Notices

© Agilent Technologies, Inc. 2011

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number
G5667-90000

Edition
03/ 2011

Printed in Germany
Agilent Technologies
Hewlett-Packard-Strasse 8
76337 Waldbronn

This product may be used as a component of an in vitro diagnostic system if the system is registered with the appropriate authorities and complies with the relevant regulations. Otherwise, it is intended only for general laboratory use.

Warranty

The material contained in this document is provided “as is,” and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as “Commercial computer software” as defined in DFAR 252.227-7014 (June 1995), or as a “commercial item” as defined in FAR 2.101(a) or as “Restricted computer software” as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies’ standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

In This Guide

This manual covers the Agilent 1260 Infinity Bio-inert High Performance Autosampler (G5667A)

1 Introduction
This chapter gives an introduction to the autosampler, an overview of the instrument, and a description of internal connectors.

2 Site Requirements and Specifications
This chapter provides information on environmental requirements, physical and performance specifications.

3 Installing the Autosampler
This chapter provides information on unpacking, checking on completeness, stack considerations and installation of the autosampler.

4 LAN Configuration
This chapter provides information on connecting the autosampler to the Agilent ChemStation PC.

5 Using the Module
This chapter provides information on how to set up the autosampler for an analysis and explains the basic settings.

6 Optimizing Performance
This chapter gives hints on how to optimize the performance or use additional devices.

7 Troubleshooting and Diagnostics
This chapter gives an overview about the troubleshooting and diagnostic features and the different user interfaces.
8 Error Information

This chapter describes the meaning of error messages, and provides information on probable causes and suggested actions how to recover from error conditions.

9 Test Functions and Calibration

This chapter describes the tests for the module.

10 Maintenance

This chapter describes the maintenance of the Autosampler

11 Parts for Maintenance

This chapter provides information on parts material required for the module.

12 Identifying Cables

This chapter provides information on cables used with the 1260 series of HPLC modules.

13 Hardware Information

This chapter describes the autosampler in more detail on hardware and electronics.

14 Appendix

This chapter provides addition information on safety, legal and web.
Contents

1 Introduction 9
 Features 10
 Bio-inert Materials 11
 Overview of the Module 13
 Autosampler Principle 15
 Early Maintenance Feedback 21
 Instrument Layout 22

2 Site Requirements and Specifications 23
 Site Requirements 24
 Physical Specifications 27
 Specifications 28

3 Installing the Autosampler 31
 Unpacking the Autosampler 32
 Optimizing the Stack Configuration 34
 Installing the Autosampler 39
 Flow Connections to the Autosampler 41
 Installation of stainless steel cladded PEEK capillaries 42

4 LAN Configuration 43
 Setting up the module in a LAN environment 44
 Connecting the module via LAN 45

5 Using the Module 47
 Preparing the Autosampler 48
 Setting up the Autosampler with Agilent ChemStation 52
 Main Screens of the Autosampler with Agilent Instant Pilot (G4208A) 62
6 Optimizing Performance 65
Delay Volume and Extra-Column Volume 66
How to Configure the Optimum Delay Volume 67
How to Achieve Higher Injection Volumes 69
How to Achieve High Throughput 71
How to Achieve Higher Resolution 72
How to Achieve Higher Sensitivity 75
How to Achieve Lowest Carry Over 76

7 Troubleshooting and Diagnostics 79
Overview of the Module’s Indicators and Test Functions 80
Status Indicators 81
User Interfaces 83
Agilent Diagnostic Software 84

8 Error Information 85
What are Error Messages 87
General Error Messages 88
Module Error Messages 94

9 Test Functions and Calibration 105
Introduction 106
System Pressure Test 107
Sample Transport Self Alignment 109
Maintenance Positions 111
Injector Steps 115
10 Maintenance

- **Introduction to Maintenance** 120
- **Warnings and Cautions** 121
- **Overview of Maintenance** 123
- **Cleaning the module** 124
- **Removing the needle assembly** 125
- **Installing the needle assembly** 128
- **Exchanging the Needle Seat** 131
- **Replacing the Rotor seal** 134
- **Removing the metering seal** 138
- **Installing the metering seal** 141
- **Replacing Peristaltic Pump Cartridge** 143
- **Installing the Interface Board** 146
- **Replacing the Module Firmware** 147

11 Parts for Maintenance

- **Overview of Maintenance Parts** 150
- **Vial Trays** 151
- **Recommended Plates and Closing Mats** 152
- **Recommended Vial Plates** 153
- **Accessory Kit** 154

12 Identifying Cables

- **Cable Overview** 156
- **Analog Cables** 158
- **Remote Cables** 160
- **BCD Cables** 163
- **CAN/LAN Cables** 165
- **External Contact Cable** 166
- **Agilent Module to PC** 167
- **Agilent 1200 Module to Printer** 168
1 Introduction

Features 10
Bio-inert Materials 11
Overview of the Module 13
Autosampler Principle 15
Early Maintenance Feedback 21
Instrument Layout 22

This chapter gives an introduction to the autosampler, an overview of the instrument, and a description of internal connectors.
1 Introduction

Features

The Agilent 1260 Infinity Bio-inert High Performance Autosampler features an increased pressure range (up to 600 bar) enabling the use of today’s column technology (sub-two-micron narrow bore columns) with the Agilent 1260 Infinity LC System. Increased robustness is achieved by optimized new parts, high speed with lowest carry-over by flow through design, increased sample injection speed for high sample throughput, increased productivity by using overlapped injection mode and flexible and convenient sample handling with different types of sample containers, such as vials and well plates. Using 384-well plates allows you to process up to 768 samples unattended.

For specifications, see “Specifications” on page 28

NOTE This 1260 Infinity Autosampler has been introduced together with the Agilent 1260 Infinity Liquid Chromatograph.
Bio-inert Materials

For the Agilent 1260 Infinity Bio-inert LC system, Agilent Technologies uses highest quality materials in the flow path (also referred to as wetted parts), which are widely accepted by life scientists, as they are known for optimum inertness towards biological samples and ensure best compatibility to common samples and solvents over a wide pH range. Explicitly, the complete flow path is free of stainless steel and free of other alloys containing metals like iron, nickel, cobalt, chromium, molybdenum or copper, which can interfere with biological samples. The flow downstream of the sample introduction does not contain metals at all.

Table 1 Bio-inert Materials

<table>
<thead>
<tr>
<th>Module</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agilent 1260 Infinity Bio-inert Quaternary Pump (G5611A)</td>
<td>Titanium, gold, platinum-iridium, zirconium oxide, ruby, PTFE, PEEK</td>
</tr>
</tbody>
</table>
| Agilent 1260 Infinity Bio-inert High-Performance Autosampler (G5667A) | Upstream of sample-introduction:
 • Titanium, gold, PTFE, PEEK, zirconium oxide
 Downstream of sample-introduction:
 • PEEK, zirconium oxide |
| Agilent 1260 Infinity Bio-inert Manual Injector (G5628A) | PEEK, zirconium oxide |
| Agilent 1260 Infinity Bio-inert Analytical Fraction Collector (G5664A) | PEEK, zirconium oxide, PTFE |
1 Introduction

Bio-inert Materials

For ensuring optimum bio-compatibility of your Agilent 1260 Infinity Bio-inert LC system, do not include non-inert standard modules or parts to the flow path. Do not use any parts that are not labeled as Agilent “Bio-inert”. For solvent compatibility of these materials, