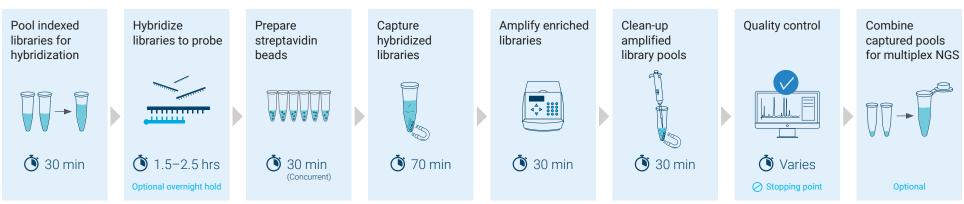
SureSelect XT HS2 DNA with Pre-capture Pooling


G9985-90500 Rev A0

**For Research Use Only. Not for use in diagnostic procedures.

DNA Fragmentation and Library Preparation Workflow 3-4 Hours

Hybridization/Capture Workflow 🐧 4-5 Hours

Duration estimates are provided as guidelines for 16 reaction runs using 200 ng high-quality input DNA and probe design >5 Mb. Your results may vary.

This Quick Start Protocol provides key protocol details for experienced users. Visit SureSelect XT HS2 DNA System Protocol for the full User Guide with further information including:

- Safety information
- Notices to purchaser
- List of required materials
- FFPE sample qualification guidelines
- QC output examples

- Critical factors for system performance including component handling, mixing, and spinning specifications; pay special attention to the key critical factors such as mixing steps highlighted in this Quick Start Protocol
- Full protocol details including Notes and Caution statements
- Index sequences and other NGS support

DNA Fragmentation

Note: Reagent vial cap colors are indicated by colored circles adjacent to reagent use instructions **Option 2: Covaris shearing** 5 min (per sample) Prep Ahead: Set up the Covaris E220 instrument. Refer to the instrument user guide Prepare DNA samples: 50 µl each containing 10-200 ng DNA in 1X Low TE. Keep on ice. Transfer DNA sample to the Covaris microTUBE > spin > verify all bubbles released. Shear DNA using following settings: Duty factor = 10% Peak incident power = 175 Cycles per burst = 200 Bath temp = 2-8 °C Use shearing duration based on NGS read length and sample type (Table 4). Table 4: Shearing duration NGS Read Length **Shearing Duration** High-quality DNA FFPE DNA 2 X 100 2 X 120 sec 240 sec 2 X 150 2 X 60 sec 240 sec Transfer 50 µl sheared DNA sample to PCR plate or strip well > keep on ice. Spin Covaris microTUBE > transfer residual liquid to same well. Proceed directly to Library Preparation.

Prepare DNA samples	•				
Set up thermal cycler		,	·		١.
able 1: Thermal cycler p	,		gmentation	` ' '	
Step	Temperati	ure		Time	
Step 1	37 °C			See Table 2	<u>.</u>
Step 2	65 °C			5 min	
Step 3	4 °C			Hold	
able 2: Duration of frag	mentation at 37	°C (Step 1	1 in Table 1)		
NGS Read Length	Duration of	of 37 °C In	cubation Ste	ep_	
-					
	High-quality DI	AA	FFP	E DNA	
-	High-quality DI ☐ 15 min	NA		PE DNA 15 min	
2 X 100 2 X 150	☐ 15 min		1 1	15 min 15 min	in > keen (
2 X 100	□ 15 min □ 10 min □ master mix (Front volumes (inclu	ag MM, s ding exce <u>16 R</u> :	□ 1 □ 1 see Table 3 ess for supp xn Kits	15 min 15 min). Mix > spi orted run s <u>96 Rx</u>	izes) n Kits
2 X 100 2 X 150 Prepare Fragmentation Table 3: Frag MM reager Reagent	□ 15 min □ 10 min □ master mix (Front volumes (incluit) Per Rxn	ag MM, s ding exce 16 R 8 Rxn	asee Table 3 ess for supp xn Kits 16 Rxn	15 min 15 min). Mix > spi orted run s <u>96 Rx</u> 24 Rxn	izes) n Kits 96 Rxn
2 X 100 2 X 150 Prepare Fragmentation able 3: Frag MM reager	□ 15 min □ 10 min □ master mix (Front volumes (inclu	ag MM, s ding exce <u>16 R</u> :	□ 1 □ 1 see Table 3 ess for supp xn Kits	15 min 15 min). Mix > spi orted run s <u>96 Rx</u>	izes) n Kits
2 X 100 2 X 150 Prepare Fragmentation Table 3: Frag MM reager Reagent 5X SureSelect	□ 15 min □ 10 min □ master mix (Front volumes (incluit) Per Rxn	ag MM, s ding exce 16 R 8 Rxn	asee Table 3 ess for supp xn Kits 16 Rxn	15 min 15 min). Mix > spi orted run s <u>96 Rx</u> 24 Rxn	izes) n Kits 96 Rxn
2 X 100 2 X 150 repare Fragmentation able 3: Frag MM reager	□ 15 min □ 10 min □ master mix (Fr	ag MM, s	□ 1 □ 1 see Table 3 ess for supp	15 min 15 min). Mix > spi orted run s	izes)
2 X 100 2 X 150 Prepare Fragmentation Pable 3: Frag MM reager Reagent 5X SureSelect Fragmentation Buffer SureSelect Fragmentation Enzyme	□ 15 min □ 10 min n master mix (Front volumes (inclumes 2 μl 1 μl	ag MM, s ding exce 16 R: 8 Rxn 18 µl	see Table 3 ess for supp xn Kits 16 Rxn 36 μl	15 min 15 min 1.5 min 1.5 min 1.5 min 1.5 min 2.6 Rx 2.6 Rx 2.7 Rxn 2.7 Rxn 2.7 Lpl 2.6 μl	izes) n Kits 96 Rxn 200 μl
2 X 100 2 X 150 Prepare Fragmentation Table 3: Frag MM reager Reagent 5X SureSelect Fragmentation Buffer SureSelect	□ 15 min □ 10 min n master mix (Frot volumes (incluse) Per Rxn 2 μl	ag MM, s ding exce 16 R: 8 Rxn 18 µl	osee Table 3 ess for supp xn Kits 16 Rxn 36 μl	15 min 15 min). Mix > spi orted run s 96 Rx 24 Rxn 52 µl	izes) n Kits 96 Rxn 200 µl

Library Preparation

Step 1: Prepare ligation master mix

Vortex thawed Ligation Buffer at high speed for 15 sec.

Reagent is viscous and must be vortexed.

Prepare Ligation master mix (Lig MM, see Table 5). Mix > spin > keep at RT during end repair/A-tailing steps.

Table 5: Lig MM reagent volumes (including excess for supported run sizes)

Reagent		16 Rx	n Kits	96 Rxr	n Kits
	Per Rxn	8 Rxn	16 Rxn	24 Rxn	96 Rxn
Ligation Buffer	23 μΙ	207 µl	414 µl	598 µl	2300 μΙ
T4 DNA Ligase	2 µl	18 µl	36 µl	52 µl	200 μΙ
Total	25 µl	225 µl	450 μΙ	650 µl	2500 μΙ

Step 2: End repair and dA-tail fragments

40 min

Set up thermal cycler program (Table 6). Start and pause program.

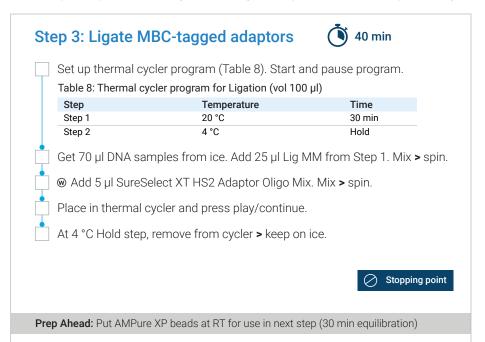
Table 6: Thermal cycler program for End repair/A-tailing (vol 70 µl)

Step	Temperature	Time
Step 1	20 °C	15 min
Step 2	72 °C	15 min
Step 3	4 °C	Hold

Vortex thawed End Repair-A Tailing Buffer at high speed for 15 sec.

