Multisamplers
Agilent InfinityLab LC Series
User Manual
In This Guide

This manual covers the following InfinityLab LC Series Multisamplers:

• Agilent 1290 Infinity II Multisampler (G7167B)
• Agilent 1260 Infinity II Multisampler (G7167A), and
• Agilent 1260 Infinity II Bio-Inert Multisampler (G5668A)

1 Introduction
This chapter gives an introduction to the Multisampler.

2 Site Requirements and Specifications
This chapter provides information on environmental requirements, physical and performance specifications.

3 Using the Module
This chapter explains the essential operational parameters of the module.

4 Preparing the Module
This chapter explains the operational parameters of the module.

5 Optimizing Performance
This chapter gives hints on how to optimize the performance or use additional devices.

6 Troubleshooting and Diagnostics
This chapter gives an overview about the troubleshooting and diagnostic features and the different user interfaces.

7 Error Information
This chapter describes the meaning of error messages, and provides information on probable causes and suggested actions how to recover from error conditions.
8 Test Functions and Calibration
This chapter describes the built in test functions.

9 Maintenance
This chapter describes the maintenance of the Multisampler.

10 Parts for Maintenance and Upgrade or Options
This chapter provides information on parts material required for the module.

11 Identifying Cables
This chapter provides information on cables used with the modules.

12 Hardware Information
This chapter describes the module in more detail on hardware and electronics.

13 LAN Configuration
This chapter provides information on connecting the detector to the Agilent ChemStation PC.

14 Appendix
This chapter provides addition information on safety, legal and web.
Contents

1 Introduction 10
 Product Description (G7167B) 11
 Features (G7167B) 12
 Product Description (G7167A) 13
 Features (G7167A) 14
 Product Description (G5668A) 15
 Features (G5668A) 16
 Overview of the Module 17
 Standard Single Needle Setup 19
 Injection Sequences 20
 System Overview 29

2 Site Requirements and Specifications 37
 Site Requirements 38
 Physical Specifications 42
 Performance Specifications 45
 Specifications of the Sample Cooler 53
 Specifications of the Sample Thermostat 55

3 Using the Module 57
 Magnets 58
 Turn on/off 59
 Status indicators 61
 Drawer Status Indicator 62
 Insert vial trays/wellplates 63
 Remove vial trays/wellplates 64
 Installing the Optional Sample Cooler/Thermostat 65
 Using the Optional Sample Cooler/Sample Thermostat 72
 Transporting the Sampler 82
 Solvent Information 88
 Reset the Multisampler in Case of an Error 97
 Agilent Local Control Modules 100
4 Preparing the Module 102

Leak and Waste Handling 103
Preparing the Multisampler 104
Recommended Mats and Vials 105
Configure Well Plate Types 108
Capillary Color Coding Guide 111
Installing Capillaries 112
Flow Connections to the Washport (Standard) 114
Flow Connections to the Washport (Dual-Needle) 116
Installing the Bypass Capillary (Dual Needle) 118
Flow Connections to the Washport (Multiwash) 121
Setting up the Autosampler with Agilent OpenLab CDS ChemStation Edition 123
Setting up the Dual Needle System with Agilent OpenLAB CDS ChemStation Edition 132

5 Optimizing Performance 146

Delay Volume and Extra-Column Volume 147
How to Configure the Optimum Delay Volume 148
How to Achieve Higher Injection Volumes 152
How to Achieve High Throughput 154
How to Achieve Higher Resolution 155
How to Achieve Higher Sensitivity 158
How to Achieve Lowest Carry Over 159

6 Troubleshooting and Diagnostics 161

User Interfaces 162
Agilent Lab Advisor Software 163
7 Error Information 164
 What Are Error Messages 166
 General Error Messages 167
 Sampler Error Messages 175
 Sample Cooler/Sample Thermostat Error Messages 188

8 Test Functions and Calibration 194
 Introduction 195
 System Pressure Test 196
 Auto Referencing 199
 Maintenance Positions 201
 Injector Steps 205
 Sample Cooler Function Test 207
 Sample Handler Function Test 208

9 Maintenance 209
 Introduction to Maintenance 210
 Warnings and Cautions 212
 Overview of Maintenance 214
 Clean the Module 215
 Removal and Installation of the Front Door 216
 Remove the Needle Assembly 219
 Install the Needle Assembly 224
 Exchange the Needle Seat 228
 Replace the Rotor Seal 231
 Replace the Injection Valve 237
 Remove the Metering Seal 242
 Install the Metering Seal 247
 Replace the Peristaltic Pump Cartridge 253
 Replace the Flushhead Seal 255
 Remove the Sample Loop-Flex 259
 Installing the Sample Loop-Flex 263
 Replace the Dummy Drawer 267
 Replace the Sample Cooler/Sample Thermostat 275
 Replace the Module Firmware 280
10 Parts for Maintenance and Upgrade or Options 281

Standard Parts 282
Hotel Drawer 284
Analytical Head Assembly 40 µL 285
Analytical Head Assembly 100 µL 286
Bio Analytical Head Assembly (100 µL) (1200 bar) 287
Analytical Head Assembly 900 µL 289
Flush Head Assembly 500 µL 290
Bio Flush Head Assembly 500 µl 292
2ps 6pt Injection Valve VICI 294
2ps 6pt Injection Valve IDEX 296
2ps 6pt Injection Valve Bio-inert IDEX 297
Injection Valve with Actuator 299
Sample Loops and Capillaries (Dual Needle) 300
3Pos/6Port Peripheral Valve Dual Needle 303
2Pos/8Port Injection Valve Dual Needle 304
Needle Port Assembly 305
Door Assy 306
Accessory Kit 307
Bottles 309
Tubing Kit Sampler Standard 310
Tubing Kit Sampler Multi-Wash 312
Multi Draw Kit 313
Bio-Inert Multi-Draw Kit 314
Upgrade Kits 315
Leak System Parts 316
Sample Thermostat 317

11 Identifying Cables 318

Cable Overview 319
Analog Cables 321
Remote Cables 323
CAN/LAN Cables 327
Agilent Module to PC 328
USB 329
12 Hardware Information 330
Firmware Description 331
Electrical Connections 334
Interfaces 337
Setting the 6-bit Configuration Switch 345
Instrument Layout 347
Early Maintenance Feedback 348

13 LAN Configuration 349
Setting up the module in a LAN environment 350

14 Appendix 351
General Safety Information 352
Waste Electrical and Electronic Equipment (WEEE) Directive 358
Refrigerant 359
Radio Interference 362
Sound Emission 363
Solvent Information 364
Installation of Stainless Steel Cladded PEEK Capillaries 365
Agilent Technologies on Internet 371
1 Introduction

This chapter gives an introduction to the Multisampler.
Introduction

Product Description (G7167B)

The Agilent 1290 Infinity II Multisampler can handle both vials and microtiter plates with ease and efficiency up to 1300 bar system pressure, optimized on chromatographic performance.

In fact, this compact module has the capacity to house up to 6144 samples, all inside the Agilent stack footprint and the robotics to smoothly inject each into the chromatograph in turn.

With the multi-wash capability, you can reduce carryover to less than 9 parts per million.

Figure 1 Overview of the Multisampler
Features (G7167B)

- **Unmatched flexibility** – You choose how you want to introduce samples for injection, whether you prefer vials, microtiter plates, or any combination of formats. Sample drawers are available in three heights, and you can mix shallow drawers with deeper ones to accommodate different sample sizes.

- **High capacity** – Using shallow well-plate drawers, the 1290 Infinity II Multisampler takes a maximum load of 16 microtiter plates and up to 6144 samples—the most of any single system.

- **Seamless automation** – Internal robotics move microtiter plates and other sample containers from the sample hotel to the central workspace for sample processing steps and injections.

- **Dual-needle injection** – By running samples alternately through one or the other injection path, you can reduce cycle times to mere seconds, virtually eliminating conventional wait times—whether for large volume loadings or flushing procedures.

- **Scalable injection volumes** – The Agilent unique dual-needle setup also enhances flexibility by providing two differently optimized injectors in a single instrument. You can, for example, optimize one path for large volume injections and the other for low delay volumes.

- **Ultralow carryover** – The 1290 Infinity II Multisampler is designed for low carryover, but you can take clean to a whole new level with our multi-wash capability, cleaning all relevant injection parts between runs. This sophisticated, integrated feature flushes the injection needle outside with three solvents, and uses seat backflush procedures to reduce carryover to less than 9 ppm.

- **Integrated sample thermostat** – available as option or upgrade, providing cooling and heating in the range from 4 °C - 40 °C.

- **Instant information** – Lights on each drawer tell you all you need to know about loading status, current activity, and accessibility.
Introduction
Product Description (G7167A)

Product Description (G7167A)

The Agilent 1260 Infinity II Multisampler can handle both vials and microtiter plates with ease and efficiency up to 800 bar system pressure, optimized on high flexibility.

This compact module can house up to 6144 samples, all inside the Agilent stack footprint and the robotics to inject each into the chromatograph in turn.

With the multi-wash capability, you can reduce carryover to less than 9 parts per million.

Figure 2 Overview of the Multisampler
Features (G7167A)

- **Unmatched flexibility** – You can choose how you want to introduce samples for injection, whether you prefer vials, microtiter plates, or any combination of formats. Sample drawers are available in three heights, and you can mix shallow drawers with deeper ones to accommodate different sample sizes.

- **High capacity** – Using shallow well-plate drawers, the 1260 Infinity II Multisampler takes a maximum load of 16 microtiter plates and up to 6144 samples—the most of any single system.

- **Seamless automation** – Internal robotics move microtiter plates and other sample containers from the sample hotel to the central workspace for sample processing steps and injections.

- **Dual-needle injection** – By running samples alternately through one or the other injection path, you can reduce cycle times to mere seconds, virtually eliminating conventional wait times—whether for large volume loadings or flushing procedures.

- **Scalable injection volumes** – The Agilent dual-needle setup enhances flexibility by providing two differently optimized injectors in a single instrument. You can, for example, optimize one path for large volume injections and the other for low delay volumes.

- **Ultralow carryover** – The 1260 Infinity II Multisampler has a low carryover, and a multi-wash capability, cleaning all relevant injection parts between runs. This integrated feature flushes the injection needle outside with three solvents, and uses seat backflush procedures to reduce carryover to less than 9 ppm.

- **Efficient temperature control** – For temperature-sensitive samples, add Agilent’s compressor-based cooling system. It maintains temperature control on all vials and plates inserted into the 1260 Infinity II Multisampler.

- **Instant information** – Lights on each drawer tell you about loading status, current activity, and accessibility.
Agilent 1260 Infinity II Bio-Inert Multisampler features a 100% metal-free sample flow path and is therefore the ideal injector for all biorelated applications, including analysis of mAbs, proteins in general and oligonucleotides. The ceramic needle, PEEK needle seat, and stainless steel-clad PEEK capillaries ensure highest injection accuracy and precision and are rated for a maximum system pressure of 600 bar allowing the use of highest performance columns. With multiwash capability, you can reduce carryover to less than 9 ppm. This design offers highest flexibility by handling both vials and microtiter plates and can house up to 6144 samples. For temperature-sensitive samples, simply add Agilent's highly efficient compressor-based cooling system. It allows you to maintain perfect temperature control on all vials and plates inserted.
Features (G5668A)

- **Reliable analysis of biological samples** – the metal-free sample flow path at 600 bar means that none of your precious sample touches metal surfaces.

- **Maintain perfect temperature control** - for temperature-sensitive samples, simply add Agilent’s new highly efficient compressor-based cooling system. It allows you to efficiently control the temperature of all vials and plates inserted into the 1260 Infinity II Multisampler.

- **Ultralow carryover** - the 1260 Infinity II Multisampler is designed for low carryover. But you can take clean to a whole new level with our multiwash capability, cleansing all relevant injection parts between runs. This sophisticated, integrated feature flushes the injection needle outside with three solvents, and uses seat backflush procedures to reduce carryover to less than 9 ppm.

- **Unmatched flexibility** - you choose how you want to introduce samples for injection, whether you prefer vials, microtiter plates, or any combination of formats. Sample drawers are available in three heights, and you can mix shallow drawers with deeper ones to accommodate different sample sizes.

- **High capacity** - using shallow well-plate drawers, the 1260 Infinity II Multisampler takes a maximum load of 16 microtiter plates and up to 6144 samples. The most of any single system.

- **Seamless automation** - internal robotics move microtiter plates and other sample containers from the sample hotel to the central workspace for sample processing steps and injections.
Introduction
Overview of the Module

Overview of the Module

The Multisampler transport mechanism uses a Cartesian robot. The X-Y drive together with the Z drive optimize the grabbing and positioning for the sample trays and the needle handling inside of the Multisampler. The sample coupler moves the sample container from the sample hotel which stores all the samples and place it on the central workspace. Then the needle coupler of the Z drive takes over and grabs the needle assembly from the needle station and performs the analytical procedures inside of the Multisampler. Due the uncoupled needle design, the robot can do other liquid handling jobs during the analysis.

The multisampler employs an active vial/plate pusher mechanism to hold down the vial or the plate while the needle is drawn back from the sample vessel (a must in the case a septum is used). This active vial/plate pusher employs a sensor to detect the presence of a plate and to ensure accurate movement regardless of plate used. All axes of the transport mechanism are driven by very fast BLCD motors. Optical encoders ensure the correct operation of the movement.

The standard configuration of the Multisampler uses either a 40 µL or a 100 µL metering device. With this instrument setup, it is possible to inject a maximum volume of 20 µL or 100 µL. For higher injection volumes, additional hardware modifications are required. For minimum internal carry-over, the entire injection flowpath is always flushed by the mobile phase.

In addition, you have two different possibilities to reduce the carry-over. First the external needle wash. In the Standard configuration, the needle flush station is equipped with a peristaltic pump to wash the outside of the needle. This reduces already low carry-over for very sensitive analysis. The bottle containing the mobile phase for the wash procedure will be located in the solvent bottle cabinet. Produced waste during this operation is channeled safely away through a waste drain. In the Multi-Wash configuration, the external needle wash will be done by a micro piezo pump combined with a solvent selection valve, where you can select between three different solvents. If this is not sufficient to reduce the carry over, there is an additional and perfect way to achieve the lowest carry over in the Multi-Wash configuration by using the integrated flush pump. This high-pressure pump can also select between three different solvents and is capable of reducing the carry over to a minimum by using the seat backflushing. The flush pump outlet capillary is connected to port 4 of the Multisampler's injection valve, which normally holds the waste line. If the Multisampler is in bypass mode, the flush pump connects to the needle seat and can flush backwards through the needle seat into the waste line attached to the needle seat outlet port.
Introduction
Overview of the Module

The six-port (only 5 ports are used) injection valve unit is driven by a high-speed hybrid stepper motor. During the sampling sequence, the valve unit bypasses the Multisampler, and connects flow from the pump to the column directly. During injection and analysis, the valve unit directs the flow through the Multisampler which ensures that all of the sample is injected onto the column, and that the metering unit and needle are always free of sample residue before the next sampling sequence begins.

The Cooling Control of the vial/plate temperature in the Multisampler is achieved using an additional Agilent Sample Cooler or Sample Thermostat module. The chiller unit is a micro compressor-based refrigerator. A fan draws air from the central workstation above the sample container of the Multisampler. It is then blown through the fins of the cooling module, where it is cooled according to the temperature setting. The cooled air enters the Sampler Hotel through a recess underneath the special designed base plate. The air is then distributed evenly through the Sample Hotel ensuring effective temperature control, regardless of how many sample containers are in the drawer. In cooling mode, condensation is generated on the cooled side of the Sample Cooler or Sample Thermostat. This condensed water is safely guided into a waste bottle for condensed water that is located underneath the working bench.
Standard Single Needle Setup

The movements of the Multisampler components during the sampling sequence are monitored continuously by the Multisampler processor. The processor defines specific time windows and mechanical ranges for each movement. If a specific step of the sampling sequence is not completed successfully, an error message is generated. Solvent is bypassed from the Multisampler by the injection valve during the sampling sequence. After the required sample container was automatically loaded from the sample hotel and placed on the central workspace. The Needle assembly moves via robot to the desired sample position and is lowered into the sample liquid in the sample to allow the metering device to draw up the desired volume by moving its plunger back a certain distance. The needle assembly is then raised again and moved to the needle park station onto the seat to close the sample loop. Sample is applied to the column when the injection valve returns to the mainpass (main path) position at the end of the sampling sequence.

The standard sampling sequence occurs in the following order:
1. The robot loads the required sample container on the central workspace
2. The injection valve switches to the bypass position.
3. The plunger of the metering device moves to the initialization position.
4. The robot couples into the needle assembly from the needle parkstation.
5. The robot unlocks the needle assembly and moves up.
6. The coupled needle assembly/robot moves to the desired sample vial (or well plate) position on the central workstation.
7. The needle lowers into the sample vial (or well plate).
8. The metering device draws the preset sample volume.
9. The needle lifts out of the sample vial (or well plate).
10. The coupled needle assembly/robot is then moved to the park station onto the seat to close the sample loop.
11. The needle assembly is locked into the park station and moves down.
12. The injection cycle is completed when the injection valve switches to the mainpass (main path) position.
13. The robot moves the sample container back into the sample hotel if the sampling sequence is done. If needle wash is required it will be done between step 9 and 10.

NOTE
For the needle seat backflush the Multisampler must be in bypass mode.
If an additional needle seat backflush is required this step must also be done between step 5 and 9.
Injection Sequences for single needle

Before the start of the injection sequence, and during an analysis, the injection valve is in the mainpass (main path) position. In this position, the mobile phase flows through the Multisampler metering device, sample loop, and needle, ensuring all parts in contact with sample are flushed during the run, thus minimizing carry-over.

When the sample sequence begins, the valve unit switches to the bypass position. Solvent from the pump enters the valve unit at port 1, and flows directly to the column through port 6.
Introduction
Injection Sequences

The standard injection starts with draw sample from vial/wellplate from the central workstation. In order to do this the needle assembly moves via robot to the desired sample position and is lowered into the sample liquid in the sample to allow the metering device to draw up the desired volume by moving its plunger back a certain distance. The needle assembly is then raised again and moved to the needle park station onto the seat to close the sample loop. In case of an injector program several steps are interspersed at this point.

Figure 5 Valve in bypass, drawing sample
Flush the Needle

Before injection and to reduce the carry-over for very sensitive analysis, the outside of the needle can be washed in a flush port located behind the injector port. As soon as the needle is on the flush port a wash pump delivers some solvent during a defined time to clean the outside of the needle. At the end of this process the needle assembly returns to the needle port.

![Diagram of washing needle](image-url)
Inject-and-Run

The final step is the inject- and run-step. The six-port valve is switched to the mainpass (main path) position, and directs the flow back through the sample loop, which now contains a certain amount of sample. The solvent flow transports the sample onto the column, and separation begins. This is the beginning of a run within an analysis. In this stage, all major performance-influencing hardware is flushed internally by the solvent flow. For standard applications no additional flushing procedure is required.

![Diagram of Multisampler](image)

Figure 7 Valve in mainpass (main path), sample injected
Introduction

Injection Sequences

Needle seat back flush

After the injection to reduce the carry-over for very sensitive analysis, the needle seat can be flushed by an integrated flush pump with up to 3 different solvents which may have different properties and solvent strengths. As soon as injection valve is in bypass mode the flush pump delivers some solvent during a defined time to clean the needle seat. The back flushing solvent will be guided into the waste line attached on the needle wash port. At the end of this process the injection valve switches back into the mainpass (main path) position ready for the next injection. The last rinsing step should always include the mobile phase as solvent to get the initial conditions again.

![Diagram of valve in bypass, needle backflush (Multiwash)](image)
Introduction
Injection Sequences

Injection Sequence for dual needle (alternating mode)

Flushing the system

The Start of the pump or changes in solvent composition trigger the purge routine of the multisampler. The purge routine flushes the hydraulic setup of the multisampler with fresh mobile phase (for example metering device, sample loops, and needles). This ensures cleanliness of the flowpath.

![Diagram of multisampler setup](image)

Note

For pumps with a manual purge valve, it is mandatory to start the purge routine before a run or sequence. This will guarantee that the complete flow path of the dual needle setup is flushed with fresh mobile phase.
Introduction

Injection Sequences

The robot moves the wellplates or vial trays from the sample hotel to the central workspace. The injection valve unit switches to the mainpass (main path) (left) position. Then the sampling process starts. Solvent from the pump enters the peripheral valve at port 2, and flows through port 1 directly to the injection valve. The solvent enters the injection valve at port 2, flows via port 1 through the sample loop (left), the needle (left), the needle seat (left), port 5 and port 6 to the column.

![Diagram of injection sequence](image)

Figure 10 Valve in mainpass (main path) (right), drawing sample with left needle

Drawing sample (right)

Then the needle assembly (right) moves to the desired sample position and immerses into the sample. The plunger of the metering device moves back and draws up the desired volume. Then the needle assembly (right) raises and moves to the needle park station on the needle seat (right). This closes the sample loop (right).

Flush the Needle (if selected)

To reduce carry-over, the outside of the left or the right needle can be washed in the flush port that is located behind the needle park station. As soon as the needle is on the flush port, a wash pump flushes the outside of the needle for a defined time (defined for example in the method). After this process the needle assembly returns to the appropriate needle park station. This closes the sample loop (right).
Introduction
Injection Sequences

Alternating Dual needle Inject and Run (Right needle)

The eight port valve switches to the mainpass (main path) (right) position. Now Port 2 and 3 and Port 7 and 6 of the injection valve are connected. This directs the flow through the sample loop (right) and the solvent transports the sample to the column. Separation and analysis starts. In the meantime, the flow path (right) is flushed internally by the solvent.

![Diagram of valve in mainpass (main path) (right), metering home (multi-load position of the peripheral valve)](image)

Figure 11 Valve in mainpass (main path) (right), metering home (multi-load position of the peripheral valve)
Introduction

Injection Sequences

Prepare Inject and Run of the alternating dual needle (left needle)

The sample container is in the central sample work space. The robot detaches the needle assembly (left) from the needle port. The metering device drives to the home position. Then the needle assembly (left) is moved to the desired sample position and immerses into the sample. The plunger of the metering device moves back and draws up the desired volume. Then the needle assembly (left) raises and moves to the needle park station on the needle seat (left). This closes the sample loop (left).

The left needle can be flushed as the right needle, see description above.

The eight port valve switches to the mainpass (main path) (left) position. Now Port 2 and 1 and Port 5 and 6 of the injection valve are connected. This directs the flow through the sample loop (left) and the solvent transports the sample to the column. Separation and analysis starts. In the meantime, the flow path (left) is flushed internally by the solvent.

The alternating flush and injection cycles minimize injection cycle times and ensure maximal cleanliness of the hardware.

Multi-load with Dual needle (left needle)

In the multi-load mode, the peripheral valve switches in different positions while the plunger of the metering device moves back and forward. At the same time, the needle remains in the sample vial or well. That way the multi-load technique allows to draw multiple times and inject large sample volumes. This multi-load technique is completely different from the multi-draw technique that is used in other autosamplers.

Injection Sequence for dual needle (bypass mode)

This corresponds to the injection sequence for single needles, see "Injection Sequence for single needle" on page 20. Only one flow path is used on a regular basis, and a defined bypass capillary replaces either the left or the right dual needle sample loop. This bypass capillary shortcuts one path to allow faster reconditioning.
Introduction

System Overview

Leak and Waste Handling

The Agilent InfinityLab LC Series has been designed for safe leak and waste handling. It is important that all security concepts are understood and instructions are carefully followed.

The solvent cabinet is designed to store a maximum volume of 8 L solvent. The maximum volume for an individual bottle stored in the solvent cabinet should not exceed 2 L. For details, see the usage guideline for the Agilent Infinity II Solvent Cabinets (a printed copy of the guideline has been shipped with the solvent cabinet, electronic copies are available on the Internet).

All leak plane outlets are situated in a consistent position so that all Infinity and Infinity II modules can be stacked on top of each other. Waste tubes are guided through a channel on the right hand side of the instrument, keeping the front access clear from tubes.

The leak plane provides leak management by catching all internal liquid leaks, guiding them to the leak sensor for leak detection, and passing them on to the next module below, if the leak sensor fails. The leak sensor in the leak plane stops the running system as soon as the leak detection level is reached.

Solvent and condensate is guided through the waste channel into the waste container:

- from the detector’s flow cell outlet
- from the Multisampler needle wash port
- from the Sample Cooler or Sample Thermostat (condensate)
- from the pump’s Seal Wash Sensor (if applicable)
- from the pump’s Purge Valve or Multipurpose Valve
Figure 12 Infinity II Leak Waste Concept (Flex Bench installation)
Figure 13 Infinity II Single Stack Leak Waste Concept (bench installation)
Figure 14 Infinity II Two Stack Leak Waste Concept (bench installation)

The waste tube connected to the leak pan outlet on each of the bottom instruments guides the solvent to a suitable waste container.
Introduction
System Overview

Leak Sensor

CAUTION
Solvent incompatibility
The solvent DMF (dimethyl formamide) leads to corrosion of the leak sensor. The material of the leak sensor, PVDF (polyvinylidene fluoride), is incompatible with DMF.

✓ Do not use DMF as mobile phase.
✓ Check the leak sensor regularly for corrosion.

Waste Guidance

NOTE
The waste drainage must go straight into the waste containers. The waste flow must not be restricted at bends or joints.
Introduction
System Overview

Waste Concept

Agilent recommends using the 6 L waste can with 1 Stay Safe cap GL45 with 4 ports (5043-1221) for optimal and safe waste disposal. If you decide to use your own waste solution, make sure that the tubes don't immerse in the liquid.
Leak and Waste Handling in a Mixed Configuration

The leak pan outlet of the upper module must be vertically positioned above the leak tray of the lower module.

For the lowest module, the central waste is guided directly into the waste container.

NOTE
Flush solvent from the washport of the multisampler is guided out to the right of the instrument.
Introduction

System Overview

![Multisampler diagram](image)

Figure 16 Leak and waste handling with multisampler in a mixed configuration as an example (two stack configuration)

NOTE

Do not place the multisampler directly on the bench if a sample cooler or sample thermostat is installed.
2 Site Requirements and Specifications

Site Requirements 38
Physical Specifications 42
Physical Specifications Agilent 1290 Infinity II Multisampler (G7167B) 42
Physical Specifications Agilent 1260 Infinity II Multisampler (G7167A) 43
Physical Specifications Agilent 1260 Infinity II Bio-inert Multisampler (G5668A) 44
Performance Specifications 45
Performance Specifications (G7167B) 45
Performance Specifications (G7167A) 48
Performance Specifications G5668A 51
Specifications of the Sample Cooler 53
Specifications of the Sample Thermostat 55

This chapter provides information on environmental requirements, physical and performance specifications.
Site Requirements and Specifications
Site Requirements

A suitable environment is important to ensure optimal performance of the instrument.

Power Considerations

The module power supply has wide ranging capability. It accepts any line voltage in the range described in Table 1 on page 42. Consequently there is no voltage selector in the rear of the module. There are also no externally accessible fuses, because automatic electronic fuses are implemented in the power supply.

WARNING

Hazard of electrical shock or damage of your instrumentation can result, if the devices are connected to a line voltage higher than specified.

- Connect your instrument to the specified line voltage only.

WARNING

Electrical shock hazard

The module is partially energized when switched off, as long as the power cord is plugged in.

The cover protects users from personal injuries, for example electrical shock.

- Do not open the cover.
- Do not operate the instrument and disconnect the power cable in case the cover has any signs of damage.
- Contact Agilent for support and request an instrument repair service.

WARNING

Inaccessible power plug.

In case of emergency it must be possible to disconnect the instrument from the power line at any time.

- Make sure the power connector of the instrument can be easily reached and unplugged.
- Provide sufficient space behind the power socket of the instrument to unplug the cable.
Site Requirements and Specifications

Site Requirements

Power Cords

Country-specific power cords are available for the module. The female end of all power cords is identical. It plugs into the power-input socket at the rear. The male end of each power cord is different and designed to match the wall socket of a particular country or region.

Agilent makes sure that your instrument is shipped with the power cord that is suitable for your particular country or region.

WARNING

Unintended use of power cords

Using power cords for unintended purposes can lead to personal injury or damage of electronic equipment.

✓ Never use a power cord other than the one that Agilent shipped with this instrument.

✓ Never use the power cords that Agilent Technologies supplies with this instrument for any other equipment.

✓ Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

WARNING

Absence of ground connection

The absence of ground connection can lead to electric shock or short circuit.

✓ Never operate your instrumentation from a power outlet that has no ground connection.

WARNING

Electrical shock hazard

Solvents may damage electrical cables.

✓ Prevent electrical cables from getting in contact with solvents.

✓ Exchange electrical cables after contact with solvents.
Site Requirements and Specifications

Site Requirements

Room Size and Ventilation

WARNING

Flammable refrigerant

Formation of flammable gas-air mixtures inside the Sample Thermostat and laboratory.

- Keep open fire or sources of ignition away from the device.
- Ensure a room size of 4 m³ (1 m³ for every 8 g of R600a refrigerant inside of the Sample Thermostat).
- Ensure adequate ventilation: typical air exchange of 25 m³/h per m² of laboratory floor area.
- Keep all ventilation openings in the enclosure clear of obstructions. Do not block the openings on the circumference of the Sample Thermostat.
Site Requirements and Specifications

Site Requirements

Bench Space

The module dimensions and weight (see Table 1 on page 42) allow you to place the module on almost any desk or laboratory bench. It needs an additional 2.5 cm (1.0 inches) of space on either side and approximately 8 cm (3.1 inches) in the rear for air circulation and electric connections.

If the bench shall carry a complete HPLC system, make sure that the bench is designed to bear the weight of all modules.

The module should be operated in a horizontal position, especially if a Sample Cooler or Sample Thermostat is installed. Use a bubble level to check the leveling of the sampler.

NOTE
Agilent recommends that you install the HPLC instrument in the InfinityLab Flex Bench rack. This option helps to save bench space as all modules can be placed into one single stack. It also allows to easily relocate the instrument to another laboratory.

WARNING

Heavy weight

The module is heavy.

- Carry the module at least with 2 people.
- Avoid back strain or injury by following all precautions for lifting heavy objects.
- Ensure that the load is as close to your body as possible.
- Ensure that you can cope with the weight of your load.

CAUTION

Condensation within the module

Condensation can damage the system electronics.

- Do not store, ship or use your module under conditions where temperature fluctuations could cause condensation within the module.
- If your module was shipped in cold weather, leave it in its box and allow it to warm slowly to room temperature to avoid condensation.
Site Requirements and Specifications

Physical Specifications

Physical Specifications Agilent 1290 Infinity II Multisampler (G7167B)

Table 1 Physical Specifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>22 kg (48.5 lbs)</td>
<td>w/o sample thermostat</td>
</tr>
<tr>
<td>Dimensions (height × width × depth)</td>
<td>320 x 396 x 468 mm (12.6 x 15.6 x 18.4 inches)</td>
<td></td>
</tr>
<tr>
<td>Line voltage</td>
<td>100 – 240 V~, ± 10 %</td>
<td>Wide-ranging capability</td>
</tr>
<tr>
<td>Line frequency</td>
<td>50 or 60 Hz, ± 5 %</td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td>180 VA, 180 W</td>
<td></td>
</tr>
<tr>
<td>Ambient operating temperature</td>
<td>4 - 40 °C (39 - 104 °F)</td>
<td></td>
</tr>
<tr>
<td>Ambient non-operating temperaure</td>
<td>-40 – 70 °C (-40 – 158 °F)</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>< 95 % r.h. at 40 °C (104 °F)¹</td>
<td>Non-condensing</td>
</tr>
<tr>
<td>Operating altitude</td>
<td>Up to 3000 m (9842 ft)</td>
<td></td>
</tr>
<tr>
<td>Safety standards: IEC, EN, CSA, UL</td>
<td>Installation category II, Pollution degree 2</td>
<td>For indoor use only.</td>
</tr>
<tr>
<td>ISM Classification</td>
<td>ISM Group 1 Class B</td>
<td>According to CISPR 11</td>
</tr>
<tr>
<td>Permitted solvents</td>
<td>Boiling point ≥56 °C (133 °F)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auto-ignition temperature ≥200 °C (394 °F)</td>
<td></td>
</tr>
</tbody>
</table>

¹ If a sample thermostat is included the upper value for humidity can be reduced. Please check your lab conditions to stay beyond dew point values for non-condensing operation.
Site Requirements and Specifications

Physical Specifications

Physical Specifications Agilent 1260 Infinity II Multisampler (G7167A)

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>22 kg (48.5 lbs)</td>
<td>w/o sample thermostat</td>
</tr>
<tr>
<td>Dimensions (height × width × depth)</td>
<td>320 x 396 x 468 mm (12.6 x 15.6 x 18.4 inches)</td>
<td></td>
</tr>
<tr>
<td>Line voltage</td>
<td>100 – 240 V~, ± 10 %</td>
<td>Wide-ranging capability</td>
</tr>
<tr>
<td>Line frequency</td>
<td>50 or 60 Hz, ± 5 %</td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td>180 VA, 180 W</td>
<td></td>
</tr>
<tr>
<td>Ambient operating tempera-</td>
<td>4 - 40 °C (39 - 104 °F)</td>
<td></td>
</tr>
<tr>
<td>ture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient non-operating tem-</td>
<td>-40 – 70 °C (-40 – 158 °F)</td>
<td></td>
</tr>
<tr>
<td>perature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>< 95 % r.h. at 40 °C (104 °F)¹</td>
<td>Non-condensing</td>
</tr>
<tr>
<td>Operating altitude</td>
<td>Up to 3000 m (9842 ft)</td>
<td></td>
</tr>
<tr>
<td>Safety standards: IEC, EN</td>
<td>Installation category II, Pollution degree 2</td>
<td>For indoor use only.</td>
</tr>
<tr>
<td>CSA, UL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISM Classification</td>
<td>ISM Group 1 Class B</td>
<td>According to CISPR 11</td>
</tr>
<tr>
<td>Permitted solvents</td>
<td>Boiling point ≥ 56 °C (133 °F).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auto-ignition temperature ≥ 200 °C (394 °F).</td>
<td></td>
</tr>
</tbody>
</table>

¹ If a sample thermostat is included the upper value for humidity can be reduced. Please check your lab conditions to stay beyond dew point values for non-condensing operation.
Physical Specifications Agilent 1260 Infinity II Bio-inert Multisampler (G5668A)

Table 3 Physical Specifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>22 kg (48.5 lbs) w/o sample thermostat</td>
<td></td>
</tr>
<tr>
<td>Dimensions (height × width × depth)</td>
<td>320 x 396 x 468 mm (12.6 x 15.6 x 18.4 inches)</td>
<td></td>
</tr>
<tr>
<td>Line voltage</td>
<td>100 – 240 V~, ± 10 %</td>
<td>Wide-ranging capability</td>
</tr>
<tr>
<td>Line frequency</td>
<td>50 or 60 Hz, ± 5 %</td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td>180 VA, 180 W</td>
<td></td>
</tr>
<tr>
<td>Ambient operating temperature</td>
<td>4 – 40 °C (39 – 104 °F)</td>
<td></td>
</tr>
<tr>
<td>Ambient non-operating temperature</td>
<td>-40 – 70 °C (-40 – 158 °F)</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>≤ 95 % r.h. at 40 °C (104 °F)</td>
<td>Non-condensing</td>
</tr>
<tr>
<td>Operating altitude</td>
<td>Up to 3000 m (9842 ft)</td>
<td>For storing the module</td>
</tr>
<tr>
<td>Non-operating altitude</td>
<td>Up to 4600 m (15092 ft)</td>
<td></td>
</tr>
<tr>
<td>Safety standards: IEC, EN, CSA, UL</td>
<td>Installation category II, Pollution degree 2</td>
<td>For indoor use only.</td>
</tr>
<tr>
<td>ISM Classification</td>
<td>ISM Group 1 Class B</td>
<td>According to CISPR 11</td>
</tr>
<tr>
<td>Permitted solvents</td>
<td>Boiling point ≥ 56 °C (133 °F). Auto-ignition temperature ≥ 200 °C (394 °F).</td>
<td></td>
</tr>
</tbody>
</table>

1 If a sample thermostat is included the upper value for humidity can be reduced. Please check your lab conditions to stay beyond dew point values for non-condensing operation.
Performance Specifications

Performance Specifications (G7167B)

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection range for Single-needle instruments</td>
<td>Default: 0.1 – 20 µL in 0.1 µL increments; optional: 40 µL or 100 µL (using 100 µL analytical head)</td>
<td>Up to 1300 bar using 40 µL (default) or optional 100 µL analytical head</td>
</tr>
<tr>
<td></td>
<td>0.1 – 500 µL or 900 µL in 0.1 µL increments (using 900 µL analytical head)</td>
<td>Pressure range up to 400 bar due to 900 µL analytical head</td>
</tr>
<tr>
<td></td>
<td>0.1 – 120 µL in 0.1 µL increments with 1290 Infinity II large volume injection kit (hardware modification required) G4216-68711</td>
<td>Pressure range up to 1300 bar Multi-draw mode (Injection into needle-seat capillary)</td>
</tr>
<tr>
<td></td>
<td>0.1 – 500 µL or 1500 µL in 0.1 µL increments with 100 µL upgrade kit (hardware modification required) G7167-68711</td>
<td></td>
</tr>
<tr>
<td>Injection range for Dual-needle instruments</td>
<td>Default: 0.1 – 20 µL in 0.1 µL increments; optional: 40 µL or 100 µL</td>
<td>Up to 1300 bar using 100 µL analytical head</td>
</tr>
<tr>
<td></td>
<td>Up to 500 µL in 0.1 µL increments depending on installed loop size</td>
<td>Up to 1300 bar using 100 µL analytical head + Multi-load</td>
</tr>
<tr>
<td>Injection precision for Single-needle instruments</td>
<td><0.15 % RSD or SD <10 nL, whatever is greater</td>
<td>Measured caffeine</td>
</tr>
<tr>
<td>Injection precision for Dual-needle instruments</td>
<td><0.2 % RSD or SD <10 nL, whatever is greater</td>
<td>Measured caffeine</td>
</tr>
<tr>
<td>Injection linearity</td>
<td>0.9999 in the range of 0.1 – 100 µL</td>
<td>Measured caffeine</td>
</tr>
<tr>
<td>Pressure range</td>
<td>Up to 1300 bar</td>
<td>Max pressure for basic instrument</td>
</tr>
<tr>
<td>Sample viscosity range</td>
<td>0.2 – 5 cp</td>
<td></td>
</tr>
</tbody>
</table>
Site Requirements and Specifications

