Backward compatible mode OFF”.

Contact Agilent

If you experience other problems, please contact your local Agilent support provider for help.
Repairing the Instant Pilot

The Instant Pilot cannot be repaired except for the CAN cable.

Parts Identification

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instant Pilot G4208A (complete assembly)</td>
<td>G4208-67001</td>
</tr>
<tr>
<td>CAN Cable</td>
<td>G4208-81600</td>
</tr>
<tr>
<td>Upgrade Kit for NEW HOLDER (for adapting the Instant Pilot to Agilent 1100/1200 series modules, see “Holder Versions for the Instant Pilot” on page 19).</td>
<td>G4208-68701</td>
</tr>
<tr>
<td>Adapter Plate NEW (for adapting the Instant Pilot to Agilent 1100/1200 series modules, see “Holder Versions for the Instant Pilot” on page 19).</td>
<td>G4208-60003</td>
</tr>
<tr>
<td>Adapter Kit Infinity II (for adapting the Instant Pilot to Agilent 1200 Infinity II series modules, see “Holder Versions for the Instant Pilot” on page 19). Includes holder and screw.</td>
<td>5067-5955</td>
</tr>
<tr>
<td>USB Flash Drive Kit</td>
<td>G4208-68700</td>
</tr>
</tbody>
</table>

NOTE

This product contains an TFT LCD assembly which is backlit by a mercury fluorescent lamp which contains mercury, and must be managed, recycled, and/or disposed in accordance with all applicable laws, ordinances, and regulations. For information on how to recycle or dispose of the mercury lamp contained in this product, or if you have additional questions on the mercury contained within this product, contact Agilent customer service.
Exchanging the CAN Cable

CAUTION Before you open the Instant Pilot, the CAN-cable must be disconnected from the HPLC module to assure that no voltages are present in the Instant Pilot.

CAUTION Electronic boards and components are sensitive to electrostatic discharge (ESD). In order to prevent damage always use an ESD protection when handling electronic boards and components.

1. Place the Instant Pilot face down on a bench (as shown in Figure 108).
2. Carefully remove the labels that are across the screws.
3. Remove the six screws that fix the rear panel.

![Figure 108 Rear Panel - location of screws](image)

4. Remove the rear panel carefully.
5 The release button [1] (shown in Figure 109) may fall out during the removal. Keep it.

NOTE Step 5 and 9 are for the OLD rear panel design only. See information on “Adding the Instant Pilot to an Agilent HPLC Module” on page 20. The new rear panel does not have the release button.

6 Unplug the CAN cable from its connector [2].
7 Plug the new CAN cable into the connector [2].
8 Fit the cable with the cable relief [3] in the front cover.
9 Place the release button into its location [1].

NOTE Before you replace the rear panel, observe the release button mechanism at the rear panel. The release button pin must fit into the recess on one end of the connecting rod.
10 Carefully replace the rear panel and fit the release button pin into the recess on one end of the connecting rod of the rear panel, see Figure 110.

![Figure 110](image-url) Pin of release button fits into the recess of the rod (OLD rear panel design)

11 Fix the rear panel screws.
This chapter provides safety and other general information.
Safety Information

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Agilent Technologies assumes no liability for the customer’s failure to comply with these requirements.

Safety Symbols

Table 15 shows safety symbols used on the instrument and in the manuals.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Symbol]</td>
<td>The apparatus is marked with this symbol when the user should refer to the instruction manual in order to protect the apparatus against damage.</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Indicates dangerous voltages.</td>
</tr>
</tbody>
</table>

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

CAUTION

A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.
Appendix

Safety Information

General

This instrument has been manufactured and tested according to international safety standards.

Operation

Before applying power, comply with the installation section. Additionally the following must be observed.

- Do not remove instrument covers when operating.
- Any maintenance, and repair of the opened instrument under voltage should be avoided as much as possible. When inevitable, this should be carried out by a skilled person who is aware of the hazard involved.
- Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.
- Do not replace components with power cable connected.
- Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.
- Do not install substitute parts or make any unauthorized modification to the instrument.
- Capacitors inside the instrument may still be charged, even though the instrument has been disconnected from its source of supply.
- Dangerous voltages, capable of causing serious personal injury, are present in this instrument. Use extreme caution when handling, testing and adjusting.

Abstract

NOTE

This product complies with the WEEE Directive (2002/96/EC) marking requirements. The affixed label indicates that you must not discard this electrical/electronic product in domestic household waste.

Product Category:

With reference to the equipment types in the WEEE Directive Annex I, this product is classed as a “Monitoring and Control instrumentation” product.

Do not dispose off in domestic household waste

To return unwanted products, contact your local Agilent office, or see www.agilent.com for more information.