Reagent is viscous and must be vortexed.

Prepare End repair/A-tailing master mix (ER-AT MM, see Table 7). Mix > spin > keep on ice.


Table 7: ER-AT MM reagent volumes (including excess for supported run sizes)

Reagent		16 R	n Kits	96 Rxi	1 Kits
	Per Rxn	8 Rxn	16 Rxn	24 Rxn	96 Rxn
End Repair-A Tailing Buffer	16 μΙ	144 µl	288 µl	416 µl	1600 µl
End Repair-A Tailing Enzyme Mix	4 μΙ	36 µl	72 µl	104 µl	400 μΙ
Total	20 µl	180 µl	360 µl	520 µl	2000 µl

Get 50 µl fragmented DNA samples from ice. Add 20 µl ER-AT MM. Mix > spin.

Place in thermal cycler and press play/continue.

At 4 °C Hold step, remove from cycler > keep on ice.

Step 4: Clean-up ligation Get AMPure XP beads held at RT, vortex until homogeneous. Add 80 µl of AMPure XP beads to each DNA sample well. Mix > incubate at RT 5 min. Collect beads using magnet (5–10 min) > remove and discard supernatant. Wash beads 2X with 200 µl freshly-prepared 70% ethanol per wash. Washes completed: 1 2 After second wash solution removed, spin briefly > remove residual ethanol. Dry samples unsealed on the thermal cycler at 37 °C (1–2 min). Elute by adding 35 µl nuclease-free water to each sample well. Seal wells > vortex > brief spin. Incubate at RT 2 min. Collect beads using magnet (~5 min). Transfer 34 µl cleared supernatant to fresh well > keep on ice.

Step 5: Amplify and dual index (Pre-capture PCR)

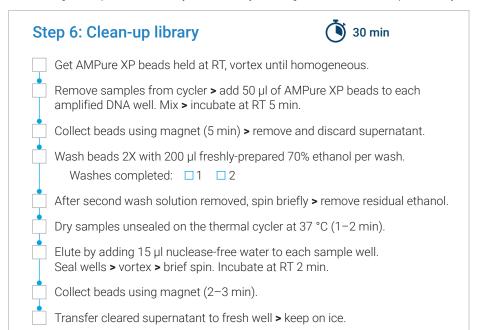
Set up thermal cycler program (Table 9). Start and pause program.

Table 9: Thermal cycler program for pre-capture PCR (vol 50 µl)

Step	Number of Cycles	Temperature	Time
Step 1	1	98 °C	2 min
Step 2	■ 8 for 100-200 ng high-quality input library	98 °C	30 sec
	9 for 50 ng high-quality input library	60 °C	30 sec
	11 for 10 ng high-quality input library		
	☐ 11 for 100-200 ng FFPE input library	72 °C	1 min
	☐ 12 for 50 ng FFPE input library		
	☐ 14 for 10 ng FFPE input library		
Step 3	1	72 °C	5 min
Step 4	1	4 °C	Hold

Prepare Pre-capture PCR master mix (Pre-PCR MM; Table 10).
Mix > spin > keep on ice.

Table 10: Pre-PCR MM reagent volumes (including excess for supported run sizes)


Reagent		16 Rx	n Kits	96 Rx	n Kits
	Per Rxn	8 Rxn	16 Rxn	24 Rxn	96 Rxn
© 5X Herculase II Buffer with dNTPs	10 μΙ	90 µl	180 μΙ	260 μΙ	1000 μΙ
Herculase II Fusion DNA Polymerase	1 μΙ	9 μΙ	18 μΙ	26 µl	100 μΙ
Total	11 µl	99 µl	198 µl	286 µl	1100 µl

Get 34 µl purified library samples from ice. Add 11 µl Pre-PCR MM.

Add 5 μ l of the appropriate SureSelect XT HS2 Index Primer Pair to each sample well. Vortex > spin.

Resume thermal cycler program without adding samples. Once cycler reaches 98 °C, add sample plate/strip > close lid.

Prep Ahead: Put AMPure XP beads at RT for use in next step (30 min equilibration)

Step 7: Quality control

Varies

Assess quality and quantity using one of these platforms:

Agilent 2100 Bioanalyzer System with DNA 1000 Assay

Agilent 4200 or 4150 TapeStation System with D1000 Assay

Agilent 5200, 5300 or 5400 Fragment Analyzer System with NGS Fragment Kit (1–6000 bp)

Hybridization/Capture

Step 1: Pool indexed libraries

Pool prepared DNA libraries in wells of a PCR plate/strip according to Table 11 (1 pool per well).

Table 11: Pre-capture pool composition

Probe	Amount of each library in pool	Libraries per pool	Total DNA per Hyb
XT HS Precap Human All Exon V8/V8+UTR/V8+NCV	375 ng	8	3 µg
Other All-Exon or Exome Probes and ClearSeq Inherited Disease	187.5 ng	8	1.5 µg
Custom Probes and ClearSeq Comprehensive Cancer	93.75 ng	16	1.5 µg

Reduce pool volumes in wells to <12 μ l using vacuum concentrator at \leq 45 °C. Do not overdry.

Bring volume of each well to 12 µl with nuclease-free water.

Seal wells > vortex vigorously 30 sec > spin briefly > keep on ice.

Step 2: Hybridize library pools to probe

1.5 - 2.5 hrs/overnight

Set up thermal cycler program (Table 12). Start and pause program.

Table 12: Thermal cycler program for hybridization (vol 30 ul; heated lid ON)

Step	Probe	Number of Cycles	Temperature	Time
Step 1	All probes	1	95 °C	5 min
Step 2	All probes	1	65 °C	10 min
Step 3	All probes	1	65 °C	1 min PAUSE HERE Resume after adding prob
Step 4	All probes	60	65 °C1	1 min
			37 °C	3 sec
Step 5	p 5 🔲 XT HS Human 🔒	1 -	65 °C	60 min
	All Exon V8	All Exon V8		Hold briefly ²
	☐ All other	1	65 °C1	Hold briefly ²

Hybridization program variation footnotes:

- 1. Hybridization at 65 °C (steps 4 and 5) is optimal for XT HS designs. Optimal temperature may be lower for some legacy XT probe designs.
- 2. For overnight workflow, replace the final brief hold at 65 °C with hold at 21 °C for up to 16 hours.

Step 2 Continued

Add 5 μl SureSelect XT HS2 Blocker Mix to sample wells.
 Seal wells > vortex 5 sec > brief spin > verify absence of bubbles in wells.

Place in thermal cycler and press play/continue. **Run through Step 2, pausing cycler at Step 3.** During cycler Steps 1–2, do reagent prep tasks below.

Prepare 25% RNase Block solution (see Table 13). Mix > keep on ice.

Table 13: 25% RNase Block prep volumes (including excess for supported run sizes)

Reagent	Per Hyb	6 Hyb	12 Hyb
SureSelect RNase Block	0.5 μΙ	3.5 µl	6.5 µl
Nuclease-free water	1.5 µl	10.5 μΙ	19.5 µl
Total	2 µl	14 µl	26 µl

Prepare the Probe Hyb Mix needed for your probe design. Use Table 14 for designs ≥3 Mb or use Table 15 for designs <3 Mb. Vortex > spin > use immediately (keep briefly at RT while adding to hyb).

Table 14: Probe Hyb Mix for probes ≥3 Mb (including excess for supported run sizes)

Reagent	Per Hyb	6 Hyb	12 Hyb
25% RNase Block (table 13)	2 μΙ	14 µl	26 µl
Probe (≥3 Mb design)	5 μΙ	35 μΙ	65 µl
SureSelect Fast Hybridization Buffer	6 µl	42 µl	78 µl
Total	13 µl	91 µl	169 µl

Table 15: Probe Hyb Mix for probes <3 Mb (including excess for supported run sizes)

	-	
Per Hyb	6 Hyb	12 Hyb
2 μΙ	14 µl	26 µl
2 μΙ	14 µl	26 µl
6 μΙ	42 µl	78 µl
3 µl	21 μΙ	39 µl
13 μΙ	91 µl	169 µl
	2 µl 2 µl 6 µl 3 µl	2 µl 14 µl 2 µl 14 µl 6 µl 42 µl 3 µl 21 µl

With thermal cycler paused at Step 3, add 13 μ l Probe Hyb Mix to each sample well. Pipette 8–10X to mix > cap wells with domed caps.

Wells must be fully sealed to prevent evaporation.

Brief vortex > brief spin > verify absence of bubbles in wells. Immediately return samples to cycler > press play/continue to run Hybridization.

Step 3: Prepare streptavidin beads 30 min
For same-day hyb and capture, begin steps below ~30 min prior to completion of hybridization program in Table 12. For overnight workflow option, begin at start of Day 2.
Get SureSelect Streptavidin Beads or Dynabeads MyOne Streptavidin T1 Beads from storage at 4 °C, vortex until homogeneous.
Place 50 μl of streptavidin beads in each sample well of fresh plate/strip.
Wash beads 3X with SureSelect Binding Buffer at RT. For each wash:
 □ Add 200 µl Binding Buffer per well of beads > mix well > spin briefly. □ Collect beads using magnet (5 min) > remove and discard supernatant. Washes completed: □ 1 □ 2 □ 3
Resuspend washed beads in 200 µl SureSelect Binding Buffer > keep at RT.

Step 4: Capture hybridized libraries 70 min
Once streptavidin beads prepared and hybridization program reaches final hold, transfer samples briefly to RT.
Immediately transfer hyb reactions (~30 µl) to wells containing 200 µl washed beads. Pipette 5–8X to mix > seal wells with fresh domed caps.
Incubate on a 96-well plate mixer at 1400–1900 rpm for 30 min at RT.
During 30 min hyb capture, prep pre-warmed SureSelect Wash Buffer 2 (6 aliquots per library) for post-capture washes:
 □ Place 200 µl Wash Buffer 2 in fresh plate/strip wells. □ Seal wells > place in thermal cycler held at 70 °C.
After 30 min hyb capture, spin samples briefly > collect beads using magnet (until solution clear) > remove and discard supernatant.
Resuspend capture beads at RT in 200 µl SureSelect Wash Buffer 1 by pipetting up and down 15–20X or until beads fully resuspended.
Collect capture beads using magnet (~1 min) > remove and discard supernatant.
Remove from magnet > keep at RT. Wash capture beads 6X using the pre-warmed SureSelect Wash Buffer 2 aliquots held at 70 °C. For each wash:
 □ Add 200 µl Wash Buffer 2 at 70 °C to beads in wells. □ Pipette up and down 15–20X. □ Seal wells > vortex 8 sec > spin briefly (do not pellet). □ Incubate 5 min at 70 °C in thermal cycler. □ Collect beads using magnet (1 min) at RT > remove and discard supernatant.
Washes completed: □1 □2 □3 □4 □5 □6

Step 4	Continued				
After a	all wash buffer rem	oved from final w	ash, add 25 µl nuc	clease-free	
water	per well > pipette u	p and down 8X >	keep on ice.		
Captured Di	NA remains on the str	reptavidin beads for	post-capture ampli	fication.	
			<i>♣</i>		
Step 5:	Amplify enrich		30	min	
	(Post-capture	e PCR)			
Set up	thermal cycler pro	gram (Table 16).	Start and pause p	rogram.	
Table 1	6: Thermal cycler pro	ogram for post-cap	ture PCR (vol 50 µl)		
Step	Number of Cy	/cles	Temperature		
Step 1 Step 2		no dociane >5 Mh	98 °C	2 min	
Step 2		be designs 3–5 Mb	98 °C	30 sec	
		be designs 0.2-3 Mb	60 °C	30 sec	
Step 3	☐ 16 for probe d	esigns <0.2 Mb	72 °C	1 min 5 min	
Step 3			4 °C	Hold	
	re Post-capture PC spin > keep on ice.	R master mix (Po	st-PCR MM; Table	17).	
IVIIA	spiri > keep orrice.				
Table 1	7: Post-PCR MM rea				sizes)
Table 1	17: Post-PCR MM rea	Per Rxn	6 Rxn	12 Rxn	sizes)
Table 1 Reage Nuclea	17: Post-PCR MM readent ase-free water roulase II Buffer				sizes)
Table 1 Reage Nuclea © 5X Her with did Hercul	17: Post-PCR MM readent ase-free water roulase II Buffer	Per Rxn 13 μl	6 Rxn 91 μl	12 Rxn 182 μl	sizes)
Table 1 Reage Nuclea 5X Her with dl Hercul DNA P	I7: Post-PCR MM readent ase-free water roulase II Buffer NTPs lase II Fusion rolymerase elect Post-Capture	Per Rxn 13 μl 10 μl	6 Rxn 91 μl 70 μl	12 Rxn 182 μl 140 μl	sizes)
Table 1 Reage Nuclea 5X Her with dl Hercul DNA P © SureSe	I7: Post-PCR MM readent ase-free water roulase II Buffer NTPs lase II Fusion rolymerase elect Post-Capture	Per Rxn 13 μl 10 μl	6 Rxn 91 μl 70 μl 7 μl	12 Rxn 182 μl 140 μl	sizes)
Table 1 Reage Nuclea 5X Hei with dil Hercul DNA P SureSe Primer Total	I7: Post-PCR MM readent ase-free water roulase II Buffer NTPs lase II Fusion rolymerase elect Post-Capture	Per Rxn 13 μl 10 μl 1 μl 1 μl 25 μl	6 Rxn 91 μl 70 μl 7 μl 7 μl	12 Rxn 182 μl 140 μl 14 μl 14 μl 350 μl	sizes)
Table 1 Reage Nuclea 5X Hei with dil Hercul DNA P SureSa Primer Total Get 25 Post-F Mix by	17: Post-PCR MM readent asse-free water roulase II Buffer NTPs lase II Fusion lolymerase elect Post-Capture r Mix	Per Rxn 13 µl 10 µl 1 µl 25 µl Decad suspensions	6 Rxn 91 μl 70 μl 7 μl 7 μl 175 μl s from ice. Add 25	12 Rxn 182 µl 140 µl 14 µl 14 µl 350 µl	sizes)
Table 1 Reage Nuclea 5X Her with d Hercul DNA P © Surese Primer Total Get 25 Post-F Mix by (Do no	17: Post-PCR MM readent ase-free water roulase II Buffer NTPs lase II Fusion rolymerase elect Post-Capture Mix 5 µI captured DNA book PCR MM.	Per Rxn 13 µl 10 µl 1 µl 25 µl bead suspensions ds are in homoge	6 Rxn 91 μl 70 μl 7 μl 7 μl 175 μl s from ice. Add 25	12 Rxn 182 µl 140 µl 14 µl 14 µl 350 µl	sizes)
Table 1 Reage Nuclea 5X Hei with dil Hercul DNA P SureSe Primer Total Get 25 Post-F Mix by (Do nc	I7: Post-PCR MM readent ase-free water roulase II Buffer NTPs lase II Fusion rolymerase elect Post-Capture r Mix Dul captured DNA book PCR MM. r pipetting until beau of spin).	Per Rxn 13 µl 10 µl 1 µl 25 µl Dead suspensions ds are in homogen close lid > press	6 Rxn 91 μl 70 μl 7 μl 175 μl s from ice. Add 25 eneous suspension play/continue.	12 Rxn 182 µl 140 µl 14 µl 14 µl 350 µl	sizes)
Table 1 Reage Nuclea SX Hei with dil Hercul DNA P SureSe Primer Total Get 25 Post-F Mix by (Do no	17: Post-PCR MM readent ase-free water roulase II Buffer NTPs lase II Fusion lolymerase elect Post-Capture r Mix p µl captured DNA be PCR MM. / pipetting until bea out spin). samples in cycler >	Per Rxn 13 µl 10 µl 1 µl 25 µl Dead suspensions ds are in homoge close lid > press e from cycler > br	6 Rxn 91 μl 70 μl 7 μl 7 μl 175 μl s from ice. Add 25 eneous suspension play/continue. ief spin.	12 Rxn 182 µl 140 µl 14 µl 14 µl 350 µl	sizes)
Table 1 Reage Nuclea 5X Hei with dl Hercul DNA P SureSc Primer Total Get 25 Post-F Mix by (Do no Place At 4 °C Collect	17: Post-PCR MM readent asse-free water roulase II Buffer NTPs lase II Fusion rolymerase elect Post-Capture Mix 5 µl captured DNA be PCR MM. 7 pipetting until bea of spin). samples in cycler > C Hold step, remove	Per Rxn 13 µl 10 µl 1 µl 25 µl bead suspensions ds are in homoge close lid > press e from cycler > br s using magnet (2)	6 Rxn 91 μl 70 μl 7 μl 7 μl 175 μl s from ice. Add 25 eneous suspension play/continue. ief spin. 2 min).	12 Rxn 182 µl 140 µl 14 µl 14 µl 350 µl µl	
Table 1 Reage Nuclea 5X Hei with dil Hercul DNA P SureSa Primer Total Get 25 Post-F Mix by (Do no Place At 4 °C Collect Transf	I7: Post-PCR MM readent ase-free water roulase II Buffer NTPs lase II Fusion rollymerase elect Post-Capture r Mix Decaptured DNA be PCR MM. r pipetting until bea of spin). samples in cycler > C Hold step, remove t streptavidin beads	Per Rxn 13 µl 10 µl 1 µl 25 µl bead suspensions ds are in homoge close lid > press e from cycler > br s using magnet (2 50 µl) to well of f	6 Rxn 91 μl 70 μl 7 μl 175 μl s from ice. Add 25 eneous suspension play/continue. ief spin. 2 min). fresh plate or strip	12 Rxn 182 μl 140 μl 14 μl 150 μl 17 μl	

Step 6: Clean-up amplified library pools Get AMPure XP beads held at RT, vortex until homogeneous. Add 50 µl of AMPure XP beads to each amplified DNA well > mix until beads in homogeneous suspension. Incubate at RT 5 min. Collect beads using magnet (3–5 min) > remove and discard supernatant. Wash beads 2X with 200 µl freshly-prepared 70% ethanol per wash. Washes completed: 1 2 After second wash solution removed, spin briefly > remove residual ethanol. Dry samples unsealed on the thermal cycler at 37 °C (1–2 min). Elute by adding 25 µl 1X Low TE to each sample well. Seal wells > vortex > brief spin. Incubate at RT 2 min. Collect beads using magnet (~2 min). Transfer cleared supernatant to fresh well > keep on ice.

Step 7: Quality control

Assess quality and quantity using one of these platforms:

Agilent 2100 Bioanalyzer System with High Sensitivity DNA Assay

Agilent 4200 or 4150 TapeStation System with High Sensitivity D1000 Assay

Agilent 5200, 5300 or 5400 Fragment Analyzer System with HS NGS Fragment Kit (1–6000 bp)

Step 8: Combine captured pools for multiplex NGS (Optional)

Calculate the number of indexes that can be combined per lane, according to sequencer capacity and amount of sequencing data required per sample.

Combine the captured library pools such that each index-tagged sample is present in equimolar amounts in the final pool using one of the following methods:

- ☐ Dilute each captured pool to the concentration of the most dilute pool using Low TE, then combine equal volumes of all to make the final pool.
- Combine the appropriate volume of each captured pool solution to achieve equimolar concentration in the final pool, then adjust mixture to the desired final volume using Low TE. See the assay user guide for more information on this method.

Run notes

Run Date

Operator

Probe Name or Design ID

Index Pairs

Reagent Lot Information

- Library Prep Kit:
- Target Enrichment Kit:
- Probe:
- Enzymatic Frag Kit:
- Other Materials:

Sample Information

Library Pooling Information

Comments