Performance Specifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample capacity</td>
<td>1H Drawer up to 8 drawers and 16 positions Shallow well plates (MTP)</td>
<td>Max. 6144/1536 samples (384 MTP/96)</td>
</tr>
<tr>
<td></td>
<td>2H Drawer up to 4 drawers and 8 positions MTP, deep well plates, vials, Eppendorf</td>
<td>3072 samples, 432 vials (2 mL)</td>
</tr>
<tr>
<td></td>
<td>3H Drawer up to 2 drawers and 4 positions MTP, deep well plates, vials up to 6 mL, Eppendorf</td>
<td>1536 samples, 60 vials (6 mL), 384 vials (1 mL), 216 vials (2 mL)</td>
</tr>
<tr>
<td>Injection cycle time</td>
<td><10 s using following standard conditions: Default draw speed: 100 µL/min Default eject speed: 400 µL/min Injection volume: 1 µL</td>
<td>Time between 2 injections is not mechanically limited, time delay depends on communication speed of software, OS or network connections</td>
</tr>
<tr>
<td>Carryover</td>
<td><0.003 % (30 ppm) Multisampler Standard and Dual Needle</td>
<td>Using the following conditions:</td>
</tr>
<tr>
<td></td>
<td><0.0009 % (9 ppm) Multisampler Multiwash</td>
<td>• Column: Agilent Pursuit XRs 3 C18, 2.0 x 50 mm</td>
</tr>
<tr>
<td></td>
<td>• Mobile phase:</td>
<td>• A: 0.1 % TFA in water</td>
</tr>
<tr>
<td></td>
<td>• B: 0.1 % TFA in Acetonitrile</td>
<td>• Isocratic : %B = 40 %</td>
</tr>
<tr>
<td></td>
<td>• Flow rate: 0.5 mL/min</td>
<td>• Temperature: 25 °C</td>
</tr>
<tr>
<td></td>
<td>• Wavelength: 257 nm</td>
<td>• Sample: 1200 ng/µL Chlorhexidine (dissolved with mobile phase A), 1 µL measured with DAD</td>
</tr>
<tr>
<td></td>
<td>• Standard wash: Needle wash solution: H₂O with 0.1 % TFA (3 s)</td>
<td>• Multi wash: Needle wash and seat backflush solution: H₂O with 0.1 % TFA (10 s)</td>
</tr>
<tr>
<td>Multiwash</td>
<td>Outer needle wash and seat backflush for carryover reduction with up to 3 different solvents</td>
<td></td>
</tr>
<tr>
<td>Instrument Control</td>
<td>LC & CE Drivers A.02.10 or above Instrument Control Framework (ICF) A.02.03 or above Instant Pilot (G4208A) with firmware B.02.19 or above Lab Advisor B.02.06 or above</td>
<td>For details about supported software versions refer to the compatibility matrix of your version of the LC and CE Drivers</td>
</tr>
<tr>
<td>Communication</td>
<td>Controller Area Network (CAN), Local Area Network (LAN) ERI: ready, start, stop and shut-down signals</td>
<td></td>
</tr>
</tbody>
</table>
Site Requirements and Specifications

Performance Specifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance and safety-related features</td>
<td>Extensive diagnostics, error detection and display with Agilent Lab Advisor software. Leak detection, safe leak handling, leak output signal for shutdown of pumping system, and low voltages in major maintenance areas</td>
<td></td>
</tr>
<tr>
<td>GLP features</td>
<td>Early maintenance feedback (EMF) for continuous tracking of instrument usage with user-settable limits and feedback messages. Electronic records of maintenance and errors.</td>
<td></td>
</tr>
<tr>
<td>Housing</td>
<td>All materials recyclable.</td>
<td></td>
</tr>
</tbody>
</table>
Performance Specifications (G7167A)

Table 5 Performance Specifications Agilent 1260 Infinity II Multisampler (G7167A)

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection range for Single-needle instruments</td>
<td>Default: 0.1 – 100 µL in 0.1 µL increments optional: 20 µL or 40 µL (using optional 40 µL analytical head)</td>
<td>Up to 800 bar using the 100 µL (default) or optional 40 µL analytical head</td>
</tr>
<tr>
<td></td>
<td>0.1 – 500 µL or 900 µL in 0.1 µL increments (using 900 µL analytical head)</td>
<td>Pressure range up to 400 bar due to 900 µL analytical head</td>
</tr>
<tr>
<td></td>
<td>0.1 – 120 µL in 0.1 µL increments with 1290 Infinity II large volume injection kit (hardware modification required) G4216-68711</td>
<td>Pressure range up to 800 bar Multi-draw mode (Injection into needle-seat capillary)</td>
</tr>
<tr>
<td></td>
<td>0.1 – 500 µL or 1500 µL in 0.1 µL increments with 100 µL upgrade kit (hardware modification required) G7167-68711</td>
<td></td>
</tr>
<tr>
<td>Injection range for Dual-needle instruments</td>
<td>Default: 0.1 – 100 µL in 0.1 µL increments; optional: 20 µL or 40 µL (using 100 µL analytical head)</td>
<td>Up to 800 bar using 100 µL analytical head</td>
</tr>
<tr>
<td></td>
<td>Up to 900 µL in 0.1 µL increments depending on installed loop size</td>
<td>Up to 800 bar using 100 µL analytical head</td>
</tr>
<tr>
<td>Injection precision for single-needle instruments</td>
<td><0.15 % RSD or SD <10 nL, whatever is greater</td>
<td>Measured caffeine</td>
</tr>
<tr>
<td>Injection precision for dual-needle instruments</td>
<td><0.2 % RSD or SD <10 nL, whatever is greater</td>
<td>Measured caffeine</td>
</tr>
<tr>
<td>Injection linearity</td>
<td>0.99999 in the range of 0.1 – 100 µL</td>
<td>Measured caffeine</td>
</tr>
<tr>
<td>Pressure range</td>
<td>Up to 800 bar</td>
<td>Max pressure for basic instrument Feature is available for instruments manufactured in Sep 2017 or later. Requires LC and CE Drivers A.02.17 or later.</td>
</tr>
<tr>
<td>Sample viscosity range</td>
<td>0.2 – 5 cp</td>
<td></td>
</tr>
<tr>
<td>Sample capacity</td>
<td>1H Drawer up to 8 drawers and 16 positions Shallow well plates (MTP)</td>
<td>Max. 6144/1536 samples (384MTP/96)</td>
</tr>
<tr>
<td></td>
<td>2H Drawer up to 4 drawers and 8 positions MTP, deep well plates, vials, Eppendorf</td>
<td>3072 samples, 432 vials (2 mL)</td>
</tr>
<tr>
<td></td>
<td>3H Drawer up to 2 drawers and 4 positions MTP, deep well plates, vials up to 6 mL, Eppendorf</td>
<td>1536 samples, 60 vials (6 mL), 384 vials (1 mL), 216 vials (2 mL)</td>
</tr>
</tbody>
</table>
2 Site Requirements and Specifications

Performance Specifications

Table 5 Performance Specifications Agilent 1260 Infinity II Multisampler (G7167A)

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection cycle time</td>
<td><10 s using following standard conditions: Default draw speed: 100 µL/min Default eject speed: 400 µL/min Injection volume: 1 µL</td>
<td>Time between 2 injections is not mechanically limited, time delay depends on communication speed of software, OS or network connections</td>
</tr>
</tbody>
</table>
| Carryover | <0.003 % (30 ppm) Multisampler Standard and Dual Needle <0.0009 % (9 ppm) Multisampler Multiwash | Using the following conditions:
 • Column: Agilent Pursuit XRs 3 C18, 2.0 x 50 mm
 • Mobile phase:
 • A: 0.1 % TFA in water
 • B: 0.1 % TFA in Acetonitrile
 • Isocratic: %B = 40 %
 • Flow rate: 0.5 mL/min
 • Temperature: 25 °C
 • Wavelength: 257 nm
 • Sample: 1200 ng/µL Chlorhexidine (dissolved with mobile phase A), 1 µL measured with DAD
 • Standard wash: Needle wash solution: H₂O with 0.1 % TFA (3 s)
 • Multi wash: Needle wash and seat backflush solution: H₂O with 0.1 % TFA (10 s) |
| Multiwash | Outer needle wash and seat backflush for carryover reduction with up to 3 different solvents | |
| Instrument Control | LC and CE Drivers A.02.10 or above Instrument Control Framework (ICF) A.02.03 or above Instant Pilot (G4208A) with firmware B.02.19 or above Lab Advisor B.02.06 or above | For details about supported software versions refer to the compatibility matrix of your version of the LC and CE Drivers |
| Communication | Controller Area Network (CAN), Local Area Network (LAN) ERI: ready, start, stop and shut-down signals | |
| Maintenance and safety-related features | Extensive diagnostics, error detection and display with Agilent Lab Advisor software Leak detection, safe leak handling, leak output signal for shutdown of pumping system, and low voltages in major maintenance areas | |
Site Requirements and Specifications

Performance Specifications

Table 5 Performance Specifications Agilent 1260 Infinity II Multisampler (G7167A)

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLP features</td>
<td>Early maintenance feedback (EMF) for continuous tracking of instrument usage with user-settable limits and feedback messages. Electronic records of maintenance and errors.</td>
<td></td>
</tr>
<tr>
<td>Housing</td>
<td>All materials recyclable.</td>
<td></td>
</tr>
</tbody>
</table>
Performance Specifications G5668A

Table 6 Performance Specifications 1260 Infinity II Bio-inert Multisampler (G5668A)

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection range</td>
<td>Default: 0.1 – 100 µL in 0.1 µL increments</td>
<td>Up to 600 bar using 100 µL</td>
</tr>
<tr>
<td></td>
<td>Default: 0.1 – 250 µL or 1000 µL in 0.1 µL increments with Multidraw upgrade kit (Bio-inert) (G5667-68711)</td>
<td>Pressure range up to 400 bar Multi-draw mode (Injection into needle-seat capillary)</td>
</tr>
<tr>
<td>Precision</td>
<td><0.15 % RSD or SD <10 nL, whatever is greater</td>
<td>Measured caffeine</td>
</tr>
<tr>
<td>Pressure range</td>
<td>Up to 600 bar</td>
<td>Max pressure for basic instrument</td>
</tr>
<tr>
<td>Sample viscosity</td>
<td>0.2 – 5 cp</td>
<td></td>
</tr>
<tr>
<td>Sample capacity</td>
<td>1H Drawer up to 8 drawers and 16 positions</td>
<td>Max. 6144/1536 samples (384MTP/96)</td>
</tr>
<tr>
<td></td>
<td>Shallow well plates (MTP)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2H Drawer up to 4 drawers and 8 positions</td>
<td>3072 samples, 432 vials (2 mL)</td>
</tr>
<tr>
<td></td>
<td>MTP, deep well plates, vials, Eppendorf</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3H Drawer up to 2 drawers and 4 positions</td>
<td>1536 samples, 60 vials (6 mL), 384 vials (1 mL), 216 vials (2 mL)</td>
</tr>
<tr>
<td></td>
<td>MTP, deep well plates, vials up to 6 mL, Eppendorf</td>
<td></td>
</tr>
<tr>
<td>Injection cycle time</td>
<td><10 s using following standard conditions:</td>
<td>Using standard Single-needle setup</td>
</tr>
<tr>
<td></td>
<td>Default draw speed: 100 µL/min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Default eject speed: 400 µL/min</td>
<td>Time between 2 injections is not mechanically limited, time delay depends on communication speed of software, OS or network connections</td>
</tr>
<tr>
<td></td>
<td>Injection volume: 1 µL</td>
<td></td>
</tr>
<tr>
<td>Carry Over</td>
<td><0.003 % (30 ppm) Multisampler Standard</td>
<td>Using the following conditions:</td>
</tr>
<tr>
<td></td>
<td><0.0009 % (9 ppm) Multisampler Multiwash</td>
<td>• Column: Agilent Pursuit XRs 3 C18, 2.0 x 50 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mobile phase:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• A: 0.1 % TFA in water</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• B: 0.1 % TFA in Acetonitrile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Isocratic: % B=40 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Flow rate: 0.5 mL/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Temperature: ambient</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Wavelength: 257 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sample: 1200 ng/µL Chlorhexidine (dissolved with mobile phase A), 1 µL injected and measured on G4212A DAD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Wash solution: H2O with 0.1 % TFA (3 s)</td>
</tr>
<tr>
<td>Multiwash</td>
<td>Outer needle wash and seat backflush for carryover reduction with up to 3 different solvents</td>
<td></td>
</tr>
</tbody>
</table>
2 Site Requirements and Specifications

Performance Specifications

Table 6 Performance Specifications 1260 Infinity II Bio-inert Multisampler (G5668A)

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials in flow path</td>
<td>Titanium, gold, PTFE, PEEK, ceramic</td>
<td>Upstream of sample-introduction</td>
</tr>
<tr>
<td></td>
<td>PEEK, ceramic</td>
<td>Downstream of sample-introduction</td>
</tr>
<tr>
<td>Instrument Control</td>
<td>Lab Advisor B.02.08 or above</td>
<td>For details about supported software versions refer to the compatibility matrix of your version of the LC and CE Drivers</td>
</tr>
<tr>
<td></td>
<td>LC and CE Drivers A.02.14 or above</td>
<td></td>
</tr>
<tr>
<td>Local Control</td>
<td>Agilent Instant Pilot (G4208A)</td>
<td>B.02.20 or above</td>
</tr>
<tr>
<td>Communications</td>
<td>Controller-area network (CAN), Local Area Network (LAN), USB ERI: ready, start, stop and shut-down signals</td>
<td></td>
</tr>
<tr>
<td>Safety and maintenance</td>
<td>Extensive support for troubleshooting and maintenance is provided by the Instant Pilot, Agilent Lab Advisor, and the Chromatography Data System. Safety-related features are leak detection, safe leak handling, leak output signal for shutdown of pumping system, and low voltages in major maintenance areas.</td>
<td></td>
</tr>
<tr>
<td>GLP features</td>
<td>Early maintenance feedback (EMF) for continuous tracking of instrument usage with user-settable limits and feedback messages. Electronic records of maintenance and errors.</td>
<td></td>
</tr>
<tr>
<td>Housing</td>
<td>All materials recyclable.</td>
<td></td>
</tr>
<tr>
<td>Metering device</td>
<td>Metering device in high pressure flow path</td>
<td></td>
</tr>
</tbody>
</table>
The Agilent Infinity II Sample Cooler is a vapor-compression refrigeration system that uses a fluorinated greenhouse gas (HCF-134a) as the refrigerant. For information on carbon dioxide equivalency (CDE) and global warming potential (GWP), see the instrument label.

Table 7 Physical Specification of the Sample Cooler

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>< 6 kg (< 13.2 lbs)</td>
<td></td>
</tr>
<tr>
<td>Dimensions (height x width x depth)</td>
<td>205 x 340 x 370 mm (8.1 x 13.4 x 14.6 inches)</td>
<td></td>
</tr>
<tr>
<td>Refrigerant gas</td>
<td>HFC-134a (0.042 kg)</td>
<td>Ozone depletion potential (ODP) = 0</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>24 VDC</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>10 A max.</td>
<td></td>
</tr>
<tr>
<td>Ambient operating temperature</td>
<td>4 – 40 °C (39 – 104 °F)</td>
<td></td>
</tr>
<tr>
<td>Ambient non-operating temperature</td>
<td>-40 – 70 °C (-40 – 158 °F)</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>< 95 % r.h. at 40 °C (104 °F)</td>
<td>Non-condensing</td>
</tr>
<tr>
<td>Operating altitude</td>
<td>Up to 3000 m (9842 ft)</td>
<td></td>
</tr>
<tr>
<td>Safety standards: IEC, EN, CSA, UL</td>
<td>Installation category II, Pollution degree 2</td>
<td>For indoor use only</td>
</tr>
<tr>
<td>ISM Classification</td>
<td>ISM Group 1 Class B</td>
<td>According to CISPR 11</td>
</tr>
</tbody>
</table>
General hazards and improper disposal
Improper disposal of the media and components used pollutes the environment.

- The disposal or scrapping of the Sample Cooler or the Sample Thermostat must be carried out by a qualified disposal company.
- All media must be disposed of in accordance with national and local regulations.
- Please contact your local Agilent Service Center in regard to safe environmental disposal of the appliance or check www.agilent.com for more info.

Table 8 Performance Specifications of the Sample Cooler

<table>
<thead>
<tr>
<th>Type</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating principle</td>
<td>High performance, low-energy consumption micro-compressor based cooler with ozone-friendly HFC-134a coolant (42 g), user-upgradable.</td>
</tr>
<tr>
<td>Temperature range</td>
<td>from 4 °C to 5 °C below ambient</td>
</tr>
<tr>
<td>Temperature settable</td>
<td>from 4 – 40 °C in 1 ° increments</td>
</tr>
<tr>
<td>Temperature accuracy (<25 °C, <50 % r.H.)</td>
<td>2 °C to 6 °C at a setpoint of 4 °C</td>
</tr>
</tbody>
</table>

NOTE
The Agilent Infinity II Sample Cooler is not available for trade sales anymore and has been replaced by the Agilent InfinityLab Sample Thermostat.
Specifications of the Sample Thermostat

The Agilent InfinityLab Sample Thermostat is the combination of an electric heater and a vapor-compression refrigeration system. It uses isobutane as a non-Freon refrigerant, which is harmless to the environment and does not affect the ozone layer and global warming but is combustible. Please adhere to the warnings listed in the manual.

Table 9 Physical Specifications of the Sample Thermostat

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td><6 kg (< 13.2 lbs)</td>
<td></td>
</tr>
<tr>
<td>Dimensions (height x width x depth)</td>
<td>205 x 340 x 370 mm (8.1 x 13.4 x 14.6 inches)</td>
<td></td>
</tr>
<tr>
<td>Refrigerant gas</td>
<td>R600a (0.030 kg)</td>
<td>Ozone depletion potential (ODP) =0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Global warming potential (GWP) =3</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>24VDC</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>10 A max.</td>
<td></td>
</tr>
<tr>
<td>Ambient operating temperature</td>
<td>4 – 40 °C (39 – 104 °F)</td>
<td></td>
</tr>
<tr>
<td>Ambient non-operating temperature</td>
<td>-40 – 70 °C (-40 – 158 °F)</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>< 95 % r.h. at 40 °C (104 °F)</td>
<td>Non-condensing</td>
</tr>
<tr>
<td>Operating altitude</td>
<td>Up to 3000 m (9842 ft)</td>
<td></td>
</tr>
<tr>
<td>Safety standards: IEC, EN, CSA, UL</td>
<td>Installation category II, Pollution degree 2</td>
<td>For indoor use only</td>
</tr>
<tr>
<td>ISM Classification</td>
<td>ISM Group 1 Class B</td>
<td>According to CISPR 11</td>
</tr>
</tbody>
</table>
General hazards and improper disposal
Improper disposal of the media and components used pollutes the environment.

- The disposal or scrapping of the Sample Cooler or the Sample Thermostat must be carried out by a qualified disposal company.
- All media must be disposed of in accordance with national and local regulations.
- Please contact your local Agilent Service Center in regard to safe environmental disposal of the appliance or check www.agilent.com for more info.

Table 10 Performance Specifications for the Sample Thermostat

<table>
<thead>
<tr>
<th>Type</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating principle</td>
<td>High performance, low-energy consumption micro-compressor based cooler with natural R600a coolant (Butane 30 g), user-upgradable</td>
</tr>
<tr>
<td>Temperature range</td>
<td>from 4 – 40 °C</td>
</tr>
<tr>
<td>Temperature settable</td>
<td>from 4 – 40 °C in 1 ° increments</td>
</tr>
<tr>
<td>Temperature accuracy</td>
<td>2 °C to 6 °C at a setpoint of 4 °C</td>
</tr>
</tbody>
</table>

NOTE
Minimum firmware revision for the Sample Thermostat is D.07.22.
Minimum LC driver revision for the Sample Thermostat is A.02.14.
3 Using the Module

Magnets 58
Turn on/off 59
Status indicators 61
Drawer Status Indicator 62
Insert vial trays/wellplates 63
Remove vial trays/wellplates 64
Installing the Optional Sample Cooler/Thermostat 65
Unpacking the Unit 65
Install the Sample Cooler/Sample Thermostat 66
Using the Optional Sample Cooler/Sample Thermostat 72
Dashboard 73
Control Interface 74
Control 75
Temperature Mode 77
Online Signal Monitor 78
Reporting Sample Temperature 79
Operation Information 80
Transporting the Sampler 82
Prepare a Sampler Without Cooler/Thermostat for Transportation 82
Prepare a Sampler with Cooler/Thermostat for Transportation 83
Install the Transport Protection Foam 85
Solvent Information 88
Bio-inert Materials 90
Material Information 92
Reset the Multisampler in Case of an Error 97
Agilent Local Control Modules 100

This chapter explains the essential operational parameters of the module.
3 Using the Module
Magnets

Magnets

1 Magnet in door of the multisampler.

2 Magnets in drawers of the multisampler.
This procedure exemplarily shows an arbitrary LC stack configuration.
3 Using the Module

Turn instrument On/Off with the control software.

4

Power switch: Off

5
Status indicators

This procedure exemplarily shows an arbitrary LC stack configuration.

1. The module status indicator indicates one of six possible module conditions:

 1. Idle
 2. Run mode
 3. Not-ready. Waiting for a specific pre-run condition to be reached or completed.
 4. Error mode - interrupts the analysis and requires attention (for example a leak or defective internal components).
 5. Resident mode (blinking) - for example during update of main firmware.
 6. Bootloader mode (fast blinking). Try to re-boot the module or try a cold-start. Then try a firmware update.
Drawer Status Indicator

The module status indicator indicates one of three possible module conditions:

• When the status indicator is OFF no sample containers are loaded.
• When the upper, lower or both semi circle status indicators are ON, indicates the rear or front position of the drawer or both positions are loaded with a sample containers.
• When semi circle indicators are blinking the robot interacts with a drawer.

NOTE
During blinking of the drawer status indicator. Do not try to open the drawer at this point.
Using the Module

Insert vial trays/wellplates

1. Check the orientation of the vial tray/wellplates and ensure correct seat by pressing down the plate. When the lever sensor has detected the plate correctly the front LED lights up and the device recognizes the assignment.

2. Configure the vial tray/wellplate type in the chromatographic data system (see Table 18 on page 124).
Remove vial trays/wellplates
Using the Module

Installing the Optional Sample Cooler/Thermostat

Installing the Optional Sample Cooler/Thermostat

Unpacking the Unit

Damaged Packaging

If the delivery packaging shows signs of external damage, please call your Agilent Technologies sales and service office immediately. Inform your service representative that the instrument may have been damaged during shipment.

"Defective on arrival" problems

If there are signs of damage, please do not attempt to install the module. Inspection by Agilent is required to evaluate if the instrument is in good condition or damaged.

- Notify your Agilent sales and service office about the damage.
- An Agilent service representative will inspect the instrument at your site and initiate appropriate actions.

Delivery Checklist

Ensure that all parts and materials have been delivered with your module. The delivery checklist is shown below. For parts identification, please check the illustrated parts breakdown in "Sample Thermostat" on page 317. Please report any missing or damaged parts to your local Agilent Technologies sales and service office.

Table 11 Delivery checklist for the Sample Thermostat

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Thermostat (G7167-60101)</td>
<td>1</td>
</tr>
<tr>
<td>Condensate Drainage Kit (5067-6208)</td>
<td>1</td>
</tr>
<tr>
<td>Declaration of Conformity</td>
<td>1</td>
</tr>
<tr>
<td>Customer Letter</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTE

The Agilent Infinity II Sample Cooler is not available for trade sales anymore and has been replaced by the Agilent InfinityLab Sample Thermostat.
Installing the Optional Sample Cooler/Thermostat

Install the Sample Cooler/Sample Thermostat

Tools required

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8710-0899</td>
<td>Screwdriver Pozidrive Shaft (for the Sample Cooler)</td>
</tr>
<tr>
<td>5182-3466</td>
<td>Torx screwdriver T10 (for the Sample Thermostat)</td>
</tr>
<tr>
<td>OR 5023-3089</td>
<td>Torx key set</td>
</tr>
</tbody>
</table>

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G7167-60005</td>
<td>Sample Cooler</td>
</tr>
<tr>
<td>OR 1</td>
<td>G7167-60101</td>
<td>Sample Thermostat</td>
</tr>
<tr>
<td>1</td>
<td>G7167-90171</td>
<td>Installation of the Infinity II Cooler/Thermostat Condensate Drainage Tubing Kit</td>
</tr>
</tbody>
</table>

Preparations

Sampler is installed in the stack.

Flammable refrigerant

Formation of flammable gas-air mixtures inside the Sample Thermostat and laboratory.

- Keep open fire or sources of ignition away from the device.
- Ensure a room size of 4 m³ (1 m³ for every 8 g of R600a refrigerant inside of the Sample Thermostat).
- Ensure adequate ventilation: typical air exchange of 25 m³/h per m² of laboratory floor area.
- Keep all ventilation openings in the enclosure clear of obstructions. Do not block the openings on the circumference of the Sample Thermostat.

Flammable refrigerant used

- When handling, installing and operating the Sample Thermostat, care should be taken to avoid damage to the refrigerant tubing or any part of the Sample Thermostat.
Installing the Optional Sample Cooler/Thermostat

CAUTION

Condensate inside the Sample Cooler/Sample Thermostat

- Damage to the electronics of the module

- After installation of the Sample Cooler/Sample Thermostat, wait at least 30 min before switching on the module.

- Make sure there is no condensate inside the module.

WARNING

In the event of a damage

- Keep open fire or sources of ignition away from the device.

- Ventilate the room for several minutes.

- Do not use the Sample Thermostat any more.

NOTE

Do not open the Sample Thermostat. There are no serviceable parts inside.

NOTE

If the sample cooler or thermostat is disconnected from the power supply, you should wait for at least five minutes before replugging and switching on the compressor again.

NOTE

Even under average humidity conditions, a significant amount of condensed water gathers every day. A suitable container must be provided and emptied regularly in order to avoid overflow.

NOTE

For best cooling performance of the thermostat, the 2H drawer must be installed in the lowest position. Use the dummy drawers (G4267-60024) if no full hotel configuration is needed.

NOTE

For the Sample Cooler installation in a sampler, the serial number of the Sample Cooler must be DEBAT02001 or higher.

NOTE

Depending on the ambient conditions in the lab, the amount of condensate can vary from 200 mL to 2 L per day. Do not fill waste containers for the condensate to the top. Regularly empty the waste container.
3 Using the Module
Installing the Optional Sample Cooler/Thermostat

1 Ensure that the power switch on the front of the module is OFF (switch stands out).

2 Disconnect the power cable from the sampler.

3 Loosen the four screws on the rear of the module.

4 Remove the sheet metal back cover of the sampler.
3 Using the Module
Installing the Optional Sample Cooler/Thermostat

5 Slide the Sample Cooler/Sample Thermostat halfway into the sampler.

WARNING
Module is partially energized when switched off, as long as the power cord is plugged in. Repair work at the module can lead to personal injuries, e.g. shock hazard, when the cover is opened and the module is connected to power.

- Make sure that it is always possible to access the power plug.
- Do not use the Sample Cooler/Sample Thermostat if it is not operating correctly or has been damaged. Disconnect it from the power supply and call your local service center.
- Remove the power cable from the module before opening the cover.
- Do not connect the power cable to the module while the covers are removed.
- If the Sample Cooler/Sample Thermostat is disconnected from the power supply, you should wait for at least five minutes before switching on the compressor.

CAUTION
Damaged electronics

- To avoid damages of the electronics of the module make sure the power cords are unplugged before disconnecting or reconnecting the sampler to the Sample Cooler/Sample Thermostat cables.

6 Connect the power cable and the data cable to the cooler/thermostat.
Installing the Optional Sample Cooler/Thermostat

CAUTION

Damage to the cables

- Do not bend or pinch the cables.
- Make sure that the Sample Cooler/Sample Thermostat fits perfectly in the sampler.

1. Slide the Sample Cooler/Sample Thermostat all the way into the sampler.
2. Fix the Sample Cooler/Sample Thermostat with the four screws.

NOTE

To ensure adequate drainage for condensate, the module should be operated in a proper horizontal position.

3. Use a bubble level to check the leveling of the sampler.
4. Adhere a tubing holder clamp to the side of the cooler/thermostat where the drain pipe is situated. Ensure a distance of 60 mm from the bottom edge.
3 Using the Module
Installing the Optional Sample Cooler/Thermostat

11 Mount the condensate tubing assembly with the y-connector on the drainpipe and fix the venting tube in the tubing holder clamp.

NOTE
The condensate handling system should be installed in a way that it allows a continuous slope for the drained liquid. Horizontal or uphill sections may hinder the drainage.

12 Ensure that the tubing runs straight into the waste container without any bends or joints and that it is free end does not immerse in the liquid.

NOTE
For more information, refer to “Leak and Waste Handling” on page 29.

CAUTION
Damage to the Sample Cooler/Sample Thermostat

✔ Wait at least 30 min before switching on the compressor of the cooler/thermostat.

✔ This allows the refrigerant and system lubrication to reach equilibrium.

13 Connect the power cable to the power connector at the rear of the module.

14 Configure the Sample Cooler/Sample Thermostat in the CDS.
Using the Optional Sample Cooler/Sample Thermostat

The following section describes how to operate the Agilent Infinity II Sample Cooler and the Agilent InfinityLab Sample Thermostat using the Multisampler as an example for the hosting sampler. The operation principle is the same for any other Infinity II sampler type.
3 Using the Module
Using the Optional Sample Cooler/Sample Thermostat

Dashboard

The status indicator of the Sample Cooler/Sample Thermostat is incorporated in the graphical user interface (GUI) of the hosting sampler, which appears automatically when the unit is configured in the chromatography data system (CDS). When the cooler/thermostat is turned on, the set temperature and the actual temperature are also displayed.

NOTE
The actual temperature may deviate from the set temperature by up to 3 °C, depending on the temperature setting and ambient conditions.

NOTE
If the actual temperature differs by more than ± 2 °C from the set temperature, a yellow highlight is visible around the temperature reading. This, however, will not prevent the system from starting a new analysis, unless the Enable Analysis > Temperature within +/- 2 °C function is selected.
Control Interface

Right-clicking the sampler GUI will prompt the control interface, where control and method parameters can be edited, configuration modified, and special commands executed.
Using the Module
Using the Optional Sample Cooler/Sample Thermostat

Control

With the Sample Cooler/Sample Thermostat installed, the Control dialog box of the hosting Infinity II sampler will include the following cooler/thermostat-specific control options:

- **At Power On:**
 - **Turn On Thermostat:** The cooler/thermostat turns on automatically upon powering on the sampler.

- **Thermostat:**
 - **On:** The cooler/thermostat turns on and the system starts to regulate the temperature inside the sample space towards the setpoint.
 - **Off:** The cooler/thermostat turns off.

- **Enable Analysis**
 - **With any temperature:** The analysis starts regardless of the actual temperature inside the sampler.
 - **Temperature within +/- 2 °C:** The analysis starts only when the actual temperature is within the ± 2 °C range of the setpoint temperature.

NOTE
For the Sample Cooler, the set temperature must be at least 5 °C below ambient for proper temperature control.

NOTE
The Enable Analysis control setting is available since LC & CE drivers A.02.19.

NOTE
The Temperature within +/- 2 °C option is only available for the Sample Thermostat.
Using the Module
Using the Optional Sample Cooler/Sample Thermostat
Using the Module
Using the Optional Sample Cooler/Sample Thermostat

Temperature Mode

Selecting Modify> Temperature Mode in the Control Interface will prompt a dialog box, where the temperature control mode can be switched between being a method parameter or a system (control) setting:

• **Constant Temperature Mode**: The temperature control mode is defined as a system (control) setting, meaning that the temperature setting is independent of the method parameters. The temperature stays constant for all methods within a given sequence. This control mode is the default option and recommended for most applications.

• **Variable Temperature Mode**: The temperature control mode is defined as a method parameter, meaning that the temperature setting is part of the method parameters. The temperature can change from method to method within a given sequence. This control mode is not recommended for most analytical workflows but might be used for some special applications, such as degradation studies.

Before using the Variable Temperature Mode setting, here are some hints and tips to consider:

• Changing the temperature setting from one method to another will affect all samples inside the sampler.

• Depending on the extent of the temperature change, it could take up to a couple of hours until the sample temperature stabilizes at the new setpoint (for example, from 4 to 40 °C or vice versa).

• It might be beneficial to use the Temperature within +/- 2 °C function; otherwise, the next run will start without waiting for the new setpoint being reached.

NOTE

For modifying the temperature mode, LC & CE drivers A.02.12 or higher are required. If the system is run on an earlier driver version, the temperature mode is defined as a system setting.
Online Signal Monitor

In the **Online Signals** tab of the CDS, the actual temperature of the sample space can be configured and plotted together with the other instrument actuals. This enables the user to have a better overview of how the temperature changes over time.
Using the Module
Using the Optional Sample Cooler/Sample Thermostat

Reporting Sample Temperature

The actual and setpoint temperature can be included in the analysis report. For this, the **Samples > Advanced Run Information** field must be included in the report template.

![Figure 17 Finding the Advanced Run Information setting in OpenLab CDS 2.4.](image)

NOTE

For OpenLab CDS ChemStation, this option is only available in Intelligent Reporting.
Using the Module
Using the Optional Sample Cooler/Sample Thermostat

Operation Information

Reaching Setpoint Temperature

Depending on the ambient conditions and the sampler configuration (for example, hotel configuration for the Multisampler), reaching the setpoint temperature can take from 30 min up to a couple of hours.

NOTE

Reaching the 4 °C setpoint from an ambient temperature of 22 °C takes about 45 min for the Vialsampler (G7129A/B/C or G7157A), as well as for the Multisampler (G7167A/B, G5668A, or G4767A) with a single 2H drawer installed.

NOTE

This relatively slow ramping down of the temperature is necessary to avoid ice formation.

NOTE

For the best performance of the Sample Cooler/Sample Thermostat, all drawers must be installed in the sampler. For the Multisampler, use dummy drawers if no full hotel configuration is needed.

Condensate Formation

Operating the cooler/thermostat at temperatures below ambient results in condensate formation. This condensed water is collected in the base plate of the cooler/thermostat and drained through the drainpipe at the back of the unit. The container for condensate collection should be regularly emptied to ensure the proper functioning of the system.

NOTE

If the container is overfilled or the condensate tubing is blocked, the condensate sensor is triggered, rendering the HPLC system to enter the error state (See).

NOTE

Depending on the ambient conditions in the lab, the amount of condensate can vary from 200 mL to 2 L per day. Waste containers for the condensate should not be filled to the top. The waste container must be emptied regularly.

Dew Formation

Setting the cooler/thermostat from a lower to a higher temperature setpoint, or just simply turning it off, can result in dew formation on the internal surfaces of the sampler. This is normal and should cease after a couple of hours at the most.
Using the Module
Using the Optional Sample Cooler/Sample Thermostat

Frequent Door/Drawer Opening
Opening the door(s) and/or the sample drawers frequently can compromise the temperature stability, as fresh warm and humid air will enter each time. In a highly humid environment, this could also lead to the formation of significant amounts of condensate on the internal surfaces of the sampler.

Ice Formation
The Sample Cooler/Sample Thermostat was designed to operate without the risk of icing. In an unlikely event of ice formation, turn off the cooler/thermostat and wait until it defrosts.

NOTE
Do not use mechanical devices or other means to accelerate the defrosting process.

Shutting Down
When the Sample Cooler/Sample Thermostat needs to be turned off for the night or a longer period, the following best practices are recommended:

- Remove all sample containers and/or vials from the sampler.
- Let the system reach the ambient temperature. Opening the door(s) of the sampler facilitates this process.
- Remove any condensate that might appear on the sample drawers or the internal surfaces of the sampler.
- Make sure that all condensate is removed from the cooler/thermostat.

NOTE
Gently tapping on the sides of the sampler facilitates the condensate removal. Tilting the module towards its right back corner is not recommended as it can damage the internal parts.
Transporting the Sampler

Prepare a Sampler Without Cooler/Thermostat for Transportation

When

The module needs to be transported or relocated.

WARNING

Heavy weight
- The module is heavy.
- ✓ Carry the module at least with 2 people.
- ✓ Avoid back strain or injury by following all precautions for lifting heavy objects.
- ✓ Ensure that the load is as close to your body as possible.
- ✓ Ensure that you can cope with the weight of your load.

CAUTION

Unsecured transportation
- Mechanical damage
- ✓ Secure the transport assembly before transporting the sampler.

1. Remove all sample containers from the sample hotel.
2. Move the robot arm to the park position using Instant Pilot or Lab Advisor, see "Arm Position" on page 203.
3. Turn off the sampler.
4. Install all parts of the Transport Protection, see "Install the Transport Protection Foam" on page 85.
Using the Module
Transporting the Sampler

Prepare a Sampler with Cooler/Thermostat for Transportation

When
The module needs to be transported or relocated.

WARNING

Heavy weight
The module is heavy.

- Carry the module at least with 2 people.
- Avoid back strain or injury by following all precautions for lifting heavy objects.
- Ensure that the load is as close to your body as possible.
- Ensure that you can cope with the weight of your load.

CAUTION

Condensate inside the cooler or thermostat
Damage to the electronics

- Unplug the power cords.
- Drain off all condensate before dismounting the sample cooler or thermostat.
- Make sure that there is no condensate left.

CAUTION

Unsecured transportation
Mechanical damage

- Secure the transport assembly before transporting the sampler.

NOTE
Moving the sampler with the Sample Cooler/Sample Thermostat installed is possible for short distances (for example, from one workbench to another). For longer transportation, remove the cooler/thermostat from the sampler and handle the units separately.
Using the Module
Transporting the Sampler

1 Remove condensate.
 a Place a suitable container underneath the outlet pipe.
 b Remove the drainage tube.
 c Gently tap the sides of the sampler several times to facilitate the drainage of the condensate from the system.

NOTE
Do not tilt the module to avoid damage to the internal parts.

