

SureSelect XT HS2 DNA System Automated using Agilent NGS Workstation Option B

DNA Library Preparation, Pre-Capture Pooling (optional), and Target Enrichment for the Illumina Platform

Protocol

Version B2, September 2022

SureSelect platform manufactured with Agilent SurePrint technology.

For Research Use Only. Not for use in diagnostic procedures.

Notices

© Agilent Technologies, Inc. 2021-2022

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number

G9985-90010

Edition

Version B2, September 2022

Agilent Technologies, Inc. 5301 Stevens Creek Blvd Santa Clara, CA 95051 USA

Acknowledgment

Oligonucleotide sequences © 2006, 2008, and 2011 Illumina, Inc. All rights reserved. Only for use with the Illumina sequencer systems and associated assays.

Technical Support

For US and Canada

Call (800) 227-9770 (option 3,4,4) Or send an e-mail to: ngs.support@agilent.com

For all other regions

Agilent's world-wide Sales and Support Center contact details for your location can be obtained at

www.agilent.com/en/contact-us/page.

Warranty

The material contained in this document is provided "as is," and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

U.S. Government Restricted Rights. Software and technical data rights granted to the federal government include only those rights customarily provided to end user customers. Agilent provides this customary commercial license in Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212 (Computer Software) and, for the Department of Defense, DFARS 252.227-7015 (Technical Data Commercial Items) and DFARS 227.7202-3 (Rights in Commercial Computer Software or Computer Software Documentation).

Notice to Purchaser

This product is provided under an agreement between Bio-Rad Laboratories and Agilent Technologies Inc., and the manufacture, use, sale or import of this product is subject to U.S. Pat. No. 6,670,808 owned by Bio-Rad Laboratories, Inc. Purchase of this product conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product in PCR (but not including real-time PCR) in the Research Field (including all Applied Research Fields, including but not limited to forensics, animal testing, and food testing) and in real-time PCR in the Diagnostics and Prognostics Fields. No rights are granted for use of this product for real-time PCR in the Research Field, including all Applied Research Fields (including but not limited to forensics, animal testing and food testing).

Safety Notices

CAUTION

A **CAUTION** notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a **CAUTION** notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

In this Guide...

This guide provides an optimized protocol for preparation of target-enriched Illumina paired-end multiplexed sequencing libraries using SureSelect XT HS2 Reagent Kits. Sample processing steps are automated using the Agilent NGS Workstation Option B.

1 Before You Begin

This chapter contains information that you should read and understand before you start an experiment.

2 Using the Agilent NGS Workstation for SureSelect Target Enrichment

This chapter contains an orientation to the Agilent NGS Workstation, an overview of workflow, and considerations for designing experiments for automated processing.

3 Preparation of AMPure XP Bead Plates

This chapter provides instructions on preparing all of the plates of AMPure XP beads that are needed throughout the entire workflow. Each plate of AMPure XP beads is prepared using a separate automation protocol available in the XT HS2 VWorks form.

4 Sample Preparation

This chapter describes the steps to prepare indexed, molecular-barcoded gDNA sequencing libraries for target enrichment.

5 Hybridization

This chapter describes the steps to hybridize and capture the prepared DNA library using a SureSelect or ClearSeq Probe Capture Library.

6 Post-Capture Sample Processing for Multiplexed Sequencing

This chapter describes the steps for post-capture amplification and sequencing sample preparation guidelines.

7 Appendix: Using FFPE-derived DNA Samples

This chapter describes the protocol modifications for gDNA isolated from FFPE samples.

8 Reference

This chapter contains reference information, including kit contents, index sequences, and a troubleshooting guide.

What's New in Version B2

- Design ID information added to **Table 4** on page 15 for pre-designed SureSelect probes.
- Support for use of Agilent's Alissa Reporter software for SureSelect XT HS2 DNA library sequence pre-processing and human germline DNA variant analysis (see **page 135**).
- Updates to downstream sequencing support information (see **page 136**). Key updates include support for the new CReaK tool, replacing the LocatIt tool in AGeNT v3.0 (see **page 136**), and instructions for MBC trimming using BCL Convert software (see *Note* on **page 136**).
- Updated "Notice to Purchaser."
- Updates to post-capture library fragment size range guidelines for libraries prepared using intact input DNA in **Table 95** on page 122.
- Updates to downstream sequencing support information including seeding concentration guidelines in **Table 99** on page 130.
- Updates to SureSelect XT HS2 Index Primer Pair information on page 144 through page 151 to clarify P5 index sequence orientation usage.
- New instructions on labeling and sealing the AMPure XP bead plates. See **Chapter 3**, "Preparation of AMPure XP Bead Plates," starting on page 35.

What's New in Version B1

- Support for SureSelect XT HS and XT HS PreCap V8+UTR and V8+NCV Probes (see **Table 4** on page 15 and hybridization instructions in **Chapter 5**).
- Updated product part number for SureSelect XT HS and XT HS PreCap Human All Exon V8 Probes (see **Table 4** on page 15).
- Updates to the NGS Workstation components user guide part numbers (see **Table 7** on page 20).
- Update of the lower limit for fluid transfer offered by the Bravo platform to 0.3 μ L (see page 20).
- Detailed instructions for uploading the user-created csv files needed in specific automation protocols (see **step 8** on **page 82**, **step 9** on **page 90**, and **step 8** on **page 127**).
- Update to **Table 60** on page 91 to include the red insert at deck position 9.
- Update to the instructions for preparing the workstation MiniHub for the Hybridization protocol (see **step 6** on **page 95**).
- Update to **Table 81** on page 111 to correct the cycle range listed for segment 2.
- Updates to the MiniHub configurations shown in **Table 36**, **Table 47**, **Table 59**, and **Table 88** to provide the volumes of AMPure XP beads per well.

Content

1 Before You Begin	
Procedural Notes 10	
Safety Notes 10	
Materials Required 11	
Optional Materials 17	
2 Using the Agilent NGS Workstation for SureSelect Target Enrichment	
About the Agilent NGS Workstation 20 About the Bravo Platform 20 VWorks Automation Control Software 23	
Overview of the SureSelect Target Enrichment Procedure 28 Workflow Modulations 30 Automation Protocols used in the Workflow 31	
Experimental Setup Considerations for Automated Runs 33 Considerations for Placement of gDNA Samples in 96-well Plates for Automated Processing Considerations for Equipment Setup 34 PCR Plate Type Considerations 34	
3 Preparation of AMPure XP Bead Plates	
Step 1. Prepare the bead plate to be used for library preparation 36	
Step 2. Prepare the bead plate to be used for Pre-Capture Purification 38	
Step 3. Prepare the bead plate to be used for concentration of pooled DNA (pre-capture pooling workfloorly) 40	low
Step 4. Prepare the bead plate to be used for Post-Capture Purification 42	
4 Sample Preparation	
Step 1. Prepare and analyze quality of genomic DNA samples 46 Preparation of high-quality gDNA from fresh biological samples 46 Preparation and qualification of gDNA from FFPE samples 46	
Step 2. Fragment the DNA 48 Method 1: Prepare fragmented DNA by enzymatic fragmentation 48 Method 2. Prepare fragmented DNA by mechanical shearing 55	
Step 3. Prepare adaptor-ligated libraries 57 Prepare the workstation 57 Prepare the DNA End-Repair/dA-Tailing master mix 58	

Prepare the Ligation master mix 58 Prepare the Adaptor Oligo Mix 59 Prepare the master mix source plate 59 Prepare the purification reagents 60 Load the Agilent NGS Workstation 61
Step 4. Amplify adaptor-ligated libraries 63 Prepare the workstation 63 Pre-program the thermal cycler 64 Prepare the SureSelect XT HS2 Index Primer Pairs 64 Prepare the pre-capture PCR master mix and master mix source plate 65 Load the Agilent NGS Workstation 66
Step 5. Purify amplified DNA using AMPure XP beads 69 Prepare the workstation and reagents 69 Run the appropriate AMPureXP_XT_HS2_ILM (Pre-Cap PCR) protocol 71 Step 6. Assess Library DNA quantity and quality 71
5 Hybridization
Step 1, Option 1. Prepare DNA for Single-Plex Hybridization 80 Aliquot prepped DNA samples for hybridization 80
Step 1, Option 2. Prepare DNA for Multi-Plex Hybridization 83 Pool indexed DNA samples for hybridization 83 Adjust final concentration of pooled DNA 88
Step 2. Hybridize the gDNA library or library pool and probe 93
Step 3. Capture the hybridized DNA 103
6 Post-Capture Sample Processing for Multiplexed Sequencing
Step 1. Amplify the captured libraries 110 Prepare the workstation 110 Pre-program the thermal cycler 111 Prepare the post-capture PCR master mix and master mix source plate 112 Load the Agilent NGS Workstation 114 Run VWorks protocol Post-CapPCR_XT_HS2_ILM 115
Step 2. Purify the amplified indexed libraries using AMPure XP beads Prepare the workstation and reagents Run VWorks protocol AMPureXP_XT_HS2_ILM (Post-Capture PCR) 118
 Step 3. Assess sequencing library DNA quantity and quality 119 Option 1: Analysis using an Agilent 4200 TapeStation Instrument and High Sensitivity D1000 ScreenTape 119 Option 2: Analysis using an equivalent platform (non-automated) 124

O 1		1	C 11.			/	405
STAN 4	$P \cap \cap I$	samnies	tor mulliti	plexed sed	nneneina i	IONTIONAL	125
OLCP T	. 1 001	Julipics	TOI ITIUITI	picked set	queriening i	(Optional)	, , , ,

Step 5. Prepare sequencing samples 129

Step 6. Do the sequencing run and analyze the data 131

HiSeq/NextSeq/NovaSeq platform sequencing run setup guidelines 131

MiSeq platform sequencing run setup guidelines 132

Set up a custom Sample Sheet: 132

Editing the Sample Sheet to include SureSelect XT HS2 dual indexes 134

Sequence analysis resources 135

7 Appendix: Using FFPE-derived DNA Samples

Protocol modifications for FFPE Samples 138

Methods for FFPE Sample Qualification 139

Sequencing Output Recommendations for FFPE Samples 140

8 Reference

Kit Contents 142

SureSelect XT HS2 Index Primer Pair Information 144

Index Primer Pair Plate Maps 152

Quick Reference Tables for Master Mixes and Source Plates 154

Quick Reference Tables for Other Reagent Volumes 160

Troubleshooting Guide 161

1 Before You Begin

Procedural Notes 10
Safety Notes 10
Materials Required 11
Optional Materials 17

Make sure you have the most current protocol. Go to **www.agilent.com** and search for G9985-90010.

Make sure you read and understand the information in this chapter and have the necessary equipment and reagents listed before you start an experiment.

NOTE

This protocol describes automated DNA sample processing for SureSelect XT HS2 Target Enrichment using the Agilent NGS Workstation Option B. For non-automated sample processing procedures see publication G9983-90000 (for post-capture pooling workflow) or G9985-90000 (for pre-capture pooling workflow).

NOTE

Agilent guarantees performance and provides technical support for the SureSelect reagents required for this workflow only when used as directed in this Protocol.

Procedural Notes

- Certain protocol steps require the rapid transfer of sample plates between the Bravo deck and a thermal cycler. Locate your thermal cycler in close proximity to the Agilent NGS Workstation to allow rapid and efficient plate transfer.
- If your thermal cycler is compatible with the use of compression pads, add a compression pad whenever you load a plate that was sealed with the PlateLoc thermal microplate sealer. The pad improves contact between the plate and the heated lid of the thermal cycler.
- Prepare and load the Agilent NGS Workstation as detailed in each of the protocol steps before initiating each automated protocol run. When loading plates in the workstation's Labware MiniHub, always place plates in the orientation shown in **Figure 4** on page 51.
- To prevent contamination of reagents by nucleases, always wear powder-free laboratory gloves and use dedicated solutions and pipettors with nuclease-free aerosol-resistant tips.
- Use best-practices to prevent PCR product contamination of samples throughout the workflow:
 - 1 Assign separate pre-PCR and post-PCR work areas and use dedicated supplies and reagents in each area. In particular, never use materials designated to post-PCR work for pre-PCR segments of the workflow. Always use dedicated pre-PCR pipettors with nuclease-free aerosol-resistant tips to pipette dedicated pre-PCR solutions.
 - 2 Maintain clean work areas. Clean pre-PCR surfaces that pose the highest risk of contamination daily using a 10% bleach solution.
 - **3** Wear powder-free gloves. Use good laboratory hygiene, including changing gloves after contact with any potentially-contaminated surfaces.
- In general, follow Biosafety Level 1 (BSL1) safety rules.
- Possible stopping points, where samples may be stored at −20°C, are marked in the protocol. Do not subject the samples to multiple freeze/thaw cycles.

Safety Notes

Wear appropriate personal protective equipment (PPE) when working in the laboratory.

Materials Required

Materials required to complete the SureSelect XT HS2 automation protocol will vary based on the following considerations:

- DNA sample type: high-quality gDNA derived from fresh samples vs. FFPE-derived gDNA samples
- DNA fragmentation method used in workflow: enzymatic fragmentation vs. mechanical (Covaris-mediated) shearing
- Pooling of DNA libraries for multiplexed sequencing: Pre-capture pooling vs. post-capture pooling

To determine the materials required for your unique needs, refer to the tables provided in this chapter.

- See **Table 1** and **Table 2** for the reagents and equipment required for all sample types and workflows.
- See **Table 3** for the SureSelect XT HS2 DNA Reagent Kits. The table includes kits that are suitable for workflows with pre-capture pooling of DNA libraries and kits suitable for workflows with post-capture pooling of DNA libraries.
- See **Table 4** for compatible probes. The table distinguishes between probes suitable for workflows with pre-capture pooling of DNA libraries and probes suitable for workflows with post-capture pooling of DNA libraries.
- See **Table 5** for additional materials needed to complete the protocols using the selected DNA sample type and fragmentation method.
- See **Table 6** for a list of optional materials.

Table 1 Required Reagents--All Sample and Workflow Types

Description	Vendor and part number
AMPure XP Kit [*] 60 mL 450 mL	Beckman Coulter Genomics p/n A63881 p/n A63882
Dynabeads MyOne Streptavidin T1* 10 mL 50 mL	Thermo Fisher Scientific p/n 65602 p/n 65604D
1X Low TE Buffer (10 mM Tris-HCl, pH 7.5-8.0, 0.1 mM EDTA)	Thermo Fisher Scientific p/n 12090-015, or equivalent
100% Ethanol (Ethyl Alcohol, 200 proof)	Millipore p/n EX0276
Qubit BR dsDNA Assay Kit 100 assays 500 assays	Thermo Fisher Scientific p/n Q32850 p/n Q32853
Nuclease-free Water (not DEPC-treated)	Thermo Fisher Scientific p/n AM9930

^{*} Separate purchase **not** required when using the SureSelect XT HS2 DNA Reagent Kits that include SureSelect DNA AMPure XP Beads and SureSelect Streptavidin Beads (Agilent p/n G9984A, G9984B, G9984C, or G9984D).

Table 2 Required Equipment--All Sample and Workflow Types

Description	Vendor and Part Number
Agilent NGS Workstation Option B	Agilent p/n G5522A (VWorks software version 13.1.0.1366 OR
Contact Agilent Automation Solutions for more information: Customerservice.automation@agilent.com	Agilent p/n G5574AA (VWorks software version 13.1.0.1366)
Robotic Pipetting Tips (Sterile, Filtered, 250 μL)	Agilent p/n 19477-022
Thermal cycler and accessories (including compression pads, if compatible)	Various suppliers Important: Not all PCR plate types are supported for use in the VWorks automation protocols for the Agilent NGS Workstation. Select a thermal cycler that is compatible with one of the supported PCR plate types. See supported plate types in the listing below.
PCR plates compatible with the Agilent NGS Workstation and associated VWorks automation protocols	 Only the following PCR plates are supported: 96 ABI PCR half-skirted plates (MicroAmp Optical plates), Thermo Fisher Scientific p/n N8010560 96 Agilent semi-skirted PCR plate, Agilent p/n 401334 96 Eppendorf twin.tec half-skirted PCR plates, Eppendorf p/n 951020303 96 Eppendorf twin.tec PCR plates (full-skirted), Eppendorf p/n 951020401
Eppendorf twin.tec full-skirted 96-well PCR plates	Eppendorf p/n 951020401 or 951020619
Agilent Reservoirs, Single cavity, 96 pyramids base geometry, 19 mm height – used when workstation setup calls for Agilent Shallow Well Reservoir	Agilent p/n 201254-100
Agilent Reservoirs, Single cavity, 96 pyramids base geometry, 44 mm height – used when workstation setup calls for Agilent Deep Well Reservoir	Agilent p/n 201244-100
Agilent Storage/Reaction Microplates, 96 wells, 1 mL/round well - used when workstation setup calls for Agilent Deep Well Plate or Agilent DW Plate	Agilent p/n 203426-100
Agilent Storage/Reaction Microplates, 96 wells, 2 mL/square well – used when workstation setup calls for Waste Plate (Agilent 2 mL Square Well)	Agilent p/n 201240-100
Nucleic acid surface decontamination wipes	DNA Away Surface Decontaminant Wipes, Thermo Scientific p/n 7008, or equivalent
Qubit Fluorometer	Thermo Fisher Scientific p/n Q33238
Qubit Assay Tubes	Thermo Fisher Scientific p/n Q32856
DNA LoBind Tubes, 1.5-mL PCR clean, 250 pieces	Eppendorf p/n 022431021 or equivalent
Microcentrifuge	Eppendorf microcentrifuge, model 5417C or equivalent
Plate centrifuge	Labnet International MPS1000 Mini Plate Spinner, p/n C1000 or equivalent
Magnetic separator	DynaMag-50 magnet, Thermo Fisher Scientific p/n 123-02D or equivalent
Multichannel pipette	Rainin Pipet-Lite Multi Pipette or equivalent
Single channel pipettes (10-, 20-, 200-, and 1000-µL capacity)	Rainin Pipet-Lite Pipettes or equivalent

Table 2 Required Equipment--All Sample and Workflow Types (continued)

Description	Vendor and Part Number
Sterile, nuclease-free aerosol barrier pipette tips	general laboratory supplier
Vortex mixer	general laboratory supplier
Ice bucket	general laboratory supplier
Powder-free gloves	general laboratory supplier
DNA Analysis Platform and Consumables*	
Agilent 2100 Bioanalyzer Instrument	Agilent p/n G2939BA
Agilent 2100 Expert SW Laptop Bundle (optional)	Agilent p/n G2953CA
DNA 1000 Kit	Agilent p/n 5067-1504
High Sensitivity DNA Kit	Agilent p/n 5067-4626
OR	
Agilent 4200 TapeStation [†]	Agilent p/n G2991AA
96-well sample plates	Agilent p/n 5042-8502
96-well plate foil seals	Agilent p/n 5067-5154
8-well tube strips	Agilent p/n 401428
8-well tube strip caps	Agilent p/n 401425
D1000 ScreenTape	Agilent p/n 5067-5582
D1000 Reagents	Agilent p/n 5067-5583
D1000 Sample Buffer [‡]	Agilent p/n 5067-5602
High Sensitivity D1000 ScreenTape	Agilent p/n 5067-5584
High Sensitivity D1000 Reagents	Agilent p/n 5067-5585
High Sensitivity D1000 Sample Buffer [‡]	Agilent p/n 5067-5603

^{*} DNA samples may also be analyzed using the Agilent 5200 Fragment Analyzer, p/n M5310AA, and associated NGS Fragment Kits (e.g., DNF-473-0500 and DNF-474-0500). Follow the assay instructions provided for each NGS Fragment Kit.

[†] DNA samples may also be analyzed using the Agilent 4150 TapeStation, p/n G2992AA. ScreenTape devices plus their associated reagent kits, and the 8-well strip tubes and caps listed in this table are compatible with both platforms.

[‡] The additional TapeStation assay sample buffers, p/n 5067-5602 and 5067-5603, are required only when sample qualification is performed using VWorks automation protocols TS_D1000 and TS_HighSensitivity_D1000.

Table 3 Agilent SureSelect XT HS2 DNA Reagent Kits

Description	Agilent Part Number
For Pre-Capture Pooling	
SureSelect XT HS2 DNA Library Preparation Kit for ILM (Pre PCR), 96 Reactions	G9985A (with Index Pairs 1–96) G9985B (with Index Pairs 97–192) G9985C (with Index Pairs 193–288) G9985D (with Index Pairs 289–384)
AND SureSelect XT HS2 DNA Target Enrichment Kit (Post PCR), 12 Hybs*	G9987A
For Post-Capture Pooling	
SureSelect XT HS2 DNA Reagent Kit, 96 Reactions contains reagents for library preparation and target enrichment	G9983A (with Index Pairs 1–96) G9983B (with Index Pairs 97–192) G9983C (with Index Pairs 193–288) G9983D (with Index Pairs 289–384)
OR	
SureSelect XT HS2 DNA Reagent Kit with AMPure XP/Streptavidin Beads, 96 Reactions contains reagents for library preparation and target enrichment, and includes the necessary AMPure XP and Streptavidin beads	G9984A (with Index Pairs 1–96) G9984B (with Index Pairs 97–192) G9984C (with Index Pairs 193–288) G9984D (with Index Pairs 289–384)

^{*} The 12-Hyb Target Enrichment Kit provides sufficient reagents for 12 hybridization reactions of pre-capture pooled samples, which corresponds to 1.5 columns (i.e., 12 wells) on a 96-well plate. The hybridization protocol cannot process partial columns. Purchase two 12-Hyb Target Enrichment Kits to run 3 full columns (i.e., 24 wells) of hybridization reactions. If your workflow calls for hybridization of 96 pooled samples, then purchase eight of the 12-Hyb Target Enrichment Kits. Pre-capture pooling of samples can use the configuration of either 8 samples/pool or 16 samples/pool.

Table 4 Compatible Probes based on Pooling Method

robe Capture Li		Design ID	Ordering Information		
Custom Probes	*				
Pre-Capture	SSEL PreCap Custom Tier1 1–499 kb (6 Hybs [†] or 30 Hybs [‡])				
Pooling	SSEL PreCap Custom Tier2 0.5 –2.9 Mb (6 Hybs [†] or 30 Hybs [‡])	_			
	SSEL PreCap Custom Tier3 3 -5.9 Mb (6 Hybs [†] or 30 Hybs [‡])		Please visit the SureDesign website to design Custom SureSelect probes and		
	SSEL PreCap Custom Tier4 6 -11.9 Mb (6 Hybs [†] or 30 Hybs [‡])				
	SSEL PreCap Custom Tier5 12-24 Mb (6 Hybs [†] or 30 Hybs [‡])	obtain ordering information. Contact			
Post-Capture Pooling	SureSelect Custom Tier1 1-499 kb	the SureSelect support team (see			
	SureSelect Custom Tier2 0.5–2.9 Mb		 page 2) or your local representative if you need assistance. 		
	SureSelect Custom Tier3 3-5.9 Mb	you need as	solotarioe.		
	SureSelect Custom Tier4 6-11.9 Mb				
	SureSelect Custom Tier5 12-24 Mb				
Pre-designed P	robes				
Pre-Capture	SureSelect XT HS PreCap Human All Exon V8 (12 Hybs)**	S33266340	Agilent p/n 5191-6878		
Pooling	SureSelect XT HS PreCap Human All Exon V8+UTR (12 Hybs)**	S33613271	Agilent p/n 5191-7406		
	SureSelect XT HS PreCap Human All Exon V8+NCV (12 Hybs)**	S33699751	Agilent p/n 5191-7412		
	SureSelect Pre-Capture Pooling Human All Exon V7 (12 Hybs)**	S31285117	' Agilent p/n 5191-573		
	SureSelect XT2 Clinical Research Exome V2 (12 Hybs)**	S30409818	Agilent p/n 5190-950		
	SureSelect XT2 Mouse All Exon (12 Hybs)**	S0276129	Agilent p/n 5190-4682		
	ClearSeq Inherited Disease XT2 (12 Hybs)**	S0684402	Agilent p/n 5190-752		
	ClearSeq Comprehensive Cancer XT2 (6 Hybs) [†]	0425761	Agilent p/n 5190-8018		
Post-Capture	SureSelect XT HS Human All Exon V8	S33266340	Agilent p/n 5191-687		
Pooling	SureSelect XT HS Human All Exon V8+UTR	S33613271	Agilent p/n 5191-7400		
	SureSelect XT HS Human All Exon V8+NCV	S33699751	Agilent p/n 5191-7409		
	SSel XT HS and XT Low Input Human All Exon V7, 96 Reactions	S31285117	Agilent p/n 5191-4029		
	SureSelect XT Clinical Research Exome V2, 96 Reactions	S30409818	Agilent p/n 5190-9492		
	SureSelect XT Mouse All Exon, 96 Reactions	S0276129	Agilent p/n 5190-4642		
	ClearSeq Comprehensive Cancer XT, 96 Reactions	0425761	Agilent p/n 5190-8012		
	ClearSeq Inherited Disease XT, 96 Reactions	S0684402	Agilent p/n 5190-7519		
Pre-designed P	robes customized with additional Plus custom content				
Pre-Capture	SureSelect XT2 Clinical Research Exome V2 Plus 1 (12 Hybs)**				
Pooling	SureSelect XT2 Clinical Research Exome V2 Plus 2 (12 Hybs)**	Please visit the SureDesign website to design the customized <i>Plus</i> content and obtain ordering information. Contact the SureSelect support team (see page 2) or your local representative if you need assistance.			
	ClearSeq Comprehensive Cancer Plus XT2 (6 Hybs) [†]				
	ClearSeq Inherited Disease Plus XT2 (12 Hybs)**				
Post-Capture	SSel XT HS and XT Low Input Human All Exon V7 Plus 1				
Pooling	SSel XT HS and XT Low Input Human All Exon V7 Plus 2				
	SureSelect XT Clinical Research Exome V2 Plus 1				
	SureSelect XT Clinical Research Exome V2 Plus 2				
	ClearSeq Comprehensive Cancer Plus XT				
	ClearSeq Inherited Disease Plus XT		_		

- * Custom Probes designed August 2020 or later are produced using an updated manufacturing process; design-size Tier is shown on labeling for these products. Custom Probes designed and ordered prior to August 2020 may be reordered, with these probes produced using the legacy manufacturing process; design-size Tier is not shown on labeling for the legacy-process products. Custom Probes of both types use the same optimized target enrichment protocols detailed in this publication.
- † The 6-Hyb Probes support target enrichment for 96 samples pooled using the configuration recommended for the included designs of 16 samples/pool (for 6 hybs × 16 samples/hyb). Contains enough reagent for 6 hybridization reactions using the run setup on **page 96**. The hybridization protocol can only process columns in which all 8 wells contain a hybridization reaction. In order to have enough reagent to run 3 full columns (i.e., 24 wells), you must purchase 4 units of the 6-Hyb Probe.
- ‡ The 30-Hyb Probes support target enrichment for 480 samples pooled using the configuration recommended for the included designs of 16 samples/pool (for 30 hybs × 16 samples/hyb). Contains enough reagent for 30 hybridization reactions using the run setup on page 96. The hybridization protocol can only process columns in which all 8 wells contain a hybridization reaction.
- ** The 12-Hyb Probes support target enrichment for 96 samples pooled using the configuration recommended for the included designs of 8 samples/pool (for 12 hybs × 8 samples/hyb). Contains enough reagent for 6 hybridization reactions using the run setup on **page 97**. The hybridization protocol can only process columns in which all 8 wells contain a hybridization reaction. In order to have enough reagent to run 3 full columns (i.e., 24 wells), you must purchase 2 units of the 12-Hyb Probe.

Table 5 Additional Required Materials based on DNA Sample Type/Fragmentation Method

Description	Vendor and Part Number		
Required for preparation of high-quality DNA samples (not required for FFPE DNA sample preparation)			
High-quality gDNA purification system, for example:			
QIAamp DNA Mini Kit	Qiagen		
50 Samples	p/n 51304		
250 Samples	p/n 51306		
Required for preparation of FFPE DNA samples (not required for high	h-quality DNA sample preparation)		
QIAamp DNA FFPE Tissue Kit, 50 Samples	Qiagen p/n 56404		
Deparaffinization Solution	Qiagen p/n 19093		
FFPE DNA integrity assessment system:			
Agilent NGS FFPE QC Kit	Agilent		
16 reactions	p/n G9700A		
96 reactions	p/n G9700B		
OR			
TapeStation Genomic DNA Analysis Consumables:	Agilent		
Genomic DNA ScreenTape	p/n 5067-5365		
Genomic DNA Reagents	p/n 5067-5366		
Required for enzymatic fragmentation of DNA samples (not required	for workflows with mechanical shearing)		
SureSelect Enzymatic Fragmentation Kit, 96 Reactions Automation	Agilent p/n 5191-6764		
Required for mechanical shearing of DNA samples (not required for	workflows with enzymatic fragmentation)		
Covaris Sample Preparation System	Covaris model E220		
Covaris 96 microTUBE plate	Covaris p/n 520078		

Optional Materials

Table 6 Supplier Information for Optional Materials

Description	Vendor and part number
High-quality gDNA purification system, for example: QIAamp DNA Mini Kit 50 Samples 250 Samples	Qiagen p/n 51304 p/n 51306
Tween 20	Sigma-Aldrich p/n P9416-50ML

2 Using the Agilent NGS Workstation for SureSelect Target Enrichment

About the Agilent NGS Workstation 20

Overview of the SureSelect Target Enrichment Procedure 28

Experimental Setup Considerations for Automated Runs 33

This chapter contains an orientation to the Agilent NGS Workstation, an overview of the SureSelect XT HS2 target enrichment workflow, and considerations for designing SureSelect experiments for automated processing using the Agilent NGS Workstation.

About the Agilent NGS Workstation

CAUTION

Before you begin, make sure that you have read and understand operating, maintenance and safety instructions for using the Bravo platform and additional devices included with the workstation. Refer to the user guides listed in **Table 7**.

Review the user guides listed in **Table 7** (available at www.agilent.com) to become familiar with the general features and operation of the Agilent NGS Workstation Option B components. Instructions for using the Bravo platform and other workstation components specifically for the SureSelect XT HS2 Target Enrichment workflow are detailed in this user guide.

Table 7 Agilent NGS Workstation components User Guide reference information

Device	User Guide part number
Bravo Platform	SD-V1000376 (formerly G5562-90000)
VWorks Software	G5415-90068
BenchCel Microplate Handler	G5580-90000
Labware MiniHub	G5584-90001
PlateLoc Thermal Microplate Sealer	G5585-90010

About the Bravo Platform

The Bravo platform is a versatile liquid handler with a nine plate-location platform deck, suitable for handling 96-well, 384-well, and 1536-well plates. The Bravo platform is controlled by the VWorks Automation Control software. Fitted with a choice of three interchangeable disposable-tip pipette heads, it accurately dispenses fluids from $0.3~\mu L$ to $250~\mu L$.

Bravo Platform Deck

The protocols in the following sections include instructions for placing plates and reagent reservoirs on specific Bravo deck locations. Use **Figure 1** to familiarize yourself with the location numbering convention on the Bravo platform deck.

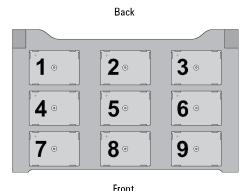
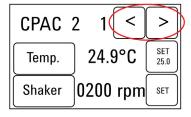
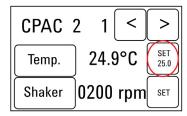


Figure 1 Bravo platform deck

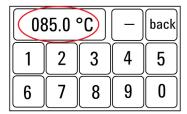
Setting the Temperature of Bravo Deck Heat Blocks


Bravo deck positions 4 and 6 are equipped with Inheco heat blocks, used to incubate sample plates at defined temperatures during the run. Runs that include high- (85°C) or low- (4°C) temperature incubation steps may be expedited by pre-setting the temperature of the affected block before starting the run.

Bravo deck heat block temperatures may be changed using the Inheco Multi TEC Control device touchscreen as described in the steps below. See **Table 8** for designations of the heat block-containing Bravo deck positions on the Multi TEC control device.


Table 8 Inheco Multi TEC Control touchscreen designations

Bravo Deck Position	Designation on Inheco Multi TEC Control Screen
4	CPAC 2 1
6	CPAC 2 2


1 Using the arrow buttons, select the appropriate block (CPAC 2 block 1 or CPAC 2 block 2).


2 To set the temperature of the selected block, press the SET button.

3 Using the numeral pad, enter the desired temperature. The entered temperature appears in the top, left rectangle. Once the correct temperature is displayed, press the rectangle to enter the temperature.

4 Press the Temp button until the new temperature is displayed on the SET button and until the Temp button is darkened, indicating that the selected heat block is heating or cooling to the new temperature setting. The current temperature of the block is indicated in the center of the display.

Setting the Temperature of Bravo Deck Position 9 Using the ThermoCube Device

Bravo deck position 9 is equipped with a ThermoCube thermoelectric temperature control system, used to incubate components at a defined temperature during the run. During protocols that require temperature control at position 9, you will be instructed to start and set the temperature of the ThermoCube device before starting the run.

ThermoCube temperature settings are modified using the control panel (LCD display screen and four input buttons) on the front panel of the device using the following steps.

- 1 Turn on the ThermoCube and wait for the LCD screen to display TEMP.
- 2 Press the UP or DOWN button to change SET TEMP 1 to the required set point.
- **3** Press the START button.

The ThermoCube then initiates temperature control of Bravo deck position 9 at the displayed set point.

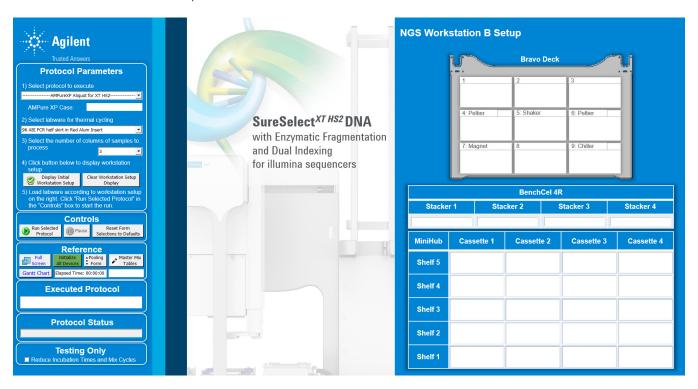
VWorks Automation Control Software

VWorks software, included with your Agilent NGS Workstation, allows you to control the robot and integrated devices using a PC. The Agilent NGS Workstation is preloaded with VWorks software containing all of the necessary SureSelect system liquid handling protocols. General instructions for starting up the VWorks software and the included protocols is provided below. Each time a specific VWorks protocol is used in the SureSelect procedure, any settings required for that protocol are included in the relevant section of this manual.

NOTE

The instructions in this manual are compatible with VWorks software version 13.1.0.1366 If you have questions about VWorks version compatibility, please contact service.automation@agilent.com.

Logging in to the VWorks software

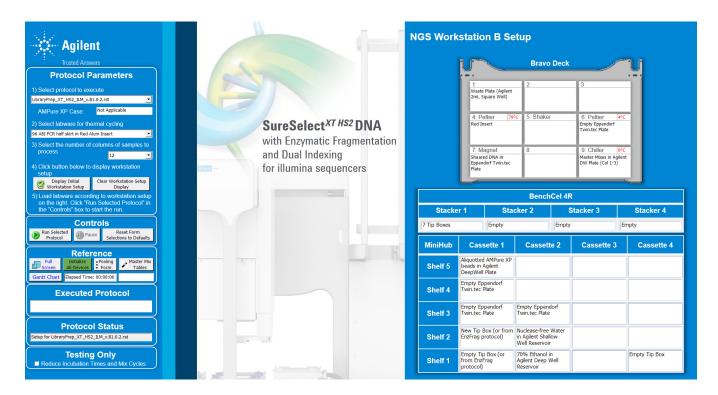

- 1 Double-click the VWorks icon or the XT HS2 VWorks Form shortcut on the Windows desktop to start the VWorks software.
- 2 If User Authentication dialog is not visible, click **Log in** on the VWorks window toolbar.
- **3** In the User Authentication dialog, type your VWorks user name and password, and click **OK**. (If no user account is set up, contact the administrator.)

VWorks protocol and runset files

VWorks software uses two file types for automation runs, .pro (protocol) files and .rst (runset) files. Runset files are used for automated procedures in which the workstation uses more than one automation protocol during the run.

Using the SureSelect XT HS2 DNA Form to setup and start a run

Use the SureSelect XT HS2 DNA VWorks form, shown below, to set up and start each SureSelect automation protocol or runset.


1 Open the form using the shortcut (shown below) on your desktop, or by opening the file XT_HS2_ILM_v.Bx.x.x.VWForm in the directory C:\VWorks Workspace\NGS Option B\XT_HS2_ILM_v.Bx.x.x\Forms (where x.x.x is the version number).

- 2 Use the form drop-down menus to select the appropriate SureSelect workflow step and number of columns of samples for the run.
- 3 Once all run parameters have been specified on the form, click **Display Initial Workstation Setup**.

4 The NGS Workstation B Setup region of the form will then display the required placement of reaction components and labware in the NGS Workstation for the specified run parameters.

After verifying that the NGS Workstation has been set up correctly, click **Run Selected Protocol**.

Error messages encountered at start of run

After starting the run, you may see the error messages displayed below. When encountered, make the indicated selections and proceed with the run. Encountering either or both of these error messages is not indicative of a problem with the NGS workstation or your run setup.

1 If you encounter the G-axis error message shown below, select **Ignore and Continue**, leaving device in current state.

Please verify that it is safe to home the W-axis the aspirate/dispense axis). If there is fluid in the tips you may want to manually home the W-axis in diagnostics over a waste position.

- Choose "Retry" to continue homing the W-axis.
- Choose "Ignore" to leave the W-axis unhomed.
- Choose "Abort" to cancel initialization.

Ignore and Continue, leaving device in current state

2 If you encounter the W-axis error message shown below, select Retry.

Verifying the Simulation setting

Abort

VWorks software may be run in simulation mode, during which commands entered on screen are not completed by the NGS workstation. If workstation devices do not respond when you start a run, verify the simulation mode status in VWorks using the following steps.

Add to Error Library

1 Verify that Simulation is off is displayed on the status indicator (accessible by clicking View > Control Toolbar).

2 If the indicator displays **Simulation is on**, click the status indicator button to turn off the simulation mode.

NOTE

If you cannot see the toolbar above the SureSelect_XT_HS2_ILM VWorks form, click the **Full Screen** button to exit full screen mode. If the toolbar is still not visible, right-click on the form and then select **Control Toolbar** from the menu.

Overview of the SureSelect Target Enrichment Procedure

Figure 2 summarizes the SureSelect XT HS2 library preparation and target enrichment workflow for DNA samples to be sequenced using the Illumina paired-read sequencing platform. For each sample to be sequenced, individual library preparations, hybridizations, and captures are performed.

Agilent offers four different plates of index pairs for use with the SureSelect XT HS2 DNA library preparation reagents to allow for multiplexed sequencing (refer to "Index Primer Pair Plate Maps" on page 152). Depending on the SureSelect XT HS2 DNA Reagent Kit(s) used in the protocol, you can pool samples for multiplexed sequencing either prior to hybridization with the Probe (i.e., pre-capture pooling) or after hybridization and subsequent PCR amplification of the captured libraries (i.e., post-capture pooling).

See **Table 10** for a summary of the VWorks protocols used during the workflow. Then, see **Preparation of AMPure XP Bead Plates, Sample Preparation, Hybridization**, and **Post-Capture Sample Processing for Multiplexed Sequencing** chapters for complete instructions for use of the VWorks protocols for sample processing.

The SureSelect XT HS2 DNA library preparation protocol is compatible with both high-quality gDNA prepared from fresh or fresh frozen samples and lower-quality DNA prepared from FFPE samples, using a DNA input range of 10 to 200 ng DNA.

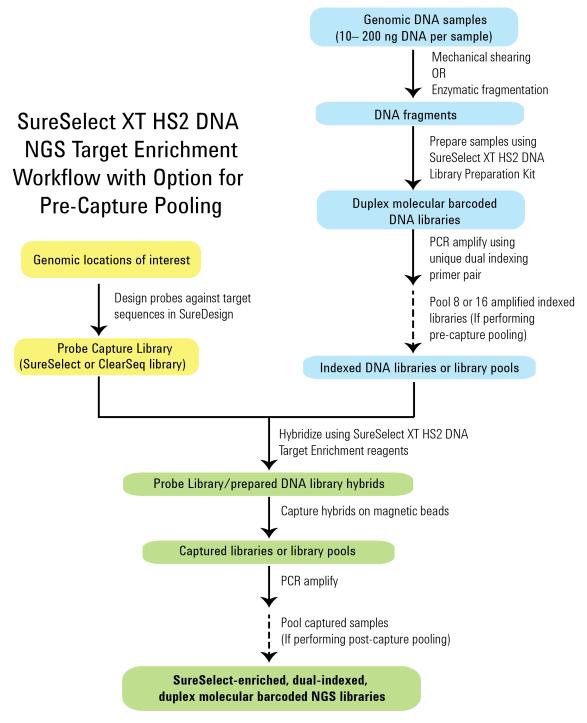


Figure 2 Overall sequencing sample preparation workflow

Workflow Modulations

The SureSelect XT HS2 DNA target enrichment workflow can be modulated for different applications as described below and summarized in **Table 9** on page 30.

DNA Sample Integrity Protocols are compatible with both high-quality gDNA prepared from fresh or fresh frozen samples and lower-quality DNA prepared from FFPE samples with minor protocol modifications.

DNA Fragmentation Method Automated Enzymatic Fragmentation protocols are provided to support enzymatic fragmentation with automated liquid handling steps (see "Method 1: Prepare fragmented DNA by enzymatic fragmentation" on page 48). Alternatively, DNA can be mechanically sheared using manual liquid handling steps without automation (see "Method 2. Prepare fragmented DNA by mechanical shearing" on page 55).

Sample Pooling Options The automated SureSelect XT HS2 DNA target enrichment workflow supports two different approaches for sample pooling, with each using different SureSelect XT HS2 DNA reagents.

- Pre-capture pooling Following PCR amplification of the indexed DNA libraries, pool either 8 or 16 of the libraries (depending on Probe design size) prior to hybridization with the Probe. Each library pool is then hybridized with the Probe.
- Post-capture pooling Following hybridization and subsequent PCR amplification of the captured libraries, pool multiple indexed libraries together prior to sequencing. The allowable number of libraries per pool is dependent on the output specifications of the sequencing platform and the amount of sequencing data required.

Table 9 Summary of workflow modulations supported by the automation protocols

Property	Options	Usage Notes
DNA Sample Integrity	Intact DNA	Use standard protocol with 10-200 ng input DNA
	FFPE DNA	Qualify DNA before use in assay; see "Protocol modifications for FFPE Samples" on page 138 for summary of protocol modifications.
DNA Fragmentation Method	Enzymatic Fragmentation	Use the Enzymatic Fragmentation automation protocols to perform enzymatic fragmentation of DNA samples. The protocol EnzFrag_XT_HS2_ILM executes the liquid handling steps for the enzymatic fragmentation reactions. The protocol EnzFrag_Dil_XT_HS2_ILM directs the dilution of the fragmented samples to the concentration needed for library preparation. Requires purchase of SureSelect Enzymatic Fragmentation Kit, 96 Reactions Automation (Agilent p/n 5191-6764)
	Mechanical (Covaris) Shearing	Perform mechanical shearing on Covaris Sample Preparation System using manual liquid handling (no automated protocol). Requires purchase of Covaris Sample Preparation System and consumables (see "Additional Required Materials based on DNA Sample Type/Fragmentation Method" on page 16).
Pooling Strategy	Pre-Capture Pooling	For library preparation, use a SureSelect XT HS2 DNA Library Preparation Kit that is compatible with pre-capture pooling (e.g., Agilent part numbers G9985A through G9985D). For target enrichment, use the SureSelect XT HS2 DNA Target Enrichment Kit (Post PCR). Refer to Table 3 on page 14.
	Post-Capture Pooling	Use one of the SureSelect XT HS2 DNA Reagent Kits compatible with post-capture pooling (Agilent part numbers G9983A through G9984D). Kits include reagents for both library preparation and target enrichment. Refer to Table 3 on page 14.

Automation Protocols used in the Workflow

Table 10 Overview of VWorks protocols and runsets

Workflow Step	Substep	VWorks Protocols Used for Agilent NGS Workstation automation
AMPure XP Bead Aliquoting	Aliquot AMPure XP beads for use in the Library Preprunset	AMPureXP_Aliquot (Case Library Prep)
	Aliquot AMPure XP beads for use in the Pre-Capture PCR purification protocol	AMPureXP_Aliquot (Case Pre-Capture PCR)
	Aliquot AMPure XP Beads for use in the Pre-Capture Pooling protocol for concentrating the DNA	AMPureXP_Aliquot (Case Concentration of Pool)
	Aliquot AMPure XP Beads for use in the Post-Capture PCR purification protocol	AMPureXP_Aliquot (Case Post-Capture PCR)
Enzymatic DNA Fragmentation* Library Preparation	Shear DNA samples using enzymatic fragmentation	EnzFrag_XT_HS2_ILM
	Dilute fragmented samples to appropriate concentration	EnzFrag_Dil_XT_HS2_ILM
	Prepare duplex, molecular-barcoded DNA libraries	Runset LibraryPrep_XT_HS2_ILM
	Amplify indexed DNA libraries with unique dual indexing primer pair	Pre-CapPCR_XT_HS2_ILM
	Purify indexed DNA libraries using AMPure XP beads using an elution volume suitable for single-plexed hybridization (i.e., the post-capture pooling workflow)	AMPureXP_XT_HS2_ILM (Case Pre-Capture PCR – SinglePlex)
	Purify indexed DNA libraries using AMPure XP beads using an elution volume suitable for multi-plexed hybridization (i.e., the pre-capture pooling workflow)	AMPureXP_XT_HS2_ILM (Case Pre-Capture PCR – MultiPlex)
	Analyze indexed DNA libraries using Agilent TapeStation platform	TS_D1000
Library Pooling (for pre-capture pooling workflow)	Pool indexed DNA libraries in pools of 8 or 16	PreCapture_Pooling This protocol is set up and executed from the XT HS2 Pooling VWorks Form
Multi-Plex Pre-Hybridization (for pre-capture pooling workflow)	Dilute pooled samples of indexed DNA libraries to normalize volumes to 100 μ L	Aliquot_Water
	Concentrate pooled samples to 24 μL for hybridization	AMPureXP_XT_HS2_ILM (Case Concentration of Pool)
Single-Plex Pre-Hybridization (for post-capture pooling workflow)	Aliquot 500-1000 ng of prepped libraries	Aliquot_Libraries
Hybridization and Capture	Hybridize prepped libraries or library pools (target enrichment)	Hyb_XT_HS2_ILM
	Capture and wash DNA hybrids	Runset SSELCapture&Wash_XT_HS2

Table 10 Overview of VWorks protocols and runsets

Workflow Step	Substep	VWorks Protocols Used for Agilent NGS Workstation automation
Post-Capture Sample Processing	Amplify target-enriched libraries or library pools	Post-CapPCR_XT_HS2_ILM
	Purify enriched, amplified libraries or library pools using AMPure XP beads	AMPureXP_XT_HS2_ILM (Case Post-Capture PCR)
	Analyze final libraries or library pools using Agilent TapeStation platform	TS_HighSensitivity_D1000
	For post-capture pooling workflow, pool indexed DNA libraries	Aliquot_Captures

^{*} To shear DNA samples mechanically, rather than enzymatically, perform liquid handing steps manually on the Covaris Sample Preparation System (see "Method 2. Prepare fragmented DNA by mechanical shearing" on page 55). The XT HS2 VWorks Form does not include an automation protocol for mechanical shearing.

Experimental Setup Considerations for Automated Runs

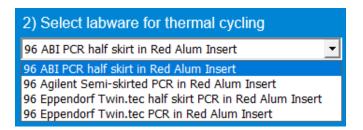
Agilent SureSelect Automated Library Prep and Capture System runs may include 1, 2, 3, 4, 6, or 12 columns (equivalent to 8, 16, 24, 32, 48, or 96 wells) of gDNA samples to be enriched for sequencing on the Illumina platform. Plan your experiments using complete columns of samples.

Table 11 Columns to Samples Equivalency

Number of Columns Processed	Total Number of Samples Processed
1	8
2	16
3	24
4	32
6	48
12	96

The number of columns or samples that may be processed using the supplied reagents (see **Table 1**) will depend on the experimental design. For greatest efficiency of reagent use, plan experiments using at least 3 columns per run. Each 96-reaction kit contains sufficient reagents for 96 reactions configured as 4 runs of 3 columns of samples per run.

Considerations for Placement of gDNA Samples in 96-well Plates for Automated Processing


- The Agilent NGS Workstation processes samples column-wise beginning at column 1. The gDNA samples should be loaded into 96-well plates column-wise, in well order A1 to H1, then A2 to H2, ending with A12 to H12. When processing partial runs with <12 sample columns, do not leave empty columns between sample columns; always load the plate using the left-most column that is available.
- At the hybridization step (see **Figure 2**), you can add a different Probe to each row of the plate. Plan your experiment such that each prepared DNA library corresponds to the appropriate probe row in the sample plate.
- For post-capture amplification (see **Figure 2**), different probes can require different amplification cycle numbers, based on the probe design sizes. It is most efficient to process similar-sized probes on the same plate. See **Table 82** on page 111 to determine which probes may be amplified on the same plate.

Considerations for Equipment Setup

- Some workflow steps require the rapid transfer of sample plates between the Bravo deck and a thermal cycler. Locate your thermal cycler in close proximity to the Agilent NGS Workstation to allow rapid and efficient plate transfer.
- Several workflow steps require that the sample plate be sealed using the PlateLoc thermal microplate sealer included with the Agilent NGS Workstation, and then centrifuged to collect any dispersed liquid. To maximize efficiency, locate the centrifuge in close proximity to the Agilent NGS Workstation.

PCR Plate Type Considerations

Automation protocols include several liquid-handling steps in which reagents are dispensed to PCR plates in preparation for transfer to a thermal cycler. For these steps, you must specify on the VWorks Form which PCR plate type will be used to allow correct configuration of the liquid handling components. Before you begin the automation protocol, make sure that you are using a supported PCR plate type. The PCR plate type to be used in the protocol is specified using the menu below. Vendor and part number information is provided for the supported plate types in **Table 12**

CAUTION

The plates listed in **Table 12** are compatible with the Agilent NGS Bravo and associated VWorks automation protocols, designed to support use of various thermal cyclers.

Do not use PCR plates that are not listed in **Table 12**, even if they are compatible with your chosen thermal cycler.

Table 12 Ordering information for supported PCR plates

Description in VWorks menu	Vendor and part number
96 ABI PCR half-skirted plates (MicroAmp Optical plates)	Thermo Fisher Scientific p/n N8010560
96 Agilent semi-skirted PCR plate	Agilent p/n 401334
96 Eppendorf twin.tec half-skirted PCR plates	Eppendorf p/n 951020303
96 Eppendorf twin.tec PCR plates (full-skirted)	Eppendorf p/n 951020401

3 Preparation of AMPure XP Bead Plates

- Step 1. Prepare the bead plate to be used for library preparation 36
- Step 2. Prepare the bead plate to be used for Pre-Capture Purification 38
- Step 3. Prepare the bead plate to be used for concentration of pooled DNA (pre-capture pooling workflow only) 40
- Step 4. Prepare the bead plate to be used for Post-Capture Purification 42

This chapter provides instructions on preparing all of the plates of AMPure XP beads that are needed throughout the entire workflow. Each plate of AMPure XP beads is prepared using a separate automation protocol available in the XT HS2 VWorks form.

Preparing the plates of AMPure XP beads at the start of the workflow allows you to execute the remainder of the workflow with fewer delays between steps. Importantly, however, if you are running the workflow over multiple days, only prepare the plates of AMPure XP beads that are to be used within the day and the following day. Do not prepare AMPure XP bead plates more than one day in advance of when they are needed. Also, make sure to label the plates (without writing on the plates themselves) to properly differentiate them.

Step 1. Prepare the bead plate to be used for library preparation

The LibraryPrep_XT_HS2_ILM protocol requires a bead plate containing 80 μ L of beads in each well. Use the AMPureXP_Aliquot (Library Prep) protocol to prepare the bead plate needed for library preparation.

Prepare the workstation and reagents for the AMPureXP_Aliquot (Library Prep) protocol

- 1 Clear the Labware MiniHub and BenchCel of all plates and tip boxes.
- **2** Gently wipe down the Labware MiniHub, Bravo deck, and BenchCel with a DNA Away decontamination wipe.
- **3** Prepare an Agilent shallow well reservoir containing the AMPure XP bead suspension.
 - a Verify that the AMPure XP bead suspension is at room temperature.
 - **b** Mix the bead suspension well so that the reagent appears homogeneous and consistent in color. *Do not freeze*.
 - **c** Directly pour the bead suspension from the bottle into the reservoir. Fill the columns of the reservoir with enough bead suspension to cover the pyramid-shaped wells. Only fill as many columns as will be needed for the LibraryPrep_XT_HS2_ILM protocol (each column accommodates 8 gDNA samples).

Load the Agilent NGS Workstation

4 Load the Bravo deck according to Table 13.

Table 13 Initial Bravo deck configuration for AMPureXP_Aliquot (Library Prep) protocol

Location	Content
2	New tip box
5	Empty Agilent Deep Well plate
6	Reservoir of AMPure XP bead suspension prepared in step 3
8	Empty tip box

Run VWorks protocol AMPureXP_Aliquot (Library Prep)

- 5 On the SureSelect setup form, under **Select protocol to execute**, select the **AMPureXP_Aliquot** (Library Prep) protocol.
- **6** Select the number of columns of samples to be processed. Runs must include 1, 2, 3, 4, 6, or 12 columns.
- 7 Click Display Initial Workstation Setup.

8 Verify that the NGS workstation has been set up as displayed on the right side of the form.

9 When verification is complete, click Run Selected Protocol.

Running the AMPureXP_Aliquot (Library Prep) protocol takes approximately 5 minutes. The protocol directs the Bravo NGS Workstation to aliquot 80 μL of beads from the Agilent shallow well reservoir into the wells of the Agilent Deep Well plate.

- **10** When the protocol is complete, remove the Agilent Deep Well plate containing the AMPure XP bead suspension from position 5 of the Bravo deck.
- 11 Seal the plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 sec. Keep at 4°C until needed in the **LibraryPrep_XT_HS2_ILM** protocol (refer to **Table 36** on page 61). Use the plate within the next 24 hours.

If desired, pour any unused bead suspension still present in the Agilent shallow well reservoir back into the original stock bottle.

Step 2. Prepare the bead plate to be used for Pre-Capture Purification

The AMPureXP_XT_HS2_ILM (Pre-Capture PCR) protocols require a bead plate containing 50 μ L of beads in each well. Use the AMPureXP_Aliquot (Pre-Capture PCR) protocol to prepare the bead plate needed for purification of pre-capture PCR products.

Prepare the workstation and reagents for the AMPureXP_Aliquot (Pre-Capture PCR) protocol

- 1 Clear the Labware MiniHub and BenchCel of all plates and tip boxes.
- **2** Gently wipe down the Labware MiniHub, Bravo deck, and BenchCel with a DNA Away decontamination wipe.
- 3 Prepare an Agilent shallow well reservoir containing the AMPure XP bead suspension.
 - **a** Verify that the AMPure XP bead suspension is at room temperature.
 - **b** Mix the bead suspension well so that the reagent appears homogeneous and consistent in color. *Do not freeze*.
 - **c** Directly pour the bead suspension from the bottle into the reservoir. Fill the columns of the reservoir with enough bead suspension to cover the pyramid-shaped wells. Only fill as many columns as will be needed for the AMPureXP_XT_HS2_ILM (Pre-Capture PCR) protocol (each column accommodates 8 amplified DNA samples).

Load the Agilent NGS Workstation

4 Load the Bravo deck according to Table 14.

Table 14 Initial Bravo deck configuration for AMPureXP_Aliquot (Pre-Capture PCR) protocol

Location	Content
2	New tip box
5	Empty Agilent Deep Well Plate
6	Reservoir of AMPure XP bead suspension prepared in step 3
8	Empty tip box

Run VWorks protocol AMPureXP_Aliquot (Pre-Capture PCR)

- 5 On the SureSelect setup form, under **Select protocol to execute**, select the **AMPureXP_Aliquot** (**Pre-Capture PCR**) protocol.
- **6** Select the number of columns of samples to be processed. Runs must include 1, 2, 3, 4, 6, or 12 columns.
- 7 Click Display Initial Workstation Setup.

8 Verify that the NGS workstation has been set up as displayed on the right side of the form.

9 When verification is complete, click Run Selected Protocol.

Running the AMPureXP_Aliquot (Pre-Capture PCR) protocol takes approximately 5 minutes. The protocol directs the Bravo NGS Workstation to aliquot 50 μ L of beads from the Agilent shallow well reservoir into the wells of the Agilent Deep Well plate.

- **10** When the protocol is complete, remove the Agilent Deep Well plate containing the AMPure XP bead suspension from position 5 of the Bravo deck.
- 11 Seal the plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 sec. Keep at 4°C until needed in the **AMPureXP_XT_HS2_ILM (Pre-Capture PCR)** protocol (refer to **Table 47** on page 70). Use the plate within the next 24 hours.

If desired, pour any unused bead suspension still present in the Agilent shallow well reservoir back into the original stock bottle.

Step 3. Prepare the bead plate to be used for concentration of pooled DNA (pre-capture pooling workflow only)

The AMPureXP_XT_HS2_ILM (Concentration of Pool) protocol is part of the pre-capture pooling workflow. It requires a bead plate containing 180 μ L of beads in each well. Use the AMPureXP_Aliquot (Concentration of Pool) protocol to prepare the bead plate needed for concentrating the DNA library pools.

The bead plate for the AMPureXP_XT_HS2_ILM (Concentration of Pool) protocol is only needed if you are running the pre-capture pooling workflow option. If you are using the post-capture pooling workflow, proceed to "Step 4. Prepare the bead plate to be used for Post-Capture Purification" on page 42.

Prepare the workstation and reagents for the AMPureXP_Aliquot (Concentration of Pool) protocol

- 1 Clear the Labware MiniHub and BenchCel of all plates and tip boxes.
- **2** Gently wipe down the Labware MiniHub, Bravo deck, and BenchCel with a DNA Away decontamination wipe.
- **3** Prepare an Agilent shallow well reservoir containing the AMPure XP bead suspension.
 - a Verify that the AMPure XP bead suspension is at room temperature.
 - **b** Mix the bead suspension well so that the reagent appears homogeneous and consistent in color. *Do not freeze*.
 - **c** Directly pour the bead suspension from the bottle into the reservoir. Fill the columns of the reservoir with enough bead suspension to cover the pyramid-shaped wells. Only fill as many columns as will be needed for the AMPureXP_XT_HS2_ILM (Concentration of Pool) protocol (each column accommodates 8 DNA library pools).

Load the Agilent NGS Workstation

4 Load the Bravo deck according to **Table 15**.

Table 15 Initial Bravo deck configuration for AMPureXP_Aliquot (Concentration of Pool) protocol

Location	Content
2	New tip box
5	Empty Agilent Deep Well Plate
6	Reservoir of AMPure XP bead suspension prepared in step 3
8	Empty tip box

Run VWorks protocol AMPureXP_Aliquot (Concentration of Pool)

- 5 On the SureSelect setup form, under **Select protocol to execute**, select the **AMPureXP_Aliquot** (Concentration of Pool) protocol.
- **6** Select the number of columns of samples to be processed. Runs must include 1, 2, 3, 4, 6, or 12 columns.
- 7 Click Display Initial Workstation Setup.

- 8 Verify that the NGS workstation has been set up as displayed on the right side of the form.
- 9 When verification is complete, click Run Selected Protocol.

Running the AMPureXP_Aliquot (Concentration of Pool) protocol takes approximately 5 minutes. The protocol directs the Bravo NGS Workstation to aliquot 180 μ L of beads from the Agilent shallow well reservoir into the wells of the Agilent Deep Well plate.

- **10** When the protocol is complete, remove the Agilent Deep Well plate containing the AMPure XP bead suspension from position 5 of the Bravo deck.
- 11 Seal the plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 sec. Keep at 4°C until needed in the **AMPureXP_XT_HS2_ILM (Concentration of Pool)** protocol (refer to **Table 59** on page 91). Use the plate within the next 24 hours.

If desired, pour any unused bead suspension still present in the Agilent shallow well reservoir back into the original stock bottle.

Step 4. Prepare the bead plate to be used for Post-Capture Purification

The AMPureXP_XT_HS2_ILM (Post-Capture PCR) protocol requires a bead plate containing 50 μ L of beads in each well. Use the AMPureXP_Aliquot (Post-Capture PCR) protocol to prepare the bead plate needed for purification of post-capture PCR products.

Prepare the workstation and reagents for the AMPureXP_Aliquot (Post-Capture PCR) protocol

- 1 Clear the Labware MiniHub and BenchCel of all plates and tip boxes.
- **2** Gently wipe down the Labware MiniHub, Bravo deck, and BenchCel with a DNA Away decontamination wipe.
- 3 Prepare an Agilent shallow well reservoir containing the AMPure XP bead suspension.
 - **a** Verify that the AMPure XP bead suspension is at room temperature.
 - **b** Mix the bead suspension well so that the reagent appears homogeneous and consistent in color. *Do not freeze*.
 - **c** Directly pour the bead suspension from the bottle into the reservoir. Fill the columns of the reservoir with enough bead suspension to cover the pyramid-shaped wells. Only fill as many columns as will be needed for the AMPureXP_XT_HS2_ILM (Post-Capture PCR) protocol (each column accommodates 8 indexed libraries).

Load the Agilent NGS Workstation

4 Load the Bravo deck according to Table 16.

Table 16 Initial Bravo deck configuration for AMPureXP_Aliquot (Post-Capture PCR) protocol

Location	Content
2	New tip box
5	Empty Agilent Deep Well Plate
6	Reservoir of AMPure XP bead suspension prepared in step 3
8	Empty tip box

Run VWorks protocol AMPureXP_Aliquot (Post-Capture PCR)

- 5 On the SureSelect setup form, under **Select protocol to execute**, select the **AMPureXP_Aliquot** (**Post-Capture PCR**) protocol.
- **6** Select the number of columns of samples to be processed. Runs must include 1, 2, 3, 4, 6, or 12 columns.
- 7 Click Display Initial Workstation Setup.

8 Verify that the NGS workstation has been set up as displayed on the right side of the form.

9 When verification is complete, click Run Selected Protocol.

Running the AMPureXP_Aliquot (Post-Capture PCR) protocol takes approximately 5 minutes. The protocol directs the Bravo NGS Workstation to aliquot 50 μ L of beads from the Agilent shallow well reservoir into the wells of the Agilent Deep Well plate.

- **10** When the protocol is complete, remove the Agilent Deep Well plate containing the AMPure XP bead suspension from position 5 of the Bravo deck.
- 11 Seal the plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 sec. Keep at 4°C until needed in the **AMPureXP_XT_HS2_ILM (Post-Capture PCR)** protocol (refer to **Table 88** on page 117). Use the plate within the next 24 hours.

If desired, pour any unused bead suspension still present in the Agilent shallow well reservoir back into the original stock bottle.

4 Sample Preparation

Step 1. Prepare and analyze quality of genomic DNA samples 46
Step 2. Fragment the DNA 48

Method 1: Prepare fragmented DNA by enzymatic fragmentation 48
Method 2. Prepare fragmented DNA by mechanical shearing 55

Step 3. Prepare adaptor-ligated libraries 57
Step 4. Amplify adaptor-ligated libraries 63
Step 5. Purify amplified DNA using AMPure XP beads 69
Step 6. Assess Library DNA quantity and quality 71

For an overview of the SureSelect XT HS2 target enrichment workflow, see **Figure 2** on page 29. This section contains instructions for automated gDNA library preparation for the Illumina paired-read sequencing platform. For each sample to be sequenced, an individual indexed and molecular-barcoded library is prepared.

The library preparation protocol is compatible with both high-quality gDNA prepared from fresh or fresh frozen samples and lower-quality DNA prepared from FFPE samples. Modifications required for FFPE samples are included throughout the protocol steps. For a summary of modifications for FFPE samples see **Chapter 7** on **page 137**.

The protocol requires 10 ng to 200 ng of input DNA, with adjustments to DNA input amount or quantification method required for some FFPE samples. For optimal results, use the maximum amount of input DNA available within the recommended range. Analysis using the molecular barcodes is recommended when sample is available in low amounts (10–50 ng) or when detecting very low allele frequency variants using small probe designs.

Step 1. Prepare and analyze quality of genomic DNA samples

Preparation of high-quality gDNA from fresh biological samples

1 Prepare high-quality gDNA using a suitable purification system, such as Qiagen's QIAamp DNA Mini Kit, following the manufacturer's protocol.

NOTE

Make sure genomic DNA samples are of high quality with an OD 260/280 ratio ranging from 1.8 to 2.0.

2 Use the Qubit BR dsDNA Assay Kit to determine the concentration of each gDNA sample. Follow the manufacturer's instructions for the instrument and assay kit.

Additional qualification of DNA samples is not required for DNA derived from fresh biological samples. Depending on the type of sample fragmentation method to be used, proceed to either "Method 1: Prepare fragmented DNA by enzymatic fragmentation" on page 48 or "Method 2. Prepare fragmented DNA by mechanical shearing" on page 55.

Preparation and qualification of gDNA from FFPE samples

1 Prepare gDNA from FFPE tissue sections using Qiagen's QIAamp DNA FFPE Tissue Kit and Qiagen's Deparaffinization Solution, following the manufacturer's protocol. Elute the final gDNA samples from the MinElute column in two rounds, using 30 μ L Buffer ATE in each round, for a final elution volume of approximately 60 μ L.

NOTE

If tissue lysis appears incomplete after one hour of digestion with Proteinase K, add an additional 10 μ L of Proteinase K and continue incubating at 56°C, with periodic mixing, for up to three hours.

Store the gDNA samples on ice for same-day library preparation, or at -20° C for later processing.

2 Assess the quality (DNA integrity) for each FFPE DNA sample using one of the methods below.

Option 1: Qualification using the Agilent NGS FFPE QC Kit (Recommended Method)

The Agilent NGS FFPE QC Kit provides a qPCR-based assay for DNA sample integrity determination. Results include a $\Delta\Delta$ Cq DNA integrity score and the precise quantity of amplifiable DNA in the sample, allowing direct normalization of DNA input for each sample. DNA input recommendations based on $\Delta\Delta$ Cq scores for individual samples are summarized in **Table 17**.

- **a** Use the Qubit BR dsDNA Assay Kit to determine the concentration of each gDNA sample. Follow the manufacturer's instructions for the instrument and assay kit.
- **b** Remove a 1 μ L aliquot of the FFPE gDNA sample for analysis using the Agilent NGS FFPE QC Kit to determine the $\Delta\Delta$ Cq DNA integrity score. See the kit user manual (G9700-90000) at www.agilent.com for more information.
- **c** For all samples with ΔΔCq DNA integrity score ≤1, use the Qubit-based gDNA concentration determined in **step a**, above, to determine volume of input DNA needed for the protocol.

d For all samples with ΔΔCq DNA integrity score >1, use the qPCR-based concentration of amplifiable gDNA, reported by the Agilent NGS FFPE QC Kit results, to determine amounts of input DNA for the protocol.

Table 17 SureSelect XT HS2 DNA input modifications based on ∆∆Cq DNA integrity score

Protocol Parameter	non-FFPE Samples	FFPE Samples		
		∆∆Cq≤1 [*]	∆∆Cq >1	
DNA input for Library Preparation	10 ng to 200 ng DNA, based on Qubit Assay	10 ng to 200 ng DNA, based on Qubit Assay	10 ng to 200 ng of amplifiable DNA, based on qPCR quantification	

^{*} FFPE samples with ΔΔCq scores ≤1 should be treated like non-FFPE samples for DNA input amount determinations. For samples of this type, make sure to use the DNA concentration determined by the Qubit Assay, instead of the concentration determined by qPCR, to calculate the volume required for 10−200 ng DNA.

Option 2: Qualification using Agilent's Genomic DNA ScreenTape assay DIN score

Agilent's Genomic DNA ScreenTape assay, used in conjunction with Agilent's 4200 TapeStation, provides a quantitative electrophoretic assay for DNA sample integrity determination. This assay reports a DNA Integrity Number (DIN) score for each sample which is used to estimate the appropriate normalization of DNA input required for low-integrity DNA samples.

- **a** Use the Qubit BR dsDNA Assay Kit to determine the concentration of each gDNA sample. Follow the manufacturer's instructions for the instrument and assay kit.
- **b** Remove a 1 µL aliquot of the FFPE gDNA sample and analyze using the Genomic DNA ScreenTape assay. See the user manual at www.agilent.com for more information.
- **c** Using the DIN score reported for each sample in the Genomic DNA ScreenTape assay, consult **Table 18** to determine the recommended amount of input DNA for the sample.

Table 18 SureSelect XT HS2 DNA input modifications based on DNA Integrity Number (DIN) score

Protocol	non-FFPE	FFPE Samples					
Parameter Samples		DIN > 8* DIN 3-8		DIN<3			
DNA input for Library Preparation	10 ng to 200 ng DNA, quantified by Qubit Assay	10 ng to 200 ng DNA, quantified by Qubit Assay	Use at least 15 ng for more intact samples and at least 40 ng for less intact samples. Use the maximum amount of DNA available, up to 200 ng, for all samples. Quantify by Qubit Assay.	Use at least 50 ng for more intact samples and at least 100 ng for the least intact samples. Use the maximum amount of DNA available, up to 200 ng, for all samples. Quantify by Qubit Assay.			

^{*} FFPE samples with DIN>8 should be treated like non-FFPE samples for DNA input amount determinations.

NOTE

DNA quality affects the recommended pre-capture PCR cycle number, as outlined in **Table 41** on page 64. Samples with differing PCR cycle number requirements must be processed in separate library preparation runs.

Step 2. Fragment the DNA

The SureSelect XT HS2 target enrichment workflow supports two different methods for preparing fragmented DNA.

- Method 1 uses enzymatic fragmentation, with liquid-handling steps executed by automation protocols. The instructions are described in "Method 1: Prepare fragmented DNA by enzymatic fragmentation" on page 48.
- Method 2 uses mechanical shearing, and is described in "Method 2. Prepare fragmented DNA by mechanical shearing" on page 55.

Select the desired option and then follow the instructions in the appropriate section.

Method 1: Prepare fragmented DNA by enzymatic fragmentation

In method 1, the Agilent NGS Workstation completes the liquid-handling steps for enzymatic fragmentation of the DNA samples using protocol EnzFrag_XT_HS2_ILM. After the workstation completes the liquid-handling steps, you transfer the PCR plate to a thermal cycler for incubation. You then transfer the PCR plate back to the Bravo deck to run a dilution protocol called EnzFrag_Dil_XT_HS2_ILM that dilutes the samples to $50-\mu L$ volumes.

Method 1 uses the components listed in **Table 19**. Thaw and mix each component as directed in **Table 19** before use. Before starting the run, you need to prepare the Fragmentation master mix (with overage) without the DNA sample. **Table 22** provides Fragmentation master mix volumes for runs that include 1, 2, 3, 4, 6, and 12 columns of samples.

Table 19 Reagents thawed before use

Kit Component	Storage Location	Thawing Conditions	Mixing Method	Where Used
5X SureSelect Fragmentation Buffer (blue cap)	SureSelect Enzymatic Fragmentation Kit, −20°C	Thaw on ice then keep on ice	Vortexing	page 50
SureSelect Fragmentation Enzyme (green cap)	SureSelect Enzymatic Fragmentation Kit, −20°C	Place on ice just before use	Inversion	page 50

Prepare the workstation for protocol EnzFrag_XT_HS2_ILM

- 1 Clear the Labware MiniHub and BenchCel of all plates and tip boxes.
- **2** Gently wipe down the Labware MiniHub, Bravo deck, and BenchCel with a DNA Away decontamination wipe.
- **3** Turn on the ThermoCube, set to 0°C, at position 9 of the Bravo deck. Be sure that the chiller reservoir contains at least 300 mL of 25% ethanol.
- **4** Pre-set the temperature of Bravo deck position 4 to 4°C using the Inheco Multi TEC control touchscreen, as described in **"Setting the Temperature of Bravo Deck Heat Blocks"** on page 21. Bravo deck position 4 corresponds to CPAC 2, position 1 on the Multi TEC control touchscreen.

5 Place a red PCR plate insert at Bravo deck position 4.

Pre-program the thermal cycler for the fragmentation reaction

6 Pre-program a thermal cycler using the program in **Table 20**. Start the program, then immediately pause the program.

Table 20 Thermal cycler program for enzymatic fragmentation*

Step	Temperature	Time
Step 1	37°C	Varies see Table 21
Step 2	65°C	5 minutes
Step 3	4°C	Hold

 $^{^*}$ Use a reaction volume setting of 20 μ L, if required for thermal cycler set up.

Optimal fragmentation conditions may vary based on the NGS read length to be used in the workflow. Refer to **Table 21** below for the duration at 37°C appropriate for your sample type and required NGS read length.

Table 21 Fragmentation duration based on sample type and NGS read length

NGS read length	Target fragment	Duration of 37°C incubation step			
requirement	size	High-quality DNA samples	FFPE DNA samples		
2 × 100 reads	150 to 200 bp	25 minutes	25 minutes		
2 × 150 reads	180 to 250 bp	15 minutes	25 minutes		

Prepare the sample plate for fragmentation

7 In the wells of the PCR plate, dilute 10-200 ng of each gDNA sample with nuclease-free water to a final volume of $15 \,\mu$ L. Use the PCR plate that is to be placed in the thermal cycler for the enzymatic fragmentation program.

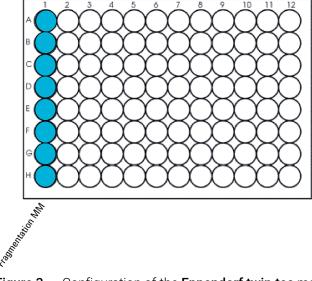
See **Table 17** or **Table 18** for FFPE DNA input guidelines based on the measured DNA quality in each sample.

Prepare the Fragmentation master mix

8 Prepare the appropriate volume of Fragmentation master mix by combining the reagents in **Table 22**.

Mix well by pipetting up and down 20 times or seal the tube and vortex at high speed for 5–10 seconds. Spin briefly to remove any bubbles and keep on ice.

Table 22 Preparation of Fragmentation master mix


Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns
Nuclease-free water	2 μL	42.5 µL	59.5 µL	76.5 µL	97.8 µL	136.0 µL	253.8 μL
5X SureSelect Fragmentation Buffer (blue cap)	2 μL	42.5 µL	59.5 μL	76.5 µL	97.8 μL	136.0 μL	253.8 μL
SureSelect Fragmentation Enzyme (green cap)	1 μL	21.3 μL	29.8 μL	38.3 µL	48.9µL	68.0 µL	126.9 µL
Total Volume	5 μL	106.3 μL	148.8 μL	191.3µL	244.4 μL	340.0 μL	634.4 μL

Prepare the master mix source plate

9 Prepare the **Eppendorf twin.tec** master mix source plate for the run as indicated in **Table 23**. Add the indicated volume of the master mix to all wells of the indicated column of the Eppendorf plate. Keep the master mix on ice during the aliquoting steps. The final configuration of the master mix source plate is shown in **Figure 3**.

Table 23 Preparation of the master mix source plate for EnzFrag_XT_HS2_ILM protocol

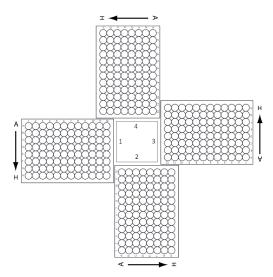
Master Mix Solution	Position on Source Plate	Volume of master mix added per Well of Eppendorf twin.tec Source Plate					
		1-Column Runs	2-Column Runs	3-Column Runs	4-Column Runs	6-Column Runs	12-Column Runs
Fragmentation master mix	Column 1 (A1-H1)	12.5 µL	17.5 μL	22.5 μL	28.8 μL	40.0 μL	75.0 μL

Figure 3 Configuration of the **Eppendorf twin.tec** master mix source plate for protocol EnzFrag_XT_HS2_ILM

10 Seal the master mix source plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 sec.

11 Centrifuge the plate for 30 seconds to drive the well contents off the walls and plate seal and to eliminate any bubbles. Keep the master mix source plate on ice.

NOTE


The presence of bubbles in source plate solutions may cause inaccurate volume transfer by the Bravo liquid handling platform. Ensure that the source plate is sealed and centrifuged prior to use in a run.

Load the Agilent NGS Workstation

12 Load the Labware MiniHub according to **Table 24**, using the plate orientations shown in **Figure 4**.

Table 24 Initial MiniHub configuration for EnzFrag_XT_HS2_ILM protocol

Vertical Shelf Position	Cassette 1	Cassette 2	Cassette 3	Cassette 4
Shelf 5 (Top)	_	_	_	_
Shelf 4	_	_	_	_
Shelf 3	_	_	_	_
Shelf 2	New tip box	_	_	_
Shelf 1 (Bottom)	Empty tip box	_	_	Empty tip box

Figure 4 Agilent Labware MiniHub plate orientation.

13 Load the Bravo deck according to Table 25.

Table 25 Initial Bravo deck configuration for EnzFrag_XT_HS2_ILM protocol

Location	Content
4	gDNA samples in PCR plate seated in red insert (PCR plate type must be specified on setup form under Parameter 2)
5	Empty Eppendorf twin.tec plate
9	Fragmentation master mix source plate, unsealed

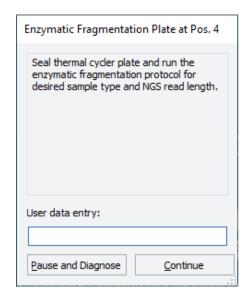
14 Load the BenchCel Microplate Handling Workstation according to Table 26.

Table 26 Initial BenchCel configuration for EnzFrag_XT_HS2_ILM protocol

No. of Columns Processed	Rack 1	Rack 2	Rack 3	Rack 4
1	1 Tip box	_	_	_
2	1 Tip box	_	_	_
3	1 Tip box	_	_	_
4	1 Tip box	_	_	_
6	1 Tip box	_	_	_
12	1 Tip box	_	_	_

Run VWorks protocol EnzFrag_XT_HS2_ILM

- **15** On the SureSelect setup form, under **Select protocol to execute**, select the **EnzFrag_XT_HS2_ILM** protocol.
- **16** Under **Select labware for thermal cycling**, select the specific type of PCR plate used at position 4 of the Bravo deck.
- **17** Select the number of columns of samples to be processed. Runs must include 1, 2, 3, 4, 6, or 12 columns.
- 18 Click Display Initial Workstation Setup.



- 19 Verify that the NGS workstation has been set up as displayed on the right side of the form.
- 20 When verification is complete, click Run Selected Protocol.

Running the EnzFrag_XT_HS2_ILM protocol takes approximately 10 minutes. Once complete, the samples are ready for fragmentation (performed in the pre-programmed thermal cycler). The samples are located in the PCR plate at position 4 of the Bravo deck.

21 When you see the following prompt, remove the PCR plate from position 4 of the Bravo deck and seal the plate using the PlateLoc Thermal Microplate Sealer, with sealing setting of 165°C and 1.0 seconds.

- **22** Centrifuge the plate for 30 seconds to drive the well contents off the walls and plate seal and to eliminate air bubbles.
- **23** Immediately place the sample plate in the thermal block. Close the lid and resume the thermal cycler program in **Table 20**.
- 24 From the Bravo deck, remove the Eppendorf twin.tec plate that was used as the Fragmentation master mix source plate from position 9 and set it aside. You will use this same plate again for the Pre-CapPCR_XT_HS2_ILM protocol as described in "Prepare the pre-capture PCR master mix and master mix source plate" on page 65.

Prepare the workstation for protocol EnzFrag_Dil_XT_HS2_ILM

- 25 Clear the Labware MiniHub and BenchCel of all plates and tip boxes.
- **26** Pre-set the temperature of Bravo deck position 4 to 4°C using the Inheco Multi TEC control touchscreen, as described in **Setting the Temperature of Bravo Deck Heat Blocks**. Bravo deck position 4 corresponds to CPAC 2, position 1 on the Multi TEC control touchscreen.
- 27 Place a red PCR plate insert at Bravo deck position 4.

Prepare the sample dilution water reservoir

28 Prepare an Agilent shallow well reservoir containing 30 mL of nuclease-free water.

Make sure that the water in the reservoir does not contain bubbles. If bubbles are present, dislodge them with a clean pipette tip.

At the end of the automation protocol, retain this reservoir for use in the LibraryPrep_XT_HS2_ILM runset and AMPureXP_XT_HS2_ILM (Pre-Cap PCR) protocol.

Load the Agilent NGS Workstation

29 Load the Labware MiniHub according to **Table 27**, using the plate orientations shown in **Figure 4**.

Table 27 Initial MiniHub configuration for EnzFrag_Dil_XT_HS2_ILM protocol

Vertical Shelf Position	Cassette 1	Cassette 2	Cassette 3	Cassette 4
Shelf 5 (Top)	_	_	_	_
Shelf 4	_	_	_	_
Shelf 3	_	_	_	_
Shelf 2	_	Nuclease-free water reservoir from step 28	_	-
Shelf 1 (Bottom)	_	_	_	_

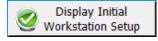

30 Load the Bravo deck according to Table 28.

Table 28 Initial Bravo deck configuration for EnzFrag_Dil_XT_HS2_ILM protocol

Location	Content
2	New tip box
4	PCR plate containing fragmented DNA samples seated in red insert (PCR plate type must be specified on setup form under Parameter 2)
5	Empty Eppendorf twin.tec plate (if the PCR plate at position 4 is not an Eppendorf twin.tec PCR plate) OR Empty (if the PCR plate at position 4 is an Eppendorf twin.tec PCR plate)
8	Empty tip box

Run VWorks protocol EnzFrag_Dil_XT_HS2_ILM

- **31** On the SureSelect setup form, under **Select protocol to execute**, select the **EnzFrag_Dil_XT_HS2_ILM** protocol.
- **32** Under **Select labware for thermal cycling**, select the specific type of PCR plate used at position 4 of the Bravo deck.
- **33** Select the number of columns of samples to be processed. Runs must include 1, 2, 3, 4, 6, or 12 columns.
- 34 Click Display Initial Workstation Setup.

- 35 Verify that the NGS workstation has been set up as displayed on the right side of the form.
- **36** When verification is complete, click **Run Selected Protocol**.

Running the EnzFrag_Dil_XT_HS2_ILM protocol takes approximately 5 minutes. Once complete, the samples are ready for library preparation. The samples are located in the Eppendorf plate at position 7 of the Bravo deck.

NOTE

This is not a stopping point in the workflow, and analysis of the enzymatically-fragmented samples is not required prior to library preparation. Moreover, electrophoretic analysis of the fragmented samples may produce misleading results due to the presence of agents that affect DNA fragment migration.

Proceed directly to "Step 3. Prepare adaptor-ligated libraries" on page 57.

Method 2. Prepare fragmented DNA by mechanical shearing

In method 2, the $50-\mu L$ gDNA samples are mechanically sheared using conditions optimized for either high-quality or FFPE DNA.

The target fragment size and corresponding shearing conditions may vary for workflows using different NGS read lengths. See **Table 29** for guidelines. Complete shearing instructions are provided on **page 56**.

Table 29 Covaris shearing duration based on NGS length

NGS read length requirement	Target fragment size	Shearing duration for high-quality DNA samples	Shearing duration for FFPE DNA samples
20 × 100 reads	150 to 200 bp	2 × 120 seconds	240 seconds
20 × 150 reads	180 to 250 bp	2 × 60 seconds	240 seconds

NOTE

Shearing protocols have been optimized using a Covaris model E220 instrument and the Covaris 96 microTUBE plate. Consult the manufacturer's recommendations for use of other Covaris instruments or sample holders to achieve the desired target DNA fragment size.

- 1 Set up the Covaris E220 instrument. Refer to the Covaris instrument user guide for details.
 - **a** Check that the water in the Covaris tank is filled with fresh deionized water to the appropriate fill line level according to the manufacturer's recommendations for the specific instrument model and sample tube or plate in use.
 - **b** Check that the water covers the visible glass part of the tube.
 - **c** On the instrument control panel, push the Degas button. Degas the instrument according to the manufacturer's recommendations, typically 30–60 minutes.
 - **d** Set the chiller temperature to between 2°C to 5°C to ensure that the temperature reading in the water bath displays 5°C. Consult the manufacturer's recommendations for addition of coolant fluids to prevent freezing.
- 2 Prepare the DNA samples for the run by diluting 10–200 ng of each gDNA sample with 1X Low TE Buffer (10 mM Tris- HCl, pH 7.5–8.0, 0.1 mM EDTA) to a final volume of 50 μL. Vortex well to mix, then spin briefly to collect the liquid. Keep the samples on ice.

See **Table 17** or **Table 18** for FFPE DNA input guidelines based on the measured DNA quality in each sample.

NOTE

Do not dilute samples to be sheared using water. Shearing samples in water reduces the overall library preparation yield and complexity.

- **3** Vortex each sample dilution to mix, then spin briefly to collect the liquid. Keep the samples on ice.
- 4 Complete the DNA shearing steps below for each of the gDNA samples.
 - **a** Transfer the 50-µL DNA sample into a Covaris 96 microTUBE Plate, using a tapered pipette tip to slowly transfer the sample through the pre-split foil seal. Seal the plate with the provided foil seal.
 - **b** Spin the 96 microTUBE Plate for 30 seconds to collect the liquid and to remove any bubbles from the bottom of the tube.
 - **c** Load the 96 microTUBE Plate onto the loading tray and shear the DNA with the settings in **Table 30**.

Table 30 Shear settings for Covaris E-series instrument (SonoLab software v7 or later)

Setting	High-quality DNA for 2 × 100 read NGS	High-quality DNA for 2 × 150 read NGS	FFPE DNA (2 × 100 or 2 × 150 read NGS)
Duty Factor	10%	10%	10%
Peak Incident Power (PIP)	175	175	175
Cycles per Burst	200	200	200
Treatment Time	2 × 120 seconds	2 × 60 seconds	240 seconds
Bath Temperature	2° to 8° C	2° to 8° C	2° to 8° C

Use the steps below for two-round shearing of high-quality DNA samples only:

- •Shear for 120 seconds
- •Spin the 96 microTUBE Plate for 10 seconds
- •Shear for additional 120 seconds
- •Spin the 96 microTUBE Plate for 10 seconds
- **d** Insert a pipette tip through the foil seal, then slowly remove the sheared DNA.
- **e** Transfer the sheared DNA sample (approximately $50~\mu$ L) to a Eppendorf twin.tec 96-well plate sample well. Keep the samples on ice.
- **f** After transferring the DNA sample, spin the 96 microTUBE Plate briefly to collect any residual sample volume. Transfer any additional collected liquid to the sample well used in **step e**.

NOTE

It is important to avoid loss of input DNA at this step, especially for low- abundance DNA samples. Visually inspect the microTUBE to ensure that all of the sample has been transferred. If droplets remain in the microTUBE, repeat **step f**.

Step 3. Prepare adaptor-ligated libraries

In this step, the Agilent NGS Workstation completes the DNA end modification steps required for SureSelect target enrichment, including end-repair, dA-tailing, and ligation of the molecular-barcoded adaptor. After the end-modification steps, the Agilent NGS Workstation purifies the prepared DNA using AMPure XP beads.

This step uses the components listed in **Table 31**. Thaw and mix each component as directed in **Table 31** before use. Before starting the run, you need to prepare master mixes (with overage) for each step, without the DNA sample. Master mixes for runs that include 1, 2, 3, 4, 6, and 12 columns (including overage) are shown in reagent preparation tables.

This step also uses the aliquoted plate of AMPure XP beads that was prepared on page 36.

Table 31 Reagents thawed before use in protocol

Kit Component	Storage Location	Thawing Conditions	Mixing Method	Where Used
End Repair-A Tailing Buffer (bottle)	SureSelect XT HS2 Library Preparation Kit for ILM (Pre PCR), -20°C	Thaw on ice (may require >20 minutes) then keep on ice	Vortexing	page 58
Ligation Buffer (bottle)	SureSelect XT HS2 Library Preparation Kit for ILM (Pre PCR), -20°C	Thaw on ice (may require >20 minutes) then keep on ice	Vortexing	page 59
End Repair-A Tailing Enzyme Mix (orange cap)	SureSelect XT HS2 Library Preparation Kit for ILM (Pre PCR), -20°C	Place on ice just before use	Inversion	page 58
T4 DNA Ligase (blue cap)	SureSelect XT HS2 Library Preparation Kit for ILM (Pre PCR), −20°C	Place on ice just before use	Inversion	page 59
SureSelect XT HS2 Adaptor Oligo Mix (white cap)	SureSelect XT HS2 Library Preparation Kit for ILM (Pre PCR), -20°C	Thaw on ice then keep on ice	Vortexing	page 59

Prepare the workstation

- 1 Clear the Labware MiniHub and BenchCel of all plates and tip boxes.
- 2 Pre-set the temperature of Bravo deck position 4 to 79°C using the Inheco Multi TEC control touchscreen, as described in **Setting the Temperature of Bravo Deck Heat Blocks**. Bravo deck position 4 corresponds to CPAC 2, position 1 on the Multi TEC control touchscreen.
- **3** Pre-set the temperature of Bravo deck position 6 to 4°C using the Inheco Multi TEC control touchscreen. Bravo deck position 6 corresponds to CPAC 2, position 2 on the Multi TEC control touchscreen.
- **4** Turn on the ThermoCube, set to 0°C, at position 9 of the Bravo deck. Be sure that the chiller reservoir contains at least 300 mL of 25% ethanol.

Prepare the DNA End-Repair/dA-Tailing master mix

- 1 Prepare the appropriate volume of End Repair/dA-Tailing master mix, using volumes listed in **Table 32** and using the liquid handling steps specified below.
 - **a** Vortex the thawed vial of End Repair-A Tailing Buffer for 15 seconds at high speed to ensure homogeneity. Visually inspect the solution; if any solids are observed, continue vortexing until all solids are dissolved.

CAUTION

The End Repair-A Tailing Buffer used in this step must be mixed thoroughly by vortexing at high speed for 15 seconds before removing an aliquot for use. When combining with other reagents, mix well by pipetting up and down 15–20 times using a pipette set to at least 80% of the mixture volume

- **b** Slowly pipette the End Repair-A Tailing Buffer into a 1.5-mL Eppendorf tube or conical vial, ensuring that the full volume is dispensed.
- **c** Slowly add the End Repair-A Tailing Enzyme Mix, rinsing the enzyme tip with buffer solution after addition. Mix well by pipetting up and down 15–20 times. (For large volumes, instead vortex at medium speed for 25–30 seconds to ensure homogeneity.) Spin briefly to collect the liquid and keep on ice.

Table 32 Preparation of End Repair/dA-Tailing master mix

Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns
End Repair-A Tailing Buffer (yellow cap or bottle)	16 μL	204 μL	340 µL	476 μL	612 µL	884 µL	1836 µL
End Repair-A Tailing Enzyme Mix (orange cap)	4 μL	51 μL	85 μL	119 µL	153 µL	221 µL	459 μL
Total Volume	20 μL	255 μL	425 μL	595 μL	765 µL	1105 μL	2295 μL

Prepare the Ligation master mix

- 1 Prepare the appropriate volume of Ligation master mix, using volumes listed in **Table 33** and using the liquid handling steps specified below.
 - **a** Vortex the thawed vial of Ligation Buffer for 15 seconds at high speed to ensure homogeneity.

CAUTION

The Ligation Buffer used in this step is viscous. Mix thoroughly by vortexing at high speed for 15 seconds before removing an aliquot for use. When combining with other reagents, mix well by pipetting up and down 15–20 times using a pipette set to at least 80% of the mixture volume.

b Slowly pipette the Ligation Buffer into a 1.5-mL Eppendorf tube or conical vial, ensuring that the full volume is dispensed.

c Slowly add the T4 DNA Ligase, rinsing the enzyme tip with buffer solution after addition. Mix well by slowly pipetting up and down 15–20 times. (For large volumes, instead vortex at medium speed for 25–30 seconds to ensure homogeneity.) Spin briefly to collect the liquid.

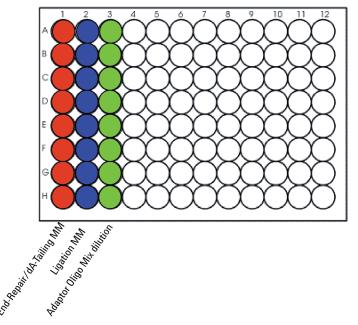
Table 33 Preparation of Ligation master mix

Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns
Ligation Buffer (purple cap or bottle)	23 μL	293.3 µL	488.8 µL	684.3 µL	879.8 µL	1270.8 µL	2737 μL
T4 DNA Ligase (blue cap)	2 μL	25.5 µL	42.5 µL	59.5 µL	76.5 µL	110.5 µL	238 μL
Total Volume	25 μL	318.8 µL	531.3 μL	743.8 µL	956.3 μL	1381.3 μL	2975 μL

Prepare the Adaptor Oligo Mix

1 Prepare the appropriate volume of Adaptor Oligo Mix dilution, according to **Table 34**. Mix well using a vortex mixer and keep on ice.

Table 34 Preparation of Adaptor Oligo Mix dilution


Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns
Nuclease-free water	2.5 µL	42.5 µL	63.8 µL	85.0 μL	106.3 μL	143.5 µL	276.3 μL
SureSelect XT HS2 Adaptor Oligo Mix (white cap)	5 μL	85.0 μL	127.5 μL	170.0 µL	212.5 µL	287.0 μL	552.5 μL
Total Volume	7.5 µL	127.5 μL	191.3 μL	255.0 μL	318.8 μL	430.5 μL	828.8 µL

Prepare the master mix source plate

1 Prepare the **Agilent Deep Well** master mix source plate containing the mixtures prepared in **step 1** through **step 1**. Add the volumes indicated in **Table 35** of each mixture to all wells of the indicated column of the Agilent Deep Well plate. Keep the master mixes on ice during the aliquoting steps. The final configuration of the master mix source plate is shown in **Figure 5**.

Table 35 Preparation of the master mix source plate for LibraryPrep_XT_HS2_ILM runset

Master Mix Solution	Position on Source Plate	Volume of master mix added per Well of Agilent Deep Well Source Plate						
		1-Column Runs	2-Column Runs	3-Column Runs	4-Column Runs	6-Column Runs	12-Column Runs	
End Repair-dA Tailing master mix	Column 1 (A1-H1)	31.0 µL	52.0 µL	73.0 µL	94.0 µL	136.0 µL	280.0 µL	
Ligation master mix	Column 2 (A2-H2)	36.0 µL	62.0 µL	88.0 µL	114.0 µL	166.0 µL	360.0 µL	
Adaptor Oligo Mix dilution	Column 3 (A3-H3)	15.0 μL	22.5 µL	30.0 µL	37.5 μL	52.5 µL	101.3 μL	

Figure 5 Configuration of the **Agilent Deep Well** master mix source plate for runset LibraryPrep_XT_HS2_ILM

- 2 Seal the master mix source plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 sec.
- **3** Centrifuge the plate for 30 seconds to drive the well contents off the walls and plate seal and to eliminate any bubbles. Keep the master mix source plate on ice.

NOTE

The presence of bubbles in source plate solutions may cause inaccurate volume transfer by the Bravo liquid handling platform. Ensure that the source plate is sealed and centrifuged prior to use in a run.

Prepare the purification reagents

1 Prepare an Agilent shallow well reservoir containing 30 mL of nuclease-free water.

Use the same Agilent shallow well reservoir that was used in the EnzFrag_Dil_XT_HS2_ILM protocol (if the Enzymatic Fragmentation method was used for shearing) or use a fresh Agilent shallow well reservoir.

Make sure that the water in the reservoir does not contain bubbles. If bubbles are present, dislodge them with a clean pipette tip.

At the end of the automation protocol, retain this reservoir for use in the AMPureXP_XT_HS2_ILM (Pre-Cap PCR) protocol.

2 Prepare an Agilent deep well reservoir containing 50 mL of freshly-prepared 70% ethanol.

Load the Agilent NGS Workstation

1 Load the Labware MiniHub according to **Table 36**, using the plate orientations shown in **Figure 4** on page 51.

Table 36 Initial MiniHub configuration for LibraryPrep_XT_HS2_ILM runset

Vertical Shelf Position	Cassette 1	Cassette 2	Cassette 3	Cassette 4
Shelf 5 (Top)	Aliquotted AMPure XP beads in Agilent deep well plate from page 36 (80 µL of beads/well)	_	_	_
Shelf 4	Empty Eppendorf twin.tec plate	_	_	_
Shelf 3	Empty Eppendorf twin.tec plate	Empty Eppendorf twin.tec plate	_	_
Shelf 2	New tip box (or box from protocol EnzFrag_XT_HS2_ILM)	Nuclease-free water reservoir from step 1	_	-
Shelf 1 (Bottom)	Empty tip box (or box from protocol EnzFrag_XT_HS2_ILM)	70% ethanol reservoir from step 2	_	Empty tip box

2 Load the Bravo deck according to **Table 37**.

Table 37 Initial Bravo deck configuration for LibraryPrep_XT_HS2_ILM runset

Location	Content
1	Empty waste plate (Agilent 2 mL square well)
4	Empty red insert
6	Empty Eppendorf twin.tec plate
7	Eppendorf plate containing sheared gDNA samples
9	Library Prep master mix source plate, unsealed

3 Load the BenchCel Microplate Handling Workstation according to **Table 38**.

Table 38 Initial BenchCel configuration for LibraryPrep_XT_HS2_ILM runset


No. of Columns Processed	Rack 1	Rack 2	Rack 3	Rack 4
1	1 Tip box	_	_	_
2	2 Tip boxes	_	_	_
3	2 Tip boxes	_	_	_
4	3 Tip boxes	_	_	_
6	4 Tip boxes	_	_	_
12	7 Tip boxes	_	_	_

Run VWorks runset LibraryPrep_XT_HS2_ILM

- **4** On the SureSelect setup form, under **Select protocol to execute**, select the **LibraryPrep_XT_HS2_ILM** runset.
- **5** Select the number of columns of samples to be processed. Runs must include 1, 2, 3, 4, 6, or 12 columns.
- 6 Click Display Initial Workstation Setup.

- 7 Verify that the NGS workstation has been set up as displayed on the right side of the form.
- 8 When verification is complete, click **Run Selected Protocol**.

9 When ready to begin the run, click **OK** in the following window.

Running the LibraryPrep_XT_HS2_ILM runset takes approximately 2 hours. Once complete, the purified, adaptor-ligated DNA samples are located in the Eppendorf plate at position 7 of the Bravo deck.

Stopping Point

If you do not continue to the next step, seal the DNA sample plate and store at 4° C overnight or at -20° C for prolonged storage.

Step 4. Amplify adaptor-ligated libraries

In this step, the Agilent NGS Workstation completes the liquid handling steps for amplification and dual-indexing of the adaptor-ligated DNA samples. After the workstation completes the liquid-handling steps, you transfer the PCR plate to a thermal cycler for amplification.

This step uses the components listed in **Table 39**. Before you begin, thaw the reagents listed below and keep on ice. Before use, mix each component as directed.

Table 39 Reagents for pre-capture PCR amplification

Component	Storage Location	Mixing Method	Where Used
Herculase II Fusion DNA Polymerase (red cap)	SureSelect XT HS2 Library Preparation Kit for ILM (Pre PCR), -20°C	Pipette up and down 15-20 times	page 65
5× Herculase II Reaction Buffer (clear cap)	SureSelect XT HS2 Library Preparation Kit for ILM (Pre PCR), -20°C	Vortexing	page 65
SureSelect XT HS2 Index Primer Pairs	SureSelect XT HS2 Index Primer Pairs for ILM (Pre PCR),* -20°C	Vortexing	page 65

^{*} Indexing primer pairs are provided in a 96-well plate.

CAUTION

To avoid cross-contaminating libraries, set up PCR master mixes in a dedicated clean area or PCR hood with UV sterilization and positive air flow.

The SureSelect XT HS2 Index Primer Pairs are provided in single-use aliquots. To avoid cross-contamination of libraries, do not retain and re-use any residual volume in the plate for subsequent experiments.

Prepare the workstation

- 1 Clear the Labware MiniHub and BenchCel of all plates and tip boxes.
- **2** Gently wipe down the Labware MiniHub, Bravo deck, and BenchCel with a DNA Away decontamination wipe.
- **3** Turn on the ThermoCube, set to 0°C, at position 9 of the Bravo deck. Be sure that the chiller reservoir contains at least 300 mL of 25% ethanol.
- **4** Pre-set the temperature of Bravo deck position 6 to 4°C using the Inheco Multi TEC control touchscreen, as described in **Setting the Temperature of Bravo Deck Heat Blocks**. Bravo deck position 6 corresponds to CPAC 2, position 2 on the Multi TEC control touchscreen.

Pre-program the thermal cycler

1 Pre-program a thermal cycler (with the heated lid ON) with the program in **Table 40**. Start the program, then immediately pause the program, allowing the heated lid to reach temperature while you set up the automation run.

Table 40 Pre-Capture PCR Thermal Cycler Program*

Segment	Number of Cycles	Temperature	Time
1	1	98°C	2 minutes
2	8 to 14, based on input DNA quality		30 seconds
	and quantity (see Table 41)	60°C	30 seconds
			1 minute
3	1	72°C	5 minutes
4	1	4°C	Hold

 $^{^{\}star}~$ When setting up the thermal cycler program, use a reaction volume setting of 50 $\mu L.$

Table 41 Pre-capture PCR cycle number recommendations

Quality of Input DNA	Quantity of Input DNA	Cycles
Intact DNA from fresh sample	100 to 200 ng	8 cycles
	50 ng	9 cycles
	10 ng	11 cycles
FFPE sample DNA	100 to 200 ng*	11 cycles
	50 ng	12 cycles
	10 ng	14 cycles

^{*} qPCR-determined quantity of amplifiable DNA or DIN value-adjusted amount of input DNA

Prepare the SureSelect XT HS2 Index Primer Pairs

1 Using a multichannel pipette, transfer $5 \mu L$ of each SureSelect XT HS2 Index Primer Pair from the 96-well plate in which the primer pairs are provided into the PCR plate to be used for the pre-capture PCR thermal cycling. Make sure to maintain the same well location for each primer pair when transferring to the PCR plate. Keep the PCR plate on ice.

The PCR plate containing the primer pairs is loaded onto the Bravo deck in **step 2** on **page 67** for the Pre-CapPCR_XT_HS2_ILM protocol.

Prepare the pre-capture PCR master mix and master mix source plate

1 Prepare the appropriate volume of pre-capture PCR master mix, according to **Table 42**. Vortex at medium speed for 15–20 seconds and keep on ice.

Table 42 Preparation of Pre-Capture PCR Master Mix

Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns
5× Herculase II Buffer with dNTPs (clear cap)	10 μL	170 μL	255 μL	340µL	425 µL	574 µL	1066 μL
Herculase II Fusion DNA Polymerase (red cap)	1 μL	17 μL	25.5 μL	34 μL	42.5 µL	57.4 μL	106.6 μL
Total Volume	11 μL	187 µL	280.5 μL	374µL	467.5 μL	631.4 μL	1172.6 μL

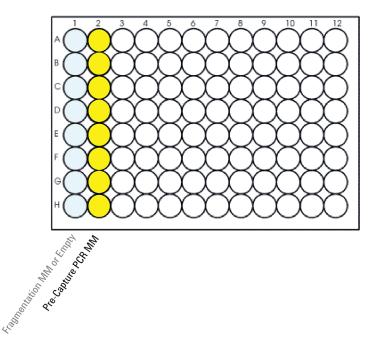

2 Using the same **Eppendorf twin.tec** master mix source plate that was used for the Fragmentation master mix in the EnzFrag_XT_HS2_ILM protocol, add the volume of PCR master mix indicated in **Table 43** to all wells of column 2 of the master mix source plate. If you did not use the enzymatic fragmentation method to fragment the DNA, then add the PCR master mix to column 2 of a fresh Eppendorf twin.tec plate. The final configuration of the master mix source plate is shown in **Figure 6**.

Table 43 Preparation of the master mix source plate for Pre-CapPCR_XT_HS2_ILM protocol

Master Mix Solution	laster Mix Solution Position on Source Plate	ource Volume of master mix added per Well of Eppendorf twin.tec Source Plate					
		1-Column Runs	2-Column Runs	3-Column Runs	4-Column Runs	6-Column Runs	12-Column Runs
Pre-Capture PCR Master Mix	Column 2 (A2-H2)	22 µL	33 µL	44 µL	55 µL	77 μL	143 µL

Make sure to add the Pre-Capture PCR master mix to column 2 of the source plate.

Figure 6 Configuration of the **Eppendorf twin.tec** master mix source plate for protocol Pre-CapPCR_XT_HS2_ILM. The master mix dispensed during a previous protocol is shown in light shading.

- 3 Seal the master mix source plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 sec.
- **4** Centrifuge the plate for 30 seconds to drive the well contents off the walls and plate seal and to eliminate any bubbles.

NOTE

The presence of bubbles in source plate solutions may cause inaccurate volume transfer by the Bravo liquid handling platform. Ensure that the source plate is sealed and centrifuged prior to use in a run.

Load the Agilent NGS Workstation

1 Load the Labware MiniHub according to **Table 44**, using the plate orientations shown in **Figure 4** on page 51.

Table 44 Initial MiniHub configuration for Pre-CapPCR_XT_HS2_ILM protocol

Vertical Shelf Position	Cassette 1	Cassette 2	Cassette 3	Cassette 4
Shelf 5 (Top)	_	_	_	_
Shelf 4	_	_	_	_
Shelf 3	_	_	_	_
Shelf 2	New tip box	_	_	_
Shelf 1 (Bottom)	Empty tip box	_	_	Empty tip box

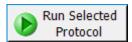
2 Load the Bravo deck according to **Table 45**.

Table 45 Initial Bravo deck configuration for Pre-CapPCR_XT_HS2_ILM protocol

Location	Content
6	SureSelect XT HS2 Index Primer Pairs for ILM in PCR plate seated in red insert (PCR plate type must be specified on setup form under step 2)
7	Adaptor-ligated DNA samples in Eppendorf twin.tec plate
9	Master mix plate containing PCR master mix in column 2 (unsealed)

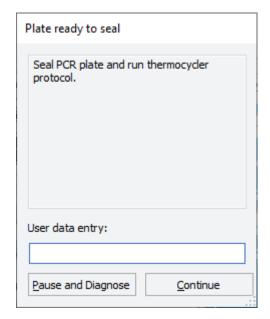
3 Load the BenchCel Microplate Handling Workstation according to **Table 46**.

Table 46 Initial BenchCel configuration for Pre-CapPCR_XT_HS2_ILM protocol


No. of Columns Processed	Rack 1	Rack 2	Rack 3	Rack 4
1	1 Tip box	_	_	_
2	1 Tip box	_	_	_
3	1 Tip box	_	_	_
4	1 Tip box	_	_	_
6	1 Tip box	_	_	_
12	1 Tip box	_	_	_

Run VWorks protocol Pre-CapPCR_XT_HS2_ILM

- 4 On the SureSelect setup form, under **Select protocol to execute**, select the **Pre-CapPCR_XT_HS2_ILM** protocol.
- **5** Under **Select labware for thermal cycling**, select the specific type of PCR plate used at position 6 of the Bravo deck.
- **6** Select the number of columns of samples to be processed. Runs must include 1, 2, 3, 4, 6, or 12 columns.
- 7 Click Display Initial Workstation Setup.



- 8 Verify that the NGS workstation has been set up as displayed on the right side of the form.
- 9 When verification is complete, click Run Selected Protocol.

Running the Pre-CapPCR_XT_HS2_ILM protocol takes approximately 15 minutes. Once complete, the PCR-ready samples, containing prepped DNA and PCR master mix, are located in the PCR plate at position 6 of the Bravo deck.

10 When you see the following prompt, remove the PCR plate from position 6 of the Bravo deck and seal the plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 seconds.

- **11** Centrifuge the plate for 30 seconds to drive the well contents off the walls and plate seal and to eliminate air bubbles.
- **12** Before adding the samples to the pre-programmed thermal cycler, bring the temperature of the thermal block to 98°C by resuming the thermal cycler program in **Table 40**. Once the cycler has reached 98°C, immediately place the sample plate in the thermal block and close the lid.

CAUTION

The lid of the thermal cycler is hot and can cause burns. Use caution when working near the lid.

Step 5. Purify amplified DNA using AMPure XP beads

In this step, the Agilent NGS Workstation transfers amplified DNA to an Agilent Deep Well plate containing AMPure XP beads, and then collects and washes the bead-bound DNA.

This step uses the aliquoted plate of AMPure XP beads that was prepared on page 38.

Prepare the workstation and reagents

- 1 Retain the Eppendorf twin.tec master mix source plate containing the Pre-Capture PCR master mix located at position 9 of the Bravo deck for later use in the TS_D1000 protocol (see "Option 1: Analysis using an Agilent 4200 TapeStation Instrument and D1000 ScreenTape" on page 71). Otherwise, clear the Labware MiniHub and BenchCel of all plates and tip boxes.
- **2** Gently wipe down the Labware MiniHub, Bravo deck, and BenchCel with a DNA Away decontamination wipe.
- **3** Pre-set the temperature of Bravo deck position 4 to 45°C using the Inheco Multi TEC control touchscreen, as described in **Setting the Temperature of Bravo Deck Heat Blocks**. Bravo deck position 4 corresponds to CPAC 2, position 1 on the Multi TEC control touchscreen.
- **4** Turn on the ThermoCube, set to 0°C, at position 9 of the Bravo deck. Be sure that the chiller reservoir contains at least 300 mL of 25% ethanol.
- **5** Prepare an Agilent shallow well reservoir containing 30 mL of nuclease-free water. Use the same Agilent shallow well reservoir that was used in the EnzFrag_XT_HS2_ILM protocol and LibraryPrep_XT_HS2_ILM runset.
 - Make sure that the water in the reservoir does not contain bubbles. If bubbles are present, dislodge them with a clean pipette tip.
- **6** Prepare an Agilent deep well reservoir containing 50 mL of freshly-prepared 70% ethanol.
- 7 Load the Labware MiniHub according to **Table 47**, using the plate orientations shown in **Figure 4** on page 51.

Table 47 Initial MiniHub configuration for AMPureXP_XT_HS2_ILM (Pre-Capture PCR) protocol

Vertical Shelf Position	Cassette 1	Cassette 2	Cassette 3	Cassette 4
Shelf 5 (Top)	Aliquotted AMPure XP beads in Agilent Deep Well plate from page 38 (50 µL of beads/well)	_	_	_
Shelf 4	_	_	_	_
Shelf 3	_	Empty Eppendorf twin.tec Plate	_	_
Shelf 2	_	Nuclease-free water reservoir from step 5		_
Shelf 1 (Bottom)	_	70% ethanol reservoir from step 6	-	Empty tip box

8 Load the Bravo deck according to **Table 48**.

Table 48 Initial Bravo deck configuration for AMPureXP_XT_HS2_ILM (Pre-Capture PCR) protocol

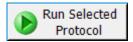
Location	Content
1	Empty waste plate (Agilent 2 mL square well)
9	Amplified DNA libraries in unsealed PCR plate seated in red insert (PCR plate type must be specified on setup form under step 2)

9 Load the BenchCel Microplate Handling Workstation according to **Table 49**.

Table 49 Initial BenchCel configuration for AMPureXP_XT_HS2_ILM (Pre-Capture PCR) protocol

No. of Columns Processed	Rack 1	Rack 2	Rack 3	Rack 4
1	1 Tip box	_	_	_
2	1 Tip box	_	_	_
3	2 Tip boxes	_	_	_
4	2 Tip boxes	_	_	_
6	3 Tip boxes	_	_	_
12	5 Tip boxes	_	_	_

Run the appropriate AMPureXP_XT_HS2_ILM (Pre-Cap PCR) protocol


- 1 On the SureSelect setup form, under **Select protocol to execute**, select one of the AMPureXP_XT_HS2_ILM (Pre-Capture PCR) protocols based on your workflow of choice.
 - If you are using the post-capture pooling workflow (i.e., pooling samples after hybridization with the Probe) then select the protocol AMPureXP_XT_HS2_ILM (Pre-Cap PCR SinglePlex).
 - If you are using the pre-capture pooling workflow (i.e., pooling samples prior to hybridization with the Probe) then select the protocol AMPureXP_XT_HS2_ILM (Pre-Cap PCR - MultiPlex).

The single-plex and multi-plex protocols use different elution volumes. Selecting the correct option is important for the downstream hybridization protocol.

- 2 Under **Select labware for thermal cycling**, select the specific type of PCR plate containing the amplified libraries at position 9.
- **3** Select the number of columns of samples to be processed. Runs must include 1, 2, 3, 4, 6, or 12 columns.
- 4 Click Display Initial Workstation Setup.

- 5 Verify that the NGS workstation has been set up as displayed on the right side of the form.
- 6 When verification is complete, click Run Selected Protocol.

The purification protocol takes approximately 45 minutes. When complete, the purified DNA samples are in the Eppendorf plate located on Bravo deck position 7.

Step 6. Assess Library DNA quantity and quality

Sample analysis can be completed using one of two options.

- Option 1: Prepare the analytical assay plate using automation (protocol TS_D1000) and perform analysis on Agilent 4200 TapeStation. See "Option 1: Analysis using an Agilent 4200 TapeStation Instrument and D1000 ScreenTape" on page 71.
- Option 2: Prepare the analytical samples manually and perform analysis on Agilent 2100
 Bioanalyzer, Agilent 4200 or 4150 TapeStation or Agilent 5200 Fragment Analyzer. See "Option
 2: Analysis using an equivalent platform (non-automated)" on page 77.

Option 1: Analysis using an Agilent 4200 TapeStation Instrument and D1000 ScreenTape

This section describes the use of automation protocol TS_D1000 to prepare the D1000 assay sample plate by combining 2 μ L of each DNA sample with 6 μ L of D1000 sample buffer. Afterward, you transfer the prepared assay plate to the 4200 TapeStation instrument for analysis. For more information to do this step, see the Agilent D1000 Assay Quick Guide for 4200 TapeStation System.

Allow the reagents to equilibrate to room temperature for 30 minutes prior to use.

Prepare the workstation and Sample Buffer source plate

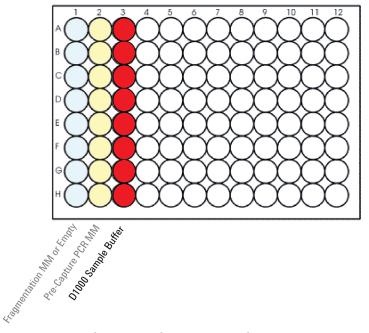

- 1 Clear the Labware MiniHub and BenchCel of plates and tip boxes.
- **2** Gently wipe down the Labware MiniHub, Bravo deck, and BenchCel with a DNA Away decontamination wipe.
- **3** Turn off the ThermoCube device (see **page 22**) to restore position 9 of the Bravo deck to room temperature.
- **4** Pre-set the temperature of Bravo deck position 4 to 4°C using the Inheco Multi TEC control touchscreen, as described in **Setting the Temperature of Bravo Deck Heat Blocks**. Bravo deck position 4 corresponds to CPAC 2, position 1 on the Multi TEC control touchscreen.
- 5 Using the same **Eppendorf twin.tec** source plate that was used in the EnzFrag_XT_HS2_ILM and Pre-CapPCR_XT_HS2_ILM protocols, prepare the Sample Buffer source plate at room temperature. Add the volume of D1000 Sample Buffer indicated in **Table 50** to each well of column 3 of the plate.

Table 50 Preparation of the Sample Buffer source plate for TS_D1000 protocol

Solution	Position on Source Plate	Volume of Sample Buffer added per Well of Eppendorf twin.tec Source Plate						
		1-Column Runs	2-Column Runs	3-Column Runs	4-Column Runs	6-Column Runs	12-Column Runs	
D1000 Sample Buffer	Column 3 (A3-H3)	11.0 μL	17.0 μL	23.0 μL	29.0 μL	41.0 μL	77.0 μL	

Make sure to add the D1000 Sample Buffer to column 3 of the source plate.

Figure 7 Configuration of the **Eppendorf twin.tec** source plate for protocol TS_D1000. The master mixes dispensed during previous protocols are shown in light shading.

Load the Agilent NGS Workstation

6 Load the Labware MiniHub according to **Table 51**, using the plate orientations shown in **Figure 4** on page 51.

Table 51 Initial MiniHub configuration for TS_D1000 protocol

Vertical Shelf Position	Cassette 1	Cassette 2	Cassette 3	Cassette 4
Shelf 5 (Top)	_	_	_	_
Shelf 4	_	_	_	_
Shelf 3	_	_	_	_
Shelf 2	New tip box	_	_	_
Shelf 1 (Bottom)	Empty tip box	_	_	Empty tip box

7 Load the Bravo deck according to **Table 52**.

Table 52 Initial Bravo deck configuration for TS_D1000 protocol

Location	Content
4	Amplified pre-capture libraries in Eppendorf twin.tec plate (unsealed)
6	Empty Eppendorf twin.tec plate
9	Eppendorf twin.tec source plate containing D1000 Sample Buffer in Column 3

CAUTION

To prevent damage to the Agilent 4200 TapeStation instrument and the Agilent NGS Workstation, use only the specified Eppendorf twin.tec plates (Eppendorf p/n 951020401 or 951020619) for automated assay plate preparation.

The Agilent 2200 TapeStation system does not support use of the Eppendorf twin.tec plates. Do not load sample plates prepared using the automated protocol in the 2200 TapeStation instrument.

8 Load the BenchCel Microplate Handling Workstation according to **Table 53**.

Table 53 Initial BenchCel configuration for TS_D1000 protocol

No. of Columns Processed	Rack 1	Rack 2	Rack 3	Rack 4
1	1 Tip box	_	_	_
2	1 Tip box	_	_	_
3	1 Tip box	_	_	_
4	1 Tip box	_	_	_
6	1 Tip box	_	_	_
12	1 Tip box	_	_	_

Run VWorks protocol TS_D1000

- 9 On the SureSelect setup form, under Select protocol to execute, select TS_D1000.
- **10** Select the number of columns of samples to be processed. Runs must include 1, 2, 3, 4, 6, or 12 columns.
- 11 Click Display Initial Workstation Setup.

- 12 Verify that the NGS workstation has been set up as displayed on the right side of the form.
- 13 When verification is complete, click Run Selected Protocol.

Running the TS_D1000 protocol takes approximately 15 minutes. Once removal of analytical samples is complete, remove the primary DNA library sample plate from position 4, seal the plate, and keep on ice until the samples are used for hybridization set up on **page 81**.

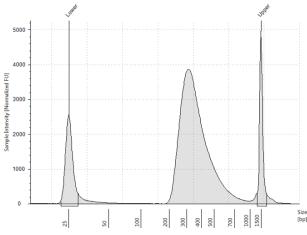
14 When prompted by VWorks as shown below, remove the Eppendorf twin.tec plate containing the analytical samples from position 6 of the Bravo deck, then click **Continue**. Seal the D1000 assay plate with a foil seal and vortex the sealed plate as directed in the Agilent D1000 Assay Quick Guide for 4200 TapeStation System.

CAUTION

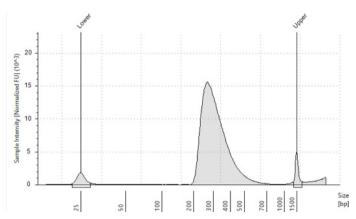
To prevent damage to the Agilent 4200 TapeStation instrument, use only the specified 96-well plate foil seals (Agilent p/n 5067-5154).

For accurate quantitation, make sure that you thoroughly mix the combined DNA and sample buffer on a vortex mixer for 1 minute, then spin briefly to collect the liquid.

Run the D1000 Assay and analyze the data


- **15** Load the analytical sample plate, the D1000 ScreenTape, and loading tips into the TapeStation instrument as instructed in the D1000 Assay Quick Guide. Start the run.
- 16 Verify that the electropherogram shows the expected DNA fragment size peak position (see Table 54 for guidelines). Sample electropherograms are shown in Figure 8 (library prepared from high-quality DNA), Figure 9 (library prepared from medium-quality FFPE DNA), and Figure 10 (library prepared from low-quality FFPE DNA).

The appearance of an additional low molecular weight peak indicates the presence of adaptor-dimers in the library. It is acceptable to proceed to target enrichment with library samples for which adaptor-dimers are observed in the electropherogram at low abundance, similar to that seen in the example electropherogram in **Figure 10**. See Troubleshooting information on **page 162** for additional considerations.


Table 54 Pre-capture library qualification guidelines

NGS read length for fragmentation protocol selection	Fragmentation method	Input DNA type	Expected library DNA fragment size peak position
2 × 100 reads	Mechanical shearing	Intact DNA	300 to 400 bp
		FFPE DNA	200 to 400 bp
	Enzymatic fragmentation	Intact DNA	300 to 400 bp
		FFPE DNA	200 to 400 bp
2 × 150 reads	Mechanical shearing	Intact DNA	330 to 450 bp
		FFPE DNA	200 to 450 bp
	Enzymatic fragmentation	Intact DNA	330 to 450 bp
		FFPE DNA	200 to 450 bp

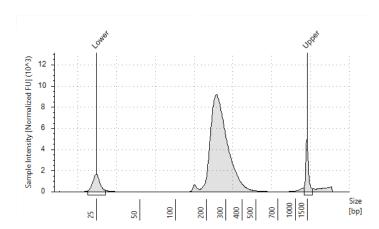

17 Determine the concentration of the library DNA by integrating under the peak.

Figure 8 Pre-capture library prepared from a high-quality gDNA sample analyzed using a D1000 ScreenTape assay.

Figure 9 Pre-capture library prepared from a typical FFPE gDNA sample analyzed using a D1000 ScreenTape assay.

Figure 10 Pre-capture library prepared from a low-quality FFPE gDNA sample analyzed using a D1000 ScreenTape assay.

Stopping Point

If you do not continue to the next step, seal the sample wells and store at 4° C overnight or at -20° C for prolonged storage.

Option 2: Analysis using an equivalent platform (non-automated)

Using manual preparation of the analytical sample plate, you can analyze the DNA samples on Agilent 2100 BioAnalyzer, Agilent 5200 Fragment Analyzer, or Agilent 4200/4150 TapeStation. Electropherograms obtained using one of these other analysis platforms are expected to show fragment size profiles similar to those shown for the Agilent 4200 TapeStation (see **Figure 8** through **Figure 10**). **Table 55**. Verify that the electropherogram shows the expected DNA fragment size peak position (see **Table 54** for guidelines). **Table 55** includes links to assay instruction.

Table 55 Pre-capture library analysis options

Analysis platform	Assay used at this step	Link to assay instructions	Amount of library sample to analyze
Agilent 4200/4150 TapeStation system	D1000 ScreenTape	Agilent D1000 Assay Quick Guide	1 μL of sample mixed with 3 μL of D1000 sample buffer
Agilent 2100 BioAnalyzer system	DNA 1000 Kit	Agilent DNA 1000 Kit Guide	1 μL of sample
Agilent 5200, 5300, or 5400 Fragment Analyzer system	NGS Fragment Kit (1-6000 bp)	Agilent NGS Fragment Kit (1-6000 bp) Guide	2 μL of sample

Stopping Point

If you do not continue to the next step, seal the sample wells and store at 4° C overnight or at -20° C for prolonged storage.

5 Hybridization

Step 1, Option 1. Prepare DNA for Single-Plex Hybridization
Step 1, Option 2. Prepare DNA for Multi-Plex Hybridization
Step 2. Hybridize the gDNA library or library pool and probe
Step 3. Capture the hybridized DNA
103

This chapter describes the steps to complete the hybridization and capture steps using a SureSelect or ClearSeq Probe.

The first step is to prepare the DNA libraries for hybridization, and this step differs depending on the sample pooling strategy.

- If you are pooling samples after hybridization to the Probe, then follow the steps in "Step 1, Option 1. Prepare DNA for Single-Plex Hybridization" on page 80.
- If you are pooling samples prior to hybridization to the Probe, then follow the steps in "Step 1, Option 2. Prepare DNA for Multi-Plex Hybridization" on page 83.

CAUTION

The ratio of probe to prepped library is critical for successful capture.

Step 1, Option 1. Prepare DNA for Single-Plex Hybridization

Follow the steps in this section if you are using the post-capture pooling workflow. If you are using the pre-capture pooling workflow, see "Step 1, Option 2. Prepare DNA for Multi-Plex Hybridization" on page 83.

Aliquot prepped DNA samples for hybridization

For each sample library prepared, do one hybridization and capture.

The hybridization reaction requires 500-1000 ng of prepared DNA in a volume of 12 μ L. Use the maximum amount of prepared DNA available within this range.

Using the DNA concentration for each sample determined on **page 71** to **page 77**, calculate the volume of each sample to be used for hybridization using the formula below:

Volume (μ L) = 1000 ng/concentration (ng/ μ L)

If the concentration of any sample is not sufficient to allow use of the recommended 1000 ng of DNA, use the full remaining volume of DNA sample (approximately 10 to 12 μ L, containing at least 500 ng) for the hybridization step.

The automation protocol Aliquot_Libraries is used to prepare a new sample plate containing the appropriate quantity of each DNA sample for hybridization. Before running the automation protocol, you must create a table containing instructions for the Agilent NGS Workstation indicating the volume of each sample to aliquot, as described in the steps below.

- 1 Create a .csv (comma separated value) file with the headers shown in **Figure 11**. The header text must not contain spaces. The table may be created using a spreadsheet application, such as Microsoft Excel software, and then saved in .csv format. The file must include rows for all 96 wells of the plate.
- 2 Enter the information requested in the header for each DNA sample.
 - In the SourceBC field, enter the sample plate description or barcode. The SourceBC field contents must be identical for all rows.
 - In the SourceWell and DestinationWell fields, enter each well position for the plate. SourceWell and DestinationWell field contents must be identical for a given sample.
 - In the Volume field, enter the volume (in µL) of each DNA sample to be used in the hybridization step (see **page 80** for guidelines). For all empty wells on the plate, delete the corresponding rows in the .csv file.

	Α	В	С	D
1	SourceBC	SourceWell	DestinationWell	Volume
2	abc	A1	A1	5.35
3	abc	B1	B1	4.28
4	abc	C1	C1	5.19
5	abc	D1	D1	4.76
6	abc	E1	E1	5.19
7	abc	F1	F1	5.49
8	abc	G1	G1	4.86
9	abc	H1	H1	5.05
10	abc	A2	A2	4.37

Figure 11 Sample spreadsheet for 1-column run

NOTE

You can find a sample spreadsheet in the directory C:\VWorks Workspace\NGS Option B\
XT_HS2_ILM_v.Bx.x.x\Aliquot Input File Templates\Aliquot_Libraries_Template.csv (where x.x.x is the version number).

The Aliquot_Libraries_template.csv file may be copied and used as a template for creating the .csv files for each Aliquot_Libraries protocol run. If you are using the sample file as a template for runs with fewer than 12 columns, be sure to delete rows for any unused columns on the plate.

- 3 Load the .csv file onto the PC containing the VWorks software into a suitable directory, such as C:\VWorks Workspace\NGS Option B\XT_HS2_ILM_v.Bx.x.x\Aliquot Input File Templates.
- **4** Turn on the chiller, set to 0°C, at position 9 of the Bravo deck. Be sure that the chiller reservoir contains at least 300 mL of 25% ethanol.
- **5** Load the Bravo deck according to **Table 56**.

Table 56 Initial Bravo deck configuration for Aliquot_Libraries protocol

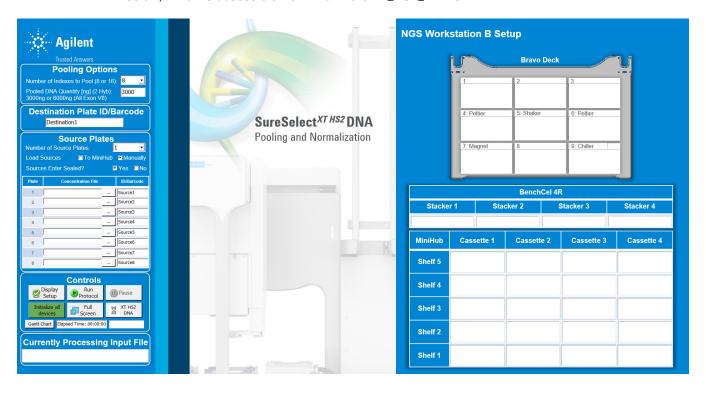
Location	Content
2	Nuclease-free water in Agilent shallow well reservoir (30 mL)
5	Empty Eppendorf twin.tec plate
6	Empty tip box
8	New tip box
9	Prepped library DNA in Eppendorf twin.tec plate

- **6** On the SureSelect setup form, under **Select protocol to execute**, select the **Aliquot_Libraries** protocol.
- 7 Click Display Initial Workstation Setup.

- 8 Upload the .csv file created in step 1 through step 3 on page 80.
 - **a** Click the "..." browse button below **Select Aliquot Input File** to open a directory browser window.

- **b** Browse to the location where you saved the .csv file. Select the file and click **Open**.
 - The directory browser window closes, returning you to the SureSelect setup form. The selected file location is listed in the field below **Select Aliquot Input File**.
- **9** Verify that the NGS workstation has been set up as displayed on the right side of the form.
- 10 When verification is complete, click Run Selected Protocol.

The library aliquoting protocol takes approximately 1 hour for 96 samples. When complete, the DNA sample plate is on Bravo deck position 5.


11 Remove the sample plate from the Bravo deck.

Step 1, Option 2. Prepare DNA for Multi-Plex Hybridization

Follow the steps in this section if you are using the pre-capture pooling workflow. If you are using the post-capture pooling workflow, see "Step 1, Option 1. Prepare DNA for Single-Plex Hybridization" on page 80.

Pool indexed DNA samples for hybridization

In this step, the workstation pools the prepped indexed gDNA samples before hybridization to the Probe. This workflow step is set up using the VWorks Form XT_HS2_Pooling.VWForm shown below, which is accessible from within the XT_HS2_ILM form.

Plan pooling run parameters

The hybridization reaction requires 1500 ng indexed gDNA (or 3000 ng of indexed gDNA if using one of the SureSelect XT HS PreCap Human All Exon V8 Probes). The indexed gDNA is made up of a pool that contains equal amounts of 8 or 16 individual libraries. See **Table 57** for the recommended pool composition based on your SureSelect or ClearSeq Probe.

Table 57 Pre-capture pooling of indexed DNA libraries

Probe	Amount of total DNA per pool (Amount of DNA pool per hybridization reaction)*	Number of indexed gDNA libraries per pool	Amount of each indexed gDNA library in pool	Maximum DNA concentration for pool
SureSelect XT HS PreCap Human All Exon V8	6000 ng (3000 ng/hybridization)	8	750 ng	375 ng/μL
SureSelect XT HS PreCap Human All Exon V8+UTR	6000 ng (3000 ng/hybridization)	8	750 ng	375 ng/μL
SureSelect XT HS PreCap Human All Exon V8+NCV	6000 ng (3000 ng/hybridization)	8	750 ng	375 ng/μL
SureSelect Custom Probe	3000 ng (1500 ng/hybridization)	16	187.5 ng	93.75 ng/μL
ClearSeq Comprehensive Cancer	3000 ng (1500 ng/hybridization)	16	187.5 ng	93.75 ng/μL
SureSelect Human or Mouse All-Exon	3000 ng (1500 ng/hybridization)	8	375 ng	187.5 ng/μL
SureSelect Clinical Research Exome	3000 ng (1500 ng/hybridization)	8	375 ng	187.5 ng/μL
SureSelect Focused Exome	3000 ng (1500 ng/hybridization)	8	375 ng	187.5 ng/μL
ClearSeq Inherited Disease	3000 ng (1500 ng/hybridization)	8	375 ng	187.5 ng/μL

^{*} Where possible, indexed DNA pools are prepared containing a total DNA amount that is enough for two hybridization reactions, i.e., 6000 ng for hybridizations with one of the SureSelect XT HS PreCap Human All Exon V8 Probes and 3000 ng for all other probes. For some indexed DNA pools, the initial library pool will contain enough total DNA for more than two hybridization reactions.

Before setting up the pooling run, you must determine the total amount of DNA to pool and the volumes of the pools based on the starting concentrations of the DNA samples to be pooled.

Accurate normalization of pools requires a minimum pipetting volume of 2 μ L for each sample. Maximum DNA concentration values for a pool containing >2 μ L of each sample are shown in **Table 57**, above. When higher-concentration DNA samples are included in the pooling run, the DNA pool amount must be adjusted as described below.

- Check the DNA concentration of each sample in the set of source plates to be pooled to a single destination plate to determine the appropriate amount of DNA per pool.
 - If all samples contain DNA at concentrations below the maximum DNA concentration shown in **Table 57**, then prepare 3000 ng DNA pools (or a 6000 ng pool if using one of the SureSelect XT HS PreCap Human All Exon V8 Probes).
 - If at least one of the samples is above the maximum DNA concentration shown in **Table 57**, then you need to calculate the appropriate DNA pool amount. First, identify the most concentrated DNA sample and calculate the amount of DNA contained in 2 μ L of that sample. This becomes the amount of each DNA sample used for pooling in the run. For example, if the highest DNA sample concentration is 200 ng/ μ L, then the final DNA pool will contain 400 ng of each indexed DNA. Next, determine the total amount of DNA per pool, based on the Probe size. Continuing with the same example, a Focused Exome capture pool would contain 8 × 400 ng, or 3200 ng DNA.

Plan destination indexed DNA pool sample plate configuration

The indexed gDNA samples should be pooled into the destination plate using a pooled sample configuration appropriate for the subsequent hybridization run. Use the following plate configuration considerations for pooling gDNA samples for automated hybridization and capture runs:

- When using a single Probe for all wells on the plate, fill the plate column-wise in well order A1 to H1, then A2 to H2, ending with A12 to H12.
- When using multiple Probes, configure the plate such that all gDNA library pools to be hybridized to a particular Probe are positioned in appropriate rows. When preparing for the Hyb_XT_HS2_ILM protocol, place samples to be enriched using the same Probe in the same row.
- Each 96-reaction library preparation run produces 6 or 12 gDNA pools. For greatest efficiency of reagent use, gDNA pools from multiple library preparation runs may be placed on the same destination plate for hybridization.

Prepare .csv files for pooling and normalization

Before starting the sample pooling automation protocol, you must create comma-separated value (.csv) files containing instructions including the specific wells to be pooled and the concentration of each sample. From this data, the workstation calculates the volume of each sample required to prepare each concentration-normalized pool for the hybridization step.

See **Figure 12** for required .csv file content. Pooling and normalization .csv file templates are provided in the following directory:

C:\VWorks Workspace\NGS Option B\XT_HS2_ILM_v.Bx.x.x\Pooling and Normalization Templates

Select the appropriate set of templates from the directory based on the intended pool composition (8 or 16 prepared samples) and on the number of source plates to be consolidated in the run to prepare the single destination plate containing the hybridization samples. For example, for 8-library pools, use the template Pool8_01_SourcePlate.csv for the first DNA source plate, continuing with additional Pool8_0X_SourcePlate.csv files for additional DNA source plates.

1 Copy and rename the appropriate set of .csv file templates for the run. Make sure to retain the header text used in the template files, without introducing spaces or other new characters.

If processing a partial plate of prepped gDNA samples, delete the rows corresponding to the WellIDs of the empty wells on the plate.

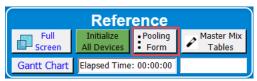
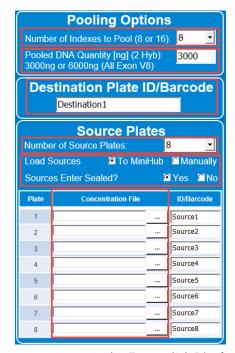
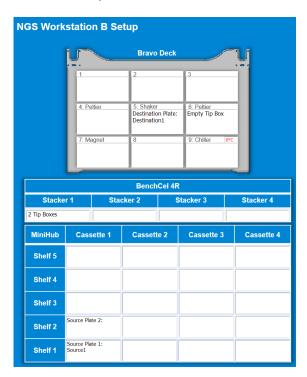

	Α	В	С
1	Well ID	PreCap Amplified pond concentrations (ng/ul)	Target WellID
2	A1	52.79	A1
3	B1	49.21	A1
4	C1	38.73	A1
5	D1	43.56	A1
6	E1	39.7	A1
7	F1	45.33	A1
8	G1	53.38	A1
9	H1	48.91	A1
10	A2	40.74	B1
11	B2	37.22	B1
12	C2	42.03	B1

Figure 12 Sample pooling and normalization .csv file content


- 2 In each .csv file, edit the information for each DNA sample (well ID) as follows:
 - In the **PreCap Amplified pond concentrations** field, enter the concentration (in $ng/\mu L$) determined on **page 71** for each indexed DNA sample.
 - In the Target WellID field, enter the well position of the pool in which the indexed DNA sample should be included for the destination plate. See the guidelines on page 84 for hybridization sample pool placement considerations.

Set up and run the PreCapture_Pooling automation protocol


- **3** Turn on the chiller, set to 0°C, at position 9 of the Bravo deck. Be sure that the chiller reservoir contains at least 300 mL of 25% ethanol.
- 4 Clear the Labware MiniHub and BenchCel of all plates and tip boxes.
- **5** To set up the PreCapture_Pooling automation protocol, open the VWorks Form XT2_HS2_Pooling using one of the methods below.
 - Double-click the shortcut on your desktop for the XT2_HS2_Pooling VWorks Form.
 - In the directory C:\VWorks Workspace\NGS Option B\XT_HS2_ILM_v.Bx.x.x\Forms (where x.x.x is the version number) open the file XT_HS2_Pooling_v.Bx.x.x.VWForm.
 - From the XT_HS2_ILM VWorks Form, under Reference, click Pooling Form.

- **6** In the XT2_HS2_Pooling Form, enter the run information highlighted below:
 - Under Pooling Options, from Number of Indexes to Pool menu, select 8 or 16 (see Table 57 on page 84 for guidelines).
 - Under Pooling Options, from Pooled DNA Quantity menu, enter the required total amount of DNA in the pool.
 - For the SureSelect XT HS Human All Exon V8 Probes (V8, V8+UTR, and V8+NCV), the required amount is 6000 ng. For all other Probes, the typical amount is 3000 ng. These amounts are sufficient for two hybridization reactions. See **page 83** for guidelines.
 - Under **Destination Plate ID/Barcode**, enter the name or barcode of the destination plate into the field provided.
 - Under Source Plates, from Number of Source Plates menu, select the number of indexed DNA source plates to be provided for sample pooling. If >8 plates will be used to create a single hybridization sample plate, run the pooling and normalization protocol in sets of 8 source plates.
 - Under **Source Plates**, specify whether the indexed DNA source plates will be loaded in the MiniHub and will be sealed at start of run (recommended).
 - In the table under Source Plates, in the Concentration File field, use the browse button to specify the location of each .csv file that provides sample position and concentration data for each plate.

- 7 When finished entering run parameters in the Form, click **Display Setup**.
- **8** Load sample plates and labware as displayed on the right side of the form (example shown in the image below is for pooling run for two source plates):
 - Load each indexed DNA source plates onto its assigned shelf on the MiniHub.
 - Load an Eppendorf twin.tec destination plate on Bravo deck position 5.
 - Load an empty tip box on Bravo deck position 6.
 - Load the indicated number of tip boxes in BenchCel Stacker 1.

9 When verification is complete, click **Run Protocol**.

CAUTION

When more than one indexed DNA source plate is used in the run, a workstation operator must be present during the run to remove and replace plate seals during the run, in response to NGS Workstation prompts.

Running the PreCapture_Pooling protocol takes approximately one hour per indexed DNA source plate. Once complete, the destination sample plate, containing indexed DNA pools, is located at position 5 of the Bravo deck.

- **10** Remove the destination plate from Bravo deck position 5.
- **11** Seal the Eppendorf twin.tec plate containing the indexed DNA pool samples using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 sec. Keep on ice.

Adjust final concentration of pooled DNA

Prior to hybridization with the Probe, use the Aliquot_Water and AMPureXP_XT_HS2_ILM (Concentration of Pool) automation protocols to concentrate each DNA library pool to 24 μL , a volume sufficient for two hybridization reactions. First, the Aliquot_Water protocol adds enough water to each DNA library pool to bring the volume to 100 μL . Then, the AMPureXP_XT_HS2_ILM protocol uses AMPure XP beads to purify the DNA library pools, eluting the DNA in a volume of 24 μL .

This step uses the aliquoted plate of AMPure XP beads that was prepared on page 40.

Prepare .csv file for normalizing sample volumes to 100 μ L

- 1 Create a .csv (comma separated value) file with the headers shown in **Figure 13**. The header text must not contain spaces. The table may be created using a spreadsheet application, such as Microsoft Excel software, and then saved in .csv format. The file must include rows for all 96 wells of the plate.
- 2 Enter the information requested in the header for each DNA sample.
 - In the SourceBC field, enter the sample plate description or barcode. The SourceBC field contents must be identical for all rows.
 - In the SourceWell and DestinationWell fields, enter each well position for the plate. SourceWell and DestinationWell field contents must be identical for a given sample.
 - In the Volume field, enter the volume (in μ L) of water to be added to the sample in the indicated well position in order to bring the total well volume to 100 μ L. For all empty wells on the plate, delete the corresponding rows in the .csv file.

	Α	В	С	D
1	SourceBC	SourceWell	DestinationWell	Volume
2	abc	A1	A1	5.5
3	abc	B1	B1	5.2
4	abc	C1	C1	11
5	abc	D1	D1	5.9
6	abc	E1	E1	17.5
7	abc	F1	F1	5.5
8	abc	G1	G1	23
9	abc	H1	H1	5.6
10	abc	A2	A2	5.4

Figure 13 Sample Aliquot_Water .csv file content

NOTE

You can find a sample spreadsheet in the directory **C:\VWorks Workspace\NGS Option B\XT_HS2_ILM_v.Bx.x.x\Aliquot Input File Templates** (where x.x.x is the version number).

The Aliquot_Water_Template.csv file may be copied and used as a template for creating the .csv file for each Aliquot_Water protocol run. If you are using the sample file as a template for runs with fewer than 12 columns, be sure to delete rows for any unused columns on the plate.

3 Load the .csv file onto the PC containing the VWorks software into a suitable directory, such as C:\VWorks Workspace\XT_HS2_ILM_v.Bx.x.x\Pooling and Normalization Templates.

Set up and run the Aliquot_Water automation protocol

- 4 Gently wipe down the Bravo deck with a DNA Away decontamination wipe.
- 5 Prepare an Agilent shallow well reservoir containing 30 mL of nuclease-free water.

Make sure that the water in the reservoir does not contain bubbles. If bubbles are present, dislodge them with a clean pipette tip.

At the end of the automation protocol, retain this reservoir for use in the SSELCapture&Wash_XT_HS2 runset and Post-CapPCR_XT_HS2_ILM and AMPureXP_XT_HS2_ILM (Post-Capture PCR) protocols, provided you are performing these steps before the end of the day.

6 Load the Bravo deck according to Table 58.

Table 58 Initial Bravo deck configuration for Aliquot_Water protocol

Location	Content
5	Pooled library DNA in Eppendorf twin.tec plate
6	Empty tip box
8	New tip box
9	Nuclease-free water reservoir from step 5

7 On the SureSelect setup form, under **Select protocol to execute**, select the **Aliquot_Water** protocol.

8 Click Display Initial Workstation Setup.

- 9 Upload the .csv file created in step 1 through step 3 on page 88.
 - **a** Click the "..." browse button below **Select Aliquot Input File** to open a directory browser window.

- **b** Browse to the location where you saved the .csv file. Select the file and click **Open**.
 - The directory browser window closes, returning you to the SureSelect setup form. The selected file location is listed in the field below **Select Aliquot Input File**.
- 10 Verify that the NGS workstation has been set up as displayed on the right side of the form.
- 11 When verification is complete, click Run Selected Protocol.

The water aliquoting protocol takes approximately 1 hour for 96 sample pools. When complete, the DNA sample plate is on Bravo deck position 5.

- 12 Remove the sample plate from the Bravo deck.
- **13** Seal the plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 sec.

Set up and run the AMPureXP_XT_HS2_ILM (Concentration of Pool) automation protocol

- 14 Clear the Labware MiniHub and BenchCel of all plates and tip boxes.
- **15** Gently wipe down the Labware MiniHub, Bravo deck, and BenchCel with a DNA Away decontamination wipe.
- **16** Pre-set the temperature of Bravo deck position 4 to 45°C using the Inheco Multi TEC control touchscreen, as described in **Setting the Temperature of Bravo Deck Heat Blocks**. Bravo deck position 4 corresponds to CPAC 2, position 1 on the Multi TEC control touchscreen.
- **17** Turn on the ThermoCube, set to 0°C, at position 9 of the Bravo deck. Be sure that the chiller reservoir contains at least 300 mL of 25% ethanol.
- 18 Prepare an Agilent shallow well reservoir containing 30 mL of nuclease-free water.
 - Make sure that the water in the reservoir does not contain bubbles. If bubbles are present, dislodge them with a clean pipette tip.
- 19 Prepare an Agilent deep well reservoir containing 50 mL of freshly-prepared 70% ethanol.
- **20** Load the Labware MiniHub according to **Table 59**, using the plate orientations shown in **Figure 4** on page 51.

Table 59 Initial MiniHub configuration for AMPureXP_XT_HS2_ILM (Concentration of Pool) protocol

Vertical Shelf Position	Cassette 1	Cassette 2	Cassette 3	Cassette 4
Shelf 5 (Top)	Aliquotted AMPure XP beads in Agilent deep well plate from page 40 (180 µL of beads/well)	-	-	_
Shelf 4	_	_	_	_
Shelf 3	_	Empty Eppendorf twin.tec Plate	_	_
Shelf 2	_	Nuclease-free water reservoir from step 18		_
Shelf 1 (Bottom)	_	70% ethanol reservoir from step 19	_	Empty tip box

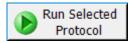
21 Load the Bravo deck according to Table 60.

Table 60 Initial Bravo deck configuration for AMPureXP_XT_HS2_ILM (Concentration of Pool) protocol

Location	Content
1	Empty waste plate (Agilent 2 mL square well)
9	Eppendorf twin.tec plate containing DNA library pools from the Aliquot_Water protocol seated in red insert

22 Load the BenchCel Microplate Handling Workstation according to Table 61.

Table 61 Initial BenchCel configuration for AMPureXP_XT_HS2_ILM (Concentration of Pool) protocol


No. of Columns Processed	Rack 1	Rack 2	Rack 3	Rack 4
1	1 Tip box	_	_	_
2	1 Tip box	_	_	_
3	2 Tip boxes	_	_	_
4	2 Tip boxes	_	_	_
6	3 Tip boxes	_	_	_
12	5 Tip boxes	_	_	_

23 On the SureSelect setup form, under **Select protocol to execute**, select the **AMPureXP_XT_HS2_ILM (Concentration of Pool)** protocol.

- 24 Under Select labware for thermal cycling, select 96 Eppendorf Twin.tec PCR in Red Alum Insert.
- **25** Select the number of columns of samples to be processed. Runs must include 1, 2, 3, 4, 6, or 12 columns.
- 26 Click Display Initial Workstation Setup.

- 27 Verify that the NGS workstation has been set up as displayed on the right side of the form.
- 28 When verification is complete, click Run Selected Protocol.

The purification protocol takes approximately 45 minutes. When complete, the purified DNA samples are in the Eppendorf plate located on Bravo deck position 7.

Step 2. Hybridize the gDNA library or library pool and probe

In this step, automation protocol Hyb_XT_HS2_ILM is used to complete the liquid handling steps to set up the hybridization reactions. Afterward, you transfer the sample plate to a thermal cycler, held at 65°C, to allow hybridization of the DNA samples to the probe.

This step uses the components listed in **Table 62**. Thaw each component under the conditions indicated in the table. Vortex each reagent to mix, then spin tubes briefly to collect the liquid.

Table 62 Reagents for Hybridization

Kit Component	Storage Location	Thawing Conditions	Where Used
SureSelect XT HS2 Blocker Mix (blue cap)	SureSelect XT HS2 Target Enrichment Kit ILM Hyb Module, Box 2 (Post PCR), -20°C	Thaw on ice	page 96
SureSelect RNase Block (purple cap)	SureSelect XT HS2 Target Enrichment Kit ILM Hyb Module, Box 2 (Post PCR), -20°C	Thaw on ice	page 96
SureSelect Fast Hybridization Buffer (bottle)	SureSelect XT HS2 Target Enrichment Kit ILM Hyb Module, Box 2 (Post PCR), -20°C	Thaw and keep at Room Temperature	page 96
Probe	-80°C	Thaw on ice	page 96

Program the thermal cycler

1 Pre-program a thermal cycler (with the heated lid ON) with the program in **Table 63** for the SureSelect XT HS Human All Exon V8 Probes (V8, V8+UTR, or V8+NCV) or in **Table 64** for all other probes. Start the program, then immediately pause the program, allowing the heated lid to reach temperature while you set up the reactions.

It is critical to pre-program the thermal cycler before starting the automation protocol for hybridization, in order to maintain the required sample and reagent temperatures.

Table 63 Hybridization program for the SureSelect XT HS Human All Exon V8 Probes*

Segment	Purpose	Number of Cycles	Temperature	Time
1	Denaturation	1	95°C	5 minutes
2	Blocking	1	65°C	10 minutes
3	Hold for NGS workstation steps [†]	1	65°C	Hold
4	Hybridization	60	65°C	1 minute
			37°C	3 seconds
5	Hybridization	1	65°C	60 minutes
6	Hold until start of Capture [‡]	1	65°C [†]	Hold

^{*} When setting up the thermal cycler program, use a reaction volume setting of $35 \,\mu$ L (final volume of hybridization reactions during cycling in Segment 4).

Table 64 Hybridization program for all other probes*

Segment	Purpose	Number of Cycles	Temperature	Time
1	Denaturation	1	95°C	5 minutes
2	Blocking	1	65°C	10 minutes
3	Hold for NGS workstation steps [†]	1	65°C	Hold
4	Hybridization	60	65°C [‡]	1 minute
			37°C	3 seconds
5	Hold until start of Capture**	1	65°C [†]	Hold

^{*} When setting up the thermal cycler program, use a reaction volume setting of $35 \,\mu\text{L}$ (final volume of hybridization reactions during cycling in Segment 4).

[†] Samples are transferred to the NGS Workstation during this Hold step when prompted by the VWorks software.

[‡] Samples are held at 65°C until they are processed in the Capture & Wash automation protocol that begins on page 103.

[†] Samples are transferred to the NGS Workstation during this Hold step when prompted by the VWorks software.

[‡] Hybridization at 65°C is optimal for probes designed for the SureSelect XT HS2/XT HS/XT Low Input platforms. Reducing the hybridization temperature (Segments 4 and 5) may improve performance for probes designed for the SureSelect XT platform, including SureSelect XT Human All Exon V6 (62.5°C), SureSelect XT Clinical Research Exome V2 (62.5°C) and custom probes originally designed for use with SureSelect XT system (60°C–65°C).

^{**} Samples are held at 65°C until they are processed in the Capture & Wash automation protocol that begins on page 103.

CAUTION

The lid of the thermal cycler is hot and can cause burns. Use caution when working near the lid.

NOTE

The Hybridization reaction may be run overnight with the following protocol modifications.

- In segment 5 of the thermal cycler program (**Table 64**), replace the 65°C Hold step with a 21°C Hold step.
- Pause the thermal cycler as directed in **step 1** and complete the hybridization setup steps as directed on **page 93** through **page 98** before resuming the paused program.
- The hybridized samples may be held at 21°C for up to 16 hours.

Prepare the workstation

- 2 Clear the Labware MiniHub and BenchCel of all plates and tip boxes.
- **3** Gently wipe down the Labware MiniHub, Bravo deck, and BenchCel with a DNA Away decontamination wipe.
- **4** Turn on the chiller, set to 0°C, at position 9 of the Bravo deck. Be sure that the chiller reservoir contains at least 300 mL of 25% ethanol.
- **5** Place red PCR plate inserts at Bravo deck positions 4 and 6.
- 6 Place an empty tip box on shelf 1 of cassette 4 of the workstation MiniHub.
- 7 Load tip boxes for the run in the BenchCel Microplate Handling Workstation according to **Table 65**.

Table 65 Initial BenchCel configuration for Hyb_XT_HS2_ILM protocol

No. of Columns Processed	Rack 1	Rack 2	Rack 3	Rack 4
1	2 Tip boxes	_	_	_
2	2 Tip boxes	_	_	_
3	2 Tip boxes	_	_	_
4	2 Tip boxes	_	_	_
6	2 Tip boxes	_	_	_
12	3 Tip boxes	_	_	_

Prepare the Block master mix

8 Prepare the appropriate volume of Block master mix, on ice, as indicated in **Table 66**. Mix by vortexing at medium speed for 15–20 seconds. Keep on ice.

Table 66 Preparation of Block master mix

Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns
Nuclease-free water	2.5 µL	31.9 µL	53.1 µL	74.4 µL	95.6 μL	138.1 μL	276.3 μL
SureSelect XT HS2 Blocker Mix (blue cap)	5.0 µL	63.8 µL	106.3 μL	148.8 µL	191.3 µL	276.3 μL	552.5 μL
Total Volume	7.5 µL	95.7 μL	159.4 μL	223.2 μL	286.9 μL	414.4 µL	828.8 µL

Prepare one or more Probe Hybridization master mixes

9 Prepare the appropriate volume of Probe Hybridization master mix for each of the Probes that will be used for hybridization as indicated in **Table 67** to **Table 70**. Mix by vortexing at medium speed for 15–20 seconds, then spin down briefly. Keep the Probe Hybridization master mix(es) on ice.

NOTE

Each row of the prepped gDNA sample plate may be hybridized to a different Probe. However, Probes of different sizes require different post-capture amplification cycles. Plan experiments such that similar-sized Probes are hybridized on the same plate.

For runs that use a single Probe for all rows of the plate, prepare the master mix as described in Step a (**Table 67** or **Table 68**) on **page 96**.

For runs that use different Probes for individual rows, prepare each master mix as described in Step b (**Table 69** or **Table 70**) on **page 97**.

a For runs that use a single Probe for all rows, prepare a master mix as described in **Table 67** or **Table 68**, according to the probe design size.

Table 67 Preparation of Probe Hybridization master mix for Probes <3 Mb, 8 rows of wells

Target size <3.0 Mb									
Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns		
Nuclease-free water	7.0 µL	89.3 µL	148.8 µL	208.3 µL	267.8 µL	401.6 μL	818.1 µL		
RNase Block (purple cap)	0.5 μL	6.4 µL	10.6 µL	14.9 µL	19.1 µL	28.7 µL	58.4 μL		
SureSelect Fast Hybridization Buffer (bottle)	6.0 µL	76.5 µL	127.5 μL	178.5 μL	229.5 μL	344.3 µL	701.3 μL		
Probe (with design <3.0 Mb)	2.0 µL	25.5 µL	42.5 µL	59.5 µL	76.5 µL	114.8 µL	233.8 µL		
Total Volume	15.5 µL	197.6 μL	329.4 μL	461.1 μL	592.9 μL	889.4 μL	1811.6 μL		

Table 68 Preparation of Probe Hybridization master mix for Probes ≥3 Mb, 8 rows of wells

Target size ≥3.0 Mb										
Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns			
Nuclease-free water	4.0 µL	51.0 μL	85.0 µL	119.0 µL	153.0 µL	229.5 µL	467.5 μL			
RNase Block (purple cap)	0.5 μL	6.4 µL	10.6 μL	14.9 µL	19.1 µL	28.7 µL	58.4 µL			
SureSelect Fast Hybridization Buffer (bottle)	6 μL	76.5 µL	127.5 μL	178.5 μL	229.5 μL	344.3 µL	701.3 μL			
Probe (with design ≥3.0 Mb)	5.0 µL	63.8 µL	106.3 µL	148.8 µL	191.3 µL	286.9 µL	584.4 µL			
Total Volume	15.5 μL	197.6 μL	329.4 μL	461.1 μL	592.9 μL	889.4 μL	1811.6 μL			

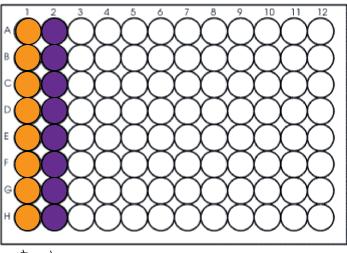
b For runs that use different Probes in individual rows, prepare a master mix for each Probe as listed in Table 69 or Table 70, according to the probe design size. The volumes listed in Table 69 and Table 70 are for a single row of sample wells. If a given Probe will be hybridized in multiple rows, multiply each of the values below by the number of rows assigned to that Probe.

Table 69 Preparation of Probe Hybridization master mix for Probes <3 Mb, single row of wells

Target size <3.0 Mb									
Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns		
Nuclease-free water	7 μL	10.5 μL	17.5 µL	24.5 µL	31.5 µL	49.0 µL	98.0 μL		
RNase Block (purple cap)	0.5 μL	0.8 μL	1.3 µL	1.8 µL	2.3 μL	3.5 µL	7.0 µL		
SureSelect Fast Hybridization Buffer (bottle)	6.0 µL	9.0 µL	15.0 μL	21.0 μL	27.0 μL	42.0 µL	84.0 μL		
Probe (with design <3 Mb)	2.0 µL	3.0 µL	5.0 µL	7.0 µL	9.0 µL	14.0 µL	28.0 µL		
Total Volume	15.5 μL	23.3 μL	38.8 μL	54.3 μL	69.8 μL	108.5 μL	217.0 μL		

Table 70 Preparation of Probe Hybridization master mix for Probes ≥3 Mb, single row of wells

	Target size ≥3.0 Mb									
Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns			
Nuclease-free water	4.0 µL	6.0 µL	10.0 μL	14.0 µL	18.0 µL	28.0 µL	56.0 µL			
RNase Block (purple cap)	0.5 μL	0.8 μL	1.3 µL	1.8 µL	2.3 µL	3.5 µL	7.0 µL			
SureSelect Fast Hybridization Buffer (bottle)	6.0 µL	9.0 μL	15.0 μL	21.0 μL	27.0 μL	42.0 µL	84.0 µL			
Probe (with design ≥3 Mb)	5.0 µL	7.5 µL	12.5 µL	17.5 µL	22.5 µL	35.0 µL	70.0 μL			
Total Volume	15.5 μL	23.3 µL	38.8 µL	54.3 μL	69.8 μL	108.5 μL	217.0 μL			


Prepare the master mix source plate

10 Using an Eppendorf twin.tec master mix source plate, prepare the hybridization master mix source plate at room temperature, containing the master mixes prepared in step 8 and step 9. Add the volumes indicated in Table 71 of each master mix to each well of the indicated column of the plate. When using multiple Probes in a run, add the Probe Hybridization master mix for each probe to the appropriate row(s) of the Eppendorf twin.tec plate. The final configuration of the master mix source plate is shown in Figure 14.

Table 71 Preparation of the master mix source plate for Hyb_XT_HS2_ILM protocol

		Volume of master mix added per Well of Eppendorf twin.tec Source Plate							
Master Mix Solution	Position on Source Plate	1-Column Runs	2-Column Runs	3-Column Runs	4-Column Runs	6-Column Runs	12-Column Runs		
Block master mix	Column 1 (A1-H1)	11.0 μL	19.0 μL	27.0 μL	34.9 µL	50.9 μL	102.7 μL		
Probe Hybridization master mix	Column 2 (A2-H2)	23.3 μL	38.8 µL	54.3 μL	69.8 µL	108.5µL	217.0 µL*		

^{*} Wells containing 217.0 μL are nearly full. Pipette carefully to avoid introducing bubbles to the bottom of the wells. Handle the plate with care to avoid spillage. Do not centrifuge.

An a se no s

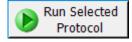
Figure 14 Configuration of the **Eppendorf twin.tec** master mix source plate for protocol Hyb_XT_HS2_ILM. Column 2 can contain different Probe Hybridization master mixes in each row.

11 Proceed immediately to loading the Bravo deck, keeping the master mix plate at room temperature only briefly during the loading process.

Load the Bravo deck

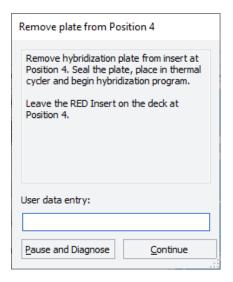
12 Load the Bravo deck according to Table 72.

Table 72 Initial Bravo deck configuration for Hyb_XT_HS2_ILM protocol


Location	Content
4	Empty PCR plate seated in red insert (PCR plate type must be specified on setup form under step 2)
5	Empty Eppendorf twin.tec plate
6	Eppendorf twin.tec Master Mix source plate (unsealed) seated in red insert
8	Empty tip box
9	Prepared library aliquots or library pools in Eppendorf twin.tec plate (unsealed)

Run VWorks protocol Hyb_XT_HS2_ILM

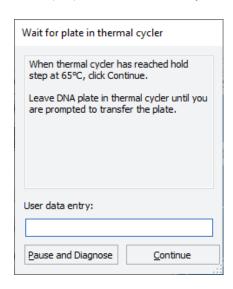
- **13** On the SureSelect setup form, under **Select protocol to execute**, select the **Hyb_XT_HS2_ILM** protocol.
- **14** Under **Select labware for thermal cycling**, select the specific type of PCR plate used at position 4 of the Bravo deck.
- **15** Select the number of columns of samples to be processed. Runs must include 1, 2, 3, 4, 6, or 12 columns.
- 16 Click Display Initial Workstation Setup.



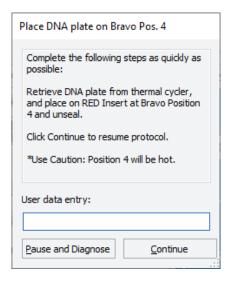
- 17 Verify that the NGS workstation has been set up as displayed on the right side of the form.
- 18 When verification is complete, click Run Selected Protocol.

The Agilent NGS Workstation combines the prepped gDNA in the wells of the sample plate with the aliquotted SureSelect Block master mix. When this process is complete, you will be prompted to transfer the plate to the thermal cycler for sample denaturation and blocking prior to hybridization.

19 When prompted by VWorks as shown below, remove the PCR plate from position 4 of the Bravo deck, leaving the red insert in place. After removing the sample plate, click **Continue**.


- **20** Seal the sample plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 sec.
- **21** Transfer the sealed plate to a thermal cycler. Initiate the pre-programmed thermal cycler program (**Table 63** on page 94 or **Table 64** on page 94).

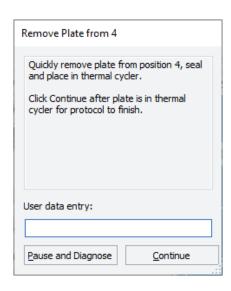
While the sample plate incubates on the thermal cycler, the Agilent NGS Workstation aliquots the Probe Hybridization master mix to the Eppendorf twin.tec plate.


CAUTION

You must complete **step 22** to **step 26** quickly, and immediately after being prompted by the VWorks software. It is important that sample temperature remains approximately 65°C during transfers between the Agilent NGS Workstation and thermal cycler.

22 When the workstation has finished aliquoting the Probe Hybridization master mix, you will be prompted by VWorks as shown below. When the thermal cycler reaches the 65°C hold step, click **Continue**. Leave the sample plate in the thermal cycler until you are notified to move it.

23 When prompted by VWorks as shown below, quickly remove the sample plate from the thermal cycler, unseal the plate carefully to avoid splashing, and transfer the plate to position 4 of the Bravo deck, seated in the red insert. Click **Continue**.


WARNING

Bravo deck position 4 will be hot.

Use caution when handling components that contact heated deck positions.

The Agilent NGS Workstation transfers the Probe Hybridization master mix to the wells of the PCR plate that contain the mixture of prepped gDNA samples and blocking agents.

24 When prompted by VWorks as shown below, quickly remove the PCR sample plate from Bravo deck position 4, leaving the red insert in place.

25 Seal the sample plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 sec.

26 Quickly transfer the plate back to the thermal cycler, held at 65°C. On the thermal cycler, initiate the hybridization segment of the pre-programmed thermal cycler program (segment 4 from Table 63 on page 94 or Table 64 on page 94). During this step, the prepared DNA samples or DNA sample pools are hybridized to the Probe.

CAUTION

The thermal cycler is held at 65°C using a heated lid at 105°C. The lid of the thermal cycler is hot and can cause burns. Use caution when working near the lid.

- 27 After initiating hybridization on the thermal cycler, click **Continue** on the VWorks screen.
- **28** To finish the VWorks protocol, click **Continue** in the Unused Tips and Empty Tip box dialogs, and click **Yes** in the Protocol Complete dialog.
- 29 If you are using the pre-capture pooling workflow, when the Hybridization protocol is complete, remove the Eppendorf twin.tec plate containing the remainder of the prepared library pools. This plate is located at position 9 of the Bravo deck. Seal the plate and store it at −20°C in the event that the samples require further processing.

Step 3. Capture the hybridized DNA

This step uses runset SSELCapture&Wash_XT_HS2_ILM to automate capture of the gDNA-probe hybrids using streptavidin-coated magnetic beads. Setup tasks for the Capture & Wash protocol (step 1, below, through step 15 on page 105) should be completed during the thermal cycler incubation for hybridization (approximately 1.5-hour duration) started on page 102.

The Capture & Wash runset uses the components listed in **Table 73**.

Table 73 Reagents for Capture

Kit Component	Storage Location	Where Used
SureSelect Binding Buffer	SureSelect Target Enrichment Kit, ILM Hyb Module, Box 1 (Post PCR), RT	page 104
SureSelect Wash Buffer 1	SureSelect Target Enrichment Kit, ILM Hyb Module, Box 1 (Post PCR), RT	page 104
SureSelect Wash Buffer 2	SureSelect Target Enrichment Kit, ILM Hyb Module, Box 1 (Post PCR), RT	page 104
Dynabeads MyOne Streptavidin T1	Follow storage recommendations provided by supplier (see Table 1 on page 11)	page 104

Prepare the workstation

- 1 Retain the Eppendorf twin.tec source plate containing the Block master mix and Probe Hybridization master mix located at position 6 of the Bravo deck for later use in the Post-CapPCR_XT_HS2_ILM protocol. Otherwise, clear the Labware MiniHub and BenchCel of all plates and tip boxes.
- **2** Gently wipe down the Labware MiniHub, Bravo deck, and BenchCel with a DNA Away decontamination wipe.
- **3** Place a red PCR plate insert at Bravo deck position 4.
- **4** Place the silver Deep Well plate insert on position 6 of the Bravo deck. This insert is required to facilitate heat transfer to the Deep Well source plate wells during the Capture & Wash runset. When loading a source plate on the silver insert, make sure the plate is seated properly to ensure proper heat transfer.

Prepare the Dynabeads streptavidin beads

- **5** Vigorously resuspend the Dynabeads MyOne Streptavidin T1 magnetic beads on a vortex mixer. The beads settle during storage.
- 6 Wash the magnetic beads.
 - **a** In a conical vial, combine the components listed in **Table 74**. The volumes below include the required overage.

Table 74 Magnetic bead washing mixture

Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns
Dynabeads MyOne Streptavidin T1 bead suspension	50 μL	425 μL	825 µL	1225 µL	1.65 mL	2.5 mL	5.0 mL
SureSelect Binding Buffer	0.2 mL	1.7 mL	3.3 mL	4.9 mL	6.6 mL	10 mL	20 mL
Total Volume	0.25 mL	2.125 mL	4.125 mL	6.125 mL	8.25 mL	12.5 mL	25 mL

- **b** Mix the beads on a vortex mixer for 5 seconds.
- **c** Put the vial into a magnetic separator device.
- **d** Remove and discard the supernatant.
- **e** Repeat **step a** through **step d** for a total of 3 washes. (Retain the beads after each wash and combine with a fresh aliquot of the indicated volume of SureSelect Binding Buffer.)
- 7 Resuspend the beads in SureSelect Binding buffer, according to Table 75 below.

Table 75 Preparation of magnetic beads for SSELCapture&Wash_XT_HS2_ILM runset

Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns
SureSelect Binding Buffer	0.2 mL	1.7 mL	3.3 mL	4.9 mL	6.6 mL	10 mL	20 mL

- **8** Prepare an Agilent Deep Well source plate for the washed streptavidin bead suspension. For each well to be processed, add 200 μ L of the homogeneous bead suspension to the Agilent Deep Well plate.
- **9** Place the streptavidin bead source plate at position 5 of the Bravo deck.

Prepare capture and wash solution source plates

10 Prepare an Agilent shallow well reservoir containing 30 mL of nuclease-free water.

Make sure that the water in the reservoir does not contain bubbles. If bubbles are present, dislodge them with a clean pipette tip.

At the end of the automation protocol, retain this reservoir for use in the Post-CapPCR_XT_HS2_ILM and AMPureXP_XT_HS2_ILM (Post-Capture PCR) protocols.

11 Prepare an Eppendorf twin.tec source plate labeled *Wash #1*. For each well to be processed, add 150 µL of SureSelect Wash Buffer 1.

12 Prepare an Agilent Deep Well source plate labeled *Wash #2*. For each well to be processed, add 1150 µL of SureSelect Wash Buffer 2.

Load the Agilent NGS Workstation

13 Load the Labware MiniHub according to **Table 76**, using the plate orientations shown in **Figure 4** on page 51.

Table 76 Initial MiniHub configuration for SSELCapture&Wash_XT_HS2_ILM runset

Vertical Shelf Position	Cassette 1	Cassette 2	Cassette 3	Cassette 4
Shelf 5 (Top)	_	_	_	_
Shelf 4	_	_	_	_
Shelf 3	Wash #1 Eppendorf twin.tec source plate	_	_	_
Shelf 2	-	Nuclease-free water reservoir from step 10	-	_
Shelf 1 (Bottom)	_	_	_	Empty tip box

14 Load the Bravo deck according to Table 77 (position 5 should already be loaded).

Table 77 Initial Bravo deck configuration for SSELCapture&Wash_XT_HS2_ILM runset

Location	Content
1	Empty waste reservoir (Agilent 2 mL square well)
4	Empty red insert
5	Dynabeads streptavidin bead Deep Well source plate
6	Wash #2 Deep Well source plate seated on silver Deep Well insert

15 Load the BenchCel Microplate Handling Workstation according to Table 78.

Table 78 Initial BenchCel configuration for SSELCapture&Wash_XT_HS2_ILM runset

No. of Columns Processed	Rack 1	Rack 2	Rack 3	Rack 4
1	1 Tip box	_	_	_
2	1 Tip box	_	_	_
3	1 Tip box	_	_	_
4	2 Tip boxes	_	_	_
6	2 Tip boxes	_	_	_
12	4 Tip boxes	_	_	_

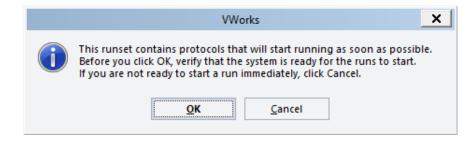
Run VWorks runset SSELCapture&Wash_XT_HS2_ILM

Start the SSELCapture&Wash_XT_HS2_ILM runset upon completion of the hybridization incubation. The hybridization incubation is complete when the thermal cycler program reaches the 65°C Hold step. The 65°C Hold step is segment 6 if using **Table 63** on page 94, and it is segment 5 if using **Table 64** on page 94.

The total duration of the SSELCapture&Wash_XT_HS2_ILM runset is approximately 2 hours. A workstation operator must be present to complete two actions during the runset at the time points in the table below. The times provided are approximate; each action is completed in response to a VWorks prompt at the appropriate time in the runset.

Table 79 Operator actions during the SSELCapture&Wash_XT_HS2_ILM runset

Operator action	Approximate time after run start
Transfer hybridization reactions from thermal cycler to NGS workstation	<5 minutes
Remove PCR plate from red aluminum insert	<5 minutes


- **16** On the SureSelect setup form, under **Select protocol to execute**, select the **SSELCapture&Wash_XT_HS2_ILM** runset.
- **17** Under **Select labware for thermal cycling**, select the specific type of PCR plate used for hybridization. This plate will be transferred from the thermal cycler to Bravo deck position 4 when prompted by VWorks.
- **18** Select the number of columns of samples to be processed. Runs must include 1, 2, 3, 4, 6, or 12 columns.
- 19 Click Display Initial Workstation Setup.

- 20 Verify that the NGS workstation has been set up as displayed on the right side of the form.
- 21 When verification is complete, click Run Selected Protocol.

22 When ready to begin the run, click **OK** in the following window.

CAUTION

It is important to complete **step 23** quickly and carefully. Unseal the plate without tilting or jerking the plate to avoid sample splashing. Make sure that the Agilent NGS Workstation is completely prepared, with all components in place, before you transfer the sample plate to the Bravo deck.