NOTE

This product contains an TFT LCD assembly which is backlit by a mercury fluorescent lamp which contains mercury, and must be managed, recycled, and/or disposed in accordance with all applicable laws, ordinances, and regulations. For information on how to recycle or dispose of the mercury lamp contained in this product, or if you have additional questions on the mercury contained within this product, contact Agilent customer service.
Radio Interference

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

Test and Measurement

If test and measurement equipment is operated with equipment unscreened cables and/or used for measurements on open set-ups, the user has to assure that under operating conditions the radio interference limits are still met within the premises.
Agilent Technologies on Internet

For the latest information on products and services visit our worldwide web site on the Internet at:

http://www.agilent.com

Select “Life Sciences & Chemical Analysis Solutions”
Index

Numerics
3rd Party Control Software
 coexecution 113

A
A.05.11
 firmware down/upgrade 153
action keys 26
adapter plate 163
adding
 the Control Module to a Single Agilent Module 20
 the Control Module to an Agilent system 19, 20
Agilent
 report problems 162
Agilent ChemStation 107
 features 111
 restrictions 111
Agilent on internet 172
alphanumeric keys 26
analysis
 automated 91
 isocratic 115
 multiple-vial 123
analysis start screen 57
APG Remote
 interface 107
power on 107
prepare 108
ready 108
shut down 107
start 108
start request 108
stop 108
asterisk sign
 method 73
 available signals 102

B
bar 33
BCD interface 107
board ID 37
brightness, display 34

C
cable 163
calibration 92, 127, 129
 multiple-level 129
 sequence 127, 129
 settings 92
 single-level 127
CAN
 & LAN connectors 20
 cable replacement 164
Celsius 33
change
 product & serial number 54
changes
 tracing 78
chromatogram 120
coeexecution
 with 3rd Party Control Software 113
coeexecution with Agilent ChemStation 111
column 116
column compartment 116
compare
 methods 39
 compare methods 75
compatibility 15
concept of operation 30
configuration 49
connectors
 CAN & LAN 20
contact agilent 162
control
 system activities 39
creating
 a sequence 119
current time 31
date
 & time 32
 format 33
 setting 32
details
 configuration 49
 logbook 47
 maintenance 50
 method 38
 sequence 40
 status 42
 system 37
diagnosis
 information 55
 tests 55
 with passed/failed information 14
dimensions and weight 14
direction keys 26
display 101
 brightness 34
 overview 25
 scroll through 37
 settings 32
 shutoff time 34
displayed method 75

Agilent Instant Pilot Users’s Guide 173
E

early maintenance feedback (EMF) 13, 47
EMF 47
 limits 51
 setup 51
end actions 92
entering settings 118
errors
 during firmware updates 160
 Instant Pilot not recognized by Firmware Update Tool 113, 162
logbook 47
Esc key 26
exchanging the CAN Cable 164
external contacts
 method 76
external devices 107

F

Fahrenheit 33
features 12
 and benefits 14
 B.02.01/A.05.11 13
 diagnosis with passed/failed 14
 early maintenance feedback (EMF) 13
 protect method 13
 setup wizards 14
file
 load method 72
 method 39
 transfer 83
file protection
 sequence 96
filter
 logbook 47
 method information 39, 74
firmware
 A.05.11 153
 revisions 37
 update 146
 update wizard 50
firmware update
 A.05.11 153
 errors 160
 Instant Pilot not recognized 113, 162
 using single mode 149
 using the wizard 151
FLD spectrum 105
format
 & units 32
 date, time, pressure temperature 33
G

G1323
 method import 85
GLP compliance 13
graphic
 screenshot 114
 graphical display 101
graphs 101

H

hash sign
 method 73
help 27
 key 26
history of method 78
holder 163
holder versions 19
humidity 17

I

i (info) key 26, 27
identify a module 51
import of methods 85
information
 diagnosis 55
logbook 47
maintenance 50
method 38
sequence 40
status 42
system 37
injector program 86
installation
 to a Single Agilent Module 20
 to an Agilent system 19, 20
Instant Pilot
 working with 61
interfaces 107
 APG remote 107
 BCD 107
 GPIB 107
 MIO 107
 serial/RS232 107
internal memory 81
internal method 75
internet 172
isocratic
 analysis 115
 standard sample 116

K

Kelvin 33
keys
 action 26
 alphanumeric 26
direction 26
 Esc 26
help 26
info 27
navigation 26
numerical 26
OK 26
overview 25
start / stop 26
kPa 33

L
LAN
 & CAN connectors 20
 address 37
 settings 34
layout of keyboard 25
LC system
 shut-down 92
line voltage and frequency 17
loading a method 72
logbook
 filter 47
 information 47

M
main system 146
maintenance
 activities 51
 activity 52
 feedback (EMF) 13
 information 50
mercury fluorescent lamp 17
method
 asterix 73
 compare 75
 displayed 75
 external contacts 76
 file 39
 file protection 13, 78, 79
 filtering information 39, 74
G1323 import 85
hash sign 73
import 85
information 38, 70
injector program 86
internal 75
loading 72
modifying 73
name, description, history 78
offline work 84
properties 39, 78
protect 13
protection 78
save, save as 81
saving 81, 118
time table 39
timetable 76
trace changes 78
transfer 83
types 70
USB Flash Drive 70
working with 70
methods
 working with 70
MIO interface 107
modifying a method 73
module
 maintenance 51
 specific test 55
tests 13, 51, 55
multiple standards 133
multiple-level calibration 129
recalibration 133
multiple-level calibration 129
multiple-vial analysis 123

N
navigation keys 26
numeric keys 26

O
observing the chromatogram 120
offline work on methods 84
OK key 26
ON/OFF of modules 56
online
 help 27
 information system 27
on-line information 26
on-time 37
operating altitude 17
operation
 concept 30
operation temperature 17
overview
 keys and display 25

P
parts
 adapter plate 163
 CAN cable 163
 identification 163
 Instant Pilot 163
physical specifications
 humidity 17
 line voltage and frequency 17
 operating altitude 17
 operation temperature 17
 power consumption 17
 safety standards 17
 weight and dimensions 17
plot screen 101
 rescale 103
 signal unit axis 103
time axis 103
 x axis 103
 y axis 103
power
 consumption 17
 power on signal 107
prepare signal 108
Index

pressure format 33
preview sequence 94
printing 65
to USB Flash Drive 13, 65
problems contact Agilent 162
product number change 54
properties method 39, 78
sequence 38, 40
protect methods 78
sequence 96
protect your method 13
protection sequence 96
PSI 33

S
safety information standards 17
sample range 98
save method 81
saving method 81, 118
screens plot 101
sequence 91
screenshot saving to USB Flash Drive 114
scroll through display 37
selecting a signal 119
sequence 91, 127, 129
calibrate and recalibrate 92
calibration 92, 127, 129
create 119
end actions 92
file protection 96
information 40
modes 138
preview 94
properties 38, 40
protect/un-protect 96
protection 96
recalibration 92
screen 91
start and stop 98
tray view 40, 97
what is a sequence 91
wizard 40
serial interface 107
serial number change 54
serial numbers 37
service firmware update 146
the Instant Pilot 145
settings brightness 34
date & time 32
date format 33
display 34
EMF 47
entering 118
LAN 34
pressure format 33
temperature format 33
time format 33
units & formats 33
setup signals 102
status information screen 44
wizard 14, 31, 49
shutdown signal 107
shutoff time (display) 34
signal selecting 119
setup 102
signal unit axis 103
single-level calibration 127
solvent composition 117
spectrum DAD/MWD/VWD/FLD 104
FLD 105
standard isocratic sample 116
standard mode 138
start / stop keys 26
start of analysis 57
start request signal 108, 138, 139
external 141
start signal 108, 138
starting and stopping a sequence 98
status colors 31, 42

R
ready signal 108
recalibration 129
alter/multi 92
with same group of standards 129
recycling of mercury fluorescent lamp 17
removing Instant Pilot 24
repairing the Instant Pilot 163
rescale plot screen 103
resident system 146
restrictions 111
RS232 interface 107
running an isocratic analysis 115
multiple-vial analysis 123
running an analysis 115
information 42
information screen setup 44
stop signal 108
system activities
 control 39
system information 37
system name 33

T

temperature format 33
time
 & date 32
 current on display 31
 format 33
 on display 26
 setting 32
time axis 103
time table
 method 39
timetableView
 method 76
toggle 38, 39, 74
trace method changes 78
transfer
 file 83
transfer of methods 83
tray view 97
 sequence 40
troubleshooting
 the Instant Pilot 161
 USB Flash Drive not recognized 161
turning modules ON/OFF 56

U

units & formats 32
unlocking
 Instant Pilot 24
update
 firmware 50, 146

Update Information for A.05.11 Firmware 153
USB
 flash drive
 unsupported formats 63
USB Flash Drive 13
 icon 26, 31
 inserting 62
 logbook 47
 maximum size is 2 GB 62, 161
 maximum size is 2 GB. 16
 method 70
 not recognized 161
 ordering information 163
 saving method 81
 saving screenshot 114
 using 62
 vendors 16, 62, 161

W

weight and dimensions 17
wizard
 firmware update 50
 sequence 40
 setup 31, 49
working
 with Instant Pilot 61
 with methods 70
 working with methods 70

X

x axis 103

Y

y axis 103
In This Guide

This book provides information about the Agilent Instant Pilot.

- Start-up Information
- Working with the Instant Pilot
- Running an Isocratic Analysis
- Running Multiple-Vial Analyses
- Maintenance and Repair