2 Remove all sample containers from the sample hotel.
3 Move the robot arm to the park position using Instant Pilot or Lab Advisor, see "Arm Position" on page 203.
4 Turn off the sampler.
5 Install all parts of the Transport Protection, see "Install the Transport Protection Foam" on page 85.
6 Remove the Sample Cooler/Sample Thermostat from the sampler if needed, see "Replace the Sample Cooler/Sample Thermostat" on page 275.
3 Using the Module
Transporting the Sampler

Install the Transport Protection Foam

When
To secure the transport arm before transporting or shipping the sampler.

Parts required
<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4267-40033</td>
<td>Transport Protection</td>
</tr>
</tbody>
</table>

Preparations
- All sample containers are removed from the sample hotel.
- Module is switched off.

1 Open the front door.
2 Manually move the robot arm to the right back corner of the lobby (park position).
3. Using the Module

Transporting the Sampler

3. Carefully slide the right protection foam piece into the sampler.

4. Position the foam next to the hydraulic box such that it sits behind the needle port.

5. Slide the left protection foam piece into the sampler.

6. Firmly push it into place until it snaps in behind the hotel support frame.
3 Using the Module

Transporting the Sampler

7 Place the protection foam of the hydraulic box in a way that it snaps onto the analytical head.

8 Verify that all three protection foams are in the correct position.

9 Close the front door.
Solvent Information

Observe the following recommendations on the use of solvents.

- Follow the recommendations for avoiding the growth of algae, see the pump manuals.
- Small particles can permanently block capillaries and valves. Therefore, always filter solvents through 0.22 µm filters.
- Avoid or minimize the use of solvents that may corrode parts in the flow path. Consider specifications for the pH range given for different materials such as flow cells, valve materials etc. and recommendations in subsequent sections.

Recommended Wash Solvents

- water
- ethanol
- methanol
- water/acid (especially for basic compounds)
- water/base (especially for acidic compounds)
- water/acetonitrile

NOTE

For different wash solvents as mentioned above, verify that the wash solvent is suitable for the silicone wash tubing.
Solvent Compatibility of Tubings for Peristaltic Pumps

The table shows the chemical resistance properties of Silicone and PharMed tubing to different needle wash solvents:

Table 12 Solvent Compatibility of Silicone and PharMed Tubing

<table>
<thead>
<tr>
<th>Solvent Type</th>
<th>Silicone</th>
<th>PharMed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• weak</td>
<td>• good</td>
<td>• very good</td>
</tr>
<tr>
<td>• medium</td>
<td>• unsatisfactory</td>
<td>• good</td>
</tr>
<tr>
<td>• strong</td>
<td>• not recommended</td>
<td>• not recommended</td>
</tr>
<tr>
<td>Alkaline solution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• weak</td>
<td>• good</td>
<td>• very good</td>
</tr>
<tr>
<td>• medium</td>
<td>• unsatisfactory</td>
<td>• very good</td>
</tr>
<tr>
<td>• strong</td>
<td>• not recommended</td>
<td>• good</td>
</tr>
<tr>
<td>Hydrocarbons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• aliphatic</td>
<td></td>
<td>• not recommended</td>
</tr>
<tr>
<td>• aromatizised</td>
<td></td>
<td>• not recommended</td>
</tr>
<tr>
<td>• halogenated</td>
<td></td>
<td>• not recommended</td>
</tr>
</tbody>
</table>
Bio-inert Materials

For the Bio-inert LC system, Agilent Technologies uses highest quality materials in the flow path (also referred to as wetted parts), which are widely accepted by life science scientists, as they are known for optimum inertness to biological samples and ensure best compatibility with common samples and solvents over a wide pH range. Explicitly, the complete flow path is free of stainless steel and free of other alloys containing metals such as iron, nickel, cobalt, chromium, molybdenum or copper, which can interfere with biological samples. The flow downstream of the sample introduction contains no metals whatsoever.

<table>
<thead>
<tr>
<th>Module</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agilent 1260 Infinity II Bio-inert Pump (G5654A)</td>
<td>Titanium, gold, platinum-iridium, ceramic, ruby, PTFE, PEEK</td>
</tr>
<tr>
<td>Agilent 1260 Infinity II Bio-inert Multisampler (G5668A)</td>
<td>Upstream of sample introduction: • Titanium, gold, PTFE, PEEK, ceramic</td>
</tr>
<tr>
<td></td>
<td>Downstream of sample introduction: • PEEK, ceramic</td>
</tr>
<tr>
<td>Agilent 1260 Infinity II Bio-inert Manual Injector (G5628A)</td>
<td>PEEK, ceramic</td>
</tr>
<tr>
<td>Agilent 1260 Infinity II Bio-inert Analytical Fraction Collector (G5664B)</td>
<td>PEEK, ceramic, PTFE</td>
</tr>
</tbody>
</table>

Bio-inert Flow Cells:

- Standard flow cell bio-inert, 10 mm, 13 µL, 120 bar (12 MPa) for MWD/DAD, includes 0890-1763 – 0.18 x 1500 mm PEEK capillary and 5063-6591 – PEEK fittings (G5615-60022) (for Agilent 1260 Infinity II DAD G7115A, and MWD G7165A)
 PEEK, ceramic, sapphire, PTFE

- Bio-inert flow cell, 8 µL, 20 bar (pH 1–12), includes 0890-1763 – 0.18 x 1500 mm PEEK capillary and 5063-6591 – PEEK fittings (G5615-60005) (for Agilent 1260 Infinity II FLD G7121A/B)
 PEEK, fused silica, PTFE
Using the Module
Solvent Information

Table 13 Used Bio-inert materials

<table>
<thead>
<tr>
<th>Module</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio-inert Heat Exchangers, Valves and Capillaries:</td>
<td></td>
</tr>
<tr>
<td>Quick-Connect Heat Exchanger Bio-inert (G7116-60041) (for Agilent 1260 Infinity II Multicolumn Thermostat G7116A)</td>
<td>PEEK (steel-cladded)</td>
</tr>
<tr>
<td>Bio-inert Valve heads (G4235A, G5631A, G5632A, G5639A)</td>
<td>PEEK, ceramic (Al₂O₃ based)</td>
</tr>
<tr>
<td>Bio-inert Connection capillaries</td>
<td>Upstream of sample introduction:</td>
</tr>
<tr>
<td></td>
<td>• Titanium</td>
</tr>
<tr>
<td></td>
<td>Downstream of sample introduction:</td>
</tr>
<tr>
<td></td>
<td>• Agilent uses stainless-steel-cladded PEEK capillaries, which keep the flow path free of steel and provide pressure stability up to 600 bar.</td>
</tr>
</tbody>
</table>

NOTE To ensure optimum bio-compatibility of your Agilent 1260 Infinity II Bio-inert LC system, do not include non-inert standard modules or parts to the flow path. Do not use any parts that are not labeled as Agilent "Bio-inert". For solvent compatibility of these materials, see 'Material Information' on page 92.
Using the Module

Solvent Information

Material Information

Materials in the flow path are carefully selected based on Agilent’s experiences in developing highest quality instruments for HPLC analysis over several decades. These materials exhibit excellent robustness under typical HPLC conditions. For any special condition, please consult the material information section or contact Agilent.

Disclaimer

Subsequent data was collected from external resources and is meant as a reference. Agilent cannot guarantee the correctness and completeness of such information. Data is based on compatibility libraries, which are not specific for estimating the long-term life time under specific but highly variable conditions of UHPLC systems, solvents, solvent mixtures and samples. Information can also not be generalized due to catalytic effects of impurities like metal ions, complexing agents, oxygen etc. Apart from pure chemical corrosion, other effects like electro corrosion, electrostatic charging (especially for non-conductive organic solvents), swelling of polymer parts etc. need to be considered. Most data available refers to room temperature (typically 20 – 25 °C, 68 – 77 °F). If corrosion is possible, it usually accelerates at higher temperatures. If in doubt, please consult technical literature on chemical compatibility of materials.

PEEK

PEEK (Polyether-Ether Ketones) combines excellent properties regarding biocompatibility, chemical resistance, mechanical and thermal stability. PEEK is therefore the material of choice for UHPLC and biochemical instrumentation.

It is stable in the specified pH range (for the Bio-inert LC system: pH 1 – 13, see bio-inert module manuals for details), and inert to many common solvents.

There is still a number of known incompatibilities with chemicals such as chloroform, methylene chloride, THF, DMSO, strong acids (nitric acid > 10 %, sulfuric acid > 10 %, sulfonic acids, trichloroacetic acid), halogens or aqueous halogen solutions, phenol and derivatives (cresols, salicylic acid, and so on).

When used above room temperature, PEEK is sensitive to bases and various organic solvents, which can cause it to swell. Under such conditions, normal PEEK capillaries are very sensitive to high pressure. Therefore, Agilent uses stainless steel cladded PEEK capillaries in bio-inert systems. The use of stainless steel cladded PEEK capillaries keeps the flow path free of steel and ensures pressure stability to at least 600 bar. If in doubt, consult the available literature about the chemical compatibility of PEEK.
Using the Module
Solvent Information

Polyimide

Agilent uses semi-crystalline polyimide for rotor seals in valves and needle seats in autosamplers. One supplier of polyimide is DuPont, which brands polyimide as Vespel, which is also used by Agilent.

Polyimide is stable in a pH range between 1 and 10 and in most organic solvents. It is incompatible with concentrated mineral acids (e.g. sulphuric acid), glacial acetic acid, DMSO and THF. It is also degraded by nucleophilic substances like ammonia (e.g. ammonium salts in basic conditions) or acetates.

Polyethylene (PE)

Agilent uses UHMW (ultra-high molecular weight)-PE/PTFE blends for yellow piston and wash seals, which are used in 1290 Infinity pumps, 1290 Infinity II pumps, the G7104C and for normal phase applications in 1260 Infinity pumps.

Polyethylene has a good stability for most common inorganic solvents including acids and bases in a pH range of 1 to 12.5. It is compatible with many organic solvents used in chromatographic systems like methanol, acetonitrile and isopropanol. It has limited stability with aliphatic, aromatic and halogenated hydrocarbons, THF, phenol and derivatives, concentrated acids and bases. For normal phase applications, the maximum pressure should be limited to 200 bar.

Tantalum (Ta)

Tantalum is inert to most common HPLC solvents and almost all acids except fluoric acid and acids with free sulfur trioxide. It can be corroded by strong bases (e.g. hydroxide solutions > 10 %, diethylamine). It is not recommended for the use with fluoric acid and fluorides.
Stainless Steel (SST)

Stainless steel is inert against many common solvents. It is stable in the presence of acids and bases in a pH range of 1 to 12.5. It can be corroded by acids below pH 2.3. It can also corrode in following solvents:

- Solutions of alkali halides, their respective acids (for example, lithium iodide, potassium chloride, and so on) and aqueous solutions of halogens.
- High concentrations of inorganic acids like nitric acid, sulfuric acid and organic solvents especially at higher temperatures (replace, if your chromatography method allows, by phosphoric acid or phosphate buffer which are less corrosive against stainless steel).
- Halogenated solvents or mixtures which form radicals and/or acids, for example:
 \[2 \text{CHCl}_3 + \text{O}_2 \rightarrow 2 \text{COCl}_2 + 2 \text{HCl} \]
 This reaction, in which stainless steel probably acts as a catalyst, occurs quickly with dried chloroform if the drying process removes the stabilizing alcohol.
- Chromatographic grade ethers, which can contain peroxides (for example, THF, dioxane, diisopropylether). Such ethers should be filtered through dry aluminium oxide which adsorbs the peroxides.
- Solutions of organic acids (acetic acid, formic acid, and so on) in organic solvents. For example, a 1 % solution of acetic acid in methanol will attack steel.
- Solutions containing strong complexing agents (for example, EDTA, ethylene diamine tetra-acetic acid).
- Mixtures of carbon tetrachloride with 2-propanol or THF.

Titanium (Ti)

Titanium is highly resistant to oxidizing acids (for example, nitric, perchloric and hypochlorous acid) over a wide range of concentrations and temperatures. This is due to a thin oxide layer on the surface, which is stabilized by oxidizing compounds. Non-oxidizing acids (for example, hydrochloric, sulfuric and phosphoric acid) can cause slight corrosion, which increases with acid concentration and temperature. For example, the corrosion rate with 3 % HCl (about pH 0.1) at room temperature is about 13 μm/year. At room temperature, titanium is resistant to concentrations of about 5 % sulfuric acid (about pH 0.3). Addition of nitric acid to hydrochloric or sulfuric acids significantly reduces corrosion rates. Titanium is sensitive to acidic metal chlorides like FeCl₃ or CuCl₂. Titanium is subject to corrosion in anhydrous methanol, which can be avoided by adding a small amount of water (about 3 %). Slight corrosion is possible with ammonia > 10 %.
Using the Module
Solvent Information

Diamond-Like Carbon (DLC)
Diamond-Like Carbon is inert to almost all common acids, bases and solvents. There are no documented incompatibilities for HPLC applications.

Fused silica and Quartz (SiO₂)
Fused silica is used in Max Light Cartridges. Quartz is used for classical flow cell windows. It is inert against all common solvents and acids except hydrofluoric acid and acidic solvents containing fluorides. It is corroded by strong bases and should not be used above pH 12 at room temperature. The corrosion of flow cell windows can negatively affect measurement results. For a pH greater than 12, the use of flow cells with sapphire windows is recommended.

Gold
Gold is inert to all common HPLC solvents, acids and bases within the specified pH range. It can be corroded by complexing cyanides and concentrated acids like aqua regia.

Zirconium Oxide (ZrO₂)
Zirconium Oxide is inert to almost all common acids, bases and solvents. There are no documented incompatibilities for HPLC applications.

Platinum/Iridium
Platinum/Iridium is inert to almost all common acids, bases and solvents. There are no documented incompatibilities for HPLC applications.
Fluorinated polymers (PTFE, PFA, FEP, FFKM, PVDF)

Fluorinated polymers like PTFE (polytetrafluorethylene), PFA (perfluoroalkoxy), and FEP (fluorinated ethylene propylene) are inert to almost all common acids, bases, and solvents. FFKM is perfluorinated rubber, which is also resistant to most chemicals. As an elastomer, it may swell in some organic solvents like halogenated hydrocarbons.

TFE/PDD copolymer tubings, which are used in all Agilent degassers except G1322A/G7122A, are not compatible with fluorinated solvents like Freon, Fluorinert, or Vertrel. They have limited life time in the presence of Hexafluoroisopropanol (HFIP). To ensure the longest possible life with HFIP, it is best to dedicate a particular chamber to this solvent, not to switch solvents, and not to let dry out the chamber. For optimizing the life of the pressure sensor, do not leave HFIP in the chamber when the unit is off.

The tubing of the leak sensor is made of PVDF (polyvinylidene fluoride), which is incompatible with the solvent DMF (dimethyl formamide).

Sapphire, Ruby and Al$_2$O$_3$-based ceramics

Sapphire, ruby and ceramics based on aluminum oxide Al$_2$O$_3$ are inert to almost all common acids, bases and solvents. There are no documented incompatibilities for HPLC applications.
Reset the Multisampler in Case of an Error

When

In some cases the multisampler has to be reset by the user in order for the system to resume working in normal operation mode.

WARNING

Risk of injury by uncovered needle

An uncovered needle is a risk of harm to the operator.

- Open the safety lock of the needle assembly only on the sample handler and for this particular procedure.
- Be careful working at the z-robot.
- Wear safety gloves when removing the needle assembly.
Resetting the Multisampler

1. Check the condition of the needle assembly and the sample loop. Replace them if necessary, see "Remove the Needle Assembly" on page 219 and "Remove the Sample Loop-Flex" on page 259.

 NOTE
 Take care that the needle is installed properly. The plastic adapter must be installed correctly and the sample loop should not be kinked.

2. Unlock the needle.

 NOTE
 This procedure is completely different than the standard PM replacement of the needle assembly in Lab Advisor. The safety lock of the needle assembly has to be released by carefully sliding the pusher upwards.
3 Using the Module
Reset the Multisampler in Case of an Error

3 Verify that the needle assembly is unlocked after installation.

4 Reset the multisampler (using the instrument control) or turn the instrument Off/On again to start the initialization.

Next Steps:

5 Close the front door.
6 Wait until the initialization of the multisampler is completed.
7 If the error persists, contact your local service representative.
3

Using the Module
Agilent Local Control Modules

Agilent Local Control Modules

Agilent InfinityLab Companion G7108AA

The Agilent InfinityLab Companion gives you complete control, system monitoring, signal plotting and diagnostic capabilities for a wide range of LC system modules.

The instrument control solution is available as full package including all hardware and accessories, but can also be used on your own mobile devices like tablets, mobile phones and other electronic equipment.

Combining the conveniences of the Agilent Instant Pilot features with state of the art mobile technology, the Agilent InfinityLab Companion gives you maximum flexibility and ease of use to control and monitor your LC system modules.

Features:
- Complete local control and monitoring of Agilent Infinity II Prime LC Modules
- Excellent usability and ease of use through a user interface specifically tailored for mobile devices - simple, intuitive touch-enabled and visual controllable.
- High flexibility through a modern “Bring your own device” approach. Connection between LC module and mobile device either wireless via WLAN or wired over USB cable (with full package).
- Convenient, ergonomic operation either handheld or attached to a module at the stack with newly developed, secure tablet holder (included in the full package).
- Preconfigured tablet with all required software already installed (included in the full package).
- Centerpiece of the solution is a USB dongle that activates the complete intelligence of the InfinityLab Companion on the instrument stack.

The InfinityLab Companion provides:
- fast and direct control in front of the instrument
- a clear overview of the system status
- control functionalities
- access to method parameters and sequences
- a logbook showing events from the modules
- diagnose tests
Agilent 1200 Infinity Series Instant Pilot G4208A

The Agilent 1200 Infinity Series Instant Pilot controller gives you complete control, system monitoring, signal plotting, and diagnostic capabilities for a virtually unlimited number of LC system modules. It is connected to the LC system with a CAN cable for power supply and communication.

Features:
- Complete local control and monitoring of an Agilent 1200 Series, 1260 Infinity, and 1290 Infinity system or a single module from a single point. However, not for Agilent 1220 Compact LC.
- Mixed system configurations supported, for example, 1200 Series, 1200 Series SL-, and 1100 Series.
- Excellent readability and usability by large colored display with background light, high resolution, and contrast.
- Convenient, ergonomic operation either handheld or at the stack with newly developed, secure attachment.
- Handheld or attached to a module in a stack to facilitate operator preferences.

The 1200 Infinity Series Instant Pilot provides:
- Easy automation – recalibration intervals and multimethod sequences satisfy the most stringent automation routines.
- Transfer and archiving of methods, sequences, and logbooks via standard USB memory sticks.
- Factory installed software – flat dialog structure, user configurable interface, enhanced sequence engine, for example with wait for baseline stabilization, diagnosis with passed/failed.
- GLP – System logbook and module logbooks record errors, unusual events, and maintenance activities for GLP traceability.
Preparing the Module

Leak and Waste Handling 103
Preparing the Multisampler 104
Recommended Mats and Vials 105
Configure Well Plate Types 108
Capillary Color Coding Guide 111
Installing Capillaries 112
Flow Connections to the Washport (Standard) 114
Flow Connections to the Washport (Dual-Needle) 116
Installing the Bypass Capillary (Dual Needle) 118
Flow Connections to the Washport (Multiwash) 121
Setting up the Autosampler with Agilent OpenLab CDS ChemStation Edition 123
Control Settings 126
Method Parameter Settings 128
Module Configuration View for Single Needle 131
Setting up the Dual Needle System with Agilent OpenLAB CDS ChemStation Edition 132
Instrument Configuration View for Dual Needle 136
Method Setup 141
Sequence Parameters 145

This chapter explains the operational parameters of the module.
Leak and Waste Handling

WARNING

Toxic, flammable and hazardous solvents, samples and reagents. The handling of solvents, samples and reagents can hold health and safety risks.

- When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.
- Do not use solvents with an auto-ignition temperature below 200 °C (392 °F). Do not use solvents with a boiling point below 56 °C (133 °F).
- Avoid high vapor concentrations. Keep the solvent temperature at least 40 K below the boiling point of the solvent used. This includes the solvent temperature in the sample compartment. For the solvents methanol and ethanol keep the solvent temperature at least 25 K below the boiling point.
- Do not operate the instrument in an explosive atmosphere.
- Do not use solvents of ignition Class IIC according IEC 60079-20-1 (for example, carbon disulfide).
- Reduce the volume of substances to the minimum required for the analysis.
- Never exceed the maximum permissible volume of solvents (8 L) in the solvent cabinet. Do not use bottles that exceed the maximum permissible volume as specified in the usage guideline for solvent cabinet.
- Ground the waste container.
- Regularly check the filling level of the waste container. The residual free volume in the waste container must be large enough to collect the waste liquid.
- To achieve maximal safety, regularly check the tubing for correct installation.

NOTE

For details, see the usage guideline for the solvent cabinet. A printed copy of the guideline has been shipped with the solvent cabinet, electronic copies are available in the Agilent Information Center or via the Internet.

For details on correct installation, see separate installation documentation.
Preparing the Multisampler

For best performance of the multisampler

- When using the multisampler in a system with a vacuum degassing unit, shortly degas your samples before using them in the multisampler.
- Filter samples before use in an InfinityLab LC Series system. Use High pressure filter kit (5067-4638) for inline filtering.
- When using buffer solutions, flush the system with water before switching it off.
- Check the multisampler plungers for scratches, grooves and dents when changing the piston seal. Damaged plungers cause micro leaks and will decrease the lifetime of the seal.
- Solvent Information - Observe recommendations on the use of solvents, see "Solvent Information" on page 88.
- Priming and Purging the System - When the solvents have been exchanged or the system has been turned off for a certain time (for example, overnight) oxygen will re-diffuse into the solvent channel. Therefore priming and purging of the system is required before starting an application.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Solvent</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>After an installation</td>
<td>Isopropanol</td>
<td>Best solvent to flush air out of the system</td>
</tr>
<tr>
<td>When switching between reverse phase and normal phase (both times)</td>
<td>Isopropanol</td>
<td>Best solvent to flush air out of the system</td>
</tr>
<tr>
<td>After an installation</td>
<td>Ethanol or methanol</td>
<td>Alternative to isopropanol (second choice) if no isopropanol is available</td>
</tr>
<tr>
<td>To clean the system when using buffers</td>
<td>Bidistilled water</td>
<td>Best solvent to re-dissolve buffer crystals</td>
</tr>
<tr>
<td>After a solvent change</td>
<td>Bidistilled water</td>
<td>Best solvent to re-dissolve buffer crystals</td>
</tr>
</tbody>
</table>
Recommended Mats and Vials

Table 15 Recommended plates and closing mats

<table>
<thead>
<tr>
<th>Description (Part Number)</th>
<th>Rows</th>
<th>Columns</th>
<th>Plate height (mm)</th>
<th>Volume (μL)</th>
<th>Package</th>
<th>Closing mat compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>384Agilent (5042-1388)</td>
<td>16</td>
<td>24</td>
<td>14.4</td>
<td>80</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>384Corning (No Agilent PN)</td>
<td>16</td>
<td>24</td>
<td>14.4</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>384Nunc (No Agilent PN)</td>
<td>16</td>
<td>24</td>
<td>14.4</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96 well plate 0.5 ml, PP (pack of 10) (5042-1386)</td>
<td>8</td>
<td>12</td>
<td>14.3</td>
<td>500</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>96 well plate 0.5 ml, PP (pack of 120) (5042-1385)</td>
<td>8</td>
<td>12</td>
<td>14.3</td>
<td>50</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>96 Agilent conical (5042-8502)</td>
<td>8</td>
<td>12</td>
<td>17.3</td>
<td>150</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>96 Capped Agilent (5065-4402)</td>
<td>8</td>
<td>12</td>
<td>47.1</td>
<td>300</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>96 Corning (No Agilent PN)</td>
<td>8</td>
<td>12</td>
<td>14.3</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96 Corning V (No Agilent PN)</td>
<td>8</td>
<td>12</td>
<td>14.3</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96 Deep Agilent 31mm (5042-6454)</td>
<td>8</td>
<td>12</td>
<td>31.5</td>
<td>1000</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>96 Deep Nunc 31mm (No Agilent PN)</td>
<td>8</td>
<td>12</td>
<td>31.5</td>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96 Deep Ritter 41mm (No Agilent PN)</td>
<td>8</td>
<td>12</td>
<td>41.2</td>
<td>800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96 Greiner (No Agilent PN)</td>
<td>8</td>
<td>12</td>
<td>14.3</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96 Greiner V (No Agilent PN)</td>
<td>8</td>
<td>12</td>
<td>14.3</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96 Nunc (No Agilent PN)</td>
<td>8</td>
<td>12</td>
<td>14.3</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96 Well plate, square wells, U shape, PP (5043-9300)</td>
<td>8</td>
<td>12</td>
<td>41</td>
<td>2200</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>96 Well plate, round wells, U shape, PP (5043-9302)</td>
<td>8</td>
<td>12</td>
<td>45</td>
<td>2000</td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>96 Well plate, round wells, U shape, PP (5043-9305)</td>
<td>8</td>
<td>12</td>
<td>32</td>
<td>1000</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>96 Well plate, round wells, U shape, PP (5043-9308)</td>
<td>8</td>
<td>12</td>
<td>27</td>
<td>1200</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>96 Well plate, round wells, U shape, PP (5043-9309)</td>
<td>8</td>
<td>12</td>
<td>27</td>
<td>1200</td>
<td>50</td>
<td>3</td>
</tr>
</tbody>
</table>
4 Preparing the Module
Recommended Mats and Vials

Table 15 Recommended plates and closing mats

<table>
<thead>
<tr>
<th>Description (Part Number)</th>
<th>Rows</th>
<th>Columns</th>
<th>Plate height (mm)</th>
<th>Volume (µL)</th>
<th>Package</th>
<th>Closing mat compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>96 Well plate, round wells, U shape, PP (5043-9310)</td>
<td>8</td>
<td>12</td>
<td>14</td>
<td>500</td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>96 Well plate, round wells, U shape, PP (5043-9311)</td>
<td>8</td>
<td>12</td>
<td>14</td>
<td>500</td>
<td>120</td>
<td>3</td>
</tr>
<tr>
<td>96 Well plate, round wells, V shape, PP (5043-9312)</td>
<td>8</td>
<td>12</td>
<td>14</td>
<td>330</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>96 Well plate, round wells, V shape, PP (5043-9313)</td>
<td>8</td>
<td>12</td>
<td>14</td>
<td>330</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>96 Well plate, round wells, V shape, PP (5043-9314)</td>
<td>8</td>
<td>12</td>
<td>14</td>
<td>330</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>384 Well plate, square wells, V shape, PP (5043-9315)</td>
<td>16</td>
<td>24</td>
<td>22</td>
<td>190</td>
<td>25</td>
<td>4</td>
</tr>
</tbody>
</table>

1 Closing mat for all 96 Agilent plates (5042-1389)
2 Mat 96 wells, square, pierceable, silicone 50/pk (5043-9319)
3 Mat 96 wells, round, pierceable, silicone 50/pk (5043-9317), Mat 96 wells, round, piercable, silicone 100/pk (5043-9318)
4 Mat 384 wells, square, pierceable, silicone 50/pk (5043-9320)

Table 16 Recommended vial plates

<table>
<thead>
<tr>
<th>Description (part number)</th>
<th>Rows</th>
<th>Columns</th>
<th>Plate height (mm)</th>
<th>Volume (µL)</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vial plate for 54 x 2 mL vials (6/pk) (G2255-68700)</td>
<td>6</td>
<td>9</td>
<td>36</td>
<td>2000</td>
<td>6</td>
</tr>
<tr>
<td>Vial plate 40 x 2 mL vials (5023-2471)</td>
<td>5</td>
<td>8</td>
<td>43</td>
<td>2000</td>
<td>1</td>
</tr>
<tr>
<td>Vial plate for 15 x 6 mL vials (1/pk) (5022-6539) only compatible with 3H drawers</td>
<td>3</td>
<td>5</td>
<td>42</td>
<td>6000</td>
<td>1</td>
</tr>
<tr>
<td>Vial plate for 27 Eppendorf tubes (1/pk) (5022-6538)</td>
<td>3</td>
<td>9</td>
<td>40</td>
<td>500 – 200</td>
<td>1</td>
</tr>
</tbody>
</table>
4 Preparing the Module
Recommended Mats and Vials

NOTE
For good chromatographic results the maximum filling should not exceed 3/4 of the total volume of the vial.

NOTE
Agilent Technologies recommends to use preslit septa.

NOTE
Bottom sensing is a feature to detect the depth of vials or plates via the software. If the bottom sensing feature is used, the bottom of the plates and vials must resist the needle. Make sure that the material supports this feature.

NOTE
For the Needle height position, an offset of 0 equates to 2 mm above the wellplate bottom.

NOTE
In case of custom-made wellplates or vials, please keep in mind the physical limitations of each drawer.

The maximum total height allowed (including sample container and vial caps, if present) is:
- 1H: 19 mm
- 2H: 45 mm
- 3H: 50 mm

NOTE
Adhesive foils are not recommended to seal wellplates. Alternatively, plates can be sealed with a Pierceable aluminium foil (06644-001).
4 Preparing the Module

Configure Well Plate Types

If the plate you are using is not found on the "Recommended Mats and Vials" on page 105 you may configure a custom plate. Measure the exact dimensions of the plate as marked below and enter the values in the plate configuration table of the ChemStation.

Figure 19 Well Plate Dimensions (straight)
Configuring Well Plate Types

Figure 20 Well Plate Dimensions (staggered)
Preparing the Module

Configure Well Plate Types

Table 17 Well Plate Dimensions

<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
<th>Definition</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rows</td>
<td>Number of rows on the plate</td>
<td>up to 16</td>
<td></td>
</tr>
<tr>
<td>Columns</td>
<td>Number of columns on the plate</td>
<td>up to 24</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>Volume (in µl) of a sample vessel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Row distance</td>
<td>Distance (in mm) between the center of two rows</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Column distance</td>
<td>Distance (in mm) between the center of two columns</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Plate length</td>
<td>X size (in mm) at the bottom of the plate</td>
<td>127.75 +/- 0.25 mm (SBS Standard)</td>
</tr>
<tr>
<td>D</td>
<td>Plate width</td>
<td>Y size (in mm) at the bottom of the plate</td>
<td>85.50 +/- 0.25 mm (SBS Standard)</td>
</tr>
<tr>
<td>E</td>
<td>Plate height</td>
<td>Size (in mm) from the bottom to the top of the plate</td>
<td>up to 47 mm</td>
</tr>
<tr>
<td>F</td>
<td>Row offset</td>
<td>Distance (in mm) from the back edge (bottom) to the center of the first hole (A1)</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Column offset</td>
<td>Distance (in mm) from the left edge (bottom) to the center of the first hole (A1)</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Column shift</td>
<td>Offset (in mm) to Y when the rows are not straight but staggered</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Well diameter</td>
<td>Diameter (in mm) of the well</td>
<td>at least 4 mm</td>
</tr>
<tr>
<td>J</td>
<td>Well depth</td>
<td>Distance (in mm) from the top of the plate to the bottom of the well</td>
<td>up to 45 mm</td>
</tr>
</tbody>
</table>

NOTE

The distances need to be measured with high precision. It is recommended to use calipers.
Capillary Color Coding Guide

Figure 21 Syntax for capillary description
4 Preparing the Module
Installing Capillaries

Installing Capillaries

For correct installation of capillary connections of the sampler it’s important to choose the correct fittings, see “Capillary Color Coding Guide” on page 111.

<table>
<thead>
<tr>
<th>Parts required</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5067-4650</td>
<td>Capillary ST 0.12 mm x 150 mm SL/SX</td>
</tr>
<tr>
<td></td>
<td>5067-4651</td>
<td>Capillary ST 0.12 mm x 280 mm SL/SX</td>
</tr>
<tr>
<td></td>
<td>5067-4720</td>
<td>Capillary ST 0.17 mm x 150 mm SL/SX</td>
</tr>
<tr>
<td></td>
<td>5067-4722</td>
<td>Capillary ST 0.17 mm x 280 mm SL/SX</td>
</tr>
<tr>
<td></td>
<td>5065-4454</td>
<td>Fitting screw long</td>
</tr>
</tbody>
</table>

10/pk

Quantity depends on configuration of the module (number of connections to the multisampler).

The capillaries mentioned above are examples only.

1 Select a nut that is long enough for the fitting you’ll be using.

2 Slide the nut over the end of the tubing or capillary.
Preparing the Module

Installing Capillaries

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Carefully slide the ferrule components on after the nut and then finger-tighten the assembly while ensuring that the tubing is completely seated in the bottom of the end fitting.</td>
</tr>
<tr>
<td>4</td>
<td>Use a column or injection valve to gently tighten the fitting which forces the ferrule to seat onto the tubing or capillary.</td>
</tr>
<tr>
<td>5</td>
<td>Loosen the nut and verify that the ferrule is correctly positioned on the tubing or capillary.</td>
</tr>
</tbody>
</table>

NOTE

Don't overtighten. Overtightening will shorten the lifetime of the fitting.

NOTE
The first time that the swagelock fitting is used on a column or an injection valve, the position of the ferrule is permanently set. If changing from a column or an injection valve to another, the fitting may leak or decrease the quality of the separation by contributing to band broadening.
Flow Connections to the Washport (Standard)

Preparations

Module is installed in the system.

Use an appropriate solvent based on the sample and mobile phase chemistries.

The composition of the wash solvent should be the most solubilizing compatible solvent (your strongest diluent). Selecting the wash solvent is part of the method development.

A mixture of 50% up to 100% organic solvent in distilled water is a good choice for many applications.

NOTE

The silicone waste drainage is suitable for the most common wash solvents. For critical wash solvents, it may be necessary to replace the silicone tube with a PE tube (Tubing, PE, 1.5 m (5042-9974)).

1. Place a needle wash solvent reservoir into the solvent cabinet.
2. Connect the Needle Wash Bottle Head Assembly to the solvent reservoir and close the bottle.
3. Guide the tube of the Needle Wash Bottle Head Assembly through the cover opening and connect it to the peristaltic pump.
4. Route the drainage of the washport outlet to the waste container.
5. Prime or auto clean the wash solvent tubings.
6. Check setting up the autosampler with OpenLAB Chemstation.
Preparation of the Module

Flow Connections to the Washport (Standard)

Flow Connections to the Multisampler (Standard)

Figure 22 Capillary connections (Standard)
4 Preparing the Module
Flow Connections to the Washport (Dual-Needle)

Flow Connections to the Washport (Dual-Needle)

Preparations

Module is installed in the system.

Use an appropriate solvent based on the sample and mobile phase chemistries. The composition of the wash solvent should be the most solubilizing compatible solvent (your strongest diluent). Selecting the wash solvent is part of the method development. A mixture of 50 % up to 100 % organic solvent in distilled water is a good choice for many applications.

NOTE
The silicone waste drainage is suitable for the most common wash solvents. For critical wash solvents, it may be necessary to replace the silicone tube with a PE tube (Tubing, PE, 1.5 m (5042-9974))

1 Place a needle wash solvent reservoir into the solvent cabinet.
2 Connect the Needle Wash Bottle Head Assembly to the solvent reservoir and close the bottle.
3 Guide the tube of the Needle Wash Bottle Head Assembly through the cover opening and connect it to the peristaltic pump.
4 Route the drainage of the washport outlet to the waste container.
5 Prime or auto clean the wash solvent tubings.
6 Check setting up the autosampler with OpenLAB Chemstation.
Preparing the Module

Flow Connections to the Washport (Dual-Needle)

Flow Connections to the Multisampler (Dual-Needle)

Figure 23 Capillary connections (Dual-Needle)
Preparing the Module

Installing the Bypass Capillary (Dual Needle)

When When the dual-needle configuration has to be used in single-path mode. The bypass capillary allows the configuration of a minimized injection path to reduce flush times. In this case, the needle where the bypass is installed is no longer available for injection.

Tools required

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8710-0510</td>
<td>Open-end wrench 1/4 — 5/16 inch</td>
</tr>
</tbody>
</table>

Parts required

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5500-1238</td>
<td>Capillary ST 0.12 mm x 105 mm SL/SL</td>
</tr>
</tbody>
</table>

Preparations

Finish any pending acquisition job and return any plate on the workspace back to the hotel. Remove the Sample Loop-Flex that will be replaced by the bypass capillary. Store the unused sample loop in a safe place.

WARNING Risk of injury by uncovered needle

- An uncovered needle is a risk of harm to the operator.
- Do not open the safety lock of the needle assembly
- Be careful working at the z-robot.
- Wear safety goggles, when removing the needle assembly.

CAUTION Mismatching sample loop configuration

Damage to the system

- Make sure, that the sample loop configuration matches to the hardware installed.

NOTE If you have changed the bypass capillary, verify that the correct sample loop and bypass capillary is configured in the CDS (see “Setting up the Autosampler with Agilent OpenLab CDS ChemStation Edition” on page 123).

NOTE For details on the setup of the dual-needle system, see "Modify Capillaries" on page 135.
Preparing the Module
Installing the Bypass Capillary (Dual Needle)

1. Install the bypass capillary to the left or right flow path.

![Diagram showing bypass capillary installation](image-url)

NOTE
Either connect the bypass capillary from port 1 to port 5 in the left flow path or connect the bypass capillary from port 3 to port 7 for the right flow path.
Preparing the Module
Installing the Bypass Capillary (Dual Needle)

2 To set up the bypass capillary in the CDS, right-click into the active area, then select Modify> Capillaries from the context menu.

3 Select Right or Left from the Bypass capillary dropdown menu, depending on which flow path you want to bypass.

In the active area, you will see that one syringe icon is greyed out, indicating that only one flow path is active. Click Assign.
Preparing the Module

Flow Connections to the Washport (Multiwash)

Flow Connections to the Washport (Multiwash)

Preparations

Module is installed in the system.

Use an appropriate solvent based on the sample and mobile phase chemistries.

The composition of the wash solvent should be the most solubilizing compatible solvent (your strongest diluent). Selecting the wash solvent is part of the method development.

A mixture of 50 % up to 100 % organic solvent in distilled water is a good choice for many applications.

NOTE

The silicone waste drainage is suitable for the most common wash solvents. For critical wash solvents, it may be necessary to replace the silicone tube with a PE tube (Tubing, PE, 1.5 m (5042-9974))

1. Place solvent reservoirs for needle wash and needle seat flushing into the solvent cabinet.
2. Connect the Wash Bottle Head Assemblies to the solvent reservoirs and close the bottles.
3. Guide the tubes of the Wash Bottle Head Assemblies through the cover opening and connect it to the ports S1, S2, and S3 of the solvent selection valve.
4. Route the drainage of the washport outlet to the waste container.
5. Prime or auto clean the wash solvent tubings.
6. Check setting up the autosampler with OpenLAB Chemstation.
4 Preparing the Module

Flow Connections to the Washport (Multiwash)

Flow Connections to the Multisampler (Multiwash)

Solvents on cabinet to washport

SSV/piezo pump to flush pump

Flush pump to column (port 6)

Metering device Sample loop flex to washport/needle seat (port 4)

Injection valve to metering device (port 2)

Injection valve Plastic blank nut (port 3)

Turnkey to needle seat (port 5)

Figure 25 Capillary connections (Multiwash)
Preparing the Module
Setting up the Autosampler with Agilent OpenLab CDS ChemStation Edition

Setting up the Autosampler with Agilent OpenLab CDS ChemStation Edition

The setup of the Multisampler is shown with the Agilent OpenLab CDS ChemStation Edition C.01.06. Depending on the controller (e.g. Local Controller, OpenLab CDS EZChrom Edition, Masshunter) the screens look different.

NOTE
This section describes the autosampler settings only. For information on Agilent OpenLab CDS ChemStation Edition or other InfinityLab LC Series modules refer to the corresponding documentation.

Figure 26 ChemStation Method and Run Control

After successful load of the OpenLab CDS ChemStation Edition, you should see the module as an active item in the graphical user interface (GUI).
Preparing the Module
Setting up the Autosampler with Agilent OpenLab CDS ChemStation Edition

Table 18 The Autosampler User Interface

Within the Multisampler user interface, there are active areas. If you move the mouse cursor across the icons (tray, EMF button), the cursor will change and you may click on the icon to:
1. Turn on/off the autosampler
2. Configure the sample hotel
3. Get the status of the EMF (Early Maintenance Feature)
4. Sample Cooler/Thermostat Temperatur

Current instrument information on:

- Injection volume
- Sample location
Preventing the Module
Setting up the Autosampler with Agilent OpenLab CDS ChemStation Edition

Table 18 The Autosampler User Interface

A right-click into the Active Area will open a menu to
- Show the Control User Interface (special module settings)
- Show the Method User interface (same as via menu Instrument> Set up Instrument Method> Setup G7167B)
- Injector Program

When you activate a pretreatment/injector program, it replaces the standard injection cycle.
- Identify Device
- Home All
- Switch on Tray Illumination
- Auto Clean
- Prime
- Modify
 • Drawer Configuration
 Changing the load capacity of the Sample Hotel
 • Capillaries
 Changing Sample Loop, Needle Seat, and bypass capillary configuration
 • Reference Vial Rack
 • Assign Wellplates

Wellplate Configuration (same as click on the Tray icon)

NOTE
For customizing a wellplate in the CDS, click on Define Sample Containers in the instrument configuration view.

Module Status shows Run / Ready / Error state and “Not Ready text” or “Error text”
- Error (Red)
- Not ready (yellow)
- Ready (green)
- Pre run, Post run (purple)
- Run (blue)
- Idle (green)
- Offline (dark gray)
- Standby (light gray)
4 Preparing the Module
Setting up the Autosampler with Agilent OpenLab CDS ChemStation Edition

Table 18 The Autosampler User Interface

<table>
<thead>
<tr>
<th>Multisampler</th>
<th>EMF Status shows Run / Ready / Error state and “Not Ready text” or “Error text”</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Offline (gray)</td>
</tr>
<tr>
<td></td>
<td>• Ok</td>
</tr>
<tr>
<td></td>
<td>• EMF warning. Maintenance might be required (yellow)</td>
</tr>
<tr>
<td></td>
<td>• EMF warning. Maintenance required (red)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Injection Volume 0.00 µL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Location</td>
</tr>
</tbody>
</table>

NOTE The multisampler configuration is done in the module dashboard context menu, not in the instrument configuration.

Control Settings

The control settings are available via right click on the active area of the graphical user interface, see "Setting up the Autosampler with Agilent OpenLab CDS ChemStation Edition" on page 123.
The Sampler control parameters are in the following sections:

- **Missing Vial**
 Mark the *Ignore missing vial* check box to specify that, if a vial is missing, the injector ignores it and continues with a 6-second dummy run. The message "Missing vial <x>" is logged, and the system continues with the next injection.

- **Illumination**
 Toggles the illumination of the sample area, On or Off.

- **At Power On**
 The section is available when a cooler/thermostat is installed and configured. Mark the *Turn on Thermostat* check box to specify that the cooler/thermostat is switched on automatically when the instrument is switched on.

- **Thermostat**
 The section is available when a cooler/thermostat is installed and configured and the Constant temperature mode is selected. Select *On* to switch on the cooler/thermostat. Specify the required temperature in the adjacent field. The specified temperature must be at least 5 °C below ambient for proper temperature control. Select *Off* to switch off the cooler/thermostat.

- **Automatic Turn On**
 You can set a date and time at which the cooler/thermostat switches on automatically.

- **Pump connected to Sampler**
 Use this section to specify the pump that is used with the Vialsampler. If more than one pump is configured, display the drop-down list and select the appropriate pump from the list.

- **Clear Workspace**
 - **Immediately** Returns the sample container on the workspace to its position in the sample hotel immediately after the injection has been completed. This allows you to quickly retrieve the sample container for further processing.
 - **At End of Analysis** Returns the sample container on the workspace to its position in the sample hotel after the current run or sequence/worklist has been completed. This is the default setting.
 - **Never** Leaves the sample container on the workspace until a different sample container is required to replace it.

- **Enable Analysis**
 This feature requires LC & CE Drivers A.02.19 or newer and is only available for the Sample Thermostat. With this function, you can specify if the analyses should start *With any temperature* or only when the *Temperature is within ± 2 °C* range of the setpoint temperature.

NOTE

The Enable Analysis section is disabled when *Not controlled* is selected in the Temperature section.
Method Parameter Settings

These settings are available via Menu > Instrument > Set up Instrument Method Multisampler or via right click on the Active area.

![Method parameter settings](image1.png)
![Method parameter settings](image2.png)

Figure 28 Method parameter settings
Preparing the Module
Setting up the Autosampler with Agilent OpenLab CDS ChemStation Edition

NOTE

Usually default draw offset = 0 equates to 2 mm above the wellplate bottom.

NOTE

For additional help and support. Highlight the desired cell and press the F1 key. A help screen will open with additional information and documentation about the topic.

Injection Mode/Needle Wash
The settable injection volume is depending on what kind of configuration is installed. Default configuration 0.1 – 20 µL.

It is possible to select between using the Standard Wash or Standard Wash off. Using needle wash is one option to obtain minimum carry-over.

The injection cleaning section allows you to select between the Standard Wash option and the Multi-wash option. With the Standard Wash (default configuration) you can choose between two modes the Flush port or Wash Vial. If the Multi-Wash option is installed (additional hardware is required) you can use Needle Wash and Seat Back Flush together to obtain the lowest carry-over.

Multi-wash (Multisampler Injection Cleaning)
The Multi-wash table allows you to specify up to four steps that will be used to clean the system.

The Start Cond. step is not always executed. Therefore it is recommend to check the box to ensure that, at the end of the cleaning procedure, the flow path of the sampler is filled with the starting solvent conditions for the next sample.

For each cleaning step, Click the Solvent down arrow and select the solvent to use (S1, S2, S3) or switch the step Off. Specify a duration (in seconds) in the Time [s] field.

Mark the check boxes for Seat Back Flush and/or Needle Wash to include these actions. If both are selected, they are carried out simultaneously; if neither is selected, the step is ignored (equivalent to selecting Off). Add a comment in the Comment column, if necessary.
Preparation of the Module

Setting up the Autosampler with Agilent OpenLab CDS ChemStation Edition

Stop time/Post time

A Multisampler's *Stop time* can be set. For equilibration of the Multisampler a *Post time* can be set.

NOTE

- It takes approximately 30 s to fully exchange one solvent for another in the flush port. To flush and exchange the solvent in the needle seat it takes 18 s.
- Additionally, it is strongly recommended to use Auto-Clean function to flush the module regularly with all installed solvents.
Preparing the Module
Setting up the Autosampler with Agilent OpenLab CDS ChemStation Edition

Module Configuration View for Single Needle

The settings are available via menu Instrument> Instrument Configuration> Multisampler Configuration.

- **Device name**: based on the module.
- **Type ID**: based on the module (product number). Some modules may allow changing the type based on hardware/firmware. This results in a change of features and functions.
- **Serial number**: based on the module.
- **Firmware revision**: based on the module.
- **Options**: lists installed options.

NOTE
Changes in the sampler configuration can only be done in the online view of the CDS system, see Table 18 on page 124.
Preparing the Module

Setting up the Dual Needle System with Agilent OpenLAB CDS ChemStation Edition

Setting up the Dual Needle System with Agilent OpenLAB CDS ChemStation Edition

A right-click into the Active Area will open a menu to

- Show the **Control** User Interface (special module settings)
- Show the **Method** User interface (same as via menu **Instrument> Set up Instrument Method> Setup G7167B**)

- **Injector Program**
 When you activate a pretreatment/injector program, it replaces the standard injection cycle.

- **Identify Device**

- **Home All**

- **Reset Injector**

- **Switch to Mainpass (main path) Left** (needle loop left is connected to the pump device)

- **Switch to Mainpass (main path) Right** (needle loop right is connected to the pump device)

- **Switch on Tray Illumination**
4 Preparing the Module
Setting up the Dual Needle System with Agilent OpenLAB CDS ChemStation Edition

- **Auto-clean**

![Auto-clean screenshot](image)

- **Prime Solvents**

![Prime Solvents screenshot](image)

- **Start Purge:**
 Manual start of the purge routine, duration defined by hydraulic setup. See “Purge” on page 134 for further information on purge.

- **Modify**
 - **Drawer Configuration:** Changing the load capacity of the Sample Hotel
 - **Capillaries Setup:** for the sample loops, needle seat, and bypass capillaries for dual needle option
 - **Reference Vial Bar**

- **Assign Wellplates**
 Wellplate Configuration (same as click on the Tray icon)

NOTE
For customizing a wellplate in the CDS, click on **Define Sample Containers** in the instrument configuration view.
Preparation of the Module
Setting up the Dual Needle System with Agilent OpenLAB CDS ChemStation Edition

Purge

Typical time for purge:
- 1290 Binary pump, 2x 20 µL setup, flow rate: 0.5 mL/min ~ 125 s
- 1290 Binary pump, 2x 20 µL setup, flow rate: 1.0 mL/min ~ 85 s

Other configurations (especially large volume setups) will last longer.

In order to get information about remaining purge time, expand the window in the user interface:

![Image of purge window]

NOTE
The start of the pump or changes in solvent composition trigger the purge routine of the multisampler. The purge routine flushes the hydraulic setup of the multisampler with fresh mobile phase (for example metering device, sample loops, and needles). This ensures cleanliness of the flowpath.

NOTE
For pumps with a manual purge valve, it is mandatory to start the purge routine before a run or sequence. This will guarantee that the complete flow path of the dual needle setup is flushed with fresh mobile phase.

NOTE
The only way to speed up the purge routine is to increase flow rate. Best practices is to write a purge method in the sequence table. The purge method includes a column switching valve that switches at high flow rate into the waste position.
Preparation of the Module

Setting up the Dual Needle System with Agilent OpenLAB CDS ChemStation Edition

Modify Capillaries

![Capillary Setup for the Multisampler](image)

NOTE
To avoid damage of the system, the configuration of the dual-needle system must match to the installed hardware, especially the sample loops.

NOTE
Only the listed capillary PN 5500-1238 can be used as bypass capillary (either left or right).
Preparing the Module

Setting up the Dual Needle System with Agilent OpenLAB CDS ChemStation Edition

Instrument Configuration View for Dual Needle

![Configuration View for Dual Needle](image)

Figure 31 Configuration view for alternating dual needle with two 20 µL Sample Loops
Preventing the Module
Setting up the Dual Needle System with Agilent OpenLAB CDS ChemStation Edition

Figure 32 Configuration view for dual needle with non-identical flow paths (e.g. a 20 µL and a 500 µL Sample Loop)

NOTE
In this view it is not possible to change the online configuration of the sample loops or the seat capillaries.

Shows the currently installed devices and status.
Preparing the Module
Setting up the Dual Needle System with Agilent OpenLAB CDS ChemStation Edition

Table 20 Instrument configuration view for dual needle

<table>
<thead>
<tr>
<th>Communication</th>
<th>Options</th>
<th>Metering: G4267-60043 100 µL Analytical Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Device name: Multisampler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Type ID: G7167A/B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Serial number: DEBAR00101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Firmware revision: D.06.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Connection settings: LAN connection or hostname</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE
For dual needle only the 100 µL metering device is available.

For single needle you can use 40 µL, 100 µL or 900 µL metering devices

Left Needle installed
This check box is marked to indicate that your system is equipped with a dual-needle option. When the check box is marked, the Left Needle section is enabled.

NOTE
If the Left Needle parameters are equivalent to the Right Needle parameters, then Alternating Needle Usage is possible, which increases sampling efficiency.

NOTE
If dual-needle option is installed, the system will use multi-load instead of multi-draw for larger sample volumes. For multi-wash and an installed dual-needle option, multi-draw is not available.

Left Needle
This section is enabled only when the Left Needle installed check box is marked.

Loop
Shows the currently installed loop capillary.

NOTE
It is mandatory that the configuration of the dual needle system, especially sample loops, match to the installed hardware to avoid damage to the system.

Seat
Shows the currently installed seat capillary.

Right Needle
This section is always enabled.
Preparing the Module

Setting up the Dual Needle System with Agilent OpenLAB CDS ChemStation Edition

<table>
<thead>
<tr>
<th>Table 20 Instrument configuration view for dual needle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop Shows the currently installed loop capillary.</td>
</tr>
<tr>
<td>NOTE For the dual needle setup, only the correct dual needle sample loops must be configured and used, for instance Sample Loop 20 µL right Dual needle (G4267-60311). These sample loops are manufactured especially for dual-needle systems.</td>
</tr>
<tr>
<td>Seat Shows the currently installed seat capillary. The needle seat capillary volume is used for the Automatic Delay Volume Reduction option and ISET.</td>
</tr>
<tr>
<td>Thermostat installed This check box is marked to show that a sample cooler or sample thermostat is installed.</td>
</tr>
<tr>
<td>Mode Select Constant temperature mode to set the temperature using the Thermostat section of the Multisampler Control parameters. Use this mode to store samples at a constant temperature across multiple runs. This is the default mode, which is recommended in most cases. Select Variable temperature mode to set the temperature using the Thermostat section of the Advanced Method Setup parameters. In this mode, the temperature can be varied from run to run.</td>
</tr>
<tr>
<td>Multi-wash installed This check box is marked to show that the multi-wash option is installed, and the Multi-wash option in the Needle Wash section of the Method parameters is available (Not available for dual-needle).</td>
</tr>
<tr>
<td>Reference vial rack Click the down-arrow and select the reference vial rack that is installed in your multisampler from the drop-down list.</td>
</tr>
</tbody>
</table>
Preparation of the Module
Setting up the Dual Needle System with Agilent OpenLAB CDS ChemStation Edition

Table 20: Instrument configuration view for dual needle

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bypass capillary</td>
<td>Click the down arrow and select where the bypass capillary is installed (if any). When installed, the bypass capillary allows the configuration of a minimized injection path to reduce flush times and allows the dual-needle configuration to be used in single-path mode. In this case, the needle where the bypass is installed is no longer available for injection.</td>
</tr>
</tbody>
</table>

NOTE
Bypass capillary either installed left or right: only the listed capillary (p/n 5500-1238) can be used as bypass capillary.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define Sample Containers</td>
<td>Displays the Define and edit Wellplates configuration dialog box, which contains a list of standard preconfigured wellplates plus any custom wellplates that have been added.</td>
</tr>
</tbody>
</table>

NOTE
For the dual needle setup, only the correct hardware must be configured and used, for instance the Capillary ST 0.12 mm x 105 mm SL/SL (5500-1238) or Sample Loop 20 µL right Dual needle (G4267-60311).
4 Preparing the Module

Setting up the Dual Needle System with Agilent OpenLAB CDS ChemStation Edition

Method Setup

Figure 33 Method setup screen for Dual Needle option
Preparing the Module
Setting up the Dual Needle System with Agilent OpenLAB CDS ChemStation Edition

Table 21 Method setup parameters (DN)

<table>
<thead>
<tr>
<th>Injection</th>
<th>The Injection section allows you to specify the Injection volume and to select the needle</th>
</tr>
</thead>
</table>

Needle selection

- **Alternating Needle**: Needles will be toggled (only possible if the both flowpaths are configured identically)
- **Right Needle**: only the right needle will be used
- **Left Needle**: only the left needle will be used

Needle Wash

The needle is washed in accordance with the parameters set up in the **Standard Wash** section of the Injection Path Cleaning section of the Method.

Stoptime

The **Stoptime** enables you to set the time that the analysis stops. Limits: 0.01 to 99999 min or **As Pump/No Limit**.

Posttime

You can set the **Posttime** so that your Multisampler remains in a post-run state during the **Posttime** to delay the start of the next analysis. A **Posttime** period can be used to allow your column to equilibrate after changes in solvent composition (for example after gradient elution). Limits: 0.01 to 99999 min or Off (0.0 min).

Sampling Speed

- **Draw Speed**: determines the rate at which the plunger draws sample from the vial. Set the speed to an appropriate value for your sample. For viscous samples, use a slow **Draw Speed**.
- **Eject Speed**: determines the rate at which the plunger ejects sample from the metering device. If you are injecting large volumes of sample, setting a high **Eject Speed** will shorten the time needed for an injection cycle. For viscous samples, use a slow **Eject Speed**.
- **Wait Time After Draw**: this time ensures that the temporary vacuum, which originates from the drawing of liquid from the sample vial, dissipates. The needle first stays on the seat for the specified time, then after drawing sample from the vial remains there for the specified time.
Preparing the Module

Setting up the Dual Needle System with Agilent OpenLAB CDS ChemStation Edition

Table 21 Method setup parameters (DN)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Needle Height Position** | • **Offset**: This is a vertical offset that enables you to position the needle a specific distance (in mm) away from its standard position. The Offset function is useful when analyzing very small sample volumes, or when only a specific part of the sample is required, for example, the top layer. Usually default draw offset = 0 equates to 2 mm above the wellplate bottom.
 • **Use Vial/Well Bottom Sensing**: This feature allows the needle to detect non-uniform well bottoms, and adjusts the depth of the needle position to 2 mm (default value) above the detected bottom of the vial or well. You can use Vial/Well Bottom Sensing in combination with the Offset to customize the draw position of the needle. To turn on Vial/Well Bottom Sensing, mark the check box. The default setting is cleared. You may want to turn off Vial/Well Bottom Sensing to increase speed of injection, or to avoid the needle touching the bottom of the well if a sample precipitate could clog it. |
| **Smart Overlap** | • **Enable Smart Overlap**: Overlapped injection provides faster throughput of samples by allowing the preparation of the next injection while the current injection is in the mainpass (main path). This section is available only for a dual-needle Multisampler with identical left and right flow paths (Seat capillary and Loop capillary), and Alternating Needle selected in the Injection section of the method setup.
 • **After Period of Time**: Specifies the time (in minutes) that the Multisampler waits after injection of a sample before taking up and injecting the next sample. |

NOTE

It is important to calculate the time close to the start point of the next run to avoid waiting time with filled sample loop.
Preventing the Module

Setting up the Dual Needle System with Agilent OpenLAB CDS ChemStation Edition

High Throughput

<table>
<thead>
<tr>
<th>Setting up the Dual Needle System with Agilent OpenLAB CDS ChemStation Edition</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Throughput</td>
</tr>
</tbody>
</table>

NOTE

This section is available only for a dual-needle Multisampler with different seat-capillary and loop-capillary volumes, and either **Right Needle** or **Left Needle** selected in the **Injection** section of the method setup.

Table 22 High throughput

Sample Flush-Out Factor	The **Sample Flush-Out Factor** ensures that the sample is thoroughly flushed out of the sample loop and needle after switching into the mainpass (main path). The factor is part of the flush-out volume formula, which is calculated by the Multisampler firmware. The volume is calculated as: factor x (injection volume + seat capillary volume + valve volume). The **Sample Flush-Out Factor** is preset to 5.0 at the factory. The preset **Sample Flush-Out Factor** is correct for most methods. However, for unusually viscous samples, you should increase the **Sample Flush-Out Factor** to obtain the desired degree of flushing in order to prevent sample carry-over.
Injection Valve to Bypass for Delay Volume Reduction	This parameter is used to switch the flow from the injector from mainpass (main path) to bypass after injection has taken place. This reduces the delay volume for low volume techniques. You can specify the point during the analyses when the valve switches to bypass. This is done by setting the **Sample Flush-out Factor**.
Enable Overlapped Injection	Overlapped injection provides faster throughput of samples by allowing the preparation of the next sample during analysis of the injected sample.
4 Preparing the Module
Setting up the Dual Needle System with Agilent OpenLAB CDS ChemStation Edition

Sequence Parameters

Not ready timeout: the time in minutes has to be longer than the purge routine lasts - otherwise the run will be aborted before start.
5 Optimizing Performance

Delay Volume and Extra-Column Volume 147
Delay Volume 147
How to Configure the Optimum Delay Volume 148
How to Achieve Higher Injection Volumes 152
How to Achieve High Throughput 154
How to Achieve Higher Resolution 155
How to Achieve Higher Sensitivity 158
How to Achieve Lowest Carry Over 159

This chapter gives hints on how to optimize the performance or use additional devices.
Optimizing Performance
Delay Volume and Extra-Column Volume

Delay Volume and Extra-Column Volume

The delay volume is defined as the system volume between the point of mixing in the pump and the top of the column.

The extra-column volume is defined as the volume between the injection point and the detection point, excluding the volume in the column.

Delay Volume

In gradient separations, this volume causes a delay between the mixture changing in the pump and that change reaching the column. The delay depends on the flow rate and the delay volume of the system. In effect, this means that in every HPLC system there is an additional isocratic segment in the gradient profile at the start of every run. Usually the gradient profile is reported in terms of the mixture settings at the pump and the delay volume is not quoted even though this will have an effect on the chromatography. This effect becomes more significant at low flow rates and small column volumes and can have a large impact on the transferability of gradient methods. It is important, therefore, for fast gradient separations to have small delay volumes, especially with narrow bore columns (e.g., 2.1 mm i.d.) as often used with mass spectrometric detection.
Optimizing Performance
How to Configure the Optimum Delay Volume

How to Configure the Optimum Delay Volume

For fast gradients over 0.5 min, the delay volume of the system can be easily reduced without changing the physical configuration of the system. The change is achieved by changing the behavior of the multisampler. The delay volume of the autosampler is due to the flow path from the injection valve through the metering device, needle, needle seat, and connecting capillaries back to the injection valve (see Table 23 on page 149). For a 1290/1260 Infinity II Multisampler, the delay volume equates approximately to 78 µL (G7167B) or 265 µL (G7167A). To make an injection, the valve switches from mainpass (main path) to bypass so that the metering device can draw the sample into the needle capillary. The injection is made when the valve switches back to mainpass (main path) and the sample is flushed onto the column. The valve remains in this position during analysis so that the autosampler is continually flushed and hence the gradient has to flow through this delay volume to reach the column. This can be eliminated by switching the injection valve from mainpass (main path) to bypass after the injection has been made and the injected sample has been flushed onto the column. In practice, this can be done a few seconds after injection by selecting the Automatic Delay Volume Reduction (ADVR) function in the autosampler setup menu. The Flush-out Factor (typically five times injection volume) ensures that enough time is allowed to flush the sample out of the injector before switching to bypass. For instance, a 1 µL injection under standard conditions effectively reduces the system delay volume by approximately 50 µL or 240 µL, depending on the installed Multisampler.
5

Optimizing Performance
How to Configure the Optimum Delay Volume

Table 23 Schematic of injection steps in the Multisampler (Single needle)

Figure 34 Valve in mainpass (main path), flow through

Figure 35 Valve in bypass, drawing sample
5

Optimizing Performance
How to Configure the Optimum Delay Volume

Table 23 Schematic of injection steps in the Multisampler (Single needle)

Figure 36 Valve in bypass, washing needle

Figure 37 Valve in mainpass (main path), sample injected
5

Optimizing Performance
How to Configure the Optimum Delay Volume

Table 23 Schematic of injection steps in the Multisampler (Single needle)

![Diagram of injection steps in the Multisampler (Single needle)](image)

Figure 38 Valve in bypass, needle backflush (Multiwash)

When using ADVR, it should be noted that the gradient has already started at the pump at the instant of injection. The question should be asked whether the gradient has already reached the autosampler, in which case a small step in the gradient results. This happens when the delay volume is less than the flush-out volume and is not necessarily a problem but may be a factor to be considered in a method transfer. With a flush-out factor of 5 and an injection volume of 10 µL, the autosampler allows 50 µL to pass through before switching to bypass which, with a delay volume of 50 µL, means that the gradient just reached the injection valve. Smaller injection volumes have no effect, but for larger injection volumes this introduces a small step in the gradient. The flow rate in use also has an impact on the decision to use ADVR or not. At 0.2 mL/min the delay time saved is 21 seconds, while at 1.0 mL/min it is 4 seconds.

The ADVR function is unlikely to be suitable for applications involving compounds that are known to cause carry-over problems. The best way to reduce the delay volume is to install the 40 µL Analytical Head and the 20 µL Loop. To get the best results, it is also recommended to order the Low Dispersion Heat Exchanger and the micro flow cell for UV. This reduces the delay volume by 60 µL or 250 µL.
5 Optimizing Performance

How to Achieve Higher Injection Volumes

The standard configuration of the Multisampler can inject a maximum volume of 20 μL (G7167B) or 100 μL (G7167A) with the standard loop capillaries. To increase the injection volume, a Multidraw Kit can be used, where extra volume is created by installing an extension capillary between the needle seat and the injection valve. Two different kits are available: the Large Volume Injection Kit (G4216-69711, providing 80 μL of extra volume) and the Multidraw Kit (G7167-68711, providing either 400 or 1400 μL of extra volume).

For higher injection volumes, larger analytical heads and sample loops can also be installed: 100 μL Analytical Head with 40 or 100 μL loops (for G7167B), and 900 μL Analytical Head with 500 or 900 μL loops (for G7167A and G7167B).

NOTE
To calculate the delay volume of the Multisampler when using the Multidraw Kit, double the volume of the extended capillary. The system delay volume due to the Multisampler will increase accordingly.

Whenever a method is scaled down from a larger column to a smaller column it is important that the method translation allows for reducing the injection volume in proportion to the volume of the column to maintain the performance of the method. This keeps the volume of the injection at the same percentage volume with respect to the column. This is particularly important if the injection solvent is stronger (more eluotropic) than the starting mobile phase and any increase will affect the separation particularly for early running peaks (low retention factor). Sometimes, it is the cause of peak distortion and the general rule is to keep the injection solvent the same or weaker than the starting gradient composition. This has a bearing on whether, or by how much, the injection volume can be increased. The user should check for signs of increased dispersion (wider or more skewed peaks and reduced peak resolution) when trying to increase the injection size. If an injection is made in a weak solvent, the volume can probably be increased further because the effect will be to concentrate the analyte on the head of the column at the start of the gradient. Conversely if the injection is in a stronger solvent than the starting mobile phase, then increased injection volume will spread the band of analyte down the column ahead of the gradient resulting in peak dispersion and loss of resolution.
How to Achieve Higher Injection Volumes

Perhaps the main consideration in determining injection volume is the diameter of the column as this has a big impact on peak dispersion. Peak heights can be higher on a narrow column than with a larger injection on a wider column because there is less peak dispersion. With 2.1 mm i.d. columns typical injection volumes might range up to 5 to 10 µL but it is very dependent on the chemistry of the analyte and mobile phase as discussed earlier. In a gradient separation, injection volumes of about 5 % of the column volume might be achieved while maintaining good resolution and peak dispersion. One way to achieve larger injections is to use a trapping column selected by a switching valve to capture and concentrate the injection before switching it, i.e. injecting it, onto an analytical column, see Figure 39 on page 153. The valve can be conveniently located in the Multicolumn Thermostat.
How to Achieve High Throughput

The injection can be optimized for speed remembering that drawing the sample too fast can reduce the reproducibility. Marginal gains are to be made here as the sample volumes used tend towards the smaller end of the range in any case. A significant portion of the injection time is the time taken with the needle movements to and from the vial and into the flush port. These manipulations can be performed while the previous separation is running. This is known as overlapped injection and it can be easily turned on from the Multisampler setup screen in the control software. The Multisampler can switch the flow to bypass after the injection has been made and then after, for example, 3 minutes into a 4 minutes run, start aspirating the next sample and preparing for injection. This can typically save 0.5 to 1 minute per injection.
How to Achieve Higher Resolution

Increased resolution in a separation will improve the qualitative and quantitative data analysis, allow more peaks to be separated or offer further scope for speeding up the separation. This section explains how resolution can be increased by examining the following points:

• Optimize selectivity
• Smaller particle-size packing
• Longer columns
• Shallower gradients, faster flow

Resolution between two peaks is described by the resolution equation:

\[R_s = \frac{1}{4} \sqrt{\frac{N}{\alpha}} \cdot \frac{(\alpha - 1)(k_2 + 1)}{k_2} \]

where

• \(R_s \) = resolution,
• \(N \) = plate count (measure of column efficiency),
• \(\alpha \) = selectivity (between two peaks),
• \(k_2 \) = retention factor of second peak (formerly called capacity factor).

The term that has the most significant effect on resolution is the selectivity, \(\alpha \). In practice, varying this term involves changing the type of stationary phase (C18, C8, phenyl, nitrile etc.), the mobile phase, and temperature to maximize the selectivity differences between the solutes to be separated. This is a substantial piece of work that is best done with an automated method development system, which allows assessment of a wide range of conditions on different columns and mobile phases in an ordered scouting protocol. This section considers how to get higher resolution with any chosen stationary and mobile phases. If an automated method development system was used in the decision on phases, it is likely that short columns were used for fast analysis in each step of the scouting.
Optimizing Performance
How to Achieve Higher Resolution

The resolution equation shows that the next most significant term is the plate count or efficiency, N, which can be optimized in several ways. N is inversely proportional to the particle size and directly proportional to the length of a column. Smaller particle size and a longer column thus result in a higher plate number. The pressure rises with the inverse square of the particle size and proportionally with the length of the column. This is the reason that the 1290 Infinity II LC System was designed to go to 1300 bar so that it can run sub-2-micron particles and column length can be increased to 100 mm or 150 mm. There are even examples of 100 mm and 150 mm columns linked to give 250 mm length. Resolution increases with the square root of N so doubling the length of the column will increase resolution by a factor of 1.4. What is achievable depends on the viscosity of the mobile phase as this relates directly to the pressure. Methanol mixtures will generate more backpressure than acetonitrile mixtures. Acetonitrile is often preferred because peak shapes are better and narrower in addition to the lower viscosity but methanol generally yields better selectivity (certainly for small molecules less than about 500 Da). The viscosity can be reduced by increasing the temperature but it should be remembered that this can change the selectivity of the separation. Experiment will show if this leads to increase or decrease in selectivity. As flow and pressure are increased, it should be remembered that frictional heating inside the column will increase and that can lead to slightly increased dispersion and possibly a small selectivity change both of which could be seen as a reduction in resolution. The latter case might be offset by reducing the temperature of the thermostat by a few degrees and again experiment will reveal the answer.

The van Deemter curve shows that the optimum flow rate through an STM column is higher than for larger particles and is fairly flat as the flow rate increases. Typical, close to optimum, flow rates for STM columns are: 2 ml/min for 4.6 mm i.d.; and 0.4 ml/min for 2.1 mm i.d. columns.
5 Optimizing Performance
How to Achieve Higher Resolution

In isocratic separations, increasing the retention factor, k, results in better resolution because the solute is retained longer. In gradient separations the retention is described by k^* in the following equation:

$$k^* = \frac{t_G}{\Delta \%B} \cdot \frac{F}{V_m} \cdot \frac{100}{S}$$

where:
- k^* = mean k value,
- t_G = time length of gradient (or segment of gradient) (min),
- F = flow (mL/min),
- V_m = column delay volume,
- $\Delta \%B$ = change in fraction of solvent B during the gradient,
- S = constant (ca. 4 – 5 for small molecules).

This shows that k and hence resolution can be increased by having a shallower gradient (2 to 5 %/min change is a guideline), a higher flow rate, and a smaller column volume. This equation also shows how to speed up an existing gradient – if the flow is doubled but the gradient time is halved, k^* remains constant, and the separation looks the same but happens in half the time. Recently published research has shown how a shorter STM column (at temperatures above 40 °C) can generate higher peak capacity than a longer STM column by virtue of running it faster. (See Petersson et al., J.Sep.Sci, 31, 2346-2357, 2008, Maximizing peak capacity and separation speed in liquid chromatography.)
How to Achieve Higher Sensitivity

The sensitivity of a separation method is linked to the choice of stationary and mobile phases as good separation with narrow peaks and a stable baseline with minimal noise are desirable. The choice of instrument configuration will have an effect and a major impact is the setup of the detector. This section considers how sensitivity is affected by:

- Pump mixer volume
- Narrower columns
- Detector flow cell
- Detector parameters

In addition, the discussion on detector parameters also mentions the related topics of selectivity and linearity.

Columns

Sensitivity is specified as a signal-to-noise ratio (S/N) and hence the need to maximize peak height and minimize baseline noise. Any reduction in peak dispersion will help to maintain peak height and so extra-column volume should be minimized by use of short, narrow internal diameter, connection capillaries and correctly installed fittings. Using smaller inner diameter columns should result in higher peak height and is therefore ideal for applications with limited sample amounts. If the same sample amount can be injected on a smaller i.d. column, then the dilution due to column diameter will be less and the sensitivity will increase. For example, decreasing the column i.d. from 4.6 mm to 2.1 mm results in a theoretical gain in peak height of 4.7 times due to the decreased dilution in the column. For a mass spectrometer detector, the lower flow rates of narrow columns can result in higher ionization efficiencies and therefore higher sensitivity.
Optimizing Performance
How to Achieve Lowest Carry Over

How to Achieve Lowest Carry Over

Carryover is measured when residual peaks from a previous active-containing injection appear in a subsequent blank solvent injection. There will be carryover between active injections, which may lead to erroneous results. The level of carryover is reported as the area of the peak in the blank solution expressed as a percentage of the area in the previous active injection. The Multisampler is optimized for lowest carryover by careful design of the flow path and use of materials in which sample adsorption is minimized. A carryover figure of 0.001% should be achievable even when a triple quadrupole mass spectrometer is the detector. Operating settings of the Multisampler allow the user to set appropriate parameters to minimize carryover in any application involving compounds liable to stick in the system. The following functions of the Multisampler can be used to minimize carryover:

- Internal needle wash
- External needle wash
- Needle seat backflush
- Injection valve cleaning

The flow path, including the inside of the needle, is continuously flushed in normal operation, providing good elimination of carryover for most situations. Automated delay volume reduction (ADVR) reduces both the delay volume and the flushing of the standard Multisampler and should not be used with analytes where carryover might be a problem.

The outside of the needle can be washed using a wash vial in a specific location or the flush port. If a wash vial is chosen, then this vial should have no septum and should contain a solvent suitable for washing the sample from the needle. The septum is not used to avoid wiping contamination off the needle on the downstream only to re-apply it on the upstroke. The needle can be dipped into the vial multiple times. This will be effective in removing a small degree of carryover, but for more effective external needle wash, use the flush port.

The flush port is located above and behind the needle seat, and in the standard hardware configuration a peristaltic pump delivers the wash solvent. It has a volume of 0.68 mL and the peristaltic pump delivers 5 mL/min, which means the flush port volume is completely refilled with fresh solvent in 7 s.
Optimizing Performance
How to Achieve Lowest Carry Over

If the flush port is selected, the user can set how long the outside of the needle is to be washed with fresh solvent. This can last from 2 – 3 s in routine situations where carryover is less of a problem, to 10 – 20 s for complete washing.

It is recommended that the external needle wash in the flush port should be standard procedure to avoid contaminating the needle seat. If the needle seat becomes contaminated, it must be back-flushed. In the standard setup, this task can be done manually by changing the flow connections, or it can be automated using the Flexible Cube (G4227A). In the Multiwash setup (G4757A), the needle seat back-flush is automated and can be performed with up to three different solvents.

The flush port and its solvent delivery pump and tubing should be regularly flushed to ensure the lowest carryover. For example, before using the system each day, prime the flush pump for three minutes with appropriate solvent.

When other measures have failed to eliminate carryover, it might be that analyte is adsorbing to the inner surfaces of the injection valve. In this case, the auto clean feature in the CDS can be activated, and the valve will make additional switching movements to clean out the flow path. If the problem compounds need a high percentage of organic phase for elution, it is recommended to switch the injection valve at the high percentage of organic phase after the last peak has eluted. It is also recommended to switch the injection valve again after the initial conditions for the mobile phase have stabilized. This ensures that the bypass groove in the rotor seal of the valve contains the gradient start conditions, which is especially important for flow rates below 0.5 mL/min. For samples where the outside of the needle cannot be cleaned sufficiently with water or alcohol from the flush pump, use wash vials with an appropriate solvent. With an injector program, several wash vials can be used for cleaning.

The optimum carry-over performance of the Multisampler is achieved after a run-in period of new instruments or after the exchange of consumable parts (like needle, needle seat and valve parts). During injections in this period, surfaces of these parts adjust to each other. After this period, we recommend back-flushing the needle seat to get the sealing areas between needle and needle seat clean. Regular preventive maintenance service is recommended as the carry-over performance of the autosampler depends on the integrity of these consumable parts.
6 Troubleshooting and Diagnostics

User Interfaces 162
Agilent Lab Advisor Software 163

This chapter gives an overview about the troubleshooting and diagnostic features and the different user interfaces.
User Interfaces

- Depending on the user interface, the available tests and the screens/reports may vary.
- Preferred tool should be Agilent Lab Advisor Software, see “Agilent Lab Advisor Software” on page 163.
- The Agilent OpenLAB ChemStation C.01.03 and above do not include any maintenance/test functions.
- Screenshots used within these procedures are based on the Agilent Lab Advisor Software.
Agilent Lab Advisor Software

The Agilent Lab Advisor Software (basic license, shipped with an Agilent LC pump) is a standalone product that can be used with or without a chromatographic data system. Agilent Lab Advisor helps to manage the lab for high-quality chromatographic results by providing a detailed system overview of all connected analytical instruments with instrument status, Early Maintenance Feedback counters (EMF), instrument configuration information, and diagnostic tests. By the push of a button, a detailed diagnostic report can be generated. Upon request, the user can send this report to Agilent for a significantly improved troubleshooting and repair process.

The Agilent Lab Advisor software is available in two versions:

- Lab Advisor Basic
- Lab Advisor Advanced

Lab Advisor Basic is included with every Agilent 1200 Infinity Series and Agilent InfinityLab LC Series instrument.

The Lab Advisor Advanced features can be unlocked by purchasing a license key, and include real-time monitoring of instrument actuals, all various instrument signals, and state machines. In addition, all diagnostic test results, calibration results, and acquired signal data can be uploaded to a shared network folder. The Review Client included in Lab Advisor Advanced allows to load and examine the uploaded data no matter on which instrument it was generated. This makes Data Sharing an ideal tool for internal support groups and users who want to track the instrument history of their analytical systems.

The optional Agilent Maintenance Wizard Add-on provides an easy-to-use, step-by-step multimedia guide for performing preventive maintenance on Agilent 1200 Infinity and Agilent InfinityLab LC Series instrument.

The tests and diagnostic features that are provided by the Agilent Lab Advisor software may differ from the descriptions in this manual. For details, refer to the Agilent Lab Advisor software help files.
7 Error Information

What Are Error Messages 166
General Error Messages 167
 Timeout 167
 Shutdown 168
 Remote Timeout 169
 Lost CAN Partner 169
 Leak Sensor Short 170
 Leak Sensor Open 171
 Compensation Sensor Open 171
 Compensation Sensor Short 172
 Fan Failed 173
 Leak 174
Sampler Error Messages 175
 Draw command aborted 175
 Sample container vessel missing 176
 Initialization failed 177
 Injection valve initialization failed 178
 Sampler alignment procedure command failed 178
 Sampler transport initialization failed 179
 Front door error 179
 Alignment procedure: needle command failed 180
 Needle hit the vessel bottom 181
 Robot drive current too high 182
 Robot drive hardware overcurrent 182
 Cleaning Procedure Failed 183
 Metering Device Initialization Failed 183
 Flush Pump Device Initialization Failed 184
 Peripheral Valve Initialization Failed 184
 Seat Back Flushing Failed 184
 Move Needle to Parkstation Failed 185
 Taking Needle from Parkstation Failed 185
 Taking sample tray from hotel position failed 185
 Transport Motor Index Missing 186
 Transport Motor Tag cannot be read 186
 Peristaltic Pump Movement Failed 187
Error Information
Agilent Lab Advisor Software

Sample Cooler/Sample Thermostat Error Messages
Sample temperature control voltage too low, check fuses and wires
Sample temperature control switched off due to condensate
Sample temperature control switched off due to overpressure
Sample temperature control sensor electronics calibration failed
Sample temperature control switched off due to supply voltage drop
Cooler condensate sensor defect
Cooler PCB is in error mode
Cooler condenser fan failed
Thermostat communication error
Heater defect
Heater in operating error
Thermostat sensor defect
Compressor has error
Sample Thermostat unknown
Thermostat fan defect

This chapter describes the meaning of error messages, and provides information on probable causes and suggested actions how to recover from error conditions.
Error messages are displayed in the user interface when an electronic, mechanical, or hydraulic (flow path) failure occurs which requires attention before the analysis can be continued (for example, repair, or exchange of consumables is necessary). In the event of such a failure, the red status indicator at the front of the module is switched on, and an entry is written into the module logbook.

If an error occurs outside a method run, other modules will not be informed about this error. If it occurs within a method run, all connected modules will get a notification, all LEDs get red and the run will be stopped. Depending on the module type, this stop is implemented differently. For example, for a pump the flow will be stopped for safety reasons. For a detector, the lamp will stay on in order to avoid equilibration time. Depending on the error type, the next run can only be started, if the error has been resolved, for example liquid from a leak has been dried. Errors for presumably single time events can be recovered by switching on the system in the user interface.

Special handling is done in case of a leak. As a leak is a potential safety issue and may have occurred at a different module from where it has been observed, a leak always causes a shutdown of all modules, even outside a method run.

In all cases, error propagation is done via the CAN bus or via an APG/ERI remote cable (see documentation for the APG/ERI interface).
General Error Messages

General error messages are generic to all Agilent series HPLC modules and may show up on other modules as well.

Timeout

Error ID: 0062

The timeout threshold was exceeded.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 The analysis was completed successfully, and the timeout function switched off the module as requested.</td>
<td>Check the logbook for the occurrence and source of a not-ready condition. Restart the analysis where required.</td>
</tr>
<tr>
<td>2 A not-ready condition was present during a sequence or multiple-injection run for a period longer than the timeout threshold.</td>
<td>Check the logbook for the occurrence and source of a not-ready condition. Restart the analysis where required.</td>
</tr>
</tbody>
</table>
Shutdown

Error ID: 0063

An external instrument has generated a shutdown signal on the remote line. The module continually monitors the remote input connectors for status signals. A LOW signal input on pin 4 of the remote connector generates the error message.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Leak detected in another module with a CAN connection to the system.</td>
<td>Fix the leak in the external instrument before restarting the module.</td>
</tr>
<tr>
<td>2 Leak detected in an external instrument with a remote connection to the system.</td>
<td>Fix the leak in the external instrument before restarting the module.</td>
</tr>
<tr>
<td>3 Shut-down in an external instrument with a remote connection to the system.</td>
<td>Check external instruments for a shut-down condition.</td>
</tr>
<tr>
<td>4 The degasser failed to generate sufficient vacuum for solvent degassing.</td>
<td>Check the vacuum degasser for an error condition. Refer to the Service Manual for the degasser or the pump that has the degasser built-in.</td>
</tr>
</tbody>
</table>
Error Information

General Error Messages

Remote Timeout

Error ID: 0070

A not-ready condition is still present on the remote input. When an analysis is started, the system expects all not-ready conditions (for example, a not-ready condition during detector balance) to switch to run conditions within one minute of starting the analysis. If a not-ready condition is still present on the remote line after one minute the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Not-ready condition in one of the instruments connected to the remote line.</td>
<td>Ensure the instrument showing the not-ready condition is installed correctly, and is set up correctly for analysis.</td>
</tr>
<tr>
<td>2 Defective remote cable.</td>
<td>Exchange the remote cable.</td>
</tr>
<tr>
<td>3 Defective components in the instrument showing the not-ready condition.</td>
<td>Check the instrument for defects (refer to the instrument's documentation).</td>
</tr>
</tbody>
</table>

Lost CAN Partner

Error ID: 0071

During an analysis, the internal synchronization or communication between one or more of the modules in the system has failed.

The system processors continually monitor the system configuration. If one or more of the modules is no longer recognized as being connected to the system, the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CAN cable disconnected.</td>
<td>• Ensure all the CAN cables are connected correctly.</td>
</tr>
<tr>
<td>2 Defective CAN cable.</td>
<td>• Ensure all CAN cables are installed correctly.</td>
</tr>
<tr>
<td>3 Defective mainboard in another module.</td>
<td>Switch off the system. Restart the system, and determine which module or modules are not recognized by the system.</td>
</tr>
</tbody>
</table>
Leak Sensor Short

Error ID: 0082

The leak sensor in the module has failed (short circuit).

The current through the leak sensor is dependent on temperature. A leak is detected when solvent cools the leak sensor, causing the leak sensor current to change within defined limits. If the current increases above the upper limit, the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Defective leak sensor.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>2 Leak sensor incorrectly routed, being pinched by a metal component.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>3 Power switch assembly defective</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>4 Cable or contact problem.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>
Error Information
General Error Messages

Leak Sensor Open

Error ID: 0083

The leak sensor in the module has failed (open circuit).

The current through the leak sensor is dependent on temperature. A leak is detected when solvent cools the leak sensor, causing the leak-sensor current to change within defined limits. If the current falls outside the lower limit, the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Leak sensor not connected to the Power Switch board.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>2. Defective leak sensor.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>3. Leak sensor incorrectly routed, being pinched by a metal component.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>4. Power switch assembly defective</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>

Compensation Sensor Open

Error ID: 0081

The ambient-compensation sensor (NTC) on the power switch board in the module has failed (open circuit).

The resistance across the temperature compensation sensor (NTC) on the power switch board is dependent on ambient temperature. The change in resistance is used by the leak circuit to compensate for ambient temperature changes. If the resistance across the sensor increases above the upper limit, the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Loose connection between the power switch board and the mainboard</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>2. Defective power switch assembly</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>
Compensation Sensor Short

Error ID: 0080

The ambient-compensation sensor (NTC) on the power switch board in the module has failed (open circuit).

The resistance across the temperature compensation sensor (NTC) on the power switch board is dependent on ambient temperature. The change in resistance is used by the leak circuit to compensate for ambient temperature changes. If the resistance across the sensor falls below the lower limit, the error message is generated.

Probable cause	Suggested actions
1. Defective power switch assembly | Please contact your Agilent service representative.
2. Loose connection between the power switch board and the mainboard | Please contact your Agilent service representative.
Error Information

General Error Messages

Fan Failed

Error ID: 0068

The fan in the autosampler module or in the Sample Cooler/Sample Thermostat has failed.

The hall sensor on the fan shaft is used by the main board to monitor the fan speed. If the fan speed falls below a certain limit for a certain length of time, the error message is generated.

This limit is given by 2 revolutions/second for longer than 5 seconds.

Depending on the module, assemblies (e.g. the lamp in the detector) are turned off to assure that the module does not overheat inside.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Fan cable disconnected.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>2 Defective fan.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>3 Defective Sample Cooler/Sample Thermostat fan</td>
<td>Replace the Sample Cooler/Sample Thermostat.</td>
</tr>
<tr>
<td>4 Defective main board.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>
Leak

Error ID: 0064

A leak was detected in the module.

The signals from the two temperature sensors (leak sensor and board-mounted temperature-compensation sensor) are used by the leak algorithm to determine whether a leak is present. When a leak occurs, the leak sensor is cooled by the solvent. This changes the resistance of the leak sensor which is sensed by the leak-sensor circuit on the mainboard.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Loose fittings.</td>
<td>Ensure all fittings are tight.</td>
</tr>
<tr>
<td>3. Leaking rotor seal or needle seat.</td>
<td>Exchange the rotor seal or seat capillary.</td>
</tr>
<tr>
<td>4. Defective metering seal.</td>
<td>• Exchange the metering seal.</td>
</tr>
<tr>
<td>5. Leaking peristaltic pump</td>
<td>• Make sure the leak sensor is thoroughly dry before restarting the autosampler.</td>
</tr>
</tbody>
</table>
Sampler Error Messages

Draw command aborted

Error ID: 25478

The robot (sample handler) failed to move correctly during injection sequence.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Missing vessel</td>
<td>Check if the sample vial is installed in the correct position, or edit the method or sequence accordingly.</td>
</tr>
<tr>
<td>2 Needle command failed</td>
<td>Check the status of the needle assembly. Perform an autoreferencing.</td>
</tr>
</tbody>
</table>

Please verify the first errors in the list. The last error message could be a subsequent error.
Sample container vessel missing

Error ID: 25471

No vial was found in the position defined in the method or sequence. When the needle carrier moves to a vial and the needle lowers into the vial, the position of the needle is monitored by an encoder behind the vial pusher. If no vial is present, the encoder detects an error and the message "missing vial" is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 No vial in the position defined in the method</td>
<td>• Install the sample vial in the correct position.</td>
</tr>
<tr>
<td></td>
<td>• Edit the method or sequence accordingly.</td>
</tr>
<tr>
<td>2 Defective needle assembly</td>
<td>Exchange the needle assembly.</td>
</tr>
<tr>
<td>3 Sample container missing or not correctly</td>
<td>Install the sample container correctly on the tray.</td>
</tr>
<tr>
<td>installed</td>
<td></td>
</tr>
</tbody>
</table>
Error Information
Sampler Error Messages

Initialization failed
Error ID: 25120
The autosampler failed to complete initialization correctly. The autosampler initialization procedure moves the robot to its reference positions in a predefined routine. During initialization, the processor monitors the position sensors and motor encoders to check for correct movement. During initialization the system also checks the status of the sample hotel and the hydraulic box. If one or more of the movements or the status information of the subparts is not read out successfully, the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
</table>
| 1 Front door not installed correctly. | • Check if the front door is installed correctly.
• Check if the magnet is in place in the front door. |
| 2 Sample handler not aligned correctly. | Do an autoreferencing. |
| 3 Mechanical obstruction of the sample handler. | Ensure unobstructed movement |
| 4 Defective sample handler motors. | Please contact your Agilent service representative. |
| 5 Loose connection between hydraulic box and adapter board | Please contact your Agilent service representative. |
| 6 Defective sample hotel electronic | Please contact your Agilent service representative. |
| 7 Defective specific main board or fusion board | Please contact your Agilent service representative. |
Injection valve initialization failed

Error ID: 25123

The autosampler failed to complete initialization correctly. The autosampler initialization procedure can recognize and move the injection valve to its reference positions in a predefined routine. During initialization, the processor monitors the position sensor, tag sensors, and actuator motor to check for correct movement. If one or more of the movements or the status information of the subparts is not read out successfully, the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Injection valve not installed correctly.</td>
<td>Check if the injection valve is installed correctly.</td>
</tr>
<tr>
<td>2 TAG and TAG reader not aligned correctly.</td>
<td>Check if the TAG or the TAG Reader are aligned correctly.</td>
</tr>
<tr>
<td>3 Electrical connection or components are defective.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>

Sampler alignment procedure command failed

Error ID: 25034

The autosampler failed to complete the alignment correctly.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mechanical obstruction of the sample handler.</td>
<td>Ensure unobstructed movement.</td>
</tr>
<tr>
<td>2 Defective sample handler motors.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>
Error Information
Sampler Error Messages

Sampler transport initialization failed

Error ID: 25121

The autosampler failed to complete initialization correctly. The autosampler initialization procedure moves the robot to its reference positions in a predefined routine. During initialization, the processor monitors the position sensors and motor encoders to check for correct movement. During initialization, the processor monitors the position sensor, tag sensors, and actuator motor to check for correct movement. If one or more of the movements or the status information of the subparts is not read out successfully, the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sample handler not aligned correctly.</td>
<td>Switch off the instrument and do an autoreferencing.</td>
</tr>
<tr>
<td>2 Mechanical obstruction of the sample handler.</td>
<td>Ensure unobstructed movement</td>
</tr>
<tr>
<td>3 Defective sample handler motors.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>

Front door error

Error ID: 25051, 25049

During initialization, the autosampler recognizes the position of the front door. If the front door is open, this error message is displayed.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Front door is not closed properly.</td>
<td>Check if the front door is closed or if the magnet is missing.</td>
</tr>
</tbody>
</table>
Sampler Error Messages

Alignment procedure: needle command failed

Error ID: 25095

During the parking or movements of the needle assembly, the status information of the subparts is not read out successfully and the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
</table>
| 1 The sample loop capillary was squeezed in the needle parkstation. | • Check if the sample loop is installed correctly.
• Do an autoreferencing afterwards (needle assembly must be installed in the needle parkstation during this procedure). |
| 2 The needle assembly was not installed correctly in the needle parkstation. | • Check if the needle assembly is installed correctly.
• Install the needle assembly on the sample handler.
• Do a reset of the sample handler.
• Do an autoreferencing (the needle assembly must be installed in the needle parkstation during this procedure).
• If this will not help: Please contact your Agilent service representative. |
| 3 Needle parkstation is loose. | Carefully tighten the needle parkstation. |
| 4 For G5668A (Bio-inert Multisampler): Ceramic part of the needle is broken. | Replace the needle assembly. |
Needle hit the vessel bottom

Error ID: 25226

The autosampler failed to complete injection sequence correctly. The autosampler can move and draw sample from the draw position and generates the error message.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sample container is not installed correctly in the pallet.</td>
<td>Check if the sample container is installed correctly.</td>
</tr>
</tbody>
</table>
| 2 Sample container definition in the CDS is not correct. | • Check if the correct sample container is selected in the CDS.
• Verify if the dimension of the sample container match the database of your CDS. |
| 3 Sample handler not aligned correctly. | • Check if the sample handler can move freely.
• Do an auto referencing (needle assembly must be installed in the needle parkstation during this procedure).
• If this will not help: Please contact your Agilent service representative. |
Error Information
Sampler Error Messages

Robot drive current too high

Error ID: 25409
The autosampler failed to complete initialization correctly. The autosampler initialization procedure can not move the motors inside of the sample handler to their reference positions in a predefined routine. During initialization, the processor monitors the position sensor and encoders to check for correct movement. If one or more of the movements or the status information of the subparts is not read out successfully, the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sample handler is blocked.</td>
<td>• Check if the sample handler can move freely.</td>
</tr>
<tr>
<td></td>
<td>• Switch off the instrument.</td>
</tr>
<tr>
<td></td>
<td>• Do an auto referencing (needle assembly must be installed in the needle parkstation during this procedure).</td>
</tr>
<tr>
<td>2 Defective sample handler motors.</td>
<td></td>
</tr>
</tbody>
</table>

Probable cause
Defective sample handler motors.

Suggested actions
Please contact your Agilent service representative.

Robot drive hardware overcurrent

Error ID: 25411
The autosampler failed to complete initialization correctly. The autosampler electronic has detected a increasing of the internal limits and has generated the error message.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Bad electronic connections</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>2 Defective mainboard/fusion board</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>
Error Information

Sampler Error Messages

Cleaning Procedure Failed

Error ID: 25400, 1-4

Cleaning procedure failed. Parameter shows what kind of cleaning procedure has failed: 1 = Wash, 2 = Prime, 3 = Autoclean, 4 = Clogged seat

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Solvent lines not installed correctly (valve block or flushpump)</td>
<td>Check status of the solvent lines. Use isopropyl alcohol for verification.</td>
</tr>
<tr>
<td>2 Clogged needle seat</td>
<td>Replace the needle seat</td>
</tr>
</tbody>
</table>

Metering Device Initialization Failed

Error ID: 25122

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hydraulic box not in place.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>2 Metering device not properly installed.</td>
<td>Check the correct positioning of RFID tag and tag reader.</td>
</tr>
</tbody>
</table>
Sampler Error Messages

Flush Pump Device Initialization Failed

Error ID: 25124

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hydraulic box not in place.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>2 Flush pump not properly installed.</td>
<td>Check the correct positioning of RFID tag and tag reader.</td>
</tr>
</tbody>
</table>

Peripheral Valve Initialization Failed

Error ID: 25125

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hydraulic box not in place.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>2 Valve not properly installed.</td>
<td>Check the correct positioning of RFID tag and tag reader.</td>
</tr>
</tbody>
</table>

Seat Back Flushing Failed

Error ID: 25119

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Clogged needle seat.</td>
<td>Replace the needle seat.</td>
</tr>
</tbody>
</table>
Error Information
Sampler Error Messages

Move Needle to Parkstation Failed
Error ID: 25106

Probable cause	Suggested actions
1 Autoreferencing values missing or outdated. | Manually install the needle into the parkstation, clear current autoreferencing values (use Clear data on Lab Advisor), power cycle the module and perform autoreferencing.

Taking Needle from Parkstation Failed
Error ID: 25105

Probable cause	Suggested actions
1 Parkstation is loose. | Carefully tighten the parkstation. Avoid overtightening, as this could damage the baseplate of the module.
2 Needle assembly is defective. | Replace the needle assembly.
3 Autoreferencing needed. | Manually install the needle into the parkstation, clear current autoreferencing values (use Clear data on Lab Advisor), power cycle the module and perform autoreferencing.

Taking sample tray from hotel position failed
Error ID: 25104

Probable cause	Suggested actions
1 Mechanical obstruction of the sample handler by reference vial holder. | Please contact your Agilent service representative.
Error Information

Sampler Error Messages

Transport Motor Index Missing

Error ID: 25235

The index of a transport motor cannot be found. The motor ID is given in the event parameter: 0=A, 1=B, 2=Z1, 3=Z2.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Defective fuse.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>2 Defective mainboard.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>

Transport Motor Tag cannot be read

Error ID: 25236

The tag data of a transport motor cannot be read. The motor ID is given in the event parameter: 0=A, 1=B, 2=Z1, 3=Z2.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 One of the sample handler cables is not properly connected.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>2 One of the sample handler cables is damaged (corroded or chipped off).</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>3 Defective mainboard.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>
Error Information
Sampler Error Messages

Peristaltic Pump Movement Failed

Error ID: 25463

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Pump tubing blocked.</td>
<td>Verify that the solvent tubing is not blocked.</td>
</tr>
<tr>
<td>2 Pump motor is defective.</td>
<td>Replace the pump motor.</td>
</tr>
<tr>
<td>3 Pump is defective.</td>
<td>Replace the peristaltic pump.</td>
</tr>
</tbody>
</table>
Sample Cooler/Sample Thermostat Error Messages

Sample temperature control voltage too low, check fuses and wires

Error ID: 30713
The compressor voltage is below the lower threshold value.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Potential hardware error</td>
<td>Please contact your Agilent service representa-tive.</td>
</tr>
</tbody>
</table>

Sample temperature control switched off due to condensate

Error ID: 30715
The cooler/thermostat was switched off due to a condensate event.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Overfilled container</td>
<td>Empty the condensate container. Verify that the open end of the tubing doesn't immerse in the liq-uid.</td>
</tr>
</tbody>
</table>
| 2 Drainage issues | • Verify the correct plumbing of the condensate drainage system.
 • Make sure that no kinks or mechanical blocks are present in the drainage system.
 • Avoid the formation of the siphoning effect.
 • Make sure that the hosting sampler is level. |
Sample temperature control switched off due to overpressure

Error ID: 30716

The pressure in the refrigerant circuit exceeded the maximum allowed level. To prevent any damage to the system, the compressor was turned off.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Overheated condenser</td>
<td>Turn off the cooler/thermostat and wait for 15 min to allow the system to cool down. Verify if there is enough space around the sampler for adequate ventilation and the cooler/thermostat is not exposed to direct sunlight.</td>
</tr>
<tr>
<td>2 Potential hardware error</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>

Sample temperature control sensor electronics calibration failed

Error ID: 30717

The system is in the error state because the calibration of the analog temperature sensor has failed.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sampler incompatibility</td>
<td>If the hosting sampler is a Vialsampler, verify its compatibility with the Sample Cooler installed. Units with the serial number DEBAT02000 or below are equipped with an analog temperature sensor that is not compatible with the Vialsampler.</td>
</tr>
<tr>
<td>2 Potential hardware error</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>
Sample temperature control switched off due to supply voltage drop

Error ID: 30718
The compressor is turned off due to an unexpected drop in the supply voltage.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Potential hardware error</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>

Cooler condensate sensor defect

Error ID: 30719
The condensate sensor of the cooler/thermostat is not working properly.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Potential hardware error</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>

Cooler PCB is in error mode

Error ID: 30275
The system is in the error state because the compressor control board has encountered an unexpected error.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Potential hardware error</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>
Error Information
Sample Cooler/Sample Thermostat Error Messages

Cooler condenser fan failed

Error ID: 30726
The condenser fan of the cooler/thermostat is not working properly.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Potential hardware error</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>

Thermostat communication error

Error ID: 30738
The system is in the error state because the communication between the sampler and the thermostat has failed.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Potential hardware error</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>

Heater defect

Error ID: 30739
The heating function of the thermostat is not working properly.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Potential hardware error</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>
Error Information
Sample Cooler/Sample Thermostat Error Messages

Heater in operating error

Error ID: 30744
The system is in the error state because the thermostat heater has encountered an unexpected error.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential hardware error</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>

Thermostat sensor defect

Error ID: 30751
One of the digital temperature sensors of the cooler/thermostat is not working properly.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential hardware error</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>

Compressor has error

Error ID: 30756
The system is in the error state because the control board of the compressor has encountered an unexpected error.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential hardware error</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>
Error Information
Sample Cooler/Sample Thermostat Error Messages

Sample Thermostat unknown
Error ID: 30768

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential hardware error</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>

Thermostat fan defect
Error ID: 30771

One of the cooling fans of the cooler/thermostat is not working properly.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential hardware error</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>
8 Test Functions and Calibration

Introduction 195
System Pressure Test 196
System Pressure Test Evaluation 198
Auto Referencing 199
Maintenance Positions 201
Change Needle Assembly 202
Change Sample Loop Capillary 203
Arm Position 203
Change Metering Device 204
Injector Steps 205
Sample Cooler Function Test 207
Sample Handler Function Test 208

This chapter describes the built in test functions.
Introduction

All tests are described based on the Agilent Lab Advisor Software B.02.06 or above. Other user interfaces may not provide any test or just a few. For details on the use of the interface refer to the interface documentation.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Comment</th>
<th>Available Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agilent Lab Advisor</td>
<td>All tests are available</td>
<td>• System Pressure test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Maintenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Drawer Detection/Auto Referencing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sample Cooler Function Test</td>
</tr>
<tr>
<td></td>
<td>Adding of pressure to chromatographic</td>
<td>• Sample Thermostat Function Test</td>
</tr>
<tr>
<td></td>
<td>signals possible</td>
<td>• Sample Handler Function Test</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agilent ChemStation</td>
<td>No tests available</td>
<td>• Drawer Detection/AutoReferencing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Temperature mainboard</td>
</tr>
<tr>
<td></td>
<td>Adding of pressure to chromatographic</td>
<td>• Pressure/Pressure ripple</td>
</tr>
<tr>
<td></td>
<td>signals possible</td>
<td></td>
</tr>
</tbody>
</table>

For details on the use of the interface refer to the interface documentation.
System Pressure Test

The test determines the leak rate of the system between pump outlet valves and a blank nut. The blank nut can be positioned at different locations in the system before the flow cell, to determine and verify the leak rate of individual modules and components. The test allows for setting the pressure at which the test is performed. The leak rate of high pressure parts is not always a linear function and therefore it is recommended to perform the test at a pressure that corresponds to the normal operating pressure of the system.

When

- In case of a suspected leak
- To verify successful execution of maintenance

Parts required

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5067-6127</td>
<td>Blank Nut SL For 1290 Infinity II Multisampler you have to use the Blank Nut SL which only fits for the special port size of the VICI valve. This Blank Nut is backward compatible and can be used for the 1260 Infinity II Multisampler as well.</td>
</tr>
</tbody>
</table>
Test Functions and Calibration
System Pressure Test

1 Run the System pressure test with the Agilent Lab Advisor (for further information see Online-Help of user interface).

![System Pressure Test – Result](image)

Figure 40 System Pressure Test – Result

![System Pressure Test – Dynamic pressure input](image)

Figure 41 System Pressure Test – Dynamic pressure input
System Pressure Test Evaluation

Test Failed

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Damaged blank nut (poorly shaped from over tightening)</td>
<td>Before investigating any other possible sources of failure make sure that the blank nut you are using is in a good condition and properly tightened.</td>
</tr>
<tr>
<td>2 Pump leakages</td>
<td>Perform the Pump Head Leak test.</td>
</tr>
<tr>
<td>3 Loose or leaky fittings</td>
<td>Tighten the fittings or replace capillaries.</td>
</tr>
<tr>
<td>4 Autosampler leakages</td>
<td>Perform the Autosampler Leak test.</td>
</tr>
<tr>
<td>5 ThermoDated Column Compartment valve leakages</td>
<td>Replace the TCC valve rotor seal.</td>
</tr>
</tbody>
</table>

NOTE

Notice the difference between *error* in the test and a *failed* result! An *error* is caused by an abnormal termination during the operation of the test, whereas a *failed* result indicates that the test result were not within the specified limits.
Auto Referencing

The multisampler auto referencing uses predefined positions on the base plate and the sample hotel to calibrate the positioning of the needle parkstation and the sample hotel. The auto referencing is required to compensate deviations in positioning the needle assembly and the sample tray. The auto referencing is required after disassembling the system or when you exchange the sample handler, the sample hotel, the needle parkstation, the needle assembly or one of the main boards. This function is implemented in the drawer detection and in the needle exchange routine.

When

After disassembling the module or an exchange of the needle assembly.

Preparations

- Workspace of the multisampler is empty
- All drawers are closed properly
- All drawers have two sample trays installed, but no sample containers
- All drawers have been properly configured
- Needle assembly is installed in the needle parkstation
1. Open the CDS of the instrument.
 A right-click into the Active Area of the Multisampler will open a menu to modify
 - drawer configuration
 - capillaries
 - Reference Vial Bar

2. Use drawer configuration and follow the software instructions.
 Auto referencing is done.

3. Click the Back button to leave the Service & Diagnosis menu.

NOTE
For auto referencing, you can alternatively use the Local Controller.
Maintenance Positions

Some maintenance procedures require the needle assembly, the sample loop flex, the metering device and the needle seat to be moved to specific positions to enable easy access to components. The maintenance functions move these assemblies into the appropriate maintenance position. In the Agilent Lab Advisor Software the maintenance positions can be selected in the Service & Diagnostics view.

When Performing maintenance on the module

1. Run the Maintenance Positions in the Service & Diagnostics View in the Agilent Lab Advisor (for further information see Online-Help of user interface).

![Figure 42 Maintenance Positions](image-url)
Change Needle Assembly

The Sample handler is positioning the needle assembly so that there is easy access for changing needle assembly or needle seat. The position is far to the left of the needle parkstation, and the current to the motors are off, so that the Z-drive of the robot can be moved while servicing the module.

NOTE

For safety reason you have to lock the needle assembly before you detach the needle from the robot. Refer to “Remove the Needle Assembly” on page 219 and “Install the Needle Assembly” on page 224.

NOTE

During normal operation the needle assembly has to be unlocked.

![Maintenance Positions](image)

Figure 43 Change Needle Assembly
Change Sample Loop Capillary

The **Change Loop** command positions the Z-drive of the robot arm far to the left of the needle park station to enable easy exchange of the sample loop cartridge.

![Figure 44 Change Sample Loop Capillary](image)

Arm Position

The home position of the multisampler ensures a better access to the workspace. When transporting the module it is highly recommended to use the **Instrument Control> Park Position** command, in order to place the Sample Handler in a position for safe transport.

![Figure 45 Park Position Button](image)

NOTE

If the transport assembly is not parked and not protected by the transport foam, the module could be damaged due to excessive shock of the shipping container during transport.
Test Functions and Calibration

Maintenance Positions

Change Metering Device

When removing the metering device is necessary (by exchanging the metering seal for instance), the metering drive needs to be moved to a position at the far back, in order to prevent seal and/or piston damage.

Figure 46 Change Metering Device
Injector Steps

Each movement of the sampling sequence can be done under manual control. This is useful during troubleshooting, where close observation of each of the sampling steps is required to confirm a specific failure mode or verify successful completion of a repair. Each injector step command actually consists of a series of individual commands that move the multisampler components to predefined positions, enabling the specific step to be done.

1 Run the **Injector Steps** in the **Service & Diagnostics** View in the Agilent Lab Advisor (for further information see Online-Help of user interface).
Test Functions and Calibration

Injector Steps

2. Select the individual step command like needle selection and needle position (for further information see Online-Help of user interface).

NOTE Follow a logical order to use the injector steps function.
Sample Cooler Function Test

The Sample Cooler Function Test can be used as a simple verification that the Sample Cooler is functioning.

After the test has been started, it begins to acquire data from the cooler’s PT1000 temperature sensor. As soon as the temperature has equilibrated (that is, the temperature does not change by more than 0.5 °C over a 10 s period) the cooler is turned on and measurement is started.

For the test to succeed, three temperature checkpoints must be reached within a specified time.

If a Sample Thermostat with heating function is available, the electrical resistance is also checked.
Sample Handler Function Test

The **Sample Handler Function Test** is designed to check that the Multisampler’s sample handler unit operates as expected. The test collects current and position signals, while the arm moves around in different directions. The collected data is then compared with built-in limits to verify whether the sample handler is defective.

The **Result** screen shows the result of the test as Passed or Failed. In the case of an error, a reason for the error, together with a comment, are displayed.

When

In case of failed auto referencing or errors related to the sample handler

Preparations

- Workspace of the multisampler is empty
- All drawers are closed properly
- All drawers have two sample trays installed, but no sample containers
- Needle assembly is installed in the needle parkstation
- Pumps are turned off

1. Run the **Sample Handler Function Test** with the Agilent Lab Advisor (for further information see Online-Help of user interface).

The test can only start once all boxes have been checked.

2. Click the Back button to leave the Service & Diagnostics menu.
9 Maintenance

Introduction to Maintenance 210
Warnings and Cautions 212
Overview of Maintenance 214
Clean the Module 215
Removal and Installation of the Front Door 216
Remove the Needle Assembly 219
Install the Needle Assembly 224
Exchange the Needle Seat 228
Replace the Rotor Seal 231
Replace the Injection Valve 237
Remove the Metering Seal 242
Install the Metering Seal 247
Replace the Peristaltic Pump Cartridge 253
Replace the Flushhead Seal 255
Remove the Sample Loop-Flex 259
Installing the Sample Loop-Flex 263
Replace the Dummy Drawer 267
Optional Configurations 267
Installing and Replacing of Drawers (Upgrade Drawer Kit) 268
Configuration of the Hotel Drawers 272
Replace the Sample Cooler/Sample Thermostat 275
Replace the Module Firmware 280

This chapter describes the maintenance of the Multisampler
Figure 47 on page 210 shows the main user accessible assemblies of the multisampler. These parts can be accessed from the front (simple repairs) and don't require to remove the multisampler from the system stack.

Figure 47 Main user accessible assemblies (standard)
9 Maintenance

Introduction to Maintenance

Figure 48 Main user accessible assemblies (multiwash)

Figure 49 Overview of drawer, sample tray and sample container
Warnings and Cautions

WARNING

Personal injury or damage to the product

Agilent is not responsible for any damages caused, in whole or in part, by improper use of the products, unauthorized alterations, adjustments or modifications to the products, failure to comply with procedures in Agilent product user guides, or use of the products in violation of applicable laws, rules or regulations.

- Use your Agilent products only in the manner described in the Agilent product user guides.

WARNING

Electrical shock

Repair work at the module can lead to personal injuries, e.g. shock hazard, when the cover is opened.

- Do not remove the cover of the module.
- Only certified persons are authorized to carry out repairs inside the module.

WARNING

Sharp metal edges

Sharp-edged parts of the equipment may cause injuries.

- To prevent personal injury, be careful when getting in contact with sharp metal areas.
WARNING
Toxic, flammable and hazardous solvents, samples and reagents
The handling of solvents, samples and reagents can hold health and safety risks.

- When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.
- The volume of substances should be reduced to the minimum required for the analysis.
- Do not operate the instrument in an explosive atmosphere.

CAUTION
Safety standards for external equipment

- If you connect external equipment to the instrument, make sure that you only use accessory units tested and approved according to the safety standards appropriate for the type of external equipment.

CAUTION
Sample degradation and contamination of the instrument
Metal parts in the flow path can interact with the bio-molecules in the sample leading to sample degradation and contamination.

- For bio-inert applications, always use dedicated bio-inert parts, which can be identified by the bio-inert symbol or other markers described in this manual.
- Do not mix bio-inert and non-inert modules or parts in a bio-inert system.
It is necessary to perform periodic inspection of this instrument to ensure its safe use. It is possible to have these periodic inspections performed by Agilent service representatives on a contractual basis. For information regarding the maintenance inspection contract, contact your Agilent representative.

The following pages describe the maintenance (simple repairs) of the module that can be carried out without opening the main cover.

Table 25 Overview of maintenance

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Typical interval (minimum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change needle/needle seat</td>
<td>30000 needle into seat movements</td>
</tr>
<tr>
<td>Change peristaltic pump cartridge</td>
<td>3000 h on time</td>
</tr>
<tr>
<td>Change rotor seal</td>
<td>30000 injections</td>
</tr>
<tr>
<td>Change metering seal</td>
<td>300000 injections</td>
</tr>
</tbody>
</table>
Maintenance

Clean the Module

To keep the module case clean, use a soft cloth slightly dampened with water, or a solution of water and mild detergent.

WARNING

Liquid dripping into the electronic compartment of your module can cause shock hazard and damage the module

- Do not use an excessively damp cloth during cleaning.
- Drain all solvent lines before opening any connections in the flow path.
Removal and Installation of the Front Door

When
If the front door is defective or a hinge is damaged.

Tools required

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat screwdriver</td>
</tr>
</tbody>
</table>

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5067-5415</td>
<td>Door Assy</td>
</tr>
<tr>
<td>OR</td>
<td>1 G7167-68718</td>
<td>Light Protection Kit</td>
</tr>
</tbody>
</table>

Preparations
Finish any pending acquisition job and return any plate on the workspace back to the hotel.

NOTE
For detailed information on position of the magnets, refer to "Magnets" on page 58

CAUTION

Magnetic fields
Magnets produce a far-reaching, strong magnetic field.
You can damage for example televisions, laptops, computer harddisks, credit cards, magnetic cards may be damaged as well.

- Keep magnets at least 25 mm away from devices and objects that could be damaged by strong magnetic fields.

WARNING

Heart pacemakers
Magnets could affect the functioning of pacemakers and implanted heart defibrillators.
A pacemaker could switch into test mode and cause illness.
A heart defibrillator may stop working.

- Bearers of heart pacemakers or implanted defibrillators must stay off at least 55 mm from the magnets.
9 Maintenance

Removal and Installation of the Front Door

1. Open the front door.
2. Press the release buttons and pull the front door out.
For the installation of the front door, insert the hinges into their guides and move the door in until the release buttons click into their final position.
Maintenance

Remove the Needle Assembly

For bio-inert modules use bio-inert parts only!

When

When the limit in the needle into seat counter in the EMF is exceeded or when needle shows indications of damage, blockage or leaks.

Tools required

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8710-0510</td>
<td>Open-end wrench 1/4 — 5/16 inch</td>
</tr>
</tbody>
</table>

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G4267-87201</td>
<td>Needle Assembly</td>
</tr>
<tr>
<td>OR</td>
<td>G4267-87210</td>
<td>Needle Assembly (slotted) for high injection volumes</td>
</tr>
<tr>
<td>1</td>
<td>G5668-87200</td>
<td>Needle Bio-Sampler (for G5668A)</td>
</tr>
</tbody>
</table>

Preparations

In order to avoid leaks, stop the pump running and remove the tubings from the solvent bottles. If available close the shutoff valves.

WARNING
Risk of injury by uncovered needle

An uncovered needle is a risk of harm to the operator.