23 When prompted by VWorks as shown below, quickly remove the PCR plate, containing the hybridization reactions held at 65°C, from the thermal cycler. Unseal the plate carefully to avoid splashing, and quickly transfer the plate to position 4 of the Bravo deck, seated in the red insert. Click **Continue** to resume the runset.

24 When prompted by VWorks as shown below, remove the PCR plate from position 4 of the Bravo deck, leaving the red aluminum insert in place. When finished, click **Continue** to resume the runset.

The remainder of the SSELCapture&Wash_XT_HS2_ILM runset takes approximately 2 hours. Once the runset is complete, the captured, bead-bound DNA samples are located in the Eppendorf plate at position 9 of the Bravo deck.

When the runset is complete, seal the plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 sec and store the plate on ice while setting up the next automation protocol.

NOTE

Captured DNA is retained on the streptavidin beads during the post-capture amplification step.

6 Post-Capture Sample Processing for Multiplexed Sequencing

- Step 1. Amplify the captured libraries 110
- Step 2. Purify the amplified indexed libraries using AMPure XP beads 116
- Step 3. Assess sequencing library DNA quantity and quality 119
- Step 4. Pool samples for multiplexed sequencing (optional) 125
- Step 5. Prepare sequencing samples 129
- Step 6. Do the sequencing run and analyze the data 131
- Sequence analysis resources 135

This chapter describes the steps to amplify, purify, and assess quality and quantity of the captured libraries. Sample pooling instructions for the post-capture pooling workflow are provided to prepare the indexed, molecular barcoded samples for multiplexed sequencing.

Step 1. Amplify the captured libraries

In this step, the Agilent NGS Workstation completes the liquid handling steps for PCR-amplification of the SureSelect-enriched DNA samples. After the PCR plate is prepared by the Agilent NGS Workstation, you transfer the plate to a thermal cycler for amplification.

The design size of your Probe determines the amplification cycle number. Plan your experiments for amplification of samples prepared using probes of similar design sizes on the same plate. See **Table 82** on page 111 for cycle number recommendations.

This step uses the components listed in **Table 80**. Before you begin, thaw the reagents listed below and keep on ice. Before use, mix each component as directed.

Table 80 Reagents for post-capture PCR amplification

Component	Storage Location	Mixing Method	Where Used
Herculase II Fusion DNA Polymerase (red cap)	SureSelect XT HS2 Target Enrichment Kit, ILM Hyb Module Box 2 (Post PCR), −20°C	Pipette up and down 15–20 times	page 112
5× Herculase II Reaction Buffer with dNTPs (clear cap)	SureSelect XT HS2 Target Enrichment Kit, ILM Hyb Module Box 2 (Post PCR), -20°C	Vortexing	page 112
SureSelect Post-Capture Primer Mix (clear cap)	SureSelect XT HS2 Target Enrichment Kit, ILM Hyb Module Box 2 (Post PCR), -20°C	Vortexing	page 112

To avoid cross-contaminating libraries, set up PCR master mixes in a dedicated clean area or PCR hood with UV sterilization and positive air flow.

Prepare the workstation

- 1 Clear the Labware MiniHub and BenchCel of plates and tip boxes.
- **2** Gently wipe down the Labware MiniHub, Bravo deck, and BenchCel with a DNA Away decontamination wipe.
- **3** Turn on the ThermoCube, set to 0°C, at position 9 of the Bravo deck. Be sure that the chiller reservoir contains at least 300 mL of 25% ethanol.
- 4 Prepare an Agilent shallow well reservoir containing 30 mL of nuclease-free water.

Use the same Agilent shallow well reservoir that was used in the SSELCapture&Wash_XT_HS2 protocol.

Make sure that the water in the reservoir does not contain bubbles. If bubbles are present, dislodge them with a clean pipette tip.

At the end of the automation protocol, retain this reservoir for use in the AMPureXP_XT_HS2_ILM (Post-Capture PCR) protocol.

5 Pre-set the temperature of Bravo deck positions 4 and 6 to 4°C using the Inheco Multi TEC control touchscreen, as described in **Setting the Temperature of Bravo Deck Heat Blocks**. Bravo deck positions 4 and 6 correspond to CPAC 2, positions 1 and 2, on the Multi TEC control touchscreen.

Pre-program the thermal cycler

1 Pre-program a thermal cycler (with the heated lid ON) with the program in **Table 81**. Start the program, then immediately pause the program, allowing the heated lid to reach temperature while you set up the reactions.

Table 81 Post-capture PCR Thermal Cycler Program

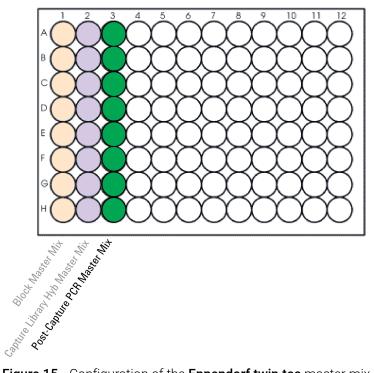
Segment	Number of Cycles	Temperature	Time
1	1	98°C	2 minutes
2	10 to 16	98°C	30 seconds
See Table 82 for recommendations based on probe design size	60°C	30 seconds	
	based on probe design size	72°C	1 minute
3	1	72°C	5 minutes
4	1	4°C	Hold

Table 82 Post-capture PCR cycle number recommendations

Probe Size/Description	Cycles
Probes <0.2 Mb	16 cycles
Probes 0.2-3 Mb	12-16 cycles
Probes 3-5 Mb	11-12 cycles
Probes >5 Mb (including Human All Exon Probes)	10-11 cycles

Prepare the post-capture PCR master mix and master mix source plate

1 Prepare the appropriate volume of post-capture PCR Master Mix, according to **Table 83**. Mix well using a vortex mixer and keep on ice.


Table 83 Preparation of Post-Capture PCR Master Mix

Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns
5× Herculase II Reaction Buffer with dNTPs (clear cap)	10 μL	170 μL	255 μL	340 µL	425 μL	574 μL	1105µL
SureSelect Post-Capture Primer Mix (clear cap)	1 μL	17.0 μL	25.5 μL	34.0 µL	42.5 µL	57.4 μL	110.5 μL
Herculase II Fusion DNA Polymerase (red cap)	1 μL	17.0 μL	25.5 μL	34.0 µL	42.5 µL	57.4 μL	110.5 µL
Total Volume	12.0 µL	204.0 μL	306.0 μL	408.0 μL	510.0 μL	688.8 µL	1326.0 µL

2 Using the same **Eppendorf twin.tec** master mix source plate that was used for the Hyb_XT_HS2_ILM protocol run, prepare the master mix source plate by adding the volume of PCR master mix indicated in **Table 84** to all wells of column 3 of the plate. The final configuration of the sample buffer source plate is shown in **Figure 15**

Table 84 Preparation of the master mix source plate for Post-CapPCR_XT_HS2_ILM protocol

Master Mix	Position on	Volum	e of master m	x added per w	ell of Eppendo	rf twin.tec Sou	rce Plate
Solution	Source Plate	1-Column Runs	2-Column Runs	3-Column Runs	4-Column 6-Column 12-Col Runs Runs Runs	12-Column Runs	
Post-Capture PCR Master Mix	Column 3 (A3-H3)	23.0 μL	36.0 µL	49.0 μL	62.0 µL	82.0 µL	163.0 μL

Figure 15 Configuration of the **Eppendorf twin.tec** master mix source plate for protocol Post-CapPCR_XT_HS2_ILM. The master mixes dispensed during previous protocols are shown in light shading.

- **3** Seal the master mix source plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 sec.
- **4** Centrifuge the plate for 30 seconds to drive the well contents off the walls and plate seal and to eliminate any bubbles.

Load the Agilent NGS Workstation

1 Load the Labware MiniHub according to **Table 85**, using the plate orientations shown in **Figure 4** on page 51.

Table 85 Initial MiniHub configuration for Post-CapPCR_XT_HS2_ILM protocol

Vertical Shelf Position	Cassette 1	Cassette 2	Cassette 3	Cassette 4
Shelf 5 (Top)	_	_	_	_
Shelf 4	_	_	_	_
Shelf 3	_	_	_	_
Shelf 2	New tip box	Nuclease-free water reservoir from step 4	_	_
Shelf 1 (Bottom)	Empty tip box	_	_	Empty tip box

2 Load the Bravo deck according to Table 86.

Table 86 Initial Bravo deck configuration for Post-CapPCR_XT_HS2_ILM protocol

Location	Content
4	Captured DNA bead suspensions in Eppendorf twin.tec plate (unsealed)
6	Empty PCR plate seated in red insert (PCR plate type must be specified on setup form under step 2)
9	Master mix plate containing PCR Master Mix in Column 3 (unsealed)

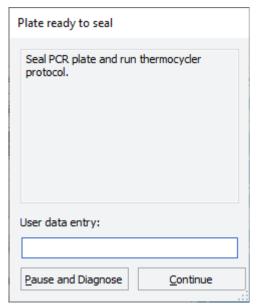
3 Load the BenchCel Microplate Handling Workstation according to **Table 87**.

Table 87 Initial BenchCel configuration for Post-CapPCR_XT_HS2_ILM protocol

No. of Columns Processed	Rack 1	Rack 2	Rack 3	Rack 4
1	1 Tip box	_	_	_
2	1 Tip box	_	_	_
3	1 Tip box	_	_	_
4	1 Tip box	_	_	_
6	1 Tip box	_	_	_
12	1 Tip box	_	_	_

Run VWorks protocol Post-CapPCR_XT_HS2_ILM

- 1 On the SureSelect setup form, under Select protocol to execute, select the Post-CapPCR_XT_HS2_ILM protocol.
- 2 Under **Select labware for thermal cycling**, select the specific type of PCR plate used at position 6 of the Bravo deck.
- **3** Select the number of columns of samples to be processed. Runs must include 1, 2, 3, 4, 6, or 12 columns.
- 4 Click Display Initial Workstation Setup.



- 5 Verify that the NGS workstation has been set up as displayed on the right side of the form.
- 6 When verification is complete, click Run Selected Protocol.

Running the Post-CapPCR_XT_HS2_ILM protocol takes approximately 15 minutes. Once complete, the PCR-ready samples, containing captured DNA and PCR master mix, are located in the PCR plate at position 6 of the Bravo deck.

7 When you see the following prompt, remove the PCR plate from position 6 of the Bravo deck and seal the plate using the PlateLoc Thermal Microplate Sealer, with sealing settings of 165°C and 1.0 seconds.

- **8** Place the plate in the thermal cycler. Resume the thermal cycler program in **Table 81** on page 111.
- 9 When the PCR amplification program is complete, spin the plate briefly then keep on ice.

Step 2. Purify the amplified indexed libraries using AMPure XP beads

In this step, the Agilent NGS Workstation transfers AMPure XP beads to the indexed DNA sample plate and then collects and washes the bead-bound DNA.

This step uses the aliquoted plate of AMPure XP beads that was prepared on page 42.

Prepare the workstation and reagents

- 1 Retain the Eppendorf twin.tec source plate containing the Post-Capture PCR master mix located at position 9 of the Bravo deck for later use in the TS_HighSensitivity_D1000 protocol (see "Option 1: Analysis using an Agilent 4200 TapeStation Instrument and High Sensitivity D1000 ScreenTape" on page 119). Otherwise, clear the Labware MiniHub and BenchCel of all plates and tip boxes.
- **2** Gently wipe down the Labware MiniHub, Bravo deck, and BenchCel with a DNA Away decontamination wipe.
- 3 Pre-set the temperature of Bravo deck position 4 to 45°C using the Inheco Multi TEC control touchscreen, as described in **Setting the Temperature of Bravo Deck Heat Blocks**. Bravo deck position 4 corresponds to CPAC 2, position 1 on the Multi TEC control touchscreen.
- **4** Turn on the ThermoCube, set to 0°C, at position 9 of the Bravo deck. Be sure that the chiller reservoir contains at least 300 mL of 25% ethanol.
- **5** Prepare an Agilent shallow well reservoir containing 30 mL of nuclease-free water.
 - Use the same Agilent shallow well reservoir that was used in the Post-CapPCR_XT_HS2_ILM protocol.
 - Make sure that the water in the reservoir does not contain bubbles. If bubbles are present, dislodge them with a clean pipette tip.
- **6** Prepare an Agilent deep well reservoir containing 50 mL of freshly-prepared 70% ethanol.
- 7 Load the Labware MiniHub according to **Table 88**, using the plate orientations shown in **Figure 4** on page 51.

Table 88 Initial MiniHub configuration for AMPureXP_XT_HS2_ILM (Post-Capture PCR) protocol

Vertical Shelf Position	Cassette 1	Cassette 2	Cassette 3	Cassette 4
Shelf 5 (Top)	Aliquotted AMPure XP beads in Agilent Deep Well plate from page 42 (50 µL of beads/well)	_	_	_
Shelf 4	_	_	_	_
Shelf 3	_	Empty Eppendorf twin.tec Plate	_	_
Shelf 2	_	Nuclease-free water reservoir from step 5		_
Shelf 1 (Bottom)	_	70% ethanol reservoir from step 6	_	Empty tip box

8 Load the Bravo deck according to Table 89.

Table 89 Initial Bravo deck configuration for AMPureXP_XT_HS2_ILM (Post-Capture PCR) protocol

Location	Content
1	Empty waste plate (Agilent 2 mL square well)
9	Amplified DNA libraries or library pools in unsealed PCR plate seated in red insert (PCR plate type must be specified on setup form under step 2)

9 Load the BenchCel Microplate Handling Workstation according to **Table 90**.

Table 90 Initial BenchCel configuration for AMPureXP_XT_HS2_ILM (Post-Capture PCR) protocol

No. of Columns Processed	Rack 1	Rack 2	Rack 3	Rack 4
1	1 Tip box	_	_	_
2	1 Tip box	_	_	_
3	2 Tip boxes	_	_	_
4	2 Tip boxes	_	_	_
6	3 Tip boxes	_	_	_
12	5 Tip boxes	_	_	_

Run VWorks protocol AMPureXP_XT_HS2_ILM (Post-Capture PCR)

1 On the SureSelect setup form, under **Select protocol to execute**, select the **AMPureXP_XT_HS2_ILM (Post-Capture PCR)** protocol.

NOTE

AMPureXP purification protocols are used during multiple steps of the SureSelect automation workflow. Be sure to select the correct workflow step when initiating the automation protocol.

- 2 Under **Select labware for thermal cycling**, select the specific type of PCR plate containing the amplified libraries at position 9.
- **3** Select the number of columns of samples to be processed. Runs must include 1, 2, 3, 4, 6, or 12 columns.
- 4 Click Display Initial Workstation Setup.

- 5 Verify that the NGS workstation has been set up as displayed on the right side of the form.
- 6 When verification is complete, click Run Selected Protocol.

The purification protocol takes approximately 45 minutes. When complete, the amplified DNA samples are in the Eppendorf plate located on Bravo deck position 7.

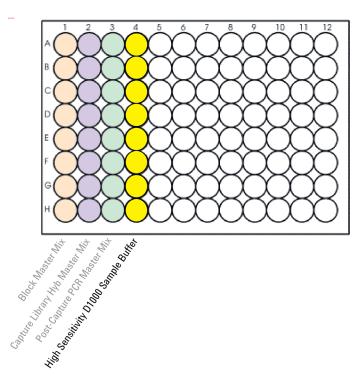
Step 3. Assess sequencing library DNA quantity and quality

Post-capture library analysis can be done using one of two options.

- Option 1: Prepare the analytical assay plate using automation (protocol TS_HighSensitivity_D1000) and perform analysis on Agilent 4200 TapeStation. See "Option 1: Analysis using an Agilent 4200 TapeStation Instrument and High Sensitivity D1000 ScreenTape" on page 119.
- Option 2: Prepare the analytical samples manually and perform analysis on Agilent 2100
 Bioanalyzer, Agilent 4200 or 4150 TapeStation or Agilent 5200 Fragment Analyzer. See "Option
 2: Analysis using an equivalent platform (non-automated)" on page 124.

Option 1: Analysis using an Agilent 4200 TapeStation Instrument and High Sensitivity D1000 ScreenTape

This section describes use of automation protocol TS_HighSensitivity_D1000 to prepare samples for analysis. The automation protocol prepares the assay sample plate by combining 3 μ L of each DNA sample with 3 μ L of High Sensitivity D1000 Sample Buffer. Afterward, you transfer the sample plate to the 4200 TapeStation instrument for analysis. For more information to do this step, see the Agilent High Sensitivity D1000 Assay Quick Guide for 4200 TapeStation System.


Allow the reagents used with either analysis system to equilibrate to room temperature for 30 minutes prior to use.

Prepare the workstation and Sample Buffer source plate

- 1 Clear the Labware MiniHub and BenchCel of plates and tip boxes.
- **2** Gently wipe down the Labware MiniHub, Bravo deck, and BenchCel with a DNA Away decontamination wipe.
- **3** Turn off the ThermoCube device (see **page 22**) to restore position 9 of the Bravo deck to room temperature.
- **4** Pre-set the temperature of Bravo deck position 4 to 4°C using the Inheco Multi TEC control touchscreen, as described in **Setting the Temperature of Bravo Deck Heat Blocks**. Bravo deck position 4 corresponds to CPAC 2, position 1 on the Multi TEC control touchscreen.
- 5 Using the same **Eppendorf twin.tec** master mix source plate that was used for the Post-CapPCR_XT_HS2_ILM protocol run, prepare the Sample Buffer source plate at room temperature. Add the volume of High Sensitivity D1000 Sample Buffer indicated in **Table 91** to each well of column 4 of the plate. The final configuration of the sample buffer source plate is shown in **Figure 16**.

Table 91 Preparation of the Sample Buffer Source Plate for TS_HighSensitivity_D1000 protocol

Solution	Position on	Volume	of Sample Buf	fer added per \	Well of Eppend	lorf twin.tec So	ource Plate
	Source Plate	1-Column Runs	2-Column Runs	3-Column Runs	4-Column Runs	6-Column 12-Column Runs Runs	12-Column Runs
High Sensitivity D1000 Sample Buffer	Column 4 (A4-H4)	8.0 µL	11.0 µL	14.0 µL	17.0 µL	23.0 μL	44.0 μL

Figure 16 Configuration of the **Eppendorf twin.tec** source plate for protocol TS_High-Sensitivity_D1000. Columns 1–3 were used to dispense master mixes during previous protocols.

Load the Agilent NGS Workstation

6 Load the Labware MiniHub according to **Table 92**, using the plate orientations shown in **Figure 4** on page 51.

Table 92 Initial MiniHub configuration for TS_HighSensitivity_D1000 protocol

Vertical Shelf Position	Cassette 1	Cassette 2	Cassette 3	Cassette 4
Shelf 5 (Top)	-	_	_	_
Shelf 4	_	_	_	_
Shelf 3	_	_	_	_
Shelf 2	New tip box	_	_	_
Shelf 1 (Bottom)	Empty tip box	_	_	Empty tip box

7 Load the Bravo deck according to **Table 93**.

Table 93 Initial Bravo deck configuration for TS_HighSensitivity_D1000 protocol

Location	Content
4	Amplified post-capture libraries or library pools in Eppendorf twin.tec plate (unsealed)
6	Empty Eppendorf twin.tec plate
9	Eppendorf twin.tec source plate containing High Sensitivity D1000 Sample Buffer in Column 4

CAUTION

To prevent damage to the Agilent 4200 TapeStation instrument and the Agilent NGS Workstation, use only the specified Eppendorf twin.tec plates (Eppendorf p/n 951020401 or 951020619) for automated assay plate preparation.

The Agilent 2200 TapeStation system does not support use of the Eppendorf twin.tec plates. Do not load sample plates prepared using the automated protocol in the 2200 TapeStation instrument.

8 Load the BenchCel Microplate Handling Workstation according to Table 94.

Table 94 Initial BenchCel configuration for TS_HighSensitivity_D1000 protocol

No. of Columns Processed	Rack 1	Rack 2	Rack 3	Rack 4
1	1 Tip box	_	_	_
2	1 Tip box	_	_	_
3	1 Tip box	_	_	_
4	1 Tip box	_	_	_
6	1 Tip box	_	_	_
12	1 Tip box	_	_	_

Run VWorks protocol TS_HighSensitivity_D1000

- **9** On the SureSelect setup form, under **Select protocol to execute**, select the **TS_HighSensitivity_D1000** protocol.
- **10** Select the number of columns of samples to be processed. Runs must include 1, 2, 3, 4, 6, or 12 columns.
- 11 Click Display Initial Workstation Setup.



- 12 Verify that the NGS workstation has been set up as displayed on the right side of the form.
- 13 When verification is complete, click Run Selected Protocol.

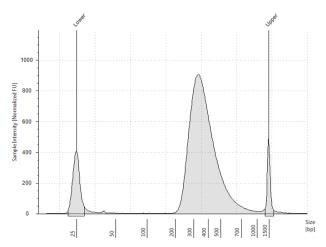
Running the TS_HighSensitivity_D1000 protocol takes approximately 15 minutes. Once removal of analytical samples is complete, remove the primary DNA library sample plate from position 4, seal the plate, and keep on ice until the samples are pooled for sequencing on page 125.

14 When prompted by VWorks as shown below, remove the Eppendorf twin.tec plate containing the analytical samples from position 6 of the Bravo deck, then click **Continue**. Seal the assay plate with a foil seal and vortex the sealed plate as directed in the Agilent High Sensitivity D1000 Assay Quick Guide for 4200 TapeStation System.

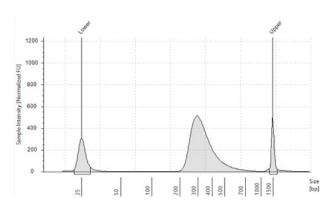
CAUTION

To prevent damage to the Agilent 4200 TapeStation instrument, use only the specified 96-well plate foil seals (Agilent p/n 5067-5154).

For accurate quantitation, make sure that you thoroughly mix the combined DNA and sample buffer on a vortex mixer for 1 minute, then spin briefly to collect the liquid.


Run the High Sensitivity D1000 Assay and analyze the data

- **15** Load the analytical sample plate, the High Sensitivity D1000 ScreenTape, and loading tips into the TapeStation as instructed in the instrument user manual. Start the run.
- 16 Verify that the electropherogram shows the expected DNA fragment size peak position (see Table 95 for guidelines). Sample electropherograms are shown in Figure 17 (library prepared from high-quality DNA), Figure 18 (library prepared from medium-quality FFPE DNA), and Figure 19 (library prepared from low-quality FFPE DNA).


Table 95 Post-capture library qualification guidelines

NGS read length for fragmentation protocol selection	Input DNA type	Expected library DNA fragment size peak position
2 × 100 reads	Intact DNA	300 to 400 bp
	FFPE DNA	200 to 400 bp
2 × 150 reads	Intact DNA	330 to 450 bp
	FFPE DNA	200 to 450 bp

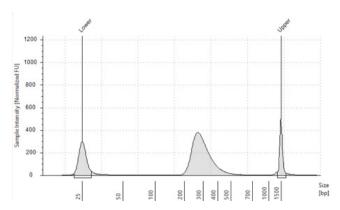

17 Determine the concentration of each library by integrating under the entire peak.

Figure 17 Post-capture library prepared from a high-quality gDNA sample analyzed using a High Sensitivity D1000 ScreenTape assay.

Figure 18 Post-capture library prepared from a typical FFPE gDNA sample analyzed using a High Sensitivity D1000 ScreenTape assay.

Figure 19 Post-capture library prepared from a low-quality FFPE gDNA sample analyzed using a High Sensitivity D1000 ScreenTape assay.

Stopping Point

If you do not continue to the next step, seal the plate and store at 4° C overnight or at -20° C for prolonged storage.

Option 2: Analysis using an equivalent platform (non-automated)

Using manual preparation of the analytical samples, you can analyze the DNA samples on Agilent 2100 BioAnalyzer, Agilent 5200 Fragment Analyzer, or Agilent 4200/4150 TapeStation. Electropherograms obtained using one of these other analysis platforms are expected to show fragment size profiles similar to those shown for the Agilent 4200 TapeStation (see **Figure 17** through **Figure 19**). Verify that the electropherogram shows the expected DNA fragment size peak position (see **Table 95** for guidelines). **Table 96** includes links to assay instructions.

Table 96 Post-capture library analysis options

Analysis platform	Assay used at this step	Link to assay instructions	Amount of library sample to analyze
Agilent 4200 or 4150 TapeStation system	High Sensitivity D1000 ScreenTape	Agilent High Sensitivity D1000 Assay Quick Guide	2 μL
Agilent 2100 Bioanalyzer system	High Sensitivity DNA Kit	Agilent High Sensitivity DNA Kit Guide	1 μL
Agilent 5200, 5300, or 5400 Fragment Analyzer system	HS NGS Fragment Kit (1-6000 bp)	Agilent HS NGS Fragment Kit (1-6000 bp) Guide	2 μL

Stopping Point

If you do not continue to the next step, seal the sample wells and store at 4° C overnight or at -20° C for prolonged storage.

Step 4. Pool samples for multiplexed sequencing (optional)

NOTE

Pre-Capture Pooling Workflow If you are using the pre-capture pooling workflow, then your samples were already pooled prior to hybridization with the Probe. The final captured DNA samples contain pools of either 8 or 16 indexed libraries, based on the Probe used and resulting pre-capture pooling strategy. When appropriate for your sequencing platform, the 8-plex or 16-plex samples may be further multiplexed by post-capture pooling. Determine whether to do post-capture pooling by calculating the number of indexes that can be combined per lane, according to the output specifications of the platform used, together with the amount of sequencing data required for your research design. If doing post-capture pooling, use the guidelines provided below. If samples will not be further combined in post-capture pools, proceed to "Step 5. Prepare sequencing samples" on page 129.

Post-Capture Pooling Workflow For the post-capture pooling workflow, the number of indexed libraries that may be multiplexed in a single sequencing lane is determined by the output specifications of the platform used, together with the amount of sequencing data required for your research design. Calculate the number of indexes that can be combined per lane, according to the capacity of your platform and the amount of sequencing data required per sample.

Combine the libraries such that each index-tagged sample is present in equimolar amounts in the pool using one of the two methods described below. **Method 2** can use the Aliquot_Captures automation protocol to pool samples.

Method 1 Dilute each indexed library to be pooled to the same final concentration (typically 4 nM to 15 nM, or the concentration of the most dilute sample) using Low TE. This dilution step is performed by manually pipetting the Low TE directly into the wells of the source plate. Then, combine equal volumes of all libraries to create the final pool in the destination plate.

Method 2 Starting with indexed libraries at different concentrations, add the appropriate volume of each library to the destination well (either manually or using the Aliquot_Captures automation protocol) to achieve equimolar concentration in the pool. Then, adjust the pool to the desired final volume by adding the appropriate volume of Low TE to each well. This volume adjustment is performed by manually pipetting the Low TE directly into the wells of the destination plate. The formula below is provided for determination of the amount of each indexed sample to add to the pool.

Volume of Index =
$$\frac{V(f) \times C(f)}{\# \times C(i)}$$

where **V(f)** is the final desired volume of the pool,

C(f) is the desired final concentration of all the DNA in the pool (typically 4 nM-15 nM or the concentration of the most dilute sample)

is the number of indexes, and

C(i) is the initial concentration of each indexed sample

Table 97 shows an example of the amount of 4 index-tagged samples (of different concentrations) and Low TE needed for a final volume of 20 µL at 10 nM DNA.

Table 97 Example of volume calculation for total volume of 20 µL at 10 nM concentration

Component	V(f)	C(i)	C(f)	#	Volume to use (µL)
Sample 1	20 μL	20 nM	10 nM	4	2.5
Sample 2	20 μL	10 nM	10 nM	4	5
Sample 3	20 μL	17 nM	10 nM	4	2.9
Sample 4	20 μL	25 nM	10 nM	4	2
Low TE					7.6

Pool samples for multiplexed sequencing using automation (optional for Method 2)

The instructions below are for **Method 2**. Alternatively, you can perform this method using an entirely manual approach rather than with the Aliquot_Captures automation protocol.

- 1 Create a .csv (comma separated value) file with the headers shown in **Figure 20**. The header text must not contain spaces. The table may be created using a spreadsheet application, such as Microsoft Excel software, and then saved in .csv format. The file must include rows for all 96 wells of the plate.
- 2 Enter the information requested in the header for each DNA sample. Figure 20 shows an example spreadsheet.
 - In the SourceBC field, enter the sample plate description or barcode. The SourceBC field contents must be identical for all rows.
 - In the SourceWell field, enter each well position on the source plate containing an amplified and captured indexed library that needs to be added to a pool. Use the Eppendorf twin.tec plate containing the purified indexed libraries as the source plate.
 - In the DestinationWell field, enter the well position on the destination plate for the pool.
 - In the Volume field, enter the volume (in µL) of each indexed library to be transferred from the source well to the destination well. The volume for each library is calculated from its concentration.
 - For all empty wells on the source plate, delete the corresponding rows in the .csv file.

	Α	В	С	D
1	SourceBC	SourceWell	DestinationWell	Volume
2	abc	A1	A1	4.711292
3	abc	B1	A1	6.37105
4	abc	C1	A1	7.000448
5	abc	D1	A1	3.81144
6	abc	E1	A1	9.539072
7	abc	F1	A1	7.802747
8	abc	G1	A1	8.835171
9	abc	H1	A1	6.313131
10	abc	A2	A1	5.976286
11	abc	B2	A1	6.601183
12	abc	C2	A1	7.14449
13	abc	D2	A1	5.66431

Figure 20 Sample spreadsheets for method 1 and method 2

NOTE

You can find a sample spreadsheet in the directory C:\VWorks Workspace\NGS Option B\
XT_HS2_ILM_v.Bx.x.x\Aliquot Input File Templates\Aliquot_Captures_Template.csv (where x.x.x is the version number).

The Aliquot_Captures_template.csv file may be copied and used as a template for creating the .csv files for each Aliquot_Captures protocol run. If you are using the sample file as a template for runs with fewer than 12 columns, be sure to delete rows for any unused columns on the plate.

- 3 Load the .csv file onto the PC containing the VWorks software into a suitable directory, such as C:\VWorks Workspace\NGS Option B\XT_HS2_ILM_v.Bx.x.x\Aliquot Input File Templates.
- **4** Turn on the chiller, set to 0°C, at position 9 of the Bravo deck. Be sure that the chiller reservoir contains at least 300 mL of 25% ethanol.
- 5 Load the Bravo deck according to Table 98.

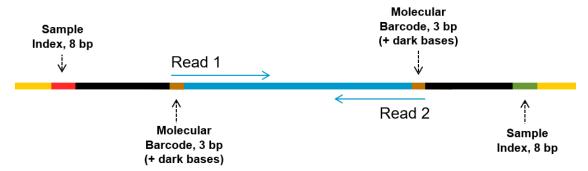
Table 98 Initial Bravo deck configuration for Aliquot_Captures protocol

Location	Content
5	Empty Agilent Deep Well plate
6	Empty tip box
8	New tip box
9	Purified amplified indexed libraries in Eppendorf twin.tec plate


- **6** On the SureSelect setup form, under **Select protocol to execute**, select the **Aliquot_Captures** protocol.
- 7 Click Display Initial Workstation Setup.

- 8 Upload the .csv file created in step 1 through step 3 (page 126 to 127).
 - **a** Click the "..." browse button below **Select Aliquot Input File** to open a directory browser window.

- **b** Browse to the location where you saved the .csv file. Select the file and click **Open**.
 - The directory browser window closes, returning you to the SureSelect setup form. The selected file location is listed in the field below **Select Aliquot Input File**.
- 9 Verify that the NGS workstation has been set up as displayed on the right side of the form.
- 10 When verification is complete, click Run Selected Protocol.


The aliquoting protocol takes approximately 1 hour for 96 samples. When complete, the destination plate containing the library pools is on Bravo deck position 5.

- 11 Remove the destination plate from the Bravo deck.
- **12** Add the appropriate volume of Low TE to each well to bring the pool to the necessary DNA concentration for sequencing.

If you store the library before sequencing, add Tween 20 to 0.1% v/v and store at -20° C short term.

Step 5. Prepare sequencing samples

The final SureSelect XT HS2 library pool is ready for direct sequencing using standard Illumina paired-end primers and chemistry. Each fragment in the prepared library contains one target insert surrounded by sequence motifs required for multiplexed sequencing using the Illumina platform, as shown in **Figure 21**.

Figure 21 Content of SureSelect XT HS2 sequencing library. Each fragment contains one target insert (blue) surrounded by the Illumina paired-end sequencing elements (black), the dual sample indexes (red and green), molecular barcodes (brown) and the library PCR primers (yellow).

Libraries can be sequenced on the Illumina HiSeq, MiSeq, NextSeq or NovaSeq platform using the run type and chemistry combinations shown in **Table 99**.

Proceed to cluster amplification using the appropriate Illumina Paired-End Cluster Generation Kit. See **Table 99** for kit configurations compatible with the recommended read length.

The optimal seeding concentration for SureSelect XT HS2 target-enriched libraries varies according to sequencing platform, run type, and Illumina kit version. See **Table 99** for guidelines. Seeding concentration and cluster density may also need to be optimized based on the DNA fragment size range for the library and on the desired output and data quality. Begin optimization using a seeding concentration in the middle of the range listed in **Table 99**.

Follow Illumina's recommendation for a PhiX control in a low-concentration spike-in for improved sequencing quality control.

Table 99 Illumina Kit Configuration Selection Guidelines

Platform	Run Type	Read Length	SBS Kit Configuration	Chemistry	Seeding Concentration
HiSeq 2500	Rapid Run	2 × 100 bp	200 Cycle Kit	v2	9-10 pM
HiSeq 2500	High Output	2 × 100 bp	250 Cycle Kit	v4	12-14 pM
MiSeq	All Runs	2 × 100 bp or 2 × 150 bp	300 Cycle Kit	v2	9-10 pM
MiSeq	All Runs	2 × 75 bp	150 Cycle Kit	v3	12-16 pM
NextSeq 500/550	All Runs	2 × 100 bp or 2 × 150 bp	300 Cycle Kit	v2.5	1.2-1.5 pM
HiSeq 3000/4000	All Runs	2 × 100 bp or 2 × 150 bp	300 Cycle Kit	v1	300-400 pM
NovaSeq 6000	Standard Workflow Runs	2 × 100 bp or 2 × 150 bp	300 Cycle Kit	v1.0 or v1.5	300-600 pM
NovaSeq 6000	Xp Workflow Runs	2 × 100 bp or 2 × 150 bp	300 Cycle Kit	v1.0 or v1.5	200-400 pM

Step 6. Do the sequencing run and analyze the data

The guidelines below provide an overview of SureSelect XT HS2 library sequencing run setup and analysis considerations. Links are provided for additional details for various NGS platforms and analysis pipeline options.