- Do not open the safety lock of the needle assembly
- Be careful working at the z-robot.
- Wear safety goggles, when removing the needle assembly.
Toxic, flammable and hazardous solvents, samples and reagents
The handling of solvents, samples and reagents can hold health and safety risks.

✔ When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.

NOTE
It is recommended to always exchange the needle assembly and the needle seat at the same time to prevent premature leakage.

1 In the Local Controller start the maintenance mode and select Change Needle, Loop and Seat function.
 OR
 In the Agilent Lab Advisor software select Service & Diagnostics in the system screen Maintenance Positions> Change Needle, Loop and Seat, click Start and wait until the needle assembly is in maintenance position.

2 Open the front door.
9 Maintenance
Remove the Needle Assembly

3 Lock the needle in the safety position.

NOTE
During normal operation of the Multisampler the needle assembly has to be unlocked.

WARNING
Sharp needle
Uncovered needles may cause injuries

- Make sure the needle is in the safety lock position.

4 Remove the needle assembly by slightly pulling the needle cartridge.
5

Z-Robot (Z-arm coupler) without the needle assembly.

CAUTION

Damage of the loop

The loop shape may be damaged if the loop is stretched or bent too far.

- Avoid to change the loop shape.
- Do not pull or bend the loop too far.

6

The needle assembly is still connected to the loop capillary.

Loop plastic adapter
9 Maintenance
Remove the Needle Assembly

7 Remove the loop plastic adapter.

8 Use a 1/4 inch wrench to loosen the fitting of the loop capillary.

NOTE
Do not open the rear plastic clamp.

NOTE
If the plastic adapter is damaged the sample loop has to be replaced.

9 Remove the needle assembly.
Install the Needle Assembly

For bio-inert modules use bio-inert parts only!

When

When the limit in the needle into seat counter in the EMF is exceeded or when needle shows indications of damage, blockage or leaks.

Tools required

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8710-0510</td>
<td>Open-end wrench 1/4 — 5/16 inch</td>
</tr>
</tbody>
</table>

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G4267-87201</td>
<td>Needle Assembly</td>
</tr>
<tr>
<td>OR 1</td>
<td>G4267-87210</td>
<td>Needle Assembly (slotted) for high injection volumes</td>
</tr>
<tr>
<td>1</td>
<td>G5668-87200</td>
<td>Needle Bio-Sampler</td>
</tr>
<tr>
<td></td>
<td>(for G5668A)</td>
<td></td>
</tr>
</tbody>
</table>

Preparations

In order to avoid leaks, stop the pump running and remove the tubings from the solvent bottles. If available close the shutoff valves.

WARNING

Risk of injury by uncovered needle

An uncovered needle is a risk of harm to the operator.

- Do not open the safety lock of the needle assembly
- Be careful working at the z-robot.
- Wear safety goggles, when removing the needle assembly.

NOTE

It is recommended to always exchange the needle assembly and the needle seat at the same time to prevent premature leakage.
9 Maintenance
Install the Needle Assembly

1. Install the loop capillary on top of the needle cartridge (1.) and tighten the fitting hand tight (2.).

NOTE
If the sample loop is changed, we recommend changing the needle as well.

CAUTION
Blockages inside of the needle assembly union

- Do not overtighten the fitting. A quarter turn should be sufficient.

2. Use a 1/4 inch wrench to tighten the fitting of the loop capillary.
3. Install loop plastic adapter.

1.

2.

3.

4. Pinch and reinsert the needle assembly and the connected loop capillary into the z-arm coupler.

NOTE

Check the tension of the loop capillary. This must be forced and guided to the hydraulic box to prevent it from being caught by the Z-drive.

NOTE

Verify the sample loop info on the plastic adapter. A left or a right sample loop must be installed in the correct slot of the needle parkstation. For single needle, the default position is on the right.

NOTE

If the plastic adapter is damaged the sample loop has to be replaced.
Maintenance
Install the Needle Assembly

5 Close the front door.

Next Steps:

6 In the Local Controller close Change needle / seat.
 OR
 In the Agilent Lab Advisor software Change needle / loop>
 End, click End and wait until the needle assembly is in
 the needle park station.
7 Perform a pressure test.
Maintenance

Exchange the Needle Seat

For bio-inert modules use bio-inert parts only!

When

When seat is visibly damaged, blocked or leaks.

Tools required

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8710-0510</td>
<td>Open-end wrench 1/4 — 5/16 inch</td>
</tr>
<tr>
<td></td>
<td>Flat head screwdriver</td>
</tr>
</tbody>
</table>

Parts required

<table>
<thead>
<tr>
<th></th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G4267-87012</td>
<td>High Pressure Needle Seat, 0.12 mm (PEEK)</td>
</tr>
<tr>
<td>OR</td>
<td>G4267-87020</td>
<td>High Pressure Seat Assembly 0.075 mm (PEEK)</td>
</tr>
<tr>
<td>OR</td>
<td>G5668-87017</td>
<td>Bio Seat ID 0.17 (for G5668A)</td>
</tr>
</tbody>
</table>

Preparations

In order to avoid leaks, stop the pump running and remove the tubings from the solvent bottles. If available close the shutoff valves.

WARNING

Risk of injury by uncovered needle

An uncovered needle is a risk of harm to the operator.

- Do not open the safety lock of the needle assembly
- Be careful working at the z-robot.
- Wear safety goggles, when removing the needle assembly.

NOTE

Refer the Agilent 1290 Infinity II Ultra Low Dispersion Kit Technical Note (p/n 01200-90105) for further details.
9 Maintenance
Exchange the Needle Seat

1 In the Local Controller start the maintenance mode and select Change needle/seat function.
OR
In the Agilent Lab Advisor software select Service & Diagnostics in the system screen Maintenance Positions > Change Needle, click Start and wait until the needle assembly is in maintenance position.

2 Open the front door.

3 Disconnect the seat capillary from the Injection valve.

4 Slightly pull (1.) the front clip which holds the needle seat in position. Then carefully lift up (2.) the complete leak tube needle assembly from the holder.
9 Maintenance
Exchange the Needle Seat

5 Insert the new Needle seat (1.). Press it firmly in position (2.).

NOTE
Verify that the needle seat clip is locked in the needle park station.

6 Reconnect the seat capillary to the injection valve.

7 Close the front door.

Next Steps:

8 In the Local Controller close Change needle /seat.
 OR
 In the Agilent Lab Advisor software Change needle click End and wait until the needle assembly is in the needle park position.

9 Perform a pressure test.
Replace the Rotor Seal

For bio-inert modules use bio-inert parts only!

When poor injection volume reproducibility or when injection valve is leaking.

Tools required

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8710-0510</td>
<td>Open-end wrench 1/4 — 5/16 inch</td>
</tr>
<tr>
<td>8710-2394</td>
<td>Hex key 9/64 inch 15 cm long T-handle</td>
</tr>
</tbody>
</table>

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5068-0198</td>
<td>Rotor Seal 1300 bar (PEEK)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for 1290 Infinity II Injection Valve</td>
</tr>
<tr>
<td>1</td>
<td>5068-0209</td>
<td>Rotor Seal (PEEK)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for 1260 Infinity II Injection Valve and Bio-inert injection valve</td>
</tr>
<tr>
<td>1</td>
<td>5068-0229</td>
<td>Rotor Seal (PEEK)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for 3Pos/6Port Peripheral Valve Dual Needle</td>
</tr>
<tr>
<td>1</td>
<td>5068-0232</td>
<td>Rotor Seal (PEEK)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for 2Pos/8Port Injection Valve Dual Needle</td>
</tr>
<tr>
<td>1</td>
<td>0100-1851</td>
<td>Stator face, ceramic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for the bio-inert injection valve</td>
</tr>
</tbody>
</table>

CAUTION

Reduced life time of the injection valve
Component cleanliness is crucial for the life time of the injection valve.

✔ Replace the rotor seal in a clean environment.

NOTE

Please bear in mind that depending on which valve you have installed the images may slightly differ from the actual item.
9 Maintenance
Replace the Rotor Seal

1 Open the front door.

2 Remove all capillaries from the injection valve with a 1/4 inch wrench.

NOTE
Remember the correct plumbing.
Check the drawing on the side cover of the hydraulic box for correct plumbing.
3 Use a 9/64 inch hex driver to unscrew the two socket screws which hold the stator head in place.

CAUTION

Damage to the stator head
The polished sealing surface of the stator head contains six ports that access handling can easily damage.

- Avoid touching the polished surface of the stator head.
- Never place the polished surface on a hard surface.

4 Carefully remove the stator head. To ensure that the sealing surface of the stator head is not damaged, place it on its outer face.
Replace the Rotor Seal

5. Remove the rotor seal.

NOTE
Remove the rotor seal with a small tool, gently pry the rotor seal away from the drive.

Examine the rotor sealing surface for scratches and nicks.
 • If scratches are visible the rotor seal must be replaced.
 • If no scratches are visible clean all the parts with an appropriate solvent, taking care that no surfaces get scratched.

CAUTION
Damage to the rotor seal and cross-port leaks

✓ Before you replace the rotor seal, clean the stator.

✓ Inspect the stator head and swab it with the appropriate solvent. If more stringent cleaning is required, use a sonicator. Inspect the remaining valve components for contamination. Clean them as necessary.

✓ If the stator head is scratched, replace it.

6. Install new rotor seal.

NOTE
Make sure that the rotor sealing surface with its engraved flow passages is facing out. The pattern is asymmetrical to prevent improper placement.

NOTE
The Bio-inert injection valve additionally has a stator face installed.
9 Maintenance
Replace the Rotor Seal

7 Reinstall the stator head. The index pins on the drive and the stator head must engage in the corresponding holes. Insert the two socket head screws.

8 Using a 9/64 in. L-Hex wrench, tighten each screw gently until you feel resistance (approximately fingertight). Tighten each screw by 1/8 turn, and then tighten each screw again, until the stator is secured to the driver.

NOTE
Do not over-tighten the screws. The screws hold the assembly together and do not affect the sealing force. The sealing force is automatically set as the screws close the stator head against the valve body.
9 Maintenance
Replace the Rotor Seal

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Reconnect all capillaries to the proper injection valve ports with a 1/4 inch wrench</td>
</tr>
<tr>
<td>10</td>
<td>Close the front door.</td>
</tr>
<tr>
<td>11</td>
<td>Perform a pressure test.</td>
</tr>
</tbody>
</table>
Maintenance

Replace the Injection Valve

Replace the Injection Valve

For bio-inert modules use bio-inert parts only!

When

Add new injection valve or replace defective injection valve.

Tools required

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrench 9/64</td>
</tr>
</tbody>
</table>

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5067-4232</td>
<td>2pos/6port Injection Valve (VICI) 1300 bar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1300 bar (G7167B)</td>
</tr>
<tr>
<td>1</td>
<td>5067-6698</td>
<td>2ps-6pt RC Injection Valve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800 bar (G7167A)</td>
</tr>
<tr>
<td>1</td>
<td>5067-4260</td>
<td>2pos/8port Injection Valve Dual Needle 1300 bar</td>
</tr>
<tr>
<td>1</td>
<td>5067-4263</td>
<td>2pos/6port Injection Valve Bio-inert 600 bar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for bio inert solution</td>
</tr>
</tbody>
</table>

Preparations

Switch off the power of the Multisampler

NOTE

Please bear in mind that depending on which valve you have installed the images may slightly differ from the actual item.
9 Maintenance
Replace the Injection Valve

1 Disconnect the capillaries.

2 Turn the spanner nut counter clockwise until the injection valve head detaches from the hydraulic box (Do not use wrenches on the spanner nut).
3 Remove the spanner nut from the injection valve head.

4 Take the replacement injection valve head and insert it into the open actuator slot of the hydraulic box. Rotate until the unions at the base of the replacement injection valve head and the valve actuator engage.

OR

If the outside pin does not fit into the outside groove, you have to turn the valve head until you feel that the two pins snap into the grooves. Now you should feel additional resistance from the valve drive while continue turning the valve head until the pin fits into the groove.

NOTE

Check the orientation of the rear side.
Verify the correct position of the Valve TAG.
9 Maintenance
Replace the Injection Valve

5. Continue to rotate until the clocking pin in the injection valve head aligns with the notch in the housing and press the replacement injection valve head into the actuator.

6. Replace the spanner nut (1.) and tighten clockwise (2.) (Hand tighten only, do not use wrenches on the spanner nut).
9 Maintenance
Replace the Injection Valve

7 Reconnect the capillaries
Maintenance

Remove the Metering Seal

Remove the Metering Seal

For bio-inert modules use bio-inert parts only!

When

When poor injection volume reproducibility or when metering device / analytical head is leaking.

Tools required

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8710-0510</td>
<td>Open-end wrench 1/4 — 5/16 inch</td>
</tr>
<tr>
<td>8710-2392</td>
<td>4 mm Hex key</td>
</tr>
<tr>
<td>01018-23702</td>
<td>Insert tool</td>
</tr>
<tr>
<td>OR</td>
<td>Seal insert tool</td>
</tr>
<tr>
<td>G4226-43800</td>
<td>for 100 µL or 40 µL</td>
</tr>
</tbody>
</table>

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0905-1717</td>
<td>Metering Seal, 40 µL</td>
</tr>
<tr>
<td>1</td>
<td>0905-1719</td>
<td>Metering Seal, 100 µL</td>
</tr>
<tr>
<td>1</td>
<td>G5611-21503</td>
<td>Metering Seal PTFE (Bio-inert)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for bio inert solution</td>
</tr>
<tr>
<td>1</td>
<td>5067-5920</td>
<td>Piston, 40 µL, Zirconia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If previous piston is scratched (for 40 µL analytical head)</td>
</tr>
<tr>
<td>1</td>
<td>5067-5678</td>
<td>Piston, 100 µL, Zirconia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If previous piston is scratched (for 100 µL analytical head)</td>
</tr>
</tbody>
</table>
9 Maintenance
Remove the Metering Seal

1 In the Local Controller start the maintenance mode and select Change metering device function.
 OR
 In the Agilent Lab Advisor software select Service & Diagnostics in the system screen (Tools)> Maintenance Positions> Change Metering Device, click start and wait until the metering device is in maintenance position.

2 Open the front door.

3 Disconnect all capillaries from the metering device.

4 To release the bayonet lock, push (1.) and rotate (2.) the analytical head a quarter left. Then you can pull and detach the analytical head assembly from the actuator (3.).
9 Maintenance
Remove the Metering Seal

5. Remove the metering device.

6. Take the metering device. Push against the rear side of the metering device and rotate a quarter left to release the bayonet lock.

7. Now you can separate the analytical head and head body.

8. Remove the piston out of the head body.
9 **Maintenance**

Remove the Metering Seal

9 Inspect the piston for cleanliness and scratches.

- If dirty:
 Clean the piston with an appropriate solvent.
- If scratched:
 Replace the piston by a new one.

10 Take the analytical head and remove the three screws on the rear side, which holds the support ring in place. Check the support ring for any damages.
11 Carefully remove the metering seal using the steel side of the insert tool. Clean the chamber with an appropriate solvent and ensure that all particulate matter is removed.
Maintenance

Install the Metering Seal

Install the Metering Seal

For bio-inert modules use bio-inert parts only!

When

After removing the metering seal.

Tools required

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8710-0510</td>
<td>Open-end wrench 1/4 — 5/16 inch</td>
</tr>
<tr>
<td>8710-2392</td>
<td>4 mm Hex key</td>
</tr>
<tr>
<td>01018-23702</td>
<td>Insert tool</td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>G4226-43800</td>
<td>Seal insert tool</td>
</tr>
<tr>
<td></td>
<td>for 100 µL or 40 µL</td>
</tr>
<tr>
<td></td>
<td>Cleaning tissue and appropriate solvent like isopropanol or methanol</td>
</tr>
</tbody>
</table>

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0905-1717</td>
<td>Metering Seal, 40 µL</td>
</tr>
<tr>
<td>1</td>
<td>0905-1719</td>
<td>Metering Seal, 100 µL</td>
</tr>
<tr>
<td>1</td>
<td>G5611-21503</td>
<td>Metering Seal PTFE (Bio-inert)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for bio inert solution</td>
</tr>
<tr>
<td>1</td>
<td>5067-5920</td>
<td>Piston, 40 µL, Zirconia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If previous piston is scratched (for 40 µL analytical head)</td>
</tr>
<tr>
<td>1</td>
<td>5067-5678</td>
<td>Piston, 100 µL, Zirconia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If previous piston is scratched (for 100 µL analytical head)</td>
</tr>
</tbody>
</table>

Preparations

Removing the metering seal, see “Remove the Metering Seal” on page 242
9 Maintenance
Install the Metering Seal

1 Install the new metering seal using the plastic side of the insert tool. Press it firmly into position. Avoid any offset angle as it might deform the seal.

2 Reassemble the support ring.
3 **Maintenance**

Install the Metering Seal

Make sure to comply to the following order of actions:

- **Tighten the three screws finger-tight, then**
- **Tighten the screws a little at a time to keep the support ring surface parallel (important!) to the surface of the analytical head.**

4 **Use the twist and lock bayonet mechanisms to reassemble the analytical head assembly. Push the two parts together to couple the head body with the analytical head. Once the pin reaches the bottom of the slot, one or both parts are rotated so that the pin slides along the horizontal arm of the L until it reaches the serif. The spring then pushes the male connector up into the serif to keep the pin locked into place.**
5. Press the piston carefully into the housing of the head body and the seal.

6. Reinstall the complete analytical head with the actuator housing.

NOTE
For proper installation, check the correct position of the tag.
9 Maintenance
Install the Metering Seal

7 Fix the analytical head by pushing (1.) and rotating (2.) via twist and lock bayonet mechanism.

8 Reconnect the capillaries.
Maintenance
Install the Metering Seal

<table>
<thead>
<tr>
<th>Close the front door.</th>
<th>Next Steps:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 In the Local Controller exit the maintenance mode and select Change metering device function.</td>
</tr>
<tr>
<td></td>
<td>OR In Agilent Lab Advisor software system screen exit Service & Diagnostics (Tools) > Maintenance Positions > Change Metering Device click End and wait until the metering device is in Home position.</td>
</tr>
<tr>
<td></td>
<td>11 Perform a pressure test.</td>
</tr>
</tbody>
</table>
9 Maintenance
Replace the Peristaltic Pump Cartridge

Replace the Peristaltic Pump Cartridge

When Tubing blocked or broken

<table>
<thead>
<tr>
<th>Parts required</th>
<th>#</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>5065-4445</td>
<td>Peristaltic pump with Pharmed tubing (default)</td>
</tr>
<tr>
<td>OR</td>
<td>1</td>
<td>5042-8507</td>
<td>Peristaltic pump cartridge, silicone tubing</td>
</tr>
<tr>
<td>OR</td>
<td>1</td>
<td>5065-9952</td>
<td>Peristaltic pump with Chemsure tubing</td>
</tr>
</tbody>
</table>

Preparations To avoid spilling of solvents, remove the solvent lines from the bottles.

WARNING When opening capillary or tube fittings solvents may leak out.

The handling of toxic and hazardous solvents and reagents can hold health risks.

- Please observe appropriate safety procedures (for example, goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the solvent vendor, especially when toxic or hazardous solvents are used.

NOTE The peristaltic pump cartridge is a replaceable unit. The tubing inside the pump is not replaceable.

1 Open the front door.

2 Press the two clips on the front of the peristaltic pump cartridge.
Maintenance
Replace the Peristaltic Pump Cartridge

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Pull the cartridge forward off the motor shaft.</td>
</tr>
<tr>
<td>4</td>
<td>Disconnect the tubing coupler leading to the wash port and the tubing coupler coming from the solvent bottle.</td>
</tr>
<tr>
<td>5</td>
<td>Push the new cartridge onto the motor shaft until the clips click into place.</td>
</tr>
<tr>
<td>6</td>
<td>Connect the wash port tubing to the upper tubing of the new cartridge (use sand paper to get a good grip on the tubing).</td>
</tr>
<tr>
<td>7</td>
<td>Connect the inlet filter of the solvent bottle again. Use the syringe to draw enough solvent for completely filling of the peristaltic pump tubing before continuing to prime the peristaltic pump.</td>
</tr>
<tr>
<td>8</td>
<td>Close the front door.</td>
</tr>
</tbody>
</table>
9

Maintenance
 Replace the Flushhead Seal

Replace the Flushhead Seal

For bio-inert modules use bio-inert parts only!

<table>
<thead>
<tr>
<th>When</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flush head is leaking</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tools required</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8710-0510</td>
<td>Open-end wrench 1/4 — 5/16 inch</td>
</tr>
<tr>
<td></td>
<td>8710-2392</td>
<td>Hex key 4 mm 15 cm long T-handle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parts required</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5067-5918</td>
<td>Seal 500 µL</td>
</tr>
<tr>
<td></td>
<td>G5668-60494</td>
<td>Seal 500 µL Bio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for bio inert solution</td>
</tr>
</tbody>
</table>

Preparations

- Cleaning tissue
- Appropriate solvent like isopropanol or methanol

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the Local Controller start the maintenance mode and select Change metering device function. OR In the Agilent Lab Advisor software select Service & Diagnostics in the system screen (Tools)> Maintenance Positions> Change Metering Device, click start and wait until the metering device is in maintenance position.</td>
</tr>
<tr>
<td>2</td>
<td>Open the front door.</td>
</tr>
</tbody>
</table>
Maintenance
Replace the Flushhead Seal

3. Remove capillaries and valves from the flush head.

4. Press and turn the Flush Head a quarter left (bayonet fitting) and detach the metering device from the actuator.

5. Pull the flush head away from the hydraulic box.

6. Press against the rear side of flush head and turn a quarter left (bayonet fitting) and separate the flush head, head body and the piston.

NOTE
Be careful not to break the piston.
9 **Maintenance**
Replace the Flushhead Seal

7. Remove the piston from the head body.

8. Carefully remove the metering seal from the tip of the piston.

9. Reassemble the flush head and the head body (without piston).

10. Carefully insert the piston with the new metering seal into the flush head assembly.
Replace the Flushhead Seal

11 Reinstall the flush head to the actuator housing.

12 Fix the flush head.

NOTE

For proper installation, check the correct position of the tag.

13 Connect the capillaries.

14 Close the front door.
Remove the Sample Loop-Flex

For bio-inert modules use bio-inert parts only!

When
If the sample loop flex is defective or damaged.

<table>
<thead>
<tr>
<th>Tools required</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8710-0510</td>
<td>Open-end wrench 1/4 — 5/16 inch</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parts required</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4267-60300</td>
<td>Sample Loop Flex 20 µL, right (red coded)</td>
<td></td>
</tr>
<tr>
<td>G4267-60400</td>
<td>Sample Loop Flex 40 µL, right (green coded)</td>
<td></td>
</tr>
<tr>
<td>G4267-60500</td>
<td>Sample Loop Flex 100 µL, right (blue coded)</td>
<td></td>
</tr>
<tr>
<td>G7167-68500</td>
<td>Sample Loop Cartridge 500 µL right</td>
<td></td>
</tr>
<tr>
<td>G7167-68900</td>
<td>Sample Loop Cartridge 900 µL right</td>
<td></td>
</tr>
<tr>
<td>G5668-60500</td>
<td>Bio-inert Sample Loop 100 µL (for G5668A)</td>
<td></td>
</tr>
</tbody>
</table>

Further sample loops for the Dual Needle option are available, see “Sample Loops and Capillaries (Dual Needle)” on page 300.

Preparations
Finish any pending acquisition job and return any plate on the workspace back to the hotel.

WARNING
Risk of injury by uncovered needle
An uncovered needle is a risk of harm to the operator.

- Do not open the safety lock of the needle assembly
- Be careful working at the z-robot.
- Wear safety goggles, when removing the needle assembly.
Maintenance
Remove the Sample Loop-Flex

1. In the Local Controller start the maintenance mode and select **Change Needle, Loop and Seat** function.
 OR
 In the Agilent Lab Advisor software select **Service & Diagnostics** in the system screen **Maintenance Positions> Change Needle, Loop and Seat**, click **Start** and wait until the needle assembly is in maintenance position.

2. Open the front door.

3. The needle assembly is still connected to the loop capillary. Use a 1/4 inch wrench to loosen the fitting of the loop capillary connected to the analytical head.

4. Lock the needle in the safety position.

NOTE
During normal operation of the Multisampler the needle assembly has to be unlocked.
9 Maintenance
Remove the Sample Loop-Flex

CAUTION
Damage of the loop
The loop shape may be damaged if the loop is stretched or bent too far.

- Avoid to change the loop shape.
- Do not pull or bend the loop too far.

WARNING
Sharp needle
Uncovered needles may cause injuries

- Make sure the needle is in the safety lock position.

5 Remove the needle assembly by slightly pulling the needle cartridge.

6 Remove the cartridge out of its proper position. By gently tilting and pulling it out of the work space of the multisampler.
Maintenance

Remove the Sample Loop-Flex

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Remove the loop plastic adapter.</td>
</tr>
</tbody>
</table>

(1.)
(2.)
(3.)
(4.)

NOTE

Do not open the rear plastic clamp.

NOTE

If the plastic adapter is damaged the sample loop has to be replaced.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Use a 1/4 inch wrench to loosen the fitting of the loop capillary.</td>
</tr>
</tbody>
</table>

9. Remove the needle assembly.

![Diagram of the sample loop-Flex removal process]

![Diagram of using a 1/4 inch wrench to loosen the fitting of the loop capillary]

InfinityLab LC Series Multisamplers User Manual 262
Installing the Sample Loop-Flex

For bio-inert modules use bio-inert parts only!

When
If the sample loop flex is defective or damaged.

Tools required

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8710-0510</td>
<td>Open-end wrench 1/4 — 5/16 inch</td>
</tr>
</tbody>
</table>

Parts required

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4267-60300</td>
<td>Sample Loop Flex 20 µL, right (red coded)</td>
</tr>
<tr>
<td>G4267-60400</td>
<td>Sample Loop Flex 40 µL, right (green coded)</td>
</tr>
<tr>
<td>G4267-60500</td>
<td>Sample Loop Flex 100 µL, right (blue coded)</td>
</tr>
<tr>
<td>G7167-68500</td>
<td>Sample Loop Cartridge 500 µL right</td>
</tr>
<tr>
<td>G7167-68900</td>
<td>Sample Loop Cartridge 900 µL right</td>
</tr>
<tr>
<td>G5668-60500</td>
<td>Bio-inert Sample Loop 100 µL (for G5668A)</td>
</tr>
</tbody>
</table>

Further sample loops for the Dual Needle option are available, see “Sample Loops and Capillaries (Dual Needle)” on page 300.

Preparations
Finish any pending acquisition job and return any plate on the workspace back to the hotel.

WARNING
Risk of injury by uncovered needle
An uncovered needle is a risk of harm to the operator.

✓ Do not open the safety lock of the needle assembly
✓ Be careful working at the z-robot.
✓ Wear safety goggles, when removing the needle assembly.
InfinityLab LC Series Multisamplers User Manual

9

Maintenance
Installing the Sample Loop-Flex

MISMATCHING SAMPLE LOOP CONFIGURATION
Damage to the system

✓ Make sure, that the sample loop configuration matches to the hardware installed.

NOTE
If you have changed the sample loop, verify that the correct sample loop is configured in the CDS (see “Setting up the Autosampler with Agilent OpenLab CDS ChemStation Edition” on page 123).

NOTE
For details on the setup of the dual-needle system, see “Modify Capillaries” on page 135.

1 Install the loop capillary on top of the needle cartridge (1.) and tighten the fitting hand tight (2.).

CAUTION
Blockages inside of the needle assembly union

✓ Do not overtighten the fitting. A quarter turn should be sufficient.

2 Then use a 1/4 inch wrench to tighten the fitting of the loop capillary.

NOTE
If the sample loop is changed, we recommend changing the needle as well.
9 Maintenance

Installing the Sample Loop-Flex

3 Install loop plastic adapter.

4 Click the sample loop cartridge in the designated location and keep the right orientation.

NOTE
Verify the sample loop info on the plastic adapter. A left or a right sample loop must be installed in the correct slot of the needle parkstation. For single needle, the default position is on the right.

NOTE
If the plastic adapter is damaged the sample loop has to be replaced.
5 Install the shorter capillary of the sample loop cartridge to the analytical head.

6 Pinch and reinsert the needle assembly and the connected sample loop capillary into the z-arm coupler.

NOTE
Check the tension of the loop capillary. This must be forced and guided to the hydraulic box to prevent it from being caught by the Z-drive.

7 Close the front door.

8 In the Local Controller close **Change needle /seat**.
OR
In Agilent Lab Advisor software **Change needle/loop**.
Click **NEXT** and wait until the needle is in the needle park station.
Click **Back** to leave the Maintenance window.

NOTE
If you need an autoreferencing step included you must choose the change needle procedure

NOTE
If you have changed the sample loop, verify that the correct sample loop is configured in the CDS (see "Setting up the Autosampler with Agilent OpenLab CDS ChemStation Edition" on page 123).
Replace the Dummy Drawer

Optional Configurations

Table 26 Overview on optional configurations (examples for uniform types)

<table>
<thead>
<tr>
<th></th>
<th>1H</th>
<th>2H</th>
<th>3H</th>
<th>Dummy-Drawer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivery Status</td>
<td></td>
<td>G7167-60020</td>
<td>1x</td>
<td>G4267-60024</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up to 8 single height drawers</td>
<td></td>
<td>G7167-60021</td>
<td>8x</td>
<td></td>
</tr>
<tr>
<td>16 positions Shallow well-plates and MTP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Sample capacity 1536 / 6144 samples (96 Shallow Wellplates / 384 MTP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up to 4 Dual Height drawers</td>
<td></td>
<td>G7167-60020</td>
<td>4x</td>
<td></td>
</tr>
<tr>
<td>8 positions Vials (2 mL), deep well plates, MTP, Eppendorf</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Sample capacity 432 / 3072 samples (2 mL Vials/384 MTP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up to 2 Drawers Triple Height</td>
<td></td>
<td>G7167-60020</td>
<td>1x</td>
<td>G7167-60022</td>
</tr>
<tr>
<td>4 positions (2H or 2*1H option left over) Vials (6 mL), deep well plates, MTP, Eppendorf</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Sample capacity 60 / 216 / 1536 samples (6 mL Vials/2 mL Vials/384 MTP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE

Mixed configurations are possible (for example 1x3H- with 1x2H- and 3x1H-drawer).

All positions in the Sample Hotel must be filled either with dummies or drawers. The drawers must be installed from bottom to top.
9 Maintenance
Replace the Dummy Drawer

Installing and Replacing of Drawers (Upgrade Drawer Kit)

<table>
<thead>
<tr>
<th>Tools required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screwdriver</td>
<td></td>
</tr>
</tbody>
</table>

| Parts required | p/n | Description |
|----------------|--------------|
| G7167-60020 | Drawer 2H |
| G7167-60021 | Drawer 1H |
| G7167-60022 | Drawer 3H |

NOTE
Before you start the new drawer installation you have to remove the lower drawer (2H drawer = default configuration) from the Sample Hotel.

NOTE
For best cooling performance the 2H drawer must be installed in the lowest position.

NOTE
More detailed video information is available on the Agilent Information Center.

1. Open the drawer.
2. Pull the drawer completely out.
Maintenance
Replace the Dummy Drawer

3 Unlatch the drawer: Use a screwdriver to press the clamping lever lightly to the left.

4 Remove the drawer from the rail guide.

The drawer is now out of the hotel.
5 Grab in the recession below the dummy drawer front panel (1.) and lift the left side (2.).

6 Remove the dummy drawer.

NOTE
At this stage remove all other dummies that will be replaced by hotel drawers.
<table>
<thead>
<tr>
<th>Step</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Place the new drawer horizontally into the sample hotel. Check that the drawer matches the middle bracket of the sample hotel.</td>
</tr>
<tr>
<td>8</td>
<td>Push until the complete drawer locks in place.</td>
</tr>
<tr>
<td>9</td>
<td>Configure the hotel drawers in the controller software (see the Online Help of the software for details).</td>
</tr>
</tbody>
</table>

NOTE

- Take care that the clamping lever locks.
- Always fill sample hotel completely (no empty drawer slots). Otherwise the drawers can't be configured in the software.
Replace the Dummy Drawer

Configuration of the Hotel Drawers

The configuration of your drawers is necessary to detect the new drawer configuration for your CDS system. When a wrong configuration is detected there will be a mismatch in your CDS system and you are not able to use the new drawers. The new drawer configuration is active and stored after you have done the Drawer Configuration.

Configure the Hotel Drawers in the Control Software

Software required
- OpenLAB (A.02.01 or above)
- LC driver (A.02.10 or above)

Preparations
- Stop the acquisition run.
- Remove the sample containers (trays and well plates) from workspace.
- Complete the drawer installation.
- Remove the sample containers (trays and well plates) from the drawers.
- Verify that all sample trays (palettes) are installed in their drawers.
- All open drawers and dummies have to be closed and installed properly.

2. Right-click on the Multisampler GUI.
9 Maintenance
Replace the Dummy Drawer

3 Select **Modify > Drawer Configuration** in the GUI screen.

NOTE
For correct detection, it is necessary to remove all sample containers (for example 54 vial tray or well plates).

4 Follow the Setup or Change configuration screen.

5 System is ready after the robot has done Auto Referencing (see "Auto Referencing" on page 199).
Configure the Hotel Drawers in Lab Advisor

Software required Lab Advisor (B.02.05 or above)

Preparations

- Stop the acquisition run.
- Remove the sample containers (trays and well plates) from workspace.
- Complete the drawer installation.
- Remove the sample containers (trays and well plates) from the drawers.
- Verify that all sample trays (palettes) are installed in their drawers.
- All open drawers and dummies have to be closed and installed properly.

1 Start the Lab Advisor Software.
2 Connect the instrument and select Instrument Control in the system screen.
3 Switch In the Configuration menu of the Multisampler. Select Detect Drawers in the Hotel Configuration.

4 Follow the Detect Hotel Configuration screen to detect the physically available drawers.

NOTE For correct detection, it is necessary to remove all sample containers (for example 54 vial tray or well plates).

5 System is ready after the robot has done Auto Referencing (see "Auto Referencing" on page 199).
Replace the Sample Cooler/Sample Thermostat

When
If the Sample Cooler/Sample Thermostat is damaged or defective.

Tools required

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8710-0899</td>
<td>Screwdriver Pozidrive Shaft</td>
</tr>
<tr>
<td></td>
<td>(for the Sample Cooler)</td>
</tr>
<tr>
<td>5182-3466</td>
<td>Torx screwdriver T10</td>
</tr>
<tr>
<td></td>
<td>(for the Sample Thermostat)</td>
</tr>
<tr>
<td>OR</td>
<td>5023-3089 Torx key set</td>
</tr>
</tbody>
</table>

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G7167-60005</td>
<td>Sample Cooler</td>
</tr>
<tr>
<td>OR</td>
<td>G7167-60101</td>
<td>Sample Thermostat</td>
</tr>
</tbody>
</table>

WARNING

Flammable refrigerant
Formation of flammable gas-air mixtures inside the Sample Thermostat and laboratory.

- Keep open fire or sources of ignition away from the device.
- Ensure a room size of 4 m³ (1 m³ for every 8 g of R600a refrigerant inside of the Sample Thermostat).
- Ensure adequate ventilation: typical air exchange of 25 m³/h per m² of laboratory floor area.
- Keep all ventilation openings in the enclosure clear of obstructions. Do not block the openings on the circumference of the Sample Thermostat.

WARNING

Flammable refrigerant used
- When handling, installing and operating the Sample Thermostat, care should be taken to avoid damage to the refrigerant tubing or any part of the Sample Thermostat.
Maintenance

Replace the Sample Cooler/Sample Thermostat

WARNING

In the event of a damage

- Keep open fire or sources of ignition away from the device.
- Ventilate the room for several minutes.
- Do not use the Sample Thermostat any more.

WARNING

Heavy weight

The module is heavy.

- Carry the module at least with 2 people.
- Avoid back strain or injury by following all precautions for lifting heavy objects.
- Ensure that the load is as close to your body as possible.
- Ensure that you can cope with the weight of your load.

CAUTION

Routing of the condensation tubing

Proper routing of the condensation tubing is critical for correct condensate drainage.

- Do not place the sampler directly on the bench.

CAUTION

Condensate inside the cooler or thermostat

Damage to the electronics

- Unplug the power cords.
- Drain off all condensate before dismounting the sample cooler or thermostat.
- Make sure that there is no condensate left.
9 Maintenance
Replace the Sample Cooler/Sample Thermostat

1 Ensure that the power switch on the front of the module is OFF (switch stands out).

2 Disconnect the power cable from the sampler.

3 Ensure that no condensate remains inside the cooler/thermostat before proceeding forward.

NOTE
Gently tapping on the sides of the sampler can help to remove the last traces of condensate from the system.

4 Remove the condensate tubing.

NOTE
If there is still some condensate inside the cooler/thermostat, place a suitable container underneath the outlet pipe and keep tapping on the sides of the sampler until no water is coming out.

5 Remove the fixation screws on the back of Sample Cooler/Sample Thermostat.

6 Pull the cooler/thermostat halfway out, disconnect the power and the data cable and then remove the unit completely from the sampler.
9 Maintenance
Replace the Sample Cooler/Sample Thermostat

7 Slide the new cooler/thermostat halfway into the sampler and connect the power and the data cable.

CAUTION
Damage to the cables
- Do not bend or pinch the cables.
- Make sure that the Sample Cooler/Sample Thermostat fits perfectly in the sampler.

8 Slide the cooler/thermostat all the way into the sampler, making sure that the cables don't get jammed between the metal parts.

9 Fix the unit with the four screws.

10 Reconnect the condensate tubing.

NOTE
For information on proper condensate handling, see "Install the Sample Cooler/Sample Thermostat" on page 66.
9 Maintenance
Replace the Sample Cooler/Sample Thermostat

11 Connect the power cable to the power connector at the rear of the module.

CAUTION
Damage to the Sample Cooler/Sample Thermostat

- Wait at least 30 min before switching on the compressor of the cooler/thermostat.
- This allows the refrigerant and system lubrication to reach equilibrium.

12 Switch on the sampler and perform the Sample Cooler Function Test to verify the correct functioning of the new cooler/thermostat (see "Sample Cooler Function Test" on page 207).
Replace the Module Firmware

When

The installation of newer firmware might be necessary

- if a newer version solves problems of older versions or
- to keep all systems on the same (validated) revision.

The installation of older firmware might be necessary

- to keep all systems on the same (validated) revision or
- if a new module with newer firmware is added to a system or
- if third party control software requires a special version.

Tools required

Description

Agilent Lab Advisor software

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Firmware, tools and documentation from Agilent web site</td>
</tr>
</tbody>
</table>

Preparations

Read update documentation provided with the Firmware Update Tool.

To upgrade/downgrade the module's firmware carry out the following steps:

1. Download the required module firmware, the latest FW Update Tool and the documentation from the Agilent web.

2. For loading the firmware into the module follow the instructions in the documentation.

Module Specific Information

There is no specific information for this module.
10 Parts for Maintenance and Upgrade or Options

Standard Parts 282
Hotel Drawer 284
Analytical Head Assembly 40 µL 285
Analytical Head Assembly 100 µL 286
Bio Analytical Head Assembly (100 µL) (1200 bar) 287
Analytical Head Assembly 900 µL 289
Flush Head Assembly 500 µL 290
Bio Flush Head Assembly 500 µl 292
2ps 6pt Injection Valve VICI 294
2ps 6pt Injection Valve IDEX 296
2ps 6pt Injection Valve Bio-inert IDEX 297
Injection Valve with Actuator 299
Sample Loops and Capillaries (Dual Needle) 300
3Pos/6Port Peripheral Valve Dual Needle 303
2Pos/8Port Injection Valve Dual Needle 304
Needle Port Assembly 305
Door Assy 306
Accessory Kit 307
Bottles 309
Tubing Kit Sampler Standard 310
Tubing Kit Sampler Multi-Wash 312
Multi Draw Kit 313
Bio-Inert Multi-Draw Kit 314
Upgrade Kits 315
Leak System Parts 316
Sample Thermostat 317

This chapter provides information on parts material required for the module.
Standard Parts

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4267-87201</td>
<td>Needle Assembly</td>
</tr>
<tr>
<td>G4267-87210</td>
<td>Needle Assembly (slotted) for high injection volumes</td>
</tr>
<tr>
<td>G4267-87012</td>
<td>High Pressure Needle Seat, 0.12 mm (PEEK)</td>
</tr>
<tr>
<td>5068-0198</td>
<td>Rotor Seal 1300 bar (PEEK)</td>
</tr>
<tr>
<td></td>
<td>for 1290 Infinity II Injection Valve (Single Needle)</td>
</tr>
<tr>
<td>5068-0209</td>
<td>Rotor Seal (PEEK)</td>
</tr>
<tr>
<td></td>
<td>for 1260 Infinity II Injection Valve (Single Needle)</td>
</tr>
<tr>
<td>5068-0232</td>
<td>Rotor Seal (PEEK)</td>
</tr>
<tr>
<td></td>
<td>for Dual needle Injection Valve</td>
</tr>
<tr>
<td>5068-0229</td>
<td>Rotor Seal (PEEK)</td>
</tr>
<tr>
<td></td>
<td>for Dual needle Peripheral Valve</td>
</tr>
<tr>
<td>G4267-60300</td>
<td>Sample Loop Flex 20 µL, right (red coded)</td>
</tr>
<tr>
<td>G4267-60400</td>
<td>Sample Loop Flex 40 µL, right (green coded)</td>
</tr>
<tr>
<td>G4267-60500</td>
<td>Sample Loop Flex 100 µL, right (blue coded)</td>
</tr>
<tr>
<td>G7167-68500</td>
<td>Sample Loop Cartridge 500 µL right</td>
</tr>
<tr>
<td>G7167-68900</td>
<td>Sample Loop Cartridge 900 µL right</td>
</tr>
<tr>
<td>G7167-60300</td>
<td>Extension Sample Loop-Flex 500 – 900 µL Right Single Needle</td>
</tr>
<tr>
<td>G4267-40033</td>
<td>Transport Protection</td>
</tr>
</tbody>
</table>

NOTE

If you want to use the 500 µL or 900 µL Sample loop cartridge in a single needle system, you have to install a 900 µL analytical head for single needle as well.
Standard Parts Bio-Inert

For bio-inert modules use bio-inert parts only!

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G5668-87200</td>
<td>Needle Bio-Sampler (G5668A)</td>
</tr>
<tr>
<td>5068-0209</td>
<td>Rotor Seal (PEEK) (G5668A)</td>
</tr>
<tr>
<td>G5668-87017</td>
<td>Bio Seat ID 0.17 (G5668A)</td>
</tr>
<tr>
<td>G5668-60500</td>
<td>Bio-inert Sample Loop 100 µL</td>
</tr>
</tbody>
</table>
Hotel Drawer

<table>
<thead>
<tr>
<th>Item</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | G7167-60021 | Drawer 1H (including 2*G4267-60206 Sample Tray (Palette))
| | | 1 |
| 2 | G7167-60020 | Drawer 2H (including 2*G4267-60205 Sample Tray (Palette))
| | | 1 |
| 3 | G7167-60022 | Drawer 3H (including 2*G4267-60205 Sample Tray (Palette))
| | | 1 |
| | G4267-60024 | Dummy Drawer (not shown) |

1 Note: This partnumber should only be used for repairs. For increasing the capacity in the Sample Hotel please order a pair of drawers via ELSA http://wadnts02.germany.agilent.com/csc/tools/web_elsa/elsa.htm.
Parts for Maintenance and Upgrade or Options

Analytical Head Assembly 40 µL

Analytical Head Assembly 40 µL

<table>
<thead>
<tr>
<th>Item</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G4267-60042</td>
<td>Analytical Head, 40 µL</td>
</tr>
<tr>
<td>2</td>
<td>G4267-60423</td>
<td>Head Assembly, 40 µL</td>
</tr>
<tr>
<td>3</td>
<td>0905-1717</td>
<td>Metering Seal, 40 µL</td>
</tr>
<tr>
<td>4</td>
<td>G4267-60422</td>
<td>Seal Support Assembly, 40 µL</td>
</tr>
<tr>
<td>5</td>
<td>0515-4384</td>
<td>Screw</td>
</tr>
<tr>
<td>6</td>
<td>G4267-60432</td>
<td>Spring Adapter Assembly</td>
</tr>
<tr>
<td></td>
<td>5067-5920</td>
<td>Piston, 40 µL, Zirconia</td>
</tr>
<tr>
<td></td>
<td>5043-1000</td>
<td>O-Ring (not shown)</td>
</tr>
<tr>
<td></td>
<td>5500-1159</td>
<td>Capillary ST 0.17 mmx100 mm SX/S-2.3 Capillary from the metering device to the injection valve (not shown)</td>
</tr>
</tbody>
</table>

Figure 51 Analytical head assembly, 40 µL
Parts for Maintenance and Upgrade or Options

Analytical Head Assembly 100 µL

Figure 52 Analytical head assembly, 100 µL

<table>
<thead>
<tr>
<th>Item</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G4267-60433</td>
<td>Analytical Head, 100 µL for G7167A, G7167B</td>
</tr>
<tr>
<td>2</td>
<td>0905-1719</td>
<td>Metering Seal, 100 µL</td>
</tr>
<tr>
<td>3</td>
<td>G4267-60434</td>
<td>Seal Support Assembly, 100 µL</td>
</tr>
<tr>
<td>4</td>
<td>0515-1052</td>
<td>Screw, ST, M3x0.5, Hex 2.5 mm</td>
</tr>
<tr>
<td>5</td>
<td>G4267-60432</td>
<td>Spring Adapter Assembly</td>
</tr>
<tr>
<td>6</td>
<td>5067-5678</td>
<td>Piston, 100 µL, Zirconia</td>
</tr>
<tr>
<td></td>
<td>5043-1000</td>
<td>O-Ring (not shown)</td>
</tr>
<tr>
<td></td>
<td>5500-1159</td>
<td>Capillary ST 0.17 mmx100 mm SX/S:2.3 Capillary from the metering device to the injection valve (not shown)</td>
</tr>
</tbody>
</table>
Parts for Maintenance and Upgrade or Options

Bio Analytical Head Assembly (100 µL) (1200 bar)

For bio-inert modules use bio-inert parts only!

<table>
<thead>
<tr>
<th>Item</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G5668-60433</td>
<td>Bio Analytical Head 100 µL for G5668A</td>
</tr>
<tr>
<td>2</td>
<td>G5611-21503</td>
<td>Metering Seal PTFE (Bio-inert)</td>
</tr>
<tr>
<td>3</td>
<td>G4267-60434</td>
<td>Seal Support Assembly, 100 µL</td>
</tr>
<tr>
<td>4</td>
<td>0515-1052</td>
<td>Screw, ST, M3x0.5, Hex 2.5 mm</td>
</tr>
<tr>
<td>5</td>
<td>G4267-60432</td>
<td>Spring Adapter Assembly</td>
</tr>
<tr>
<td>6</td>
<td>5067-5678</td>
<td>Piston, 100 µL, Zirconia</td>
</tr>
</tbody>
</table>

Capillary from the metering device to the injection valve (not shown)
Parts for Maintenance and Upgrade or Options
Bio Analytical Head Assembly (100 µL) (1200 bar)

Figure 53 Analytical head assembly, 100 µL
Analytical Head Assembly 900 µL

<table>
<thead>
<tr>
<th>Item</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G4267-60046</td>
<td>Analytical head, 900 µL, 400 bar</td>
</tr>
<tr>
<td>2</td>
<td>G4267-60461</td>
<td>Head Assembly, 900 µL</td>
</tr>
<tr>
<td>3</td>
<td>0905-1294</td>
<td>Metering Seal, 900 µL</td>
</tr>
<tr>
<td>4</td>
<td>G4267-60463</td>
<td>Seal Support Assembly, 900 µL</td>
</tr>
<tr>
<td>5</td>
<td>SCREW-SKT</td>
<td>SCREW-SKT HD CAP M2.5 X 0.45 10MM LG (not available)</td>
</tr>
<tr>
<td>6</td>
<td>G4267-60432</td>
<td>Spring Adapter Assembly</td>
</tr>
<tr>
<td>5043</td>
<td>G4267-60462</td>
<td>Piston, 900 µL, Sapphire</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>O-Ring (not shown)</td>
</tr>
<tr>
<td>5500</td>
<td>1159</td>
<td>Capillary ST 0.17 mmx100 mm SX/S-2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Capillary from the metering device to the injection valve (not shown)</td>
</tr>
</tbody>
</table>
Parts for Maintenance and Upgrade or Options

Flush Head Assembly 500 µL

Flush Head Assembly 500 µL

<table>
<thead>
<tr>
<th>Item</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G4267-60491</td>
<td>Flush Head Assembly, 500 µL</td>
</tr>
<tr>
<td>2</td>
<td>5023-2473</td>
<td>Sealing Plate 500 µL</td>
</tr>
<tr>
<td>3</td>
<td>G4267-60482</td>
<td>Cylinder Assembly, 500 µL</td>
</tr>
<tr>
<td>4</td>
<td>5067-5918</td>
<td>Seal 500 µL</td>
</tr>
<tr>
<td>5</td>
<td>0515-5167</td>
<td>Screw</td>
</tr>
<tr>
<td>6</td>
<td>1410-1881</td>
<td>Bearing-Sleeve 8 mm-ID 10 mm-OD 10 mm-LG PI</td>
</tr>
<tr>
<td>7</td>
<td>G4267-60432</td>
<td>Spring Adapter Assembly</td>
</tr>
<tr>
<td>8</td>
<td>5067-5919</td>
<td>Piston Assembly 500 µL</td>
</tr>
<tr>
<td>9</td>
<td>G4267-60451</td>
<td>Pump Valve IN</td>
</tr>
<tr>
<td>10</td>
<td>G4267-60452</td>
<td>Pump Valve Out</td>
</tr>
<tr>
<td>11</td>
<td>5043-1000</td>
<td>O-Ring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(not shown)</td>
</tr>
<tr>
<td>5500-1167</td>
<td>Capillary ST 0.17 mm x 250 mm SL-SL</td>
<td>Capillary from the flush head to the injection valve (not shown)</td>
</tr>
</tbody>
</table>
10 Parts for Maintenance and Upgrade or Options
Flush Head Assembly 500 µL

Figure 54 Flush head assembly, 500 µL
Parts for Maintenance and Upgrade or Options

For bio-inert modules use bio-inert parts only!

Bio Flush Head Assembly 500 µl

<table>
<thead>
<tr>
<th>Item</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G5668-60491</td>
<td>Flush Head Bio Assembly, 500 µL</td>
</tr>
<tr>
<td>2</td>
<td>5023-2473</td>
<td>Sealing Plate 500 µL</td>
</tr>
<tr>
<td>3</td>
<td>G4267-60482</td>
<td>Cylinder Assembly, 500 µL</td>
</tr>
<tr>
<td>4</td>
<td>G5668-60494</td>
<td>Seal 500 µL Bio</td>
</tr>
<tr>
<td>5</td>
<td>0515-5167</td>
<td>Screw</td>
</tr>
<tr>
<td>6</td>
<td>1410-1881</td>
<td>Bearing-Sleeve 8 mm-ID 10 mm-OD 10 mm-LG Pl</td>
</tr>
<tr>
<td>7</td>
<td>G4267-60432</td>
<td>Spring Adapter Assembly</td>
</tr>
<tr>
<td>8</td>
<td>5067-5919</td>
<td>Piston Assembly 500 µL</td>
</tr>
<tr>
<td>9</td>
<td>G5668-60492</td>
<td>Pump Valve IN</td>
</tr>
<tr>
<td>10</td>
<td>G5668-60493</td>
<td>Pump Valve Out</td>
</tr>
</tbody>
</table>
Parts for Maintenance and Upgrade or Options
Bio Flush Head Assembly 500 µl

Figure 55 Flush head assembly, 500 µL
Parts for Maintenance and Upgrade or Options

2ps 6pt Injection Valve VICI

<table>
<thead>
<tr>
<th>Item</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5067-4232</td>
<td>2pos/6port Injection Valve (VICI) 1300 bar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1300 bar (G7167B)</td>
</tr>
<tr>
<td>2</td>
<td>5068-0210</td>
<td>Stator screws</td>
</tr>
<tr>
<td>3</td>
<td>5068-0197</td>
<td>Stator head</td>
</tr>
<tr>
<td>3</td>
<td>5068-0198</td>
<td>Rotor Seal 1300 bar (PEEK)</td>
</tr>
<tr>
<td>5500-1159</td>
<td>Capillary ST 0.17x100 SX/S-2.3</td>
<td>Metering Device to Injection Valve</td>
</tr>
<tr>
<td>5067-4650</td>
<td>Capillary ST 0.12 mm x 150 mm SL/SX</td>
<td>Pump to sampler</td>
</tr>
<tr>
<td>5500-1157</td>
<td>Capillary ST, 0.12 mm x 500 mm SL/S</td>
<td>Sampler to column compartment</td>
</tr>
<tr>
<td>5067-6127</td>
<td>Blank Nut SL</td>
<td></td>
</tr>
</tbody>
</table>

NOTE

For the VICI Valve SL, SX, or SI fittings are mandatory.
Parts for Maintenance and Upgrade or Options
2ps 6pt Injection Valve VICI

Figure 56 Injection valve assembly (VICI)
Parts for Maintenance and Upgrade or Options
2ps 6pt Injection Valve IDEX

2ps 6pt Injection Valve IDEX

<table>
<thead>
<tr>
<th>Item</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5067-6698</td>
<td>2ps-6pt RC Injection Valve</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1535-4045</td>
<td>Bearing ring</td>
</tr>
<tr>
<td>2</td>
<td>1535-4857</td>
<td>Stator screws</td>
</tr>
<tr>
<td>3</td>
<td>5068-0120</td>
<td>Stator ring</td>
</tr>
<tr>
<td>4</td>
<td>5068-0208</td>
<td>Stator head</td>
</tr>
<tr>
<td>5</td>
<td>5068-0209</td>
<td>Rotor Seal (PEEK)</td>
</tr>
</tbody>
</table>

Figure 57 Injection valve assembly (IDEX)
Parts for Maintenance and Upgrade or Options

2ps 6pt Injection Valve Bio-inert IDEX

For bio-inert modules use bio-inert parts only!

<table>
<thead>
<tr>
<th>Item</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1535-4857</td>
<td>Stator screws</td>
</tr>
<tr>
<td>2</td>
<td>5068-0060</td>
<td>Bio-inert stator head</td>
</tr>
<tr>
<td></td>
<td>0100-1851</td>
<td>Stator face, ceramic</td>
</tr>
<tr>
<td>3</td>
<td>5068-0120</td>
<td>Stator ring</td>
</tr>
<tr>
<td>4</td>
<td>5068-0209</td>
<td>Rotor Seal (PEEK)</td>
</tr>
<tr>
<td>5</td>
<td>1535-4045</td>
<td>Bearing ring</td>
</tr>
</tbody>
</table>
Parts for Maintenance and Upgrade or Options
2ps 6pt Injection Valve Bio-inert IDEX

Figure 58 Injection valve assembly (IDEX)
Injection Valve with Actuator

<table>
<thead>
<tr>
<th>Item</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5067-4232</td>
<td>2pos/6port Injection Valve (VICI) 1300 bar (G7167B)</td>
</tr>
<tr>
<td>OR</td>
<td>5067-6698</td>
<td>2ps-6pt RC Injection Valve</td>
</tr>
<tr>
<td>2</td>
<td>5043-0291</td>
<td>Lock Nut</td>
</tr>
<tr>
<td>3</td>
<td>5188-8030</td>
<td>Tag Reader</td>
</tr>
<tr>
<td>4</td>
<td>5067-4162</td>
<td>Direct-Actuator-50 Assembly</td>
</tr>
</tbody>
</table>

Figure 59 Injection valve with actuator
NOTE

Important for precision and avoiding of retention time shifts: only these sample loops must be used for the dual needle option.
Parts for Maintenance and Upgrade or Options

Sample Loops and Capillaries (Dual Needle)

NOTE

It is mandatory that the configuration of the dual needle system, especially sample loops, must match to the installed hardware to avoid damage to the system.

Dual needle Sample Loops right

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4267-60311</td>
<td>Sample Loop 20 µL right Dual needle</td>
</tr>
<tr>
<td>G4267-60411</td>
<td>Sample Loop 40 µL right Dual needle</td>
</tr>
<tr>
<td>G4267-60511</td>
<td>Sample Loop 100 µL right Dual needle</td>
</tr>
<tr>
<td>G7167-68511</td>
<td>Sample Loop 500 µL right Dual needle</td>
</tr>
<tr>
<td>G7167-68911</td>
<td>Sample Loop 900 µL right Dual needle</td>
</tr>
<tr>
<td>G7167-60311</td>
<td>Extension Sample Loop-Flex 500 – 900 µL Right Dual Needle</td>
</tr>
</tbody>
</table>

Dual needle Sample Loops left

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4267-60301</td>
<td>Sample loop 20 µL left Dual needle</td>
</tr>
<tr>
<td>G4267-60401</td>
<td>Sample loop 40 µL left Dual needle</td>
</tr>
<tr>
<td>G4267-60501</td>
<td>Sample loop 100 µL left Dual needle</td>
</tr>
<tr>
<td>G7167-68501</td>
<td>Sample Loop 500 µL left Dual needle</td>
</tr>
<tr>
<td>G7167-68901</td>
<td>Sample Loop 900 µL left Dual needle</td>
</tr>
<tr>
<td>G7167-60301</td>
<td>Extension Sample Loop-Flex 500 – 900 µL Left Dual Needle</td>
</tr>
</tbody>
</table>
Parts for Maintenance and Upgrade or Options

Sample Loops and Capillaries (Dual Needle)

Capillaries for the Dual Needle Option

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5500-1225</td>
<td>Capillary ST 0.12 mm x 180 mm SL-SL Port 4 Peripheral Valve/Port 8 Injection Valve</td>
</tr>
<tr>
<td>5500-1226</td>
<td>Capillary ST 0.17 mm x 180 mm SL-SL Port 2 Injection Valve/Port 1 Peripheral Valve</td>
</tr>
<tr>
<td>5500-1227</td>
<td>Capillary ST 0.17 mm x 150 mm SL-SL Port 3 Peripheral Valve/Metering Device bottom</td>
</tr>
<tr>
<td>5500-1228</td>
<td>Capillary ST 0.3 mm x 80 mm SL-SL Metering Device Top/Port 6 Peripheral Valve</td>
</tr>
<tr>
<td>5500-1229</td>
<td>Capillary ST 0.3 mm x 180 mm SL-SL Port 4 Injection Valve/Port 5 Peripheral Valve</td>
</tr>
<tr>
<td>5500-1238</td>
<td>Capillary ST 0.12 mm x 105 mm SL-SL</td>
</tr>
</tbody>
</table>
10 Parts for Maintenance and Upgrade or Options
3Pos/6Port Peripheral Valve Dual Needle

3Pos/6Port Peripheral Valve Dual Needle

Figure 61 Peripheral valve (dual needle)

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5067-4256</td>
<td>3pos/6port Peripheral Valve DN 1300 bar</td>
</tr>
<tr>
<td>5068-0229</td>
<td>Rotor Seal (PEEK)</td>
</tr>
<tr>
<td>5068-0197</td>
<td>Stator head</td>
</tr>
</tbody>
</table>
2Pos/8Port Injection Valve Dual Needle

<table>
<thead>
<tr>
<th>Item</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5067-4260</td>
<td>2pos/8port Injection Valve Dual Needle 1300 bar</td>
</tr>
<tr>
<td>1</td>
<td>5068-0231</td>
<td>Stator</td>
</tr>
<tr>
<td>2</td>
<td>5068-0232</td>
<td>Rotor Seal (PEEK)</td>
</tr>
</tbody>
</table>

Figure 62 Injection valve (dual needle)
Needle Port Assembly

<table>
<thead>
<tr>
<th>Item</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G4267-60044</td>
<td>Needle Port Assembly Station</td>
</tr>
<tr>
<td>2</td>
<td>G4267-40045</td>
<td>Needle port Adapter</td>
</tr>
</tbody>
</table>

Figure 63 Needle port assembly
Parts for Maintenance and Upgrade or Options

Door Assy

The following table lists the parts required for maintenance and upgrade or options for the Door Assy:

<table>
<thead>
<tr>
<th>Item</th>
<th>#</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>5067-5415</td>
<td>Door Assy</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5021-1879</td>
<td>Permanent Magnet</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td>Pressure Spring (not available)</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>5067-5412</td>
<td>Hinge for Infinity II Instrument Doors</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>G7167-68718</td>
<td>Light Protection Kit (not shown)</td>
</tr>
</tbody>
</table>

![Door Assy Diagram](image)

Figure 64 Door assy
Accessory Kit

<table>
<thead>
<tr>
<th>Item</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G4267-68705</td>
<td>Accessory Kit (for G7167B)</td>
</tr>
<tr>
<td></td>
<td>G7167-68715</td>
<td>Accessory Kit (for G7167A)</td>
</tr>
<tr>
<td></td>
<td>G5668-68705</td>
<td>Accessory Kit Bio-inert Multisampler (for G5668A)</td>
</tr>
<tr>
<td>1</td>
<td>G4220-60007</td>
<td>Bottle Head Assembly (not included in the accessory kit)</td>
</tr>
<tr>
<td>2</td>
<td>S063-6527</td>
<td>Tubing, Silicon Rubber, 1.2 m, ID/OD 6/9 mm</td>
</tr>
<tr>
<td>3</td>
<td>S500-1157</td>
<td>Capillary ST, 0.12 mm x 500 mm SL/S (for G7167B)</td>
</tr>
<tr>
<td>OR</td>
<td>S500-1246</td>
<td>Capillary ST 0.17 mm x 500 mm SI/SI (for G7167A)</td>
</tr>
<tr>
<td>OR</td>
<td>G5667-81005</td>
<td>Capillary PK/ST 0.17 mm x 500 mm RLO/RLO (Bio-inert) (for G5668A)</td>
</tr>
<tr>
<td>4</td>
<td>S043-1013</td>
<td>Tubing Clip</td>
</tr>
<tr>
<td>5</td>
<td>S181-1519</td>
<td>CAN cable, Agilent module to module, 1 m</td>
</tr>
<tr>
<td></td>
<td>S067-5967</td>
<td>Tubing Clip Tube Connector</td>
</tr>
<tr>
<td></td>
<td>0100-1846</td>
<td>UNION-TEFZEL</td>
</tr>
<tr>
<td></td>
<td>S182-0716</td>
<td>Screw Cap Vial, 2 mL, amber glass, write-on spot, 100/pk</td>
</tr>
<tr>
<td></td>
<td>S190-7024</td>
<td>Screw Cap, PTFE/silicone, 100/pk</td>
</tr>
</tbody>
</table>
10 Parts for Maintenance and Upgrade or Options
Accessory Kit

![Accessory Kit](image)

Figure 65 Accessory kit (standard)

Tools

<table>
<thead>
<tr>
<th>Item</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0100-1710</td>
<td>Mounting Tool for Tubing Connections</td>
</tr>
<tr>
<td>2</td>
<td>5023-2533</td>
<td>Mounting tool</td>
</tr>
</tbody>
</table>

Tubing Connector Leak Kit (5067-6137)

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5067-6137</td>
<td>Tubing Connector Leak Kit</td>
</tr>
</tbody>
</table>

![Tubing Connector Leak Kit](image)

Figure 66 Tubing connector Leak Kit
Bottles

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9301-6524</td>
<td>Solvent bottle, clear, 1000 mL</td>
</tr>
<tr>
<td>9301-6528</td>
<td>Solvent bottle, clear, 1000 mL with cap</td>
</tr>
<tr>
<td>9301-6342</td>
<td>Solvent bottle, clear 2 L</td>
</tr>
<tr>
<td>9301-6341</td>
<td>Solvent bottle, amber 2 L</td>
</tr>
</tbody>
</table>
Tubing Kit Sampler Standard

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4267-60061</td>
<td>Tubing-Kit-Sampler-Standard contains:</td>
</tr>
<tr>
<td>0890-1760</td>
<td>Tubing Flexible 1 ea / 1 meter</td>
</tr>
<tr>
<td>5042-6422</td>
<td>Tubing Connector, PP</td>
</tr>
<tr>
<td>0100-1708</td>
<td>Nut 1/8 PPS</td>
</tr>
<tr>
<td>0100-1700</td>
<td>FERRULE-AY-18IN</td>
</tr>
<tr>
<td>5500-1155</td>
<td>Tube Connector, 90 degree, ID 6.4</td>
</tr>
<tr>
<td>5042-9917</td>
<td>Flex Tubing</td>
</tr>
<tr>
<td>5043-1394</td>
<td>Ferrule</td>
</tr>
<tr>
<td>5043-1395</td>
<td>Nut</td>
</tr>
<tr>
<td>5043-1377</td>
<td>FEP Tubing OD 0.0625 in x ID 0.02 in</td>
</tr>
</tbody>
</table>

NOTE

The components of the kit are not orderable separately.

Accessories not included in the kit, orderable separately:

<table>
<thead>
<tr>
<th>Item</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5042-9974</td>
<td>Tubing, PE, 1.5 m</td>
</tr>
<tr>
<td>2</td>
<td>0100-1846</td>
<td>UNION-TEFZEL</td>
</tr>
<tr>
<td>3</td>
<td>5067-5967</td>
<td>Tubing Clip Tube Connector</td>
</tr>
</tbody>
</table>
Parts for Maintenance and Upgrade or Options

Tubing Kit Sampler Standard

Figure 67 Tubing kit sampler standard
Tubing Kit Sampler Multi-Wash

<table>
<thead>
<tr>
<th>Item</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G4267-60081</td>
<td>Tubing-Kit-Sampler-Multi-Wash</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contains:</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Flex-Tubing</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Flex-Tubing with tube connector 90°</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>FEP Tubing OD 0.0625 with Ferrule/Nut for washport</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>FEP Tubing OD 0.0625 with Ferrule/Nut for flushpump</td>
</tr>
</tbody>
</table>

![Figure 68 Tubing kit sampler multi-wash](image)
At the moment, multidraw is only possible with the Standard Multisampler.

<table>
<thead>
<tr>
<th>Item</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G7167-68711</td>
<td>Multidraw Kit for InfinityLab Sampler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contains:</td>
</tr>
<tr>
<td>1</td>
<td>0100-0900</td>
<td>Union</td>
</tr>
<tr>
<td>2</td>
<td>G1313-87307</td>
<td>Seat Capillary, ST, 500 µL, ID 0.5 mm</td>
</tr>
<tr>
<td>3</td>
<td>G1313-87308</td>
<td>Seat Capillary, ST, 1500 µL, ID 0.94 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4216-68711</td>
<td>Large Volume Injection Kit for 1290 Infinity II Samplers</td>
</tr>
<tr>
<td></td>
<td>Contains:</td>
</tr>
<tr>
<td></td>
<td>Extension Seat Capillary, 80 µL, 0.5 mm ID (0.9 mm OD)</td>
</tr>
</tbody>
</table>
Bio-Inert Multi-Draw Kit

Multidraw upgrade kit (Bio-inert) (G5667-68711) contains:

For bio-inert modules use bio-inert parts only!

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5067-4741</td>
<td>ZDV union (Bio-inert)</td>
</tr>
<tr>
<td>0101-1234</td>
<td>Sample loop 2 mL</td>
</tr>
<tr>
<td>0101-1236</td>
<td>Sample loop 500 µL</td>
</tr>
</tbody>
</table>
Upgrade Kits

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4757A</td>
<td>Multi-wash upgrade kit</td>
</tr>
<tr>
<td>G4758A</td>
<td>G71767A Dual-needle upgrade kit</td>
</tr>
<tr>
<td>G4759A</td>
<td>G71767B Dual-needle upgrade kit</td>
</tr>
</tbody>
</table>

NOTE

For instructions on how to install the Upgrade Kits, please refer to the respective Installation Notes:

- Agilent Infinity II Series Multi-wash Upgrade Kit Installation Note (G7167-90210)
- Dual-Needle Infinity II Upgrade Kit Installation Note (G7167-90220)
Parts for Maintenance and Upgrade or Options

Leak System Parts

<table>
<thead>
<tr>
<th>Item</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G4267-68708</td>
<td>Drain management contains:</td>
</tr>
<tr>
<td>2</td>
<td>G4267-40013</td>
<td>Leak Plane</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Ref Vial Holder (not orderable as one part)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wash Port Assembly (not orderable as one part)</td>
</tr>
<tr>
<td>5043-1357</td>
<td>Seal silicone rubber (Washport; not shown)</td>
<td></td>
</tr>
<tr>
<td>G4267-60060</td>
<td>Blind seat (not shown)</td>
<td></td>
</tr>
<tr>
<td>5042-9974</td>
<td>Tubing, PE, 1.5 m (not shown)</td>
<td></td>
</tr>
</tbody>
</table>

![Figure 69 Drain management kit](image-url)

InfinityLab LC Series Multisamplers User Manual
Sample Thermostat

InfinityLab Sample Thermostat Upgrade Kit (G4761A) contains:

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G7167-60101</td>
<td>Sample Thermostat</td>
</tr>
<tr>
<td>5067-6208</td>
<td>Condensate Drainage Kit</td>
</tr>
<tr>
<td></td>
<td>(not shown)</td>
</tr>
</tbody>
</table>

Figure 70 Sample Thermostat

NOTE The Sample Thermostat contains flammable refrigerant R600a. Please check further details for installation.
11 Identifying Cables

Cable Overview 319
Analog Cables 321
Remote Cables 323
CAN/LAN Cables 327
Agilent Module to PC 328
USB 329

This chapter provides information on cables used with the modules.
Identifying Cables

Cable Overview

NOTE

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

<table>
<thead>
<tr>
<th>Analog cables</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>35900-60750</td>
<td>Agilent 35900A A/D converter</td>
</tr>
<tr>
<td>01046-60105</td>
<td>Analog cable (BNC to general purpose, spade lugs)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Remote cables</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5188-8029</td>
<td>ERI to general purpose</td>
</tr>
<tr>
<td>5188-8044</td>
<td>Remote Cable ERI – ERI</td>
</tr>
<tr>
<td>5188-8045</td>
<td>Remote Cable APG – ERI</td>
</tr>
<tr>
<td>5188-8059</td>
<td>ERI-Extension-Cable 1.2 m</td>
</tr>
<tr>
<td>5061-3378</td>
<td>Remote Cable to 35900 A/D converter</td>
</tr>
<tr>
<td>01046-60201</td>
<td>Agilent module to general purpose</td>
</tr>
<tr>
<td>5188-8057</td>
<td>Fraction Collection ERI remote Y-cable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAN cables</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5181-1516</td>
<td>CAN cable, Agilent module to module, 0.5 m</td>
</tr>
<tr>
<td>5181-1519</td>
<td>CAN cable, Agilent module to module, 1 m</td>
</tr>
</tbody>
</table>
Identifying Cables

Cable Overview

<table>
<thead>
<tr>
<th>LAN cables</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5023-0203</td>
<td>Cross-over network cable, shielded, 3 m (for point to point connection)</td>
</tr>
<tr>
<td></td>
<td>5023-0202</td>
<td>Twisted pair network cable, shielded, 7 m (for point to point connection)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RS-232 cables (not for FUSION board)</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RS232-61601</td>
<td>RS-232 cable, 2.5 m Instrument to PC, 9-to-9 pin (female). This cable has special pin-out, and is not compatible with connecting printers and plotters. It is also called "Null Modem Cable" with full handshaking where the wiring is made between pins 1-1, 2-3, 3-2, 4-6, 5-5, 6-4, 7-8, 8-7, 9-9.</td>
</tr>
<tr>
<td></td>
<td>5181-1561</td>
<td>RS-232 cable, 8 m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>USB cables</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5188-8050</td>
<td>USB A M-USB Mini B 3 m (PC-Module)</td>
</tr>
<tr>
<td></td>
<td>5188-8049</td>
<td>USB A F-USB Mini B M OTG (Module to Flash Drive)</td>
</tr>
</tbody>
</table>
Analog Cables

One end of these cables provides a BNC connector to be connected to Agilent modules. The other end depends on the instrument to which connection is being made.

Agilent Module to 35900 A/D converters

<table>
<thead>
<tr>
<th>p/n 35900-60750</th>
<th>35900</th>
<th>Pin Agilent module</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Not connected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Shield</td>
<td>Analog -</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Center</td>
<td>Analog +</td>
<td></td>
</tr>
</tbody>
</table>
Identifying Cables

Analog Cables

Agilent Module to BNC Connector

<table>
<thead>
<tr>
<th>p/n 8120-1840</th>
<th>Pin BNC</th>
<th>Pin Agilent module</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shield</td>
<td>Shield</td>
<td>Analog -</td>
</tr>
<tr>
<td></td>
<td>Center</td>
<td>Center</td>
<td>Analog +</td>
</tr>
</tbody>
</table>

Agilent Module to General Purpose

<table>
<thead>
<tr>
<th>p/n 01046-60105</th>
<th>Pin</th>
<th>Pin Agilent module</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Black</td>
<td>Analog -</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Red</td>
<td>Analog +</td>
<td></td>
</tr>
</tbody>
</table>
11 Identifying Cables
Remote Cables

ERI (Enhanced Remote Interface)

- 5188-8029 ERI to general purpose (D-Sub 15 pin male - open end)
- 5188-8044 ERI to ERI (D-Sub 15 pin male - male)
- 5188-8059 ERI-Extension-Cable 1.2 m (D-Sub15 pin male / female)

<table>
<thead>
<tr>
<th>p/n 5188-8029</th>
<th>pin</th>
<th>Color code</th>
<th>Enhanced Remote</th>
<th>Classic Remote</th>
<th>Active (TTL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Sub female 15-way</td>
<td>1</td>
<td>white</td>
<td>IO1</td>
<td>START REQUEST</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>brown</td>
<td>IO2</td>
<td>STOP</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>green</td>
<td>IO3</td>
<td>READY</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>yellow</td>
<td>IO4</td>
<td>POWER ON</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>grey</td>
<td>IO5</td>
<td>NOT USED</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>pink</td>
<td>IO6</td>
<td>SHUT DOWN</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>blue</td>
<td>IO7</td>
<td>START</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>red</td>
<td>IO8</td>
<td>PREPARE</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>black</td>
<td>I2wire DATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>violet</td>
<td>DGND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>grey-pink</td>
<td>+5V ERI out</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>red-blue</td>
<td>PGND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>white-green</td>
<td>PGND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>brown-green</td>
<td>+24V ERI out</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>white-yellow</td>
<td>+24V ERI out</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>yellow-brown</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Identifying Cables

Remote Cables

- 5188-8045 ERI to APG (Connector D_Subminiature 15 pin (ERI), Connector D_Subminiature 9 pin (APG))

<table>
<thead>
<tr>
<th>p/n 5188-8045</th>
<th>Pin (ERI)</th>
<th>Signal</th>
<th>Pin (APG)</th>
<th>Active (TTL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>GND</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Start Request</td>
<td>9</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Stop</td>
<td>8</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Ready</td>
<td>7</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Power on</td>
<td>6</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Future</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Shut Down</td>
<td>4</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Start</td>
<td>3</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Prepare</td>
<td>2</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Ground</td>
<td>Cable Shielding</td>
<td>NC</td>
<td></td>
</tr>
</tbody>
</table>
Identifying Cables
Remote Cables

- 5188-8057 ERI to APG and RJ45 (Connector D_Subminiature 15 pin (ERI), Connector D_Subminiature 9 pin (APG), Connector plug Cat5e (RJ45))

Table 27 5188-8057 ERI to APG and RJ45

<table>
<thead>
<tr>
<th>p/n 5188-8057</th>
<th>Pin (ERI)</th>
<th>Signal</th>
<th>Pin (APG)</th>
<th>Active (TTL)</th>
<th>Pin (RJ45)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>GND</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Start Request</td>
<td>9</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Stop</td>
<td>8</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Ready</td>
<td>7</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Fraction Trigger</td>
<td>5</td>
<td>High</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Power on</td>
<td>6</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Shut Down</td>
<td>4</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Start</td>
<td>3</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Prepare</td>
<td>2</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>Cable Shielding</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

One end of these cables provides a Agilent Technologies APG (Analytical Products Group) remote connector to be connected to Agilent modules. The other end depends on the instrument to be connected to.
Identifying Cables

Remote Cables

Agilent Module to Agilent 35900 A/D Converters

<table>
<thead>
<tr>
<th>p/n 5061-3378</th>
<th>Pin 35900 A/D</th>
<th>Pin Agilent module</th>
<th>Signal Name</th>
<th>Active (TTL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - White</td>
<td>1 - White</td>
<td>Digital ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 - Brown</td>
<td>2 - Brown</td>
<td>Prepare run</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>3 - Gray</td>
<td>3 - Gray</td>
<td>Start</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>4 - Blue</td>
<td>4 - Blue</td>
<td>Shut down</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>5 - Pink</td>
<td>5 - Pink</td>
<td>Not connected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 - Yellow</td>
<td>6 - Yellow</td>
<td>Power on</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>7 - Red</td>
<td>7 - Red</td>
<td>Ready</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>8 - Green</td>
<td>8 - Green</td>
<td>Stop</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>9 - Black</td>
<td>9 - Black</td>
<td>Start request</td>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>

Agilent Module to General Purpose

<table>
<thead>
<tr>
<th>p/n 01046-60201</th>
<th>Wire Color</th>
<th>Pin Agilent module</th>
<th>Signal Name</th>
<th>Active (TTL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>1</td>
<td>Digital ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td>2</td>
<td>Prepare run</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Gray</td>
<td>3</td>
<td>Start</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Blue</td>
<td>4</td>
<td>Shut down</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Pink</td>
<td>5</td>
<td>Not connected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td>6</td>
<td>Power on</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>7</td>
<td>Ready</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>8</td>
<td>Stop</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>9</td>
<td>Start request</td>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>
Identifying Cables

CAN/LAN Cables

Both ends of this cable provide a modular plug to be connected to Agilent modules CAN or LAN connectors.