- Each of the sample-level indexes requires an 8-bp index read. For complete index sequence information, see **Table 110** on page 145 through **Table 116** on page 151.
- For the HiSeq, NextSeq, and NovaSeq platforms, set up the run using the instrument's user interface, following the guidelines on **page 131**.
- For the MiSeq platform, set up the run using Illumina Experiment Manager (IEM) using the steps detailed on **page 132** to **page 134** to generate a custom sample sheet.
- Do not use Illumina's IEM adaptor trimming options. Make sure any IEM adaptor trimming option checkboxes are cleared (deselected) when setting up the sequencing run. Adaptors are trimmed in later processing steps using the Agilent software tools described below to ensure proper processing of the degenerate molecular barcodes (MBCs) in the adaptor sequences.
- Demultiplex using Illumina's bcl2fastq, BCL Convert or DRAGEN software to generate paired
 end reads based on the dual indexes and remove sequences with incorrectly paired P5 and P7
 indexes. Do not use the MBC/UMI trimming options in Illumina's demultiplexing software if
 using Agilent's Genomics NextGen Toolkit (AGeNT), Alissa Reporter, or SureCall software to
 process your FASTQ files.
- The MBC sequence and dark bases are located at the 5' end of both Read 1 and Read 2. Use the Agilent Genomics NextGen Toolkit (AGeNT) for molecular barcode extraction and trimming (see page 135 for more information). If your sequence analysis pipeline excludes MBCs and is incompatible with AGeNT, you can trim or mask the first five bases from each read before alignment as described in the *Note* on page 135.
- For human germline DNA variant analysis, you can use Agilent's Alissa Reporter software for the complete FASTQ file to variant discovery process (see **page 135** for more information).
- For germline or somatic variant analysis, you can use Agilent's AGeNT software modules to process the library read FASTQ files to analysis- ready BAM files. See **page 136** for more information.
- Library fragments include a degenerate MBC and dark bases at the 5' end of both Read 1 and Read 2 (see Figure 21 on page 129). If your sequence analysis pipeline excludes MBCs and is incompatible with Alissa Reporter and AGeNT software, you can trim or mask the first five bases from each read before alignment as described in the Note on page 136.

HiSeq/NextSeq/NovaSeq platform sequencing run setup guidelines

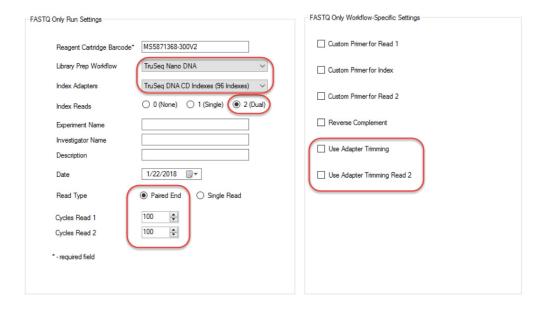
Set up sequencing runs using the instrument control software interface, using the settings shown in **Table 100**. For HiSeq runs, select *Dual Index* on the *Run Configuration* screen of the instrument control software interface and enter the Cycles settings in **Table 100**.

For the NextSeq or NovaSeq platform, open the *Run Setup* screen of the instrument control software interface and enter the **Read Length** settings in **Table 100**. In the **Custom Primers** section, clear (do **not** select) the checkboxes for all primers (*Read 1, Read 2, Index 1* and *Index 2*).

Table 100 Run settings

Run Segment	Cycles/Read Length
Read 1	100 or 150
Index 1 (i7)	8
Index 2 (i5)	8
Read 2	100 or 150

MiSeq platform sequencing run setup guidelines


Use the Illumina Experiment Manager (IEM) software to generate a custom Sample Sheet according to the guidelines below. Once a Sample Sheet has been generated, index sequences need to be manually changed to the SureSelect XT HS2 indexes used for each sample. See **Table 110** on page 145 through **Table 116** on page 151 for nucleotide sequences of the SureSelect XT HS2 index pairs.

Set up a custom Sample Sheet:

- 1 In the IEM software, create a Sample Sheet for the MiSeq platform using the following Workflow selections.
 - Under Category, select Other.
 - Under Application, select FASTQ Only.
- 2 On the **Workflow Parameters** screen, enter the run information, making sure to specify the key parameters highlighted below. In the *Library Prep Workflow* field, select **TruSeq Nano DNA**. In the *Index Adapters* field, select **TruSeq DNA CD Indexes** (96 Indexes). Clear both adaptor-trimming checkboxes under *FASTQ Only Workflow-Specific Settings*, since adaptor trimming must be performed using Agilent's AGeNT software (see page 135).

If TruSeg Nano DNA is not available in the Sample Prep Kit field, instead select TruSeg HT.

Sample Sheet Wizard - Workflow Parameters

3 Using the **Sample Sheet Wizard**, set up a New Plate, entering the required information for each sample to be sequenced. In the **I7 Sequence** column, assign each sample to any of the Illumina i7 indexes. The index will be corrected to the i7 sequence from the SureSelect XT HS2 index pair at a later stage.

Likewise, in the **I5 Sequence** column, assign any of the Illumina i5 indexes, to be corrected to the i5 sequence from the SureSelect XT HS2 index pair at a later stage.

4 Finish the sample sheet setup tasks and save the sample sheet file.

Editing the Sample Sheet to include SureSelect XT HS2 dual indexes

- Open the Sample Sheet file in a text editor and edit the i7 and i5 index information for each sample in columns 5–8 (highlighted below). See see Table 110 on page 145 through Table 116 on page 151 for nucleotide sequences of the SureSelect XT HS2 indexes.
- In column 5 under **I7_Index_ID**, enter the SureSelect XT HS2 index pair number assigned to the sample. In column 6 under **index**, enter the corresponding P7 index sequence.
- In column 7 under **I5_Index_ID**, enter the SureSelect XT HS2 index pair number assigned to the sample. In column 8 under **index2**, enter the corresponding P5 index sequence.
- If the run includes more than 96 samples, the sample sheet may be edited to include additional sample rows containing the assigned SureSelect XT HS2 index pair sequences in column 6 (P7 index) and column 8 (P5 index).

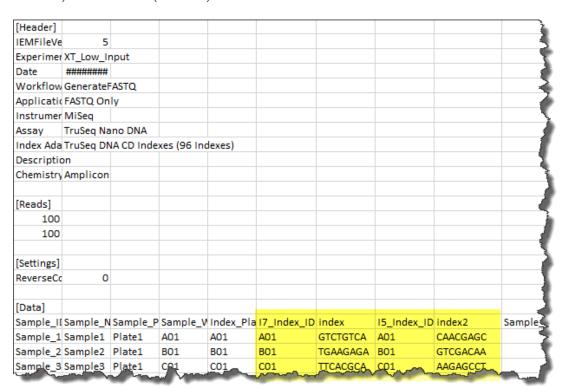


Figure 22 Sample sheet for SureSelect XT HS2 library sequencing

5 Save the edited Sample Sheet in an appropriate file location for use in the run.

Sequence analysis resources

Guidelines are provided below for typical NGS analysis pipeline steps appropriate for SureSelect XT HS2 DNA library data analysis. Your NGS analysis pipeline may vary.

Use Illumina's bcl2fastq, BCL Convert or DRAGEN software to generate paired end reads by demultiplexing sequences based on the dual indexes. The demultiplexed FASTQ data needs to be pre-processed to remove sequencing adaptors and extract the MBC sequences using one of the tools described below.

Using Agilent's Alissa Reporter software for germline DNA workflows

Alissa Reporter software provides a complete FASTQ-to-Report solution for Agilent's SureSelect assays, processing NGS data from FASTQ format to VCF format, and reporting human germline SNV, InDel and CNV calls.

Alissa Reporter is a cloud-based, multi-tenant software as a service (SaaS) product, delivering integrated pre-processing of SureSelect XT HS2 DNA library reads (adaptor trimming, MBC extraction and de-duplication) along with secondary data analysis and quality control (QC) analytics using a built-in dashboard. To obtain more information and to purchase access to the software please visit the Alissa Reporter page at www.agilent.com.

Key considerations for SureSelect XT HS2 DNA assay steps prior to Alissa Reporter software analysis are summarized below:

Alissa Reporter applications are available for germline analysis of human DNA libraries enriched using a pre-designed or custom SureSelect human probe (see page 13). Libraries enriched using SureSelect XT HS Human All Exon V7 or V8 probes are analyzed with the corresponding Human All Exon V7 Germline or Human All Exon V8 Germline application in Alissa Reporter. Libraries enriched using other probes, including additional pre-designed probes, are analyzed using an Alissa Reporter Custom application. The Alissa Reporter console provides tools for importing both pre-designed probe and custom probe designs from SureDesign and setting up a new Custom application for each imported design.

NOTE

Human All Exon V8+UTR and Human All Exon V8+NCV designs must be imported into Alissa Reporter for use as *Custom*-type applications. Use the *Catalog*-type Alissa Reporter applications, including the *Human All Exon V8 Germline* application, only for the specific probe indicated for the application without any additional design content.

- Analysis of FFPE-derived or other DNA samples for detection of somatic variants is not supported at the time of this publication.
- For CNV calling a co-analysis strategy is used in which unrelated samples from the same Alissa Reporter run are used to determine the reference signal for the target sample (no specific reference sample is required). At least 3 and preferably 8 (or more) unrelated samples need to be analyzed in Alissa Reporter together to obtain a reliable reference signal for CNV calls. For CNV calling on the X and Y chromosomes, unrelated samples of the same gender are required. For best results, process the samples to be used for CNV co-analysis in the same SureSelect run and in the same sequencing run in order to minimize any processing-based variance.
- Maximum file size for uploads is 50GB/file (in total 400GB/sample). A maximum of 768
 FASTQ files can be uploaded in a run.

- File sizes >150M reads are randomly subsampled to 150M reads when using the *Human All Exon V7 Germline* or *Human All Exon V8 Germline* application.
- Unmerged and merged FASTQ files are supported. Upload of BAM files or other non-FASTQ file formats is not supported.

Using Agilent's AGeNT software for germline or somatic DNA workflows

Agilent's AGeNT software is a Java-based toolkit used for SureSelect XT HS2 DNA library read processing steps. The AGeNT tools are designed to enable building, integrating, maintaining, and troubleshooting internal analysis pipelines for users with bioinformatics expertise. For additional information and to download this toolkit, visit the AGeNT page at www.agilent.com and review the AGeNT Best Practices document for processing steps suitable for XT HS2 DNA libraries.

Prior to variant discovery, demultiplexed SureSelect XT HS2 library FASTQ data are pre-processed to remove sequencing adaptors and extract the MBC sequences using the AGeNT Trimmer module.

The trimmed reads should be aligned, and MBC tags added to the aligned BAM file using a suitable tool such as BWA-MEM. Once alignment and tagging are complete, the AGeNT CReaK (Consensus Read Kit) tool is used to generate consensus reads and mark or remove duplicates. The resulting BAM files are ready for downstream analysis including variant discovery.

NOTE

CReaK is a deduplication tool introduced in AGeNT version 3.0, replacing the AGeNT Locatlt tool. Please visit the AGeNT page at www.agilent.com and review the FAQs for a detailed comparison of Locatlt and CReaK. Locatlt remains available for backward compatibility but CReaK is the recommended tool.

NOTE

If your sequence analysis pipeline excludes MBCs, you can remove the first 5 bases from Read 1 and Read 2 by masking or trimming before proceeding to downstream analysis. If demultiplexing using bcl2fastq, MBCs may be masked by including the base mask N5Y*,I8,I8,N5Y* (where * may be replaced with the actual read length, matching the read length value in the RunInfo.xml file). If demultiplexing using BCL Convert, MBCs may be trimmed by including the following string in the sample sheet header: OverrideCycles,N5Y*;I8;I8;N5Y* (where * is replaced with read length after trimming, e.g., use N5Y145;I8;I8;N5Y145 for 2x150 NGS).

Alternatively, the first 5 bases may be trimmed from the demultiplexed fastq files using a suitable processing tool of your choice, such as seqtk. The AGeNT Trimmer module can also be used to remove the MBCs while trimming adaptor sequences. Standard adaptor trimmers will fail to remove the MBC sequences from the opposite adaptor (refer to **Figure 21**), which may affect alignment quality.

7 Appendix: Using FFPE-derived DNA Samples

Protocol modifications for FFPE Samples 138

Methods for FFPE Sample Qualification 139

Sequencing Output Recommendations for FFPE Samples 140

This chapter summarizes the protocol modifications to apply to FFPE samples based on the integrity of the FFPE sample DNA.

Protocol modifications for FFPE Samples

Protocol modifications that should be applied to FFPE samples are summarized in **Table 101**.

Table 101 Summary of protocol modifications for FFPE samples

Workflow Step and page	Parameter	Condition for non-FFPE Samples	Condition for FFPE Samples
gDNA Sample Preparation page 46	Qualification of DNA Integrity	Not required	Required
Enzymatic fragmentation duration page 49	Duration of the 37°C fragmentation step	15-25 minutes, depending on read length requirements	25 minutes
DNA input for Library Preparation page 47	Input amount and means of quantification	10 ng to 200 ng, quantified by Qubit assay	Based on determined DNA integrity (see Table 17 on page 47 and Table 18 on page 47)
DNA Shearing page 56	Mode of DNA Shearing	2 × 120 seconds	240 seconds (continuous)
Pre-capture PCR page 64	Cycle number	8-11	11-14
Sequencing page 140	Output augmentation	Per project requirements	$1 \times$ to $10 \times$ based on determined DNA integrity (see Table 102 and Table 103 on page 140)

Methods for FFPE Sample Qualification

DNA integrity may be assessed using the Agilent NGS FFPE QC Kit or using the Agilent 4200 TapeStation system and Genomic DNA ScreenTape.

The Agilent NGS FFPE QC Kit provides a qPCR-based assay for DNA sample integrity determination. Results include the precise quantity of amplifiable DNA in the sample to allow direct normalization of input DNA amount and a $\Delta\Delta$ Cq DNA integrity score used to design other protocol modifications.

The Agilent 4200 TapeStation system, combined with the Genomic DNA ScreenTape assay, provides a electrophoresis-based method for determination of a DNA Integrity Number (DIN) score used to estimate amount of input DNA required for sample normalization and to design other protocol modifications.

Sequencing Output Recommendations for FFPE Samples

After determining the amount of sequencing output required for intact DNA samples to meet the goals of your project, use the guidelines below to determine the amount of extra sequencing output required for FFPE DNA samples.

Samples qualified using $\Delta\Delta$ **Cq**: For samples qualified based on the $\Delta\Delta$ Cq DNA integrity score, use the guidelines in **Table 102**. For example, if your workflow demands 100 Mb output for intact DNA samples to achieve the required coverage, an FFPE sample with $\Delta\Delta$ Cq score of 1 requires 200–400 Mb of sequencing output to achieve the same coverage.

Table 102 Recommended sequencing augmentation for FFPE-derived DNA samples

∆∆ Cq value	Recommended fold increase for FFPE-derived sample
<0.5	No extra sequencing output
between 0.5 and 2	Increase sequencing allocation by 2× to 4×
>2	Increase sequencing allocation by 5× to 10× or more

Samples qualified using DIN: For samples qualified based on the Genomic DNA ScreenTape assay DIN integrity score, use the guidelines in **Table 103**. For example, if your workflow demands 100 Mb output for intact DNA samples to achieve the required coverage, an FFPE sample with DIN score of 4 requires approximately 200–400 Mb of sequencing output to achieve the same coverage.

Table 103 Recommended sequencing augmentation for FFPE-derived DNA samples

DIN value	lue Recommended fold increase for FFPE-derived sample	
≥8	No extra sequencing output	
between 3 and 8	Increase sequencing allocation by 2× to 4×	
<3	Increase sequencing allocation by 5× to 10× or more	

8 Reference

Kit Contents 142
SureSelect XT HS2 Index Primer Pair Information 144
Index Primer Pair Plate Maps 152
Quick Reference Tables for Master Mixes and Source Plates 154
Quick Reference Tables for Other Reagent Volumes 160
Troubleshooting Guide 161

This chapter contains reference information, including component kit contents, index sequences, and troubleshooting information.

Kit Contents

The SureSelect XT HS2 DNA System protocol using the Agilent NGS Workstation uses the kits listed in **Table 104**. Detailed contents of each of the multi-part component kits listed in **Table 104** are shown in **Table 105** through **Table 108** on the following pages.

Table 104 Component Kits

Kit Name (p/n)	Component Kit Name	Component Kit p/n	Storage Condition
SureSelect XT HS2 DNA Library Preparation Kit for ILM (Pre PCR), 96 Reactions (G9985A through G9985D)	SureSelect XT HS2 Library Preparation Kit for ILM (Pre PCR)	5500-0147	-20°C
	SureSelect XT HS2 Index Primer Pairs for ILM (Pre PCR)	5191-5688 (Index Pairs 1-96), 5191-5689 (Index Pairs 97-192), 5191-5690 (Index Pairs 193-288), OR 5191-5691 (Index Pairs 289-384)	-20°C
SureSelect XT HS2 DNA Target Enrichment Kit (Post PCR), 12 Hybs (G9987A)	SureSelect Target Enrichment Kit, ILM Hyb Module, Box 1 (Post PCR)	5191-6689	Room Temperature
	SureSelect XT HS2 Target Enrichment Kit ILM Hyb Module, Box 2 (Post PCR)	5191-6690	-20°C
SureSelect XT HS2 DNA Reagent Kit, 96 Reactions (G9983A through G9983D; or G9984A through G9984D with AMPure XP/ Streptavidin Beads)	SureSelect XT HS2 Library Preparation Kit for ILM (Pre PCR)	5500-0147	-20°C
	SureSelect XT HS2 Index Primer Pairs for ILM (Pre PCR)	5191-5688 through 5191-5691	-20°C
	SureSelect Target Enrichment Kit, ILM Hyb Module, Box 1 (Post PCR)	5190-9687	Room Temperature
	SureSelect XT HS2 Target Enrichment Kit ILM Hyb Module, Box 2 (Post PCR)	5191-6688	-20°C
	SureSelect DNA AMPure XP Beads (included with kits G9984A through G9984D)	5191-5740	+4°C
	SureSelect Streptavidin Beads (included with kits G9984A through G9984D)	5191-5742	+4°C
SureSelect Enzymatic Fragm	entation Kit, 96 Reactions Automation (5191-6	764)	-20°C

Table 105 SureSelect XT HS2 Library Preparation Kit for ILM (Pre PCR) Content

Kit Component	Format
End Repair-A Tailing Enzyme Mix	tube with orange cap
End Repair-A Tailing Buffer	bottle
T4 DNA Ligase	tube with blue cap
Ligation Buffer	bottle
SureSelect XT HS2 Adaptor Oligo Mix	tube with white cap
Herculase II Fusion DNA Polymerase	tube with red cap
5× Herculase II Reaction Buffer with dNTPs	tube with clear cap

Table 106 SureSelect XT HS2 Index Primer Pairs for ILM (Pre PCR) Content

Kit Component	Format
SureSelect XT HS2 Index Primer Pairs for ILM (Pre PCR)	Orange 96-well plate (index pairs 1–96), OR Blue 96-well plate (index pairs 97–192), OR Green 96-well plate (index pairs 193–288), OR Red 96-well plate (index pairs 289–384)

Table 107 SureSelect Target Enrichment Kit, ILM Hyb Module Box 1 (Post PCR) Content

Kit Component	Format
SureSelect Binding Buffer	bottle
SureSelect Wash Buffer 1	bottle
SureSelect Wash Buffer 2	bottle

Table 108 SureSelect XT HS2 Target Enrichment Kit, ILM Hyb Module Box 2 (Post PCR)
Content

Kit Component	Format
SureSelect Fast Hybridization Buffer	bottle
SureSelect XT HS2 Blocker Mix	tube with blue cap
SureSelect RNase Block	tube with purple cap
SureSelect Post-Capture Primer Mix	tube with clear cap
Herculase II Fusion DNA Polymerase	tube with red cap
5× Herculase II Reaction Buffer with dNTPs	tube with clear cap

SureSelect XT HS2 Index Primer Pair Information

The SureSelect XT HS2 Index Primer Pairs are provided pre-combined. Each member of the primer pair contains a unique 8-bp P7 or P5 index, resulting in dual-indexed NGS libraries. One primer pair is provided in each well of 96-well plates (see **page 152** through **page 153** for plate maps). Each well contains a single- use aliquot of a specific pair of P7 plus P5 primers.

CAUTION

The SureSelect XT HS2 Index Primer Pairs are provided in single-use aliquots. To avoid cross-contamination of libraries, use each well in only one library preparation reaction. Do not retain and re-use any residual volume for subsequent experiments.

The nucleotide sequence of the index portion of each primer is provided in **Table 110** through **Table 116**. P7 indexes are shown in forward orientation, applicable to any of the supported Illumina platforms. P5 indexes are shown in two orientations (forward and reverse complement) for use with different platforms and sequencing run setup and management tools, e.g., Local Run Manager and Instrument Run Setup. Illumina sequencing platforms and their P5 sequencing orientation are shown in **Table 109**. Correct representation of the P5 index orientation in sample sheets or during sequencing run setup is crucial to successful demultiplexing. Refer to Illumina support documentation and resources to determine the correct P5 index strand orientation for your application.

Table 109 P5 index sequencing orientation by Illumina platform

P5 Index Orientation	Platform
Forward	NovaSeq 6000 with v1.0 chemistry MiSeq HiSeq 2500
Reverse Complement*	NovaSeq 6000 with v1.5 chemistry NextSeq 500/550/1000/2000 HiSeq 3000/4000 iSeq 100 MiniSeq HiSeq X

^{*} Some run setup and management tools used with these platforms automatically create the reverse complement sequence for the P5 index sequence entered for the run. Be sure to consult Illumina's support documentation for the combination of platform and tools used in your pipeline to determine the correct index orientation to enter during run setup.

Table 110 SureSelect XT HS2 Index Primer Pairs 1–48, provided in orange 96-well plate

Primer Pair #	Well	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement	Primer Pair #	Well	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
1	A01	CAAGGTGA	ATGGTTAG	CTAACCAT	25	A04	AGATGGAT	TGGCACCA	TGGTGCCA
2	B01	TAGACCAA	CAAGGTGA	TCACCTTG	26	B04	GAATTGTG	AGATGGAT	ATCCATCT
3	C01	AGTCGCGA	TAGACCAA	TTGGTCTA	27	C04	GAGCACTG	GAATTGTG	CACAATTC
4	D01	CGGTAGAG	AGTCGCGA	TCGCGACT	28	D04	GTTGCGGA	GAGCACTG	CAGTGCTC
5	E01	TCAGCATC	AAGGAGCG	CGCTCCTT	29	E04	AATGGAAC	GTTGCGGA	TCCGCAAC
6	F01	AGAAGCAA	TCAGCATC	GATGCTGA	30	F04	TCAGAGGT	AATGGAAC	GTTCCATT
7	G01	GCAGGTTC	AGAAGCAA	TTGCTTCT	31	G04	GCAACAAT	TCAGAGGT	ACCTCTGA
8	H01	AAGTGTCT	GCAGGTTC	GAACCTGC	32	H04	GTCGATCG	GCAACAAT	ATTGTTGC
9	A02	CTACCGAA	AAGTGTCT	AGACACTT	33	A05	ATGGTAGC	GTCGATCG	CGATCGAC
10	B02	TAGAGCTC	CTACCGAA	TTCGGTAG	34	B05	CGCCAATT	ATGGTAGC	GCTACCAT
11	C02	ATGTCAAG	TAGAGCTC	GAGCTCTA	35	C05	GACAATTG	CGCCAATT	AATTGGCG
12	D02	GCATCATA	ATGTCAAG	CTTGACAT	36	D05	ATATTCCG	GACAATTG	CAATTGTC
13	E02	GACTTGAC	GCATCATA	TATGATGC	37	E05	TCTACCTC	ATATTCCG	CGGAATAT
14	F02	CTACAATG	GACTTGAC	GTCAAGTC	38	F05	TCGTCGTG	TCTACCTC	GAGGTAGA
15	G02	TCTCAGCA	CTACAATG	CATTGTAG	39	G05	ATGAGAAC	TCGTCGTG	CACGACGA
16	H02	AGACACAC	TCTCAGCA	TGCTGAGA	40	H05	GTCCTATA	ATGAGAAC	GTTCTCAT
17	A03	CAGGTCTG	AGACACAC	GTGTGTCT	41	A06	AATGACCA	GTCCTATA	TATAGGAC
18	B03	AATACGCG	CAGGTCTG	CAGACCTG	42	B06	CAGACGCT	AATGACCA	TGGTCATT
19	C03	GCACACAT	AATACGCG	CGCGTATT	43	C06	TCGAACTG	CAGACGCT	AGCGTCTG
20	D03	CTTGCATA	GCACACAT	ATGTGTGC	44	D06	CGCTTCCA	TCGAACTG	CAGTTCGA
21	E03	ATCCTCTT	CTTGCATA	TATGCAAG	45	E06	TATTCCTG	CGCTTCCA	TGGAAGCG
22	F03	GCACCTAA	ATCCTCTT	AAGAGGAT	46	F06	CAAGTTAC	TATTCCTG	CAGGAATA
23	G03	TGCTGCTC	GCACCTAA	TTAGGTGC	47	G06	CAGAGCAG	CAAGTTAC	GTAACTTG
24	H03	TGGCACCA	TGCTGCTC	GAGCAGCA	48	H06	CGCGCAAT	CAGAGCAG	CTGCTCTG

Table 111 SureSelect XT HS2 Index Primer Pairs 49–96, provided in orange 96-well plate

Primer Pair #	Well	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement	Primer Pair #	Well	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
49	A07	TGAGGAGT	CGCGCAAT	ATTGCGCG	73	A10	AACGCATT	ATAGTGAC	GTCACTAT
50	B07	ATGACGAA	TGAGGAGT	ACTCCTCA	74	B10	CAGTTGCG	AACGCATT	AATGCGTT
51	C07	TACGGCGA	ATGACGAA	TTCGTCAT	75	C10	TGCCTCGA	CAGTTGCG	CGCAACTG
52	D07	AGCGAGTT	TACGGCGA	TCGCCGTA	76	D10	AAGGCTTA	TGCCTCGA	TCGAGGCA
53	E07	TGTATCAC	AGCGAGTT	AACTCGCT	77	E10	GCAATGAA	AAGGCTTA	TAAGCCTT
54	F07	GATCGCCT	TGTATCAC	GTGATACA	78	F10	AAGAACCT	GCAATGAA	TTCATTGC
55	G07	GACTCAAT	GATCGCCT	AGGCGATC	79	G10	CTGTGCCT	AAGAACCT	AGGTTCTT
56	H07	CAGCTTGC	GACTCAAT	ATTGAGTC	80	H10	TACGTAGC	CTGTGCCT	AGGCACAG
57	A08	AGCTGAAG	CAGCTTGC	GCAAGCTG	81	A11	AAGTGGAC	TACGTAGC	GCTACGTA
58	B08	ATTCCGTG	AGCTGAAG	CTTCAGCT	82	B11	CAACCGTG	AAGTGGAC	GTCCACTT
59	C08	TATGCCGC	ATTCCGTG	CACGGAAT	83	C11	CTGTTGTT	CAACCGTG	CACGGTTG
60	D08	TCAGCTCA	TATGCCGC	GCGGCATA	84	D11	GCACGATG	CTGTTGTT	AACAACAG
61	E08	AACTGCAA	TCAGCTCA	TGAGCTGA	85	E11	GTACGGAC	GCACGATG	CATCGTGC
62	F08	ATTAGGAG	AACTGCAA	TTGCAGTT	86	F11	CTCCAAGC	GTACGGAC	GTCCGTAC
63	G08	CAGCAATA	ATTAGGAG	CTCCTAAT	87	G11	TAGTCTGA	CTCCAAGC	GCTTGGAG
64	H08	GCCAAGCT	CAGCAATA	TATTGCTG	88	H11	TTCGCCGT	TAGTCTGA	TCAGACTA
65	A09	TCCGTTAA	GCCAAGCT	AGCTTGGC	89	A12	GAACTAAG	ATACGAAG	CTTCGTAT
66	B09	GTGCAACG	TCCGTTAA	TTAACGGA	90	B12	AAGCCATC	GAGATTCA	TGAATCTC
67	C09	AGTAACGC	GTGCAACG	CGTTGCAC	91	C12	AACTCTTG	AAGCCATC	GATGGCTT
68	D09	CATAGCCA	AGTAACGC	GCGTTACT	92	D12	GTAGTCAT	AACTCTTG	CAAGAGTT
69	E09	CACTAGTA	CATAGCCA	TGGCTATG	93	E12	CTCGCTAG	GTAGTCAT	ATGACTAC
70	F09	TTAGTGCG	CACTAGTA	TACTAGTG	94	F12	AGTCTTCA	CAGTATCA	TGATACTG
71	G09	TCGATACA	TTAGTGCG	CGCACTAA	95	G12	TCAAGCTA	CTTCGTAC	GTACGAAG
72	H09	ATAGTGAC	TCGATACA	TGTATCGA	96	H12	CTTATCCT	TCAAGCTA	TAGCTTGA

Table 112 SureSelect XT HS2 Index Primer Pairs 97–144, provided in blue 96-well plate

Primer Pair #	1	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement	Primer Pair #	Well	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
97	A01	TCATCCTT	CTTATCCT	AGGATAAG	121	A04	CAGGCAGA	AGACGCCT	AGGCGTCT
98	B01	AACACTCT	TCATCCTT	AAGGATGA	122	B04	TCCGCGAT	CAGGCAGA	TCTGCCTG
99	C01	CACCTAGA	AACACTCT	AGAGTGTT	123	C04	CTCGTACG	TCCGCGAT	ATCGCGGA
100	D01	AGTTCATG	CACCTAGA	TCTAGGTG	124	D04	CACACATA	CTCGTACG	CGTACGAG
101	E01	GTTGGTGT	AGTTCATG	CATGAACT	125	E04	CGTCAAGA	CACACATA	TATGTGTG
102	F01	GCTACGCA	GTTGGTGT	ACACCAAC	126	F04	TTCGCGCA	CGTCAAGA	TCTTGACG
103	G01	TCAACTGC	GCTACGCA	TGCGTAGC	127	G04	CGACTACG	TTCGCGCA	TGCGCGAA
104	H01	AAGCGAAT	TCAACTGC	GCAGTTGA	128	H04	GAAGGTAT	CGACTACG	CGTAGTCG
105	A02	GTGTTACA	AAGCGAAT	ATTCGCTT	129	A05	TTGGCATG	GAAGGTAT	ATACCTTC
106	B02	CAAGCCAT	GTGTTACA	TGTAACAC	130	B05	CGAATTCA	TTGGCATG	CATGCCAA
107	C02	CTCTCGTG	CAAGCCAT	ATGGCTTG	131	C05	TTAGTTGC	CGAATTCA	TGAATTCG
108	D02	TCGACAAC	CTCTCGTG	CACGAGAG	132	D05	GATGCCAA	TTAGTTGC	GCAACTAA
109	E02	TCGATGTT	TCGACAAC	GTTGTCGA	133	E05	AGTTGCCG	GATGCCAA	TTGGCATC
110	F02	CAAGGAAG	TCGATGTT	AACATCGA	134	F05	GTCCACCT	AGTTGCCG	CGGCAACT
111	G02	ATTGATGC	AGAGAATC	GATTCTCT	135	G05	ATCAAGGT	GTCCACCT	AGGTGGAC
112	H02	TCGCAGAT	TTGATGGC	GCCATCAA	136	H05	GAACCAGA	ATCAAGGT	ACCTTGAT
113	A03	GCAGAGAC	TCGCAGAT	ATCTGCGA	137	A06	CATGTTCT	GAACCAGA	TCTGGTTC
114	B03	CTGCGAGA	GCAGAGAC	GTCTCTGC	138	B06	TCACTGTG	CATGTTCT	AGAACATG
115	C03	CAACCAAC	CTGCGAGA	TCTCGCAG	139	C06	ATTGAGCT	TCACTGTG	CACAGTGA
116	D03	ATCATGCG	CAACCAAC	GTTGGTTG	140	D06	GATAGAGA	ATTGAGCT	AGCTCAAT
117	E03	TCTGAGTC	ATCATGCG	CGCATGAT	141	E06	TCTAGAGC	GATAGAGA	TCTCTATC
118	F03	TCGCCTGT	TCTGAGTC	GACTCAGA	142	F06	GAATCGCA	TCTAGAGC	GCTCTAGA
119	G03	GCGCAATT	TCGCCTGT	ACAGGCGA	143	G06	CTTCACGT	GAATCGCA	TGCGATTC
120	H03	AGACGCCT	GCGCAATT	AATTGCGC	144	H06	CTCCGGTT	CTTCACGT	ACGTGAAG

Table 113 SureSelect XT HS2 Index Primer Pairs 145–192, provided in blue 96-well plate

Primer Pair #	Well	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement	Primer Pair #	Well	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
145	A07	TGTGACTA	CTCCGGTT	AACCGGAG	169	A10	CGCTCAGA	CTAACAAG	CTTGTTAG
146	B07	GCTTCCAG	TGTGACTA	TAGTCACA	170	B10	TAACGACA	CGCTCAGA	TCTGAGCG
147	C07	CATCCTGT	GCTTCCAG	CTGGAAGC	171	C10	CATACTTG	TAACGACA	TGTCGTTA
148	D07	GTAATACG	CATCCTGT	ACAGGATG	172	D10	AGATACGA	CATACTTG	CAAGTATG
149	E07	GCCAACAA	GTAATACG	CGTATTAC	173	E10	AATCCGAC	AGATACGA	TCGTATCT
150	F07	CATGACAC	GCCAACAA	TTGTTGGC	174	F10	TGAAGTAC	AATCCGAC	GTCGGATT
151	G07	TGCAATGC	CATGACAC	GTGTCATG	175	G10	CGAATCAT	TGAAGTAC	GTACTTCA
152	H07	CACATTCG	TGCAATGC	GCATTGCA	176	H10	TGATTGGC	CGAATCAT	ATGATTCG
153	A08	CAATCCGA	CACATTCG	CGAATGTG	177	A11	TCGAAGGA	TGATTGGC	GCCAATCA
154	B08	CATCGACG	CAATCCGA	TCGGATTG	178	B11	CAGTCATT	TCGAAGGA	TCCTTCGA
155	C08	GTGCGCTT	CATCGACG	CGTCGATG	179	C11	CGCGAACA	CAGTCATT	AATGACTG
156	D08	ATAGCGTT	GTGCGCTT	AAGCGCAC	180	D11	TACGGTTG	CGCGAACA	TGTTCGCG
157	E08	GAGTAAGA	ATAGCGTT	AACGCTAT	181	E11	AGAACCGT	TACGGTTG	CAACCGTA
158	F08	CTGACACA	GAGTAAGA	TCTTACTC	182	F11	AGGTGCTT	AGAACCGT	ACGGTTCT
159	G08	ATACGTGT	CTGACACA	TGTGTCAG	183	G11	ATCGCAAC	AGGTGCTT	AAGCACCT
160	H08	GACCGAGT	ATACGTGT	ACACGTAT	184	H11	GCCTCTCA	ATCGCAAC	GTTGCGAT
161	A09	GCAGTTAG	GACCGAGT	ACTCGGTC	185	A12	TCGCGTCA	GCCTCTCA	TGAGAGGC
162	B09	CGTTCGTC	GCAGTTAG	CTAACTGC	186	B12	GAGTGCGT	TCGCGTCA	TGACGCGA
163	C09	CGTTAACG	CGTTCGTC	GACGAACG	187	C12	CGAACACT	GCATAAGT	ACTTATGC
164	D09	TCGAGCAT	CGTTAACG	CGTTAACG	188	D12	TAAGAGTG	AGAAGACG	CGTCTTCT
165	E09	GCCGTAAC	TCGAGCAT	ATGCTCGA	189	E12	TGGATTGA	TAAGAGTG	CACTCTTA
166	F09	GAGCTGTA	GCCGTAAC	GTTACGGC	190	F12	AGGACATA	TGGATTGA	TCAATCCA
167	G09	AGGAAGAT	GAGCTGTA	TACAGCTC	191	G12	GACATCCT	AGGACATA	TATGTCCT
168	H09	CTAACAAG	AGGAAGAT	ATCTTCCT	192	H12	GAAGCCTC	GACATCCT	AGGATGTC