CAN Cables

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5181-1516</td>
<td>CAN cable, Agilent module to module, 0.5 m</td>
</tr>
<tr>
<td>5181-1519</td>
<td>CAN cable, Agilent module to module, 1 m</td>
</tr>
</tbody>
</table>

LAN Cables

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5023-0203</td>
<td>Cross-over network cable, shielded, 3 m (for point to point connection)</td>
</tr>
<tr>
<td>5023-0202</td>
<td>Twisted pair network cable, shielded, 7 m (for point to point connection)</td>
</tr>
</tbody>
</table>
Identifying Cables
Agilent Module to PC

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS232-61601</td>
<td>RS-232 cable, 2.5 m Instrument to PC, 9-to-9 pin (female). This cable has special pin-out, and is not compatible with connecting printers and plotters. It is also called "Null Modem Cable" with full handshaking where the wiring is made between pins 1-1, 2-3, 3-2, 4-6, 5-5, 6-4, 7-8, 8-7, 9-9.</td>
</tr>
<tr>
<td>5181-1561</td>
<td>RS-232 cable, 8 m</td>
</tr>
</tbody>
</table>

11 Identifying Cables

USB

To connect a USB Flash Drive use a USB OTG cable with Mini-B plug and A socket.

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5188-8050</td>
<td>USB A M-USB Mini B 3 m (PC-Module)</td>
</tr>
<tr>
<td>5188-8049</td>
<td>USB A F-USB Mini B M OTG (Module to Flash Drive)</td>
</tr>
</tbody>
</table>
12 Hardware Information

Firmware Description 331
Electrical Connections 334
Rear view of the module 335
Information on Instrument Serial Number 336
Interfaces 337
Overview Interfaces 339
ERI (Enhanced Remote Interface) 342
USB (Universal Serial Bus) 344
Setting the 6-bit Configuration Switch 345
Instrument Layout 347
Early Maintenance Feedback 348

This chapter describes the module in more detail on hardware and electronics.
Firmware Description

The firmware of the instrument consists of two independent sections:
- a non-instrument specific section, called *resident system*
- an instrument specific section, called *main system*

Resident System

This resident section of the firmware is identical for all Agilent 1100/1200/1220/1260/1290 series modules. Its properties are:
- the complete communication capabilities (CAN, LAN, USB and RS-232)
- memory management
- ability to update the firmware of the 'main system'

Main System

Its properties are:
- the complete communication capabilities (CAN, LAN, USB and RS-232)
- memory management
- ability to update the firmware of the 'resident system'

In addition the main system comprises the instrument functions that are divided into common functions like
- run synchronization through APG/ERI remote,
- error handling,
- diagnostic functions,
- or module specific functions like
 - internal events such as lamp control, filter movements,
 - raw data collection and conversion to absorbance.
Firmware Updates

Firmware updates can be done with the Agilent Lab Advisor software with files on the hard disk (latest version should be used).

The file naming conventions are:

PPPP.RVVV.**XXX**.dlb, where

- **PPPP** is the product number, for example, 1315B for the G1315B DAD,
- **R** the firmware revision, for example, A for G1315B or B for the G1315C DAD,
- **VVV** is the revision number, for example 650 is revision 6.50,
- **XXX** is the build number of the firmware.

For instructions on firmware updates refer to section *Replacing Firmware* in chapter "Maintenance" or use the documentation provided with the *Firmware Update Tools*.

NOTE

Update of main system can be done in the resident system only. Update of the resident system can be done in the main system only.

Main and resident firmware must be from the same set.
NOTE

Some modules are limited in downgrading due to their mainboard version or their initial firmware revision. For example, a G1315C DAD SL cannot be downgraded below firmware revision B.01.02 or to a A.xx.xx.

Some modules can be re-branded (e.g. G1314C to G1314B) to allow operation in specific control software environments. In this case, the feature set of the target type is used and the feature set of the original one is lost. After re-branding (e.g. from G1314B to G1314C), the original feature set is available again.

All this specific information is described in the documentation provided with the firmware update tools.

The firmware update tools, firmware and documentation are available from the Agilent web.

Electrical Connections

- The CAN bus is a serial bus with high-speed data transfer. The two connectors for the CAN bus are used for internal module data transfer and synchronization.
- The ERI/REMOTE connector may be used in combination with other analytical instruments from Agilent Technologies if you want to use features such as start, stop, common shutdown, prepare, and so on.
- With the appropriate software, the LAN connector may be used to control the module from a computer through a LAN connection. This connector is activated and can be configured with the configuration switch.
- With the appropriate software, the USB connector may be used to control the module from a computer through a USB connection.
- The power input socket accepts a line voltage of 100 – 240 VAC ± 10% with a line frequency of 50 or 60 Hz. Maximum power consumption varies by module. There is no voltage selector on your module because the power supply has wide-ranging capability. There are no externally accessible fuses because automatic electronic fuses are implemented in the power supply.

NOTE

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.
Rear view of the module

Configuration switch
USB-Mini-Port
LAN
ERI
CAN
Power socket

Figure 72 Rear view of multisampler - electrical connections and label
Information on Instrument Serial Number

Serial Number Information 1200 Series and 1290 Infinity

The serial number information on the instrument labels provide the following information:

CCYWWSSSSS Format

CC country of manufacturing
• DE = Germany
• JP = Japan
• CN = China

YWWW year and week of last major manufacturing change, e.g. 820 could be week 20 of 1998 or 2008

SSSSS real serial number

Serial Number Information 1260/1290 Infinity

The serial number information on the instrument labels provide the following information:

CCXZZ00000 Format

CC Country of manufacturing
• DE = Germany
• JP = Japan
• CN = China

X Alphabetic character A-Z (used by manufacturing)

ZZ Alpha-numeric code 0-9, A-Z, where each combination unambiguously denotes a module (there can be more than one code for the same module)

00000 Serial number
Interfaces

The Agilent InfinityLab LC Series modules provide the following interfaces:

<table>
<thead>
<tr>
<th>Module</th>
<th>CAN</th>
<th>USB</th>
<th>LAN (on-board)</th>
<th>RS-232</th>
<th>Analog</th>
<th>APG (A) / ERI (E)</th>
<th>Special</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G7104A/C</td>
<td>2</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>G7110B</td>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>G7111A/B, G5654A</td>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>G7112B</td>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>G7120A</td>
<td>2</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>G7161A/B</td>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Samplers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G7129A/B/C</td>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>G7167B/C, G5667A</td>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>G7157A</td>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Detectors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G7114A/B</td>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>G7115A</td>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>G7117A/B/C</td>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>G7121A/B</td>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>G7162A/B</td>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>G7165A</td>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>
12 Hardware Information

Interfaces

Table 28 Agilent InfinityLab LC Series Interfaces

<table>
<thead>
<tr>
<th>Module</th>
<th>CAN</th>
<th>USB</th>
<th>LAN (on-board)</th>
<th>RS-232</th>
<th>Analog</th>
<th>APG (A) / ERI (E)</th>
<th>Special</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction Collectors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G7158B</td>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>E</td>
</tr>
<tr>
<td>G7159B</td>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>E</td>
</tr>
<tr>
<td>G7166A</td>
<td>2</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Special: Requires a host module with on-board LAN with minimum FW B.06.40 or C.06.40, or with additional G1369C LAN Card</td>
</tr>
<tr>
<td>G1364E/F, G5664B</td>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>E</td>
<td>Special: THERMOSTAT for G1330B</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G7116A/B</td>
<td>2</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Requires a HOST module via CAN</td>
</tr>
<tr>
<td>G7122A</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>A</td>
<td>Requirements:</td>
</tr>
<tr>
<td>G7170B</td>
<td>2</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Special: Requires a host module with on-board LAN with minimum FW B.06.40 or C.06.40, or with additional G1369C LAN Card</td>
</tr>
</tbody>
</table>

NOTE
The detector (DAD/MWD/FLD/VWD/RID) is the preferred access point for control via LAN. The inter-module communication is done via CAN.

- CAN connectors as interface to other modules
- LAN connector as interface to the control software
- RS-232C as interface to a computer
- USB (Universal Series Bus) as interface to a computer
- REMOTE connector as interface to other Agilent products
- Analog output connector(s) for signal output
Overview Interfaces

CAN

The CAN is inter-module communication interface. It is a 2-wire serial bus system supporting high speed data communication and real-time requirement.

LAN

The modules have either an interface slot for a LAN card (e.g. Agilent G1369B/C LAN Interface) or they have an on-board LAN interface (e.g. detectors G1315C/D DAD and G1365C/D MWD). This interface allows the control of the module/system via a PC with the appropriate control software. Some modules have neither on-board LAN nor an interface slot for a LAN card (e.g. G1170A Valve Drive or G4227A Flexible Cube). These are hosted modules and require a Host module with firmware B.06.40 or later or with additional G1369C LAN Card.

If an Agilent detector (DAD/MWD/FLD/VWD/RID) is in the system, the LAN should be connected to the DAD/MWD/FLD/VWD/RID (due to higher data load). If no Agilent detector is part of the system, the LAN interface should be installed in the pump or autosampler.

USB

The USB interface replaces the RS-232 Serial interface in new FUSION generation modules. For details on USB refer to "USB (Universal Serial Bus)" on page 344.

Analog Signal Output

The analog signal output can be distributed to a recording device. For details refer to the description of the module's mainboard.
12 Hardware Information

Interfaces

Remote (ERI)

The ERI (Enhanced Remote Interface) connector may be used in combination with other analytical instruments from Agilent Technologies if you want to use features as common shut down, prepare, and so on.

It allows easy connection between single instruments or systems to ensure coordinated analysis with simple coupling requirements.

The subminiature D connector is used. The module provides one remote connector which is inputs/outputs (wired- or technique).

To provide maximum safety within a distributed analysis system, one line is dedicated to SHUT DOWN the system's critical parts in case any module detects a serious problem. To detect whether all participating modules are switched on or properly powered, one line is defined to summarize the POWER ON state of all connected modules. Control of analysis is maintained by signal readiness READY for next analysis, followed by START of run and optional STOP of run triggered on the respective lines. In addition PREPARE and START REQUEST may be issued. The signal levels are defined as:

- standard TTL levels (0 V is logic true, + 5.0 V is false),
- fan-out is 10,
- input load is 2.2 kOhm against + 5.0 V, and
- output are open collector type, inputs/outputs (wired- or technique).

NOTE All common TTL circuits operate with a 5 V power supply. A TTL signal is defined as "low" or L when between 0 V and 0.8 V and "high" or H when between 2.0 V and 5.0 V (with respect to the ground terminal).
12 Hardware Information

Interfaces

Table 29 ERI signal distribution

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>START REQUEST</td>
<td>(L) Request to start injection cycle (for example, by start key on any module). Receiver is the autosampler.</td>
</tr>
<tr>
<td>2</td>
<td>STOP</td>
<td>(L) Request to reach system ready state as soon as possible (for example, stop run, abort or finish and stop injection). Receiver is any module performing run-time controlled activities.</td>
</tr>
<tr>
<td>3</td>
<td>READY</td>
<td>(H) System is ready for next analysis. Receiver is any sequence controller.</td>
</tr>
<tr>
<td>4</td>
<td>POWER ON</td>
<td>(H) All modules connected to system are switched on. Receiver is any module relying on operation of others.</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Not used</td>
</tr>
<tr>
<td>6</td>
<td>SHUT DOWN</td>
<td>(L) System has serious problem (for example, leak: stops pump). Receiver is any module capable to reduce safety risk.</td>
</tr>
<tr>
<td>7</td>
<td>START</td>
<td>(L) Request to start run / timetable. Receiver is any module performing run-time controlled activities.</td>
</tr>
<tr>
<td>8</td>
<td>PREPARE</td>
<td>(L) Request to prepare for analysis (for example, calibration, detector lamp on). Receiver is any module performing pre-analysis activities.</td>
</tr>
</tbody>
</table>

Special Interfaces

There is no special interface for this module.
ERI (Enhanced Remote Interface)

ERI replaces the AGP Remote Interface that is used in the HP 1090/1040/1050/1100 HPLC systems and Agilent 1100/1200/1200 Infinity HPLC modules. All new InfinityLab LC Series products using the FUSION core electronics use ERI. This interface is already used in the Agilent Universal Interface Box 2 (UIB2).

ERI Description

The ERI interface contains eight individual programmable input/output pins. In addition, it provides 24 V power and 5 V power and a serial data line to detect and recognize further add-ons that could be connected to this interface. This way the interface can support various additional devices like sensors, triggers (in and out) and small controllers, etc.

Figure 73 Location of the ERI interface (example shows a G7114A/B VWD)
Hardware Information

Interfaces

<table>
<thead>
<tr>
<th>Pin</th>
<th>Enhanced Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IO 1 (START REQUEST)</td>
</tr>
<tr>
<td>2</td>
<td>IO 2 (STOP)</td>
</tr>
<tr>
<td>3</td>
<td>IO 3 (READY)</td>
</tr>
<tr>
<td>4</td>
<td>IO 4 (POWER ON)</td>
</tr>
<tr>
<td>5</td>
<td>IO 5 (NOT USED)</td>
</tr>
<tr>
<td>6</td>
<td>IO 6 (SHUT DOWN)</td>
</tr>
<tr>
<td>7</td>
<td>IO 7 (START)</td>
</tr>
<tr>
<td>8</td>
<td>IO 8 (PREPARE)</td>
</tr>
<tr>
<td>9</td>
<td>1 wire DATA</td>
</tr>
<tr>
<td>10</td>
<td>DGND</td>
</tr>
<tr>
<td>11</td>
<td>+5 V ERI out</td>
</tr>
<tr>
<td>12</td>
<td>PGND</td>
</tr>
<tr>
<td>13</td>
<td>PGND</td>
</tr>
<tr>
<td>14</td>
<td>+24 V ERI out</td>
</tr>
<tr>
<td>15</td>
<td>+24 V ERI out</td>
</tr>
</tbody>
</table>

IO (Input/Output) Lines

- Eight generic bi-directional channels (input or output).
- Same as the APG Remote.
- Devices like valves, relays, ADCs, DACs, controllers can be supported/controlled.

1-Wire Data (Future Use)

This serial line can be used to read out an EPROM or write into an EPROM of a connected ERI-device. The firmware can detect the connected type of device automatically and update information in the device (if required).
12 Hardware Information

Interfaces

5V Distribution (Future Use)
• Available directly after turning on the hosting module (assures that the firmware can detect certain basic functionality of the device).
• For digital circuits or similar.
• Provides 500 mA maximum.
• Short-circuit proof with automatic switch off (by firmware).

24V Distribution (Future Use)
• Available by firmware command (defined turn on/off).
• For devices that need higher power
 • Class 0: 0.5 A maximum (12 W)
 • Class 1: 1.0 A maximum (24 W)
 • Class 2: 2.0 A maximum (48 W)
• Class depends on hosting module’s internal power overhead.
• If a connected device requires more power the firmware detects this (overcurrent detection) and provides the information to the user interface.
• Fuse used for safety protection (on board).
• Short circuit will be detected through hardware.

USB (Universal Serial Bus)
USB (Universal Serial Bus) - replaces RS232, supports:
• a PC with control software (for example Agilent Lab Advisor)
• USB Flash Disk
Setting the 6-bit Configuration Switch

The 6-bit configuration switch is located at the rear of the module with FUSION electronics. Switch settings provide configuration parameters for LAN and instrument specific initialization procedures.

All modules with FUSION electronics:
- Default is ALL switches DOWN (best settings).
- Default IP address for LAN 192.168.254.11
- For specific LAN modes switches 4-5 must be set as required.
- For boot resident/cold start modes switches 1+2 or 6 must be UP.

Figure 74 Location of Configuration switch (example shows a G7114A/B VWD)
12 Hardware Information

Setting the 6-bit Configuration Switch

Table 30: 6-bit Configuration Switch

<table>
<thead>
<tr>
<th>Mode</th>
<th>Switch 1</th>
<th>Switch 2</th>
<th>Switch 3</th>
<th>Switch 4</th>
<th>Switch 5</th>
<th>Switch 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM 1</td>
<td>0</td>
<td>n.a. 2</td>
<td>n.a.</td>
<td>LAN Init Mode</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>Use Default IP Address 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Use Stored IP Address</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Use DHCP to request IP Address 4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Test

<table>
<thead>
<tr>
<th>System</th>
<th>n.a.</th>
<th>n.a.</th>
<th>n.a.</th>
<th>ColdStart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot Main System / Keep Data</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Boot Resident System / Keep Data</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Boot Main System / Revert to Default Data</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Boot Resident System / Revert to Default Data</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1. When selecting mode COM, settings are stored to non-volatile memory. When selecting mode TEST, COM settings are taken from non-volatile memory.
2. not assigned - Always keep these switches on position ‘0’ (off)
3. Default IP Address is 192.168.254.11
4. Host Name will be the MAC address.
Instrument Layout

The industrial design of the module incorporates several innovative features. It uses Agilent's E-PAC concept for the packaging of electronics and mechanical assemblies. This concept is based upon the use of expanded polypropylene (EPP) layers of foam plastic spacers in which the mechanical and electronic boards components of the module are placed. This pack is then housed in a metal inner cabinet which is enclosed by a plastic external cabinet. The advantages of this packaging technology are:

- virtual elimination of fixing screws, bolts or ties, reducing the number of components and increasing the speed of assembly/disassembly,
- the plastic layers have air channels molded into them so that cooling air can be guided exactly to the required locations,
- the plastic layers help cushion the electronic and mechanical parts from physical shock, and
- the metal inner cabinet shields the internal electronics from electromagnetic interference and also helps to reduce or eliminate radio frequency emissions from the instrument itself.
Early Maintenance Feedback

Maintenance requires the exchange of components which are subject to wear or stress. Ideally, the frequency at which components are exchanged should be based on the intensity of usage of the module and the analytical conditions, and not on a predefined time interval. The early maintenance feedback (EMF) feature monitors the usage of specific components in the instrument, and provides feedback when the user-selectable limits have been exceeded. The visual feedback in the user interface provides an indication that maintenance procedures should be scheduled.

EMF Counters

EMF counters increment with use and can be assigned a maximum limit which provides visual feedback in the user interface when the limit is exceeded. Some counters can be reset to zero after the required maintenance procedure.

Using the EMF Counters

The user-settable EMF limits for the EMF Counters enable the early maintenance feedback to be adapted to specific user requirements. The useful maintenance cycle is dependent on the requirements for use. Therefore, the definition of the maximum limits need to be determined based on the specific operating conditions of the instrument.

Setting the EMF Limits

The setting of the EMF limits must be optimized over one or two maintenance cycles. Initially the default EMF limits should be set. When instrument performance indicates maintenance is necessary, take note of the values displayed by the EMF counters. Enter these values (or values slightly less than the displayed values) as EMF limits, and then reset the EMF counters to zero. The next time the EMF counters exceed the new EMF limits, the EMF flag will be displayed, providing a reminder that maintenance needs to be scheduled.
13 LAN Configuration

Setting up the module in a LAN environment 350

This chapter provides information on connecting the detector to the Agilent ChemStation PC.
LAN Configuration
Setting up the module in a LAN environment

Setting up the module in a LAN environment

It is not recommended to connect a system via an autosampler. The detector is producing the most data in the stack, followed by the pump, and it is therefore highly recommended to use either of these modules for the LAN connection.
Appendix

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Safety Information</td>
<td>352</td>
</tr>
<tr>
<td>General Safety Information</td>
<td>352</td>
</tr>
<tr>
<td>Safety Standards</td>
<td>352</td>
</tr>
<tr>
<td>General</td>
<td>352</td>
</tr>
<tr>
<td>Before Applying Power</td>
<td>353</td>
</tr>
<tr>
<td>Ground the Instrument</td>
<td>353</td>
</tr>
<tr>
<td>Do Not Operate in an Explosive Atmosphere</td>
<td>354</td>
</tr>
<tr>
<td>Do Not Remove the Instrument Cover</td>
<td>354</td>
</tr>
<tr>
<td>Do Not Modify the Instrument</td>
<td>354</td>
</tr>
<tr>
<td>In Case of Damage</td>
<td>354</td>
</tr>
<tr>
<td>Solvents</td>
<td>355</td>
</tr>
<tr>
<td>Symbols</td>
<td>356</td>
</tr>
<tr>
<td>Waste Electrical and Electronic Equipment (WEEE) Directive</td>
<td>358</td>
</tr>
<tr>
<td>Refrigerant</td>
<td>359</td>
</tr>
<tr>
<td>Radio Interference</td>
<td>362</td>
</tr>
<tr>
<td>Sound Emission</td>
<td>363</td>
</tr>
<tr>
<td>Solvent Information</td>
<td>364</td>
</tr>
<tr>
<td>Installation of Stainless Steel Cladded PEEK Capillaries</td>
<td>365</td>
</tr>
<tr>
<td>First Step: Finger-tight Fitting</td>
<td>365</td>
</tr>
<tr>
<td>Second Step: Installation to Connector</td>
<td>366</td>
</tr>
<tr>
<td>Removing Capillaries</td>
<td>370</td>
</tr>
<tr>
<td>Agilent Technologies on Internet</td>
<td>371</td>
</tr>
</tbody>
</table>

This chapter provides addition information on safety, legal and web.
Appendix
General Safety Information

General Safety Information

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Agilent Technologies assumes no liability for the customer’s failure to comply with these requirements.

WARNING

Ensure the proper usage of the equipment.
The protection provided by the equipment may be impaired.

✓ The operator of this instrument is advised to use the equipment in a manner as specified in this manual.

Safety Standards

This is a Safety Class I instrument (provided with terminal for protective earthing) and has been manufactured and tested according to international safety standards.

General

Do not use this product in any manner not specified by the manufacturer. The protective features of this product may be impaired if it is used in a manner not specified in the operation instructions.
Appendix
General Safety Information

Before Applying Power

WARNING
Wrong voltage range, frequency or cabling
Personal injury or damage to the instrument
- Verify that the voltage range and frequency of your power distribution matches to the power specification of the individual instrument.
- Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.
- Make all connections to the unit before applying power.

NOTE
Note the instrument’s external markings described under “Symbols” on page 356.

Ground the Instrument

WARNING
Missing electrical ground
Electrical shock
- If your product is provided with a grounding type power plug, the instrument chassis and cover must be connected to an electrical ground to minimize shock hazard.
- The ground pin must be firmly connected to an electrical ground (safety ground) terminal at the power outlet. Any interruption of the protective (grounding) conductor or disconnection of the protective earth terminal will cause a potential shock hazard that could result in personal injury.
General Safety Information

Do Not Operate in an Explosive Atmosphere

WARNING

Presence of flammable gases or fumes

Explosion hazard

✓ Do not operate the instrument in the presence of flammable gases or fumes.

Do Not Remove the Instrument Cover

WARNING

Instrument covers removed

Electrical shock

✓ Do Not Remove the Instrument Cover

✓ Only Agilent authorized personnel are allowed to remove instrument covers. Always disconnect the power cables and any external circuits before removing the instrument cover.

Do Not Modify the Instrument

Do not install substitute parts or perform any unauthorized modification to the product. Return the product to an Agilent Sales and Service Office for service and repair to ensure that safety features are maintained.

In Case of Damage

WARNING

Damage to the module

Personal injury (for example electrical shock, intoxication)

✓ Instruments that appear damaged or defective should be made inoperative and secured against unintended operation until they can be repaired by qualified service personnel.
Solvents

Toxic, flammable and hazardous solvents, samples and reagents

The handling of solvents, samples and reagents can hold health and safety risks.

- When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.

- Do not use solvents with an auto-ignition temperature below 200 °C (392 °F). Do not use solvents with a boiling point below 56 °C (133 °F).

- Avoid high vapor concentrations. Keep the solvent temperature at least 40 K below the boiling point of the solvent used. This includes the solvent temperature in the sample compartment. For the solvents methanol and ethanol keep the solvent temperature at least 25 K below the boiling point.

- Do not operate the instrument in an explosive atmosphere.

- Do not use solvents of ignition Class IIC according IEC 60079-20-1 (for example, carbon disulfide).

- Reduce the volume of substances to the minimum required for the analysis.

- Never exceed the maximum permissible volume of solvents (8 L) in the solvent cabinet. Do not use bottles that exceed the maximum permissible volume as specified in the usage guideline for solvent cabinet.

- Ground the waste container.

- Regularly check the filling level of the waste container. The residual free volume in the waste container must be large enough to collect the waste liquid.

- To achieve maximal safety, regularly check the tubing for correct installation.

NOTE

For details, see the usage guideline for the solvent cabinet. A printed copy of the guideline has been shipped with the solvent cabinet, electronic copies are available in the Agilent Information Center or via the Internet.
Symbols

<table>
<thead>
<tr>
<th>Table 31</th>
<th>Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Symbol]</td>
<td>The apparatus is marked with this symbol when the user shall refer to the instruction manual in order to protect risk of harm to the operator and to protect the apparatus against damage.</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Indicates dangerous voltages.</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Indicates a protected ground terminal.</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>The apparatus is marked with this symbol when hot surfaces are available and the user should not touch it when heated up.</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Sample Cooler unit is designed as vapor-compression refrigeration system. Contains fluorinated greenhouse gas (refrigerant) according to the Kyoto protocol. For specifications of refrigerant, charge capacity, carbon dioxide equivalent (CDE), and global warming potential (GWP) see instrument label.</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Flammable Material. For Sample Thermostat which uses flammable refrigerant consult Agilent Information Center / User Manual before attempting to install or service this equipment. All safety precautions must be followed.</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Confirms that a manufactured product complies with all applicable European Community directives. The European Declaration of Conformity is available at: http://regulations.corporate.agilent.com/DoC/search.htm</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Manufacturing date.</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Power symbol indicates On/Off. The apparatus is not completely disconnected from the mains supply when the power switch is in the Off position.</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Pacemaker. Magnets could affect the functioning of pacemakers and implanted heart defibrillators. A pacemaker could switch into test mode and cause illness. A heart defibrillator may stop working. If you wear these devices keep at least 55 mm distance to magnets. Warn others who wear these devices from getting too close to magnets.</td>
</tr>
</tbody>
</table>
Appendix

General Safety Information

Table 31 Symbols

<table>
<thead>
<tr>
<th>Magnetic field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnets produce a far-reaching, strong magnetic field. They could damage TVs and laptops, computer hard drives, credit and ATM cards, data storage media, mechanical watches, hearing aids and speakers. Keep magnets at least 25 mm away from devices and objects that could be damaged by strong magnetic fields.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indicates a pinching or crushing hazard</th>
</tr>
</thead>
</table>

| Indicates a piercing or cutting hazard. |

WARNING

alerts you to situations that could cause physical injury or death.

✓ Do not proceed beyond a warning until you have fully understood and met the indicated conditions.

CAUTION

alerts you to situations that could cause loss of data, or damage of equipment.

✓ Do not proceed beyond a caution until you have fully understood and met the indicated conditions.
Appendix
Waste Electrical and Electronic Equipment (WEEE) Directive

Waste Electrical and Electronic Equipment (WEEE) Directive

This product complies with the European WEEE Directive marking requirements. The affixed label indicates that you must not discard this electrical/electronic product in domestic household waste.

NOTE
Do not dispose of in domestic household waste
To return unwanted products, contact your local Agilent office, or see http://www.agilent.com for more information.
Appendix
Refrigerant

Refrigerant

The refrigerant HFC-134a is used only in the Agilent Infinity II Sample Cooler.

Table 32 Physical properties of refrigerant HFC-134a

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular weight</td>
<td>102</td>
</tr>
<tr>
<td>Critical temperature</td>
<td>101.1 °C</td>
</tr>
<tr>
<td>Critical pressure</td>
<td>40.6 bar</td>
</tr>
<tr>
<td>Boiling point</td>
<td>-26.5 °C</td>
</tr>
</tbody>
</table>

Table 33 Physical properties of refrigerant R600a (isobutane)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular weight</td>
<td>58.12</td>
</tr>
<tr>
<td>Critical temperature</td>
<td>134.98 °C</td>
</tr>
<tr>
<td>Critical pressure</td>
<td>36.6 bar</td>
</tr>
<tr>
<td>Boiling point</td>
<td>-11.7 °C</td>
</tr>
</tbody>
</table>
Refrigerant

Refrigerant HFC-134a is known as a safe refrigerant, however accidents can occur if it is handled incorrectly. For this reason, the following instructions must be observed:

- Avoid contact with liquid refrigerant HFC-134a. At atmospheric pressure HFC-134a evaporates at approximately -26 °C and causes frost bite.
- After skin contact, rinse the affected area with water.
- After eye contact, rinse the eye(s) with plenty of water for at least 15 minutes and consult a doctor.
- HFC-134a must not be allowed to escape in enclosed areas. Although HFC-134a is not toxic, there is a danger of suffocation as gaseous refrigerant is heavier than air.
- Please observe the following first aid instructions. After inhalation, move the affected person to fresh air, keep him warm and allow him to rest. If necessary, he should be supplied with oxygen. If he has stopped breathing or is breathing erratically, he should be given artificial respiration. In the case of cardiac arrest, carry out heart massage. Send for a doctor immediately.
- Moreover, it must be noted that HFC-134a must always be extracted from the system and collected. It must never be discharged into the atmosphere on environmental grounds (greenhouse effect).
Appendix

Refrigerant

CAUTION

General hazards and improper disposal

Improper disposal of the media and components used pollutes the environment.

- The disposal or scrapping of the Sample Cooler or the Sample Thermostat must be carried out by a qualified disposal company.
- All media must be disposed of in accordance with national and local regulations.
- Please contact your local Agilent Service Center in regard to safe environmental disposal of the appliance or check www.agilent.com for more info.

CAUTION

Risk of fire or explosion

- Dispose of properly in accordance with federal or local regulations. Flammable Refrigerant Used.
- Do not dispose of in domestic household waste.
- To return unwanted products, contact your local Agilent office, or see http://www.agilent.com for more information.
Appendix

Radio Interference

Radio Interference

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

Test and Measurement

If test and measurement equipment is operated with equipment unscreened cables and/or used for measurements on open set-ups, the user has to assure that under operating conditions the radio interference limits are still met within the premises.
Appendix
Sound Emission

Sound Emission

Manufacturer’s Declaration

This statement is provided to comply with the requirements of the German Sound Emission Directive of 18 January 1991.

This product has a sound pressure emission (at the operator position) < 70 dB.

• Sound Pressure Lp < 70 dB (A)
• At Operator Position
• Normal Operation
• According to ISO 7779:1988/EN 27779/1991 (Type Test)
Solvent Information

Observe the following recommendations on the use of solvents.

- Brown glass ware can avoid growth of algae.
- Avoid the use of the following steel-corrosive solvents:
 - solutions of alkali halides and their respective acids (for example, lithium iodide, potassium chloride, and so on),
 - high concentrations of inorganic acids like sulfuric acid and nitric acid, especially at higher temperatures (if your chromatography method allows, replace by phosphoric acid or phosphate buffer which are less corrosive against stainless steel),
 - halogenated solvents or mixtures which form radicals and/or acids, for example:
 \[
 2\text{CHCl}_3 + \text{O}_2 \rightarrow 2\text{COCl}_2 + 2\text{HCl}
 \]
 This reaction, in which stainless steel probably acts as a catalyst, occurs quickly with dried chloroform if the drying process removes the stabilizing alcohol,
 - chromatographic grade ethers, which can contain peroxides (for example, THF, dioxane, diisopropyl ether) should be filtered through dry aluminium oxide which adsorbs the peroxides,
 - solvents containing strong complexing agents (e.g. EDTA),
 - mixtures of carbon tetrachloride with 2-propanol or THF.
- Avoid the use of dimethyl formamide (DMF). Polyvinylidene fluoride (PVDF), which is used in leak sensors, is not resistant to DMF.
Installation of Stainless Steel Cladded PEEK Capillaries

NOTE

This installation procedure applies for capillaries and corresponding fittings used in modules delivered before January 2013.

The 1260 Infinity Bio-inert LC system uses PEEK capillaries that are cladded with stainless steel. These capillaries combine the high pressure stability of steel with the inertness of PEEK. They are used in the high pressure flow path after sample introduction (loop/needle seat capillary) through the thermostatted column compartment/heat exchangers to the column. Such capillaries need to be installed carefully in order to keep them tight without damaging them by over-tightening.

The installation consists of two steps. In the first step, the fitting is installed finger-tight without using tools. Finger-tight means that the fitting will grip and hold the capillary. This brings the fitting to the appropriate start position (marked as 0 ° below) for the second step.

First Step: Finger-tight Fitting

1. Tighten the fitting using your fingers.
Appendix
Installation of Stainless Steel Cladded PEEK Capillaries

Second Step: Installation to Connector

In the second step (“Second Step: Installation to Hard Connectors” on page 366 or “Second Step: Installation to Soft Connectors” on page 367), a wrench is used to rotate the fitting relative to the finger-tight position by a defined angle. For each of the cases mentioned above, there is a recommended range in which the fitting is tight.

Staying below this range could create a leak, either a visible one or a micro-leak, potentially biasing measurement results. Exceeding the recommended range could damage the capillary.

Alternatively, a torque wrench may be used. The target torque for all connections is about 0.7 Nm. When using a torque wrench, read instructions for that tool carefully, as wrong handling may easily miss the correct torque.

Second Step: Installation to Hard Connectors

Use this procedure for hard connectors made from metal (titanium) or ceramics. In the system, these are connections to and from the analytical head of the autosampler (connections to injection valve and needle), and to a metal column.

First installation of a capillary to a hard connector

1 When tightening a fitting for the first time, start from the finger-tight position (which is not necessarily a vertical wrench position) and rotate the wrench by 135 – 180 °. Staying below 135 ° (grey arrow) will be insufficiently tight, more than 180 ° (red arrow) could damage the capillary.
Appendix
Installation of Stainless Steel Cladded PEEK Capillaries

Second and subsequent installations of a capillary to a hard connector

When tightening the fitting for the second and subsequent times, again start from the finger-tight position (which is not necessarily a vertical wrench position) and rotate the wrench by 90 – 135 °. Staying below 90 ° (grey arrow) could be insufficiently tight, more than 135 ° (red arrow) could damage the capillary.

Second Step: Installation to Soft Connectors

Use this procedure for soft connectors, which are typically made from PEEK. These are the following connections:

• to and from all bio-inert valves (injection valve in the autosampler and valves in the thermostatted column compartment and 1290 Infinity Valve Drive),
• bio-inert ZDV unions (detector flow cells, multi-draw upgrade kit, capillary to capillary connections, for example, for heat exchangers),
• to the autosampler needle and
• to PEEK columns (like many bio-inert columns).

For the installation of bio-inert ZDV unions, refer to the Technical Note “Installation of stainless steel cladded PEEK capillaries” (p/n G5611-90120).
Appendix
Installation of Stainless Steel Cladded PEEK Capillaries

First installation of a capillary to a soft connector
1. When tightening a fitting for the first time, start from the finger-tight position (which does not necessarily need to be a vertical wrench position) and rotate the wrench by 180 – 210°. Staying below 180° (grey arrow) will not be sufficiently tight, more than 210° (red arrow) could damage the capillary.

Second and subsequent installations of a capillary to a soft connector
1. When tightening the fitting for the second and subsequent times, again start from the finger-tight position (which is not necessarily a vertical wrench position) and rotate the wrench by 135 – 180°. Staying below 135° (grey arrow) could be insufficiently tight enough, more than 180° (red arrow) could damage the capillary.
Appendix

Installation of Stainless Steel Cladded PEEK Capillaries

Summary for Second Step

Table 34 Summary for second step

<table>
<thead>
<tr>
<th>2nd Step</th>
<th>First installation</th>
<th>Subsequent installations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard connectors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft connectors</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Hard connectors**
 - 0° possibly leaky
 - 180° recommended range
 - 135° recommended range

- **Soft connectors**
 - 0° possibly leaky
 - 210° recommended range
 - 180° recommended range
 - 135° recommended range
Removing Capillaries

CAUTION

- **Potential damage of capillaries**

 ✓ Do not remove fittings from used capillaries.

To keep the flow path free of stainless steel, the front end of the capillary is made of PEEK. Under high pressure, or when in contact with some solvents, PEEK can expand to the shape of the connector where the capillary is installed. If the capillary is removed, this may become visible as a small step. In such cases, do not try to pull the fitting from the capillary, as this can destroy the front part of the capillary. Instead, carefully pull it to the rear. During installation of the capillary, the fitting will end up in the correct position.

![Figure 75 Capillary fitting](image-url)
Agilent Technologies on Internet

For the latest information on products and services visit our worldwide web site on the Internet at:

http://www.agilent.com
In This Book

This manual contains technical reference information about the Agilent 1290 Infinity II Multisampler (G7167B), the Agilent 1260 Infinity II Multisampler (G7167A) and the Agilent 1260 Infinity II Bio-Inert Multisampler (G5668A).

The manual describes the following:

- Introduction,
- Site requirements and specifications,
- Using the module,
- Preparing the module,
- Optimizing performance,
- Troubleshooting and diagnostics,
- Error information,
- Test functions,
- Maintenance,
- Parts,
- Hardware information,
- LAN configuration,
- Safety and related information.