Table 114 SureSelect XT HS2 Index Primer Pairs 193–240, provided in green 96-well plate

Primer Pair #	1	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement	Primer Pair #	Well	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
193	A01	GTCTCTTC	GAAGCCTC	GAGGCTTC	217	A04	GCGGTATG	CACGAGCT	AGCTCGTG
194	B01	AGTCACTT	GTCTCTTC	GAAGAGAC	218	B04	TCTATGCG	GCGGTATG	CATACCGC
195	C01	AGCATACA	AGTCACTT	AAGTGACT	219	C04	AGGTGAGA	TCTATGCG	CGCATAGA
196	D01	TCAGACAA	AGCATACA	TGTATGCT	220	D04	CACAACTT	AGGTGAGA	TCTCACCT
197	E01	TTGGAGAA	TCAGACAA	TTGTCTGA	221	E04	TTGTGTAC	CACAACTT	AAGTTGTG
198	F01	TTAACGTG	TTGGAGAA	TTCTCCAA	222	F04	TCACAAGA	TTGTGTAC	GTACACAA
199	G01	CGTCTGTG	TTAACGTG	CACGTTAA	223	G04	GAAGACCT	TCACAAGA	TCTTGTGA
200	H01	AACCTAAC	CGTCTGTG	CACAGACG	224	H04	AGTTCTGT	GAAGACCT	AGGTCTTC
201	A02	AGAGTGCT	AACCTAAC	GTTAGGTT	225	A05	GCAGTGTT	AGTTCTGT	ACAGAACT
202	B02	TTATCTCG	AGAGTGCT	AGCACTCT	226	B05	AGGCATGC	GCAGTGTT	AACACTGC
203	C02	CATCAGTC	TTATCTCG	CGAGATAA	227	C05	AAGGTACT	AGGCATGC	GCATGCCT
204	D02	AAGCACAA	CATCAGTC	GACTGATG	228	D05	CACTAAGT	AAGGTACT	AGTACCTT
205	E02	CAGTGAGC	AAGCACAA	TTGTGCTT	229	E05	GAGTCCTA	CACTAAGT	ACTTAGTG
206	F02	GTCGAAGT	CAGTGAGC	GCTCACTG	230	F05	AGTCCTTC	GAGTCCTA	TAGGACTC
207	G02	TCTCATGC	GTCGAAGT	ACTTCGAC	231	G05	TTAGGAAC	AGTCCTTC	GAAGGACT
208	H02	CAGAAGAA	TCTCATGC	GCATGAGA	232	H05	AAGTCCAT	TTAGGAAC	GTTCCTAA
209	A03	CGGATAGT	CAGAAGAA	TTCTTCTG	233	A06	GAATACGC	AAGTCCAT	ATGGACTT
210	B03	CACGTGAG	CGGATAGT	ACTATCCG	234	B06	TCCAATCA	GAATACGC	GCGTATTC
211	C03	TACGATAC	CACGTGAG	CTCACGTG	235	C06	CGACGGTA	TCCAATCA	TGATTGGA
212	D03	CGCATGCT	TACGATAC	GTATCGTA	236	D06	CATTGCAT	CGACGGTA	TACCGTCG
213	E03	GCTTGCTA	CGCATGCT	AGCATGCG	237	E06	ATCTGCGT	CATTGCAT	ATGCAATG
214	F03	GAACGCAA	GCTTGCTA	TAGCAAGC	238	F06	GTACCTTG	ATCTGCGT	ACGCAGAT
215	G03	ATCTACCA	GAACGCAA	TTGCGTTC	239	G06	GAGCATAC	GTACCTTG	CAAGGTAC
216	H03	CACGAGCT	ATCTACCA	TGGTAGAT	240	H06	TGCTTACG	GAGCATAC	GTATGCTC

Table 115 SureSelect XT HS2 Index Primer Pairs 241–288, provided in green 96-well plate

Primer Pair #	1	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement	Primer Pair #	Well	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
241	A07	AAGAGACA	TGCTTACG	CGTAAGCA	265	A10	CAATGCTG	CATGAATG	CATTCATG
242	B07	TAGCTATG	AAGAGACA	TGTCTCTT	266	B10	CTTGATCA	CAATGCTG	CAGCATTG
243	C07	TCTGCTAC	TAGCTATG	CATAGCTA	267	C10	GCGAATTA	CTTGATCA	TGATCAAG
244	D07	GTCACAGA	TCTGCTAC	GTAGCAGA	268	D10	GTTCGAGC	GCGAATTA	TAATTCGC
245	E07	CGATTGAA	GTCACAGA	TCTGTGAC	269	E10	GCCAGTAG	GTTCGAGC	GCTCGAAC
246	F07	GAGAGATT	CGATTGAA	TTCAATCG	270	F10	AAGGTCGA	GCCAGTAG	CTACTGGC
247	G07	TCATACCG	GAGAGATT	AATCTCTC	271	G10	AGTGAAGT	CACTTATG	CATAAGTG
248	H07	TCCGAACT	TCATACCG	CGGTATGA	272	H10	GTTGCAAG	ATAACGGC	GCCGTTAT
249	A08	AGAGAGAA	TCCGAACT	AGTTCGGA	273	A11	AGCCGGAA	GTTGCAAG	CTTGCAAC
250	B08	GATCGTTA	AGAGAGAA	TTCTCTCT	274	B11	AACAGCCG	AGCCGGAA	TTCCGGCT
251	C08	GCGCTAGA	GATCGTTA	TAACGATC	275	C11	CTAGTGTA	AACAGCCG	CGGCTGTT
252	D08	ATGACTCG	GCGCTAGA	TCTAGCGC	276	D11	GAGGCTCT	CTAGTGTA	TACACTAG
253	E08	CAATAGAC	ATGACTCG	CGAGTCAT	277	E11	CTCCGCAA	GAGGCTCT	AGAGCCTC
254	F08	CGATATGC	CAATAGAC	GTCTATTG	278	F11	CGCTATTG	CTCCGCAA	TTGCGGAG
255	G08	GTCAGAAT	CGATATGC	GCATATCG	279	G11	GTGTTGAG	CGCTATTG	CAATAGCG
256	H08	CATAAGGT	GCACTACT	AGTAGTGC	280	H11	TCACCGAC	GTGTTGAG	CTCAACAC
257	A09	TGTTGGTT	GATTCGGC	GCCGAATC	281	A12	CGGTAATC	TCACCGAC	GTCGGTGA
258	B09	ATACTCGC	TGTTGGTT	AACCAACA	282	B12	GTGACTGC	CGGTAATC	GATTACCG
259	C09	AATGCTAG	ATACTCGC	GCGAGTAT	283	C12	CGACTTGT	GTGACTGC	GCAGTCAC
260	D09	GCCTAGGA	AATGCTAG	CTAGCATT	284	D12	GATAGGAC	CGACTTGT	ACAAGTCG
261	E09	GCAACCGA	GCCTAGGA	TCCTAGGC	285	E12	AAGTACTC	GATAGGAC	GTCCTATC
262	F09	ATACTGCA	GCAACCGA	TCGGTTGC	286	F12	GCTCTCTC	AAGTACTC	GAGTACTT
263	G09	TCTCCTTG	ATACTGCA	TGCAGTAT	287	G12	CTACCAGT	GCTCTCTC	GAGAGAGC
264	H09	CATGAATG	TCTCCTTG	CAAGGAGA	288	H12	GATGAGAT	CTACCAGT	ACTGGTAG

Table 116 SureSelect XT HS2 Index Primer Pairs 289–336, provided in red 96-well plate

Primer Pair #	Well	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement	Primer Pair #	Well	P7 Index Forward	P5 Index Forward	P5 Index Reverse Complement
289	A01	AGATAGTG	GATGAGAT	ATCTCATC	313	A04	AGCTACAT	GATCCATG	CATGGATC
290	B01	AGAGGTTA	AGATAGTG	CACTATCT	314	B04	CGCTGTAA	AGCTACAT	ATGTAGCT
291	C01	CTGACCGT	AGAGGTTA	TAACCTCT	315	C04	CACTACCG	CGCTGTAA	TTACAGCG
292	D01	GCATGGAG	CTGACCGT	ACGGTCAG	316	D04	GCTCACGA	CACTACCG	CGGTAGTG
293	E01	CTGCCTTA	GCATGGAG	CTCCATGC	317	E04	TGGCTTAG	GCTCACGA	TCGTGAGC
294	F01	GCGTCACT	CTGCCTTA	TAAGGCAG	318	F04	TCCAGACG	TGGCTTAG	CTAAGCCA
295	G01	GCGATTAC	GCGTCACT	AGTGACGC	319	G04	AGTGGCAT	TCCAGACG	CGTCTGGA
296	H01	TCACCACG	GCGATTAC	GTAATCGC	320	H04	TGTACCGA	AGTGGCAT	ATGCCACT
297	A02	AGACCTGA	TCACCACG	CGTGGTGA	321	A05	AAGACTAC	TGTACCGA	TCGGTACA
298	B02	GCCGATAT	AGACCTGA	TCAGGTCT	322	B05	TGCCGTTA	AAGACTAC	GTAGTCTT
299	C02	CTTATTGC	GCCGATAT	ATATCGGC	323	C05	TTGGATCT	TGCCGTTA	TAACGGCA
300	D02	CGATACCT	CTTATTGC	GCAATAAG	324	D05	TCCTCCAA	TTGGATCT	AGATCCAA
301	E02	CTCGACAT	CGATACCT	AGGTATCG	325	E05	CGAGTCGA	TCCTCCAA	TTGGAGGA
302	F02	GAGATCGC	CTCGACAT	ATGTCGAG	326	F05	AGGCTCAT	CGAGTCGA	TCGACTCG
303	G02	CGGTCTCT	GAGATCGC	GCGATCTC	327	G05	GACGTGCA	AGGCTCAT	ATGAGCCT
304	H02	TAACTCAC	CGGTCTCT	AGAGACCG	328	H05	GAACATGT	GACGTGCA	TGCACGTC
305	A03	CACAATGA	TAACTCAC	GTGAGTTA	329	A06	AATTGGCA	GAACATGT	ACATGTTC
306	B03	GACTGACG	CACAATGA	TCATTGTG	330	B06	TGGAGACT	AATTGGCA	TGCCAATT
307	C03	CTTAAGAC	GACTGACG	CGTCAGTC	331	C06	AACTCACA	TGGAGACT	AGTCTCCA
308	D03	GAGTGTAG	CTTAAGAC	GTCTTAAG	332	D06	GTAGACTG	AACTCACA	TGTGAGTT
309	E03	TGCACATC	GAGTGTAG	CTACACTC	333	E06	CGTAGTTA	GTAGACTG	CAGTCTAC
310	F03	CGATGTCG	TGCACATC	GATGTGCA	334	F06	CGTCAGAT	CGTAGTTA	TAACTACG
311	G03	AACACCGA	CGATGTCG	CGACATCG	335	G06	AACGGTCA	CGTCAGAT	ATCTGACG
312	H03	GATCCATG	AACACCGA	TCGGTGTT	336	H06	GCCTTCAT	AACGGTCA	TGACCGTT

Index Primer Pair Plate Maps

Table 117 Plate map for SureSelect XT HS2 Index Primer Pairs 1-96, provided in orange plate

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1	9	17	25	33	41	49	57	65	73	81	89
В	2	10	18	26	34	42	50	58	66	74	82	90
С	3	11	19	27	35	43	51	59	67	75	83	91
D	4	12	20	28	36	44	52	60	68	76	84	92
Е	5	13	21	29	37	45	53	61	69	77	85	93
F	6	14	22	30	38	46	54	62	70	78	86	94
G	7	15	23	31	39	47	55	63	71	79	87	95
Н	8	16	24	32	40	48	56	64	72	80	88	96

Table 118 Plate map for SureSelect XT HS2 Index Primer Pairs 97-192, provided in blue plate

	1	2	3	4	5	6	7	8	9	10	11	12
Α	97	105	113	121	129	137	145	153	161	169	177	185
В	98	106	114	122	130	138	146	154	162	170	178	186
С	99	107	115	123	131	139	147	155	163	171	179	187
D	100	108	116	124	132	140	148	156	164	172	180	188
Е	101	109	117	125	133	141	149	157	165	173	181	189
F	102	1110	118	126	134	142	150	158	166	174	182	190
G	103	111	119	127	135	143	151	159	167	175	183	191
Н	104	112	120	128	136	144	152	160	168	176	184	192

Table 119 Plate map for SureSelect XT HS2 Index Primer Pairs 193-288, provided in green plate

	1	2	3	4	5	6	7	8	9	10	11	12
Α	193	201	209	217	225	233	241	249	257	265	273	281
В	194	202	210	218	226	234	242	250	258	266	274	282
С	195	203	211	219	227	235	243	251	259	267	275	283
D	196	204	212	220	228	236	244	252	260	268	276	284
E	197	205	213	221	229	237	245	253	261	269	277	285
F	198	206	214	222	230	238	246	254	262	270	278	286
G	199	207	215	223	231	239	247	255	263	271	279	287
Н	200	208	216	224	232	240	248	256	264	272	280	288

Table 120 Plate map for SureSelect XT HS2 Index Primer Pairs 289-384, provided in red plate

	1	2	3	4	5	6	7	8	9	10	11	12
Α	289	297	305	313	321	329	337	345	353	361	369	377
В	290	298	306	314	322	330	338	346	354	362	370	378
С	291	299	307	315	323	331	339	347	355	363	371	379
D	292	300	308	316	324	332	340	348	356	364	372	380
Е	293	301	309	317	325	333	341	349	357	365	373	381
F	294	302	310	318	326	334	342	350	358	366	374	382
G	295	303	311	319	327	335	343	351	359	367	375	383
Н	296	304	312	320	328	336	344	352	360	368	376	384

Quick Reference Tables for Master Mixes and Source Plates

This section contains copies of the tables for master mix formulations and source plate volumes used in the SureSelect XT HS2 DNA System Protocol using Agilent NGS Workstation protocol.

Enzymatic Fragmentation

Table 121 Fragmentation master mix - used on page 50

Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns
Nuclease-free water	2 μL	42.5 µL	59.5 µL	76.5 µL	97.8 μL	136.0 µL	253.8 μL
5X SureSelect Fragmentation Buffer (blue cap)	2 µL	42.5 μL	59.5 μL	76.5 μL	97.8 μL	136.0 μL	253.8 µL
SureSelect Fragmentation Enzyme (green cap)	1 μL	21.3 μL	29.8 μL	38.3 µL	48.9μL	68.0 µL	126.9 µL
Total Volume	5 μL	106.3 µL	148.8 µL	191.3µL	244.4 µL	340.0 µL	634.4 μL

Table 122 Master mix source plate for enzymatic fragmentation protocol EnzFrag_XT_LI_ILM - used on page 50

Master Mix Solution	Position on Source Plate	Volum	Volume of master mix added per Well of Eppendorf twin.tec Source Plate						
		1-Column Runs	2-Column Runs	3-Column Runs	4-Column Runs	6-Column Runs	12-Column Runs		
Fragmentation master mix	Column 1 (A1-H1)	12.5 μL	17.5 μL	22.5 μL	28.8 μL	40.0 μL	75.0 µL		

Library Preparation

Table 123 End Repair/dA-Tailing master mix - used on page 58

Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns
End Repair-A Tailing Buffer (yellow cap or bottle)	16 μL	204 μL	340 μL	476 μL	612 µL	884 µL	1836 μL
End Repair-A Tailing Enzyme Mix (orange cap)	4 µL	51 μL	85 μL	119 μL	153 μL	221 μL	459 µL
Total Volume	20 μL	255 μL	425 µL	595 μL	765 µL	1105 µL	2295 μL

Table 124 Ligation master mix - used on page 59

Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns
Ligation Buffer (purple cap or bottle)	23 μL	293.3 µL	488.8 µL	684.3 µL	879.8 µL	1270.8 μL	2737 μL
T4 DNA Ligase (blue cap)	2 μL	25.5 μL	42.5 µL	59.5 μL	76.5 µL	110.5 µL	238 μL
Total Volume	25 μL	318.8 µL	531.3 μL	743.8 µL	956.3 μL	1381.3 µL	2975 μL

Table 125 Adaptor Oligo Mix dilution - used on page 59

Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns
Nuclease-free water	2.5 µL	42.5 µL	63.8 µL	85.0 µL	106.3 μL	143.5 μL	276.3 µL
SureSelect XT HS2 Adaptor Oligo Mix (white cap)	5 μL	85.0 µL	127.5 μL	170.0 μL	212.5 μL	287.0 μL	552.5 μL
Total Volume	7.5 µL	127.5 μL	191.3 μL	255.0 μL	318.8 µL	430.5 μL	828.8 μL

Table 126 Master mix source plate for library preparation runset LibraryPrep_XT_LI_ILM - used on page 59

Master Mix Solution	Position on	Volum	Volume of master mix added per Well of Agilent Deep Well Source Plate							
	Source Plate	1-Column Runs	2-Column Runs	3-Column Runs	4-Column Runs	6-Column Runs	12-Column Runs			
End Repair-dA Tailing master mix	Column 1 (A1-H1)	31.0 µL	52.0 µL	73.0 µL	94.0 µL	136.0 µL	280.0 µL			
Ligation master mix	Column 2 (A2-H2)	36.0 µL	62.0 µL	88.0 µL	114.0 µL	166.0 µL	360.0 µL			
Adaptor Oligo Mix dilution	Column 3 (A3-H3)	15.0 μL	22.5 μL	30.0 μL	37.5 μL	52.5 μL	101.3 μL			

Pre-Capture PCR

Table 127 Pre-Capture PCR master mix - used on page 65

Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns
5× Herculase II Buffer with dNTPs (clear cap)	10 μL	170 μL	255 μL	340µL	425 μL	574 μL	1066 μL
Herculase II Fusion DNA Polymerase (red cap)	1 μL	17 μL	25.5 μL	34 μL	42.5 μL	57.4 μL	106.6 μL
Total Volume	11 µL	187 µL	280.5 μL	374µL	467.5 μL	631.4 µL	1172.6 µL

Table 128 Master mix source plate for pre-capture PCR protocol Pre-CapPCR_XT_LI_ILM - used on page 65

Master Mix Solution	Position on Source Plate	Volume of master mix added per Well of Eppendorf twin.tec Source Plate							
		1-Column Runs	2-Column Runs	3-Column Runs	4-Column Runs	6-Column Runs	12-Column Runs		
Pre-Capture PCR Master Mix	Column 2 (A2-H2)	22 μL	33 µL	44 µL	55 μL	77 μL	143 µL		

Hybridization

Table 129 Block master mix - used on page 96

Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns
Nuclease-free water	2.5 μL	31.9 µL	53.1 μL	74.4 µL	95.6 µL	138.1 μL	276.3 µL
SureSelect XT HS2 Blocker Mix (blue cap)	5.0 µL	63.8 µL	106.3 µL	148.8 µL	191.3 µL	276.3 µL	552.5 µL
Total Volume	7.5 µL	95.7 μL	159.4 μL	223.2 µL	286.9 μL	414.4 µL	828.8 µL

Table 130 Probe master mix for Probes <3 Mb, 8 rows of wells - used on page 96

	Target size <3.0 Mb										
Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns				
Nuclease-free water	7.0 µL	89.3 µL	148.8 µL	208.3 μL	267.8 µL	401.6 μL	818.1 μL				
RNase Block (purple cap)	0.5 μL	6.4 µL	10.6 μL	14.9 μL	19.1 μL	28.7 μL	58.4 μL				
SureSelect Fast Hybridization Buffer (bottle)	6.0 µL	76.5 μL	127.5 μL	178.5 μL	229.5 μL	344.3 µL	701.3 µL				
Probe (with design <3.0 Mb)	2.0 μL	25.5 μL	42.5 µL	59.5 μL	76.5 µL	114.8 µL	233.8 µL				
Total Volume	15.5 μL	197.6 μL	329.4 µL	461.1 μL	592.9 μL	889.4 µL	1811.6 μL				

Table 131 Probe master mix for Probes \geq 3 Mb, 8 rows of wells - used on page 97

	Target size ≥3.0 Mb									
Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns			
Nuclease-free water	4.0 µL	51.0 μL	85.0 µL	119.0 µL	153.0 µL	229.5 µL	467.5 µL			
RNase Block (purple cap)	0.5 μL	6.4 µL	10.6 μL	14.9 μL	19.1 μL	28.7 μL	58.4 μL			
SureSelect Fast Hybridization Buffer (bottle)	6	76.5	127.5	178.5	229.5	344.3 µL	701.3			
Probe (with design ≥3 Mb)	5.0 μL	63.8 µL	106.3 µL	148.8 µL	191.3 µL	286.9 µL	584.4 µL			
Total Volume	15.5 μL	197.6 μL	329.4 µL	461.1 μL	592.9 μL	889.4 µL	1811.6 μL			

Table 132 Probe master mix for Probes <3 Mb, single row of wells - used on page 97

	Target size <3.0 Mb									
Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns			
Nuclease-free water	7 μL	10.5 μL	17.5 µL	24.5 µL	31.5 µL	49.0 µL	98.0 μL			
RNase Block (purple cap)	0.5 μL	0.8 μL	1.3 μL	1.8 µL	2.3 μL	3.5 µL	7.0 µL			
SureSelect Fast Hybridization Buffer (bottle)	6.0 µL	9.0 µL	15.0 μL	21.0 μL	27.0 μL	42.0 μL	84.0 µL			
Probe (with design <3.0 Mb)	2.0 μL	3.0 µL	5.0 μL	7.0 µL	9.0 µL	14.0 µL	28.0 μL			
Total Volume	15.5 μL	23.3 μL	38.8 µL	54.3 μL	69.8 µL	108.5 μL	217.0 µL			

Table 133 Probe master mix for Probes ≥3 Mb, single row of wells - used on page 97

Target size ≥3.0 Mb									
Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns		
Nuclease-free water	4.0 µL	6.0 µL	10.0 μL	14.0 µL	18.0 µL	28.0 µL	56.0 μL		
RNase Block (purple cap)	0.5 μL	0.8 μL	1.3 µL	1.8 µL	2.3 μL	3.5 µL	7.0 µL		
SureSelect Fast Hybridization Buffer (bottle)	6.0 µL	9.0 µL	15.0 μL	21.0 μL	27.0 μL	42.0 μL	84.0 µL		
Probe (with design ≥3 Mb)	5.0 μL	7.5 µL	12.5 µL	17.5 µL	22.5 µL	35.0 µL	70.0 μL		
Total Volume	15.5 μL	23.3 μL	38.8 µL	54.3 μL	69.8 µL	108.5 μL	217.0 μL		

Table 134 Master mix source plate for hybridization protocol Hyb_XT_LI_ILM - used on page 98

Master Mix	Position on	Volume of master mix added per Well of Eppendorf twin.t					tec Source Plate	
Solution	Source Plate	1-Column Runs	2-Column Runs	3-Column Runs	4-Column Runs	6-Column Runs	12-Column Runs	
Block master mix	Column 1 (A1-H1)	11.0 µL	19.0 µL	27.0 μL	34.9 µL	50.9 μL	102.7 μL	
Probe Hybridization master mix	Column 2 (A2-H2)	23.3 μL	38.8 µL	54.3 µL	69.8 µL	108.5μL	217.0 µL*	

^{*} The maximum well volume for an Eppendorf twin.tec plate is 250 μ L. Wells containing 217.0 μ L will be nearly full.

Hybrid Capture and Washing

Table 135 Magnetic bead washing mixture - used on page 104

Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns
Dynabeads MyOne Streptavidin T1 bead suspension	50 μL	425 μL	825 µL	1225 µL	1.65 mL	2.5 mL	5.0 mL
SureSelect Binding Buffer	0.2 mL	1.7 mL	3.3 mL	4.9 mL	6.6 mL	10 mL	20 mL
Total Volume	0.25 mL	2.125 mL	4.125 mL	6.125 mL	8.25 mL	12.5 mL	25 mL

Table 136 Resuspension of magnetic beads - used on page 104

Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns
SureSelect Binding Buffer	0.2 mL	1.7 mL	3.3 mL	4.9 mL	6.6 mL	10 mL	20 mL

Post-Capture PCR

Table 137 Post-Capture PCR master mix - used on page 112

Reagent	Volume for 1 Library	Volume for 1 Column	Volume for 2 Columns	Volume for 3 Columns	Volume for 4 Columns	Volume for 6 Columns	Volume for 12 Columns
5× Herculase II Reaction Buffer with dNTPs (clear cap)	10 μL	170 μL	255 μL	340 μL	425 μL	574 μL	1105 μL
SureSelect Post-Capture Primer Mix (clear cap)	1 μL	17.0 μL	25.5 μL	34.0 µL	42.5 μL	57.4 μL	110.5 μL
Herculase II Fusion DNA Polymerase (red cap)	1 μL	17.0 μL	25.5 μL	34.0 µL	42.5 μL	57.4 μL	110.5 µL
Total Volume	12.0 µL	204.0 μL	306.0 μL	408.0 μL	510.0 μL	688.8 µL	1326.0 µL

Table 138 Master mix source plate for post-capture PCR protocol Post-CapPCR_XT_LI_ILM - used on page 112

Master Mix	Position on	Volum	e of master mi	x added per W	ell of Eppendo	rf twin.tec Sou	Source Plate	
Solution	Source Plate	1-Column Runs	2-Column Runs	3-Column Runs	4-Column Runs	6-Column Runs	12-Column Runs	
Post-Capture PCR Master Mix	Column 3 (A3-H3)	23.0 μL	36.0 µL	49.0 μL	62.0 µL	82.0 µL	163.0 μL	

Quick Reference Tables for Other Reagent Volumes

This section contains tables the summarize the gDNA input volumes, volume of XT HS2 Index Primer Pair in the primer plate, volumes used for reservoirs of water and ethanol, and volumes of AMPure XP beads used in the automation protocols.

Table 139 Genomic DNA Input Volumes

Genomic DNA Input (100-200 ng)	Volume for 1 Library
Enzymatic fragmentation	15 µL
Mechanical shearing	50 μL

Table 140 XT HS2 Index Primer Pairs Volume on Primer Plate

Reagent	Volume for 1 Library
XT HS2 Index Primer Pairs	5 μL

Table 141 AMPure XP Bead Volumes for AMPure XP Protocols

Protocol or Runset	Volume of AMPure Beads per Well*
LibraryPrep_XT_HS2_ILM	80 μL
AMPureXP_XT_HS2_ILM (Pre-Cap PCR - SinglePlex)	50 μL
AMPureXP_XT_HS2_ILM (Pre-Cap PCR - MultiPlex)	50 μL
AMPureXP_XT_HS2_ILM (Concentration of Pool)	180 μL
AMPureXP_XT_HS2_ILM (Post-Capture PCR)	50 μL

^{*} When preparing the plates of AMPure XP beads, fill the columns of the reservoir with enough of the bead suspension to cover the pyramid-shaped wells

Table 142 Water and Ethanol Volumes for AMPure XP Protocols

Reagent	Volume per Reservoir
70% ethanol in Agilent deep well reservoir	50 mL
Nuclease-free water in Agilent shallow well reservoir	30 mL

Troubleshooting Guide

If recovery of gDNA from samples is low

- ✓ Using excess tissue for gDNA isolation can reduce yield. Use only the amount of each specific tissue type recommended by the gDNA isolation protocol.
- ✓ Tissue sample lysis may not have been optimal during gDNA isolation. Monitor the extent of sample lysis during the Proteinase K digestion at 56°C by gently pipetting the digestion reaction every 20−30 minutes, visually inspecting the solution for the presence of tissue clumps. If clumps are still present after the 1-hour incubation at 56°C, add another 10 µL of Proteinase K and continue incubating at 56°C, with periodic mixing and visual inspections, for up to two additional hours. When the sample no longer contains clumps of tissue, move the sample to room temperature until lysis is complete for the remaining samples. Do not over-digest. Individual samples may be kept at room temperature for up to 2 hours before resuming the protocol. Do not exceed 3 hours incubation at 56°C for any sample.

If yield of pre-capture libraries is low

- ✓ The library preparation protocol includes specific thawing, temperature control, pipetting, and mixing instructions which are required for optimal performance of the highly viscous buffer and enzyme solutions used in the protocol. Be sure to adhere to all instructions when setting up the reactions.
- ✓ PCR cycle number may require optimization. Repeat library preparation for the sample, increasing the pre-capture PCR cycle number by 1 to 2 cycles. If a high molecular weight peak (>500 bp) is observed in the electropherogram for a sample with low yield, the DNA may be overamplified. Repeat library preparation for the sample, decreasing the pre-capture PCR cycle number by 1 to 3 cycles.
- ✓ DNA isolated from degraded samples, including FFPE tissue samples, may be over-fragmented or have modifications that adversely affect library preparation processes. Use the Agilent NGS FFPE QC Kit to determine the precise quantity of amplifiable DNA in the sample and allow direct normalization of input DNA amount.
- ✓ Performance of the solid-phase reversible immobilization (SPRI) purification step may be poor. Verify the expiration date for the vial of AMPure XP beads used for purification. Adhere to all bead storage and handling conditions recommended by the manufacturer. Ensure that the beads are kept at room temperature for at least 30 minutes before use. Use freshly-prepared 70% ethanol for each SPRI procedure.

If solids observed in the End Repair-A Tailing Buffer

✓ Vortex the solution at high speed until the solids are dissolved. The observation of solids when first thawed does not impact performance, but it is important to mix the buffer until all solutes are dissolved.

If pre-capture library fragment size is larger than expected in electropherograms

- Shearing may not be optimal. For intact, high-quality DNA samples, ensure that mechanical shearing is completed using the two-round shearing protocol provided, including all spinning and vortexing steps.
- ✓ When using the mechanical shearing method, any bubbles present on the microTUBE filament may disrupt complete shearing. Spin the microTUBE for 30 seconds before the first round of shearing to ensure that any bubbles are released.

If pre-capture library fragment size is different than expected in electropherograms

- ✓ FFPE DNA pre-capture libraries may have a smaller fragment size distribution due to the presence of DNA fragments in the input DNA that are smaller than the target DNA shear size.
- ✓ DNA fragment size selection during SPRI purification depends upon using the correct ratio of sample to AMPure XP beads. When preparing the AMPure XP bead plate for pre-capture purification, mix the beads until the suspension appears homogeneous and consistent in color before adding the bead suspension to the shallow well reservoir. After preparation of the AMPure XP bead plate, seal the plate and store at 4°C until needed.

If low molecular weight adaptor-dimer peak is present in pre-capture library electropherograms

- ✓ The presence of a low molecular weight peak, in addition to the expected peak, indicates the presence of adaptor-dimers in the library. It is acceptable to proceed to target enrichment with library samples for which adaptor-dimers are observed in the electropherogram at low abundance, similar to the samples analyzed on page 75. The presence of excessive adaptor-dimers in the samples may be associated with reduced yield of pre-capture libraries.
- ✓ For whole-genome sequencing (not specifically supported by this protocol), samples with an adaptor-dimer peak must be subjected to an additional round of SPRI-purification. To complete, first dilute the sample to 50 μL with nuclease free water, then run the AMPureXP_XT_HS2_ILM (Pre-Capture PCR) protocol.

If yield of post-capture libraries is low

- ✓ PCR cycle number may require optimization. Repeat library preparation and target enrichment for the sample, increasing the post-capture PCR cycle number by 1 to 2 cycles.
- ✓ The RNA Probe used for hybridization may have been compromised. Verify the expiration date on the Probe vial or Certificate of Analysis. Adhere to the recommended storage and handling conditions. Ensure that the Probe Hybridization Mix is kept on ice until it is dispensed into the master mix source plate, as directed on page 96, and that solutions containing the Probe are not held at room temperature for extended periods.

If post-capture library fragment size is different than expected in electropherograms

✓ DNA fragment size selection during SPRI purification depends upon using the correct ratio of sample to AMPure XP beads. When preparing the AMPure XP bead plate for post-capture purification, mix the beads until the suspension appears homogeneous and consistent in color before adding the bead suspension to the shallow well reservoir. After preparation of the AMPure XP bead plate, seal the plate and store at 4°C until needed.

If low % on-target is observed in library sequencing results

✓ Minimize the amount of time that hybridization reactions are exposed to RT conditions during hybridization setup. Locate a thermal cycler in close proximity to the Bravo NGS Workstation to retain the 65°C sample temperature during transfer step (step 26 on page 102).

If low uniformity of coverage with high AT-dropout is observed in library sequencing results

- ✓ High AT-dropout may indicate that hybridization conditions are too stringent to obtain the desired level of coverage for AT-rich targets.
 - For libraries target-enriched using the SureSelect XT HS Human All Exon V8 Probe or SureSelect XT HS PreCap Human All Exon V8 Probe and the hybridization program in Table 63 on page 94 (including segment with one-hour incubation at 65°C), repeat target enrichment using the hybridization program in Table 64 on page 94 (without the one-hour incubation at 65°C segment).
 - For all other probes, repeat target enrichment at lower stringency using a modified thermal cycler program for hybridization, reducing the hybridization temperature in segments 4 and 5 from 65°C to 62.5°C or 60°C (see **Table 64** on page 94).

www.agilent.com

In This Book

This guide contains information to run the SureSelect XT HS2 protocol for DNA, with optional pre-capture pooling, using automation protocols provided with the Agilent NGS Workstation Option B.

© Agilent Technologies, Inc. 2021–2022

Version B2, September 2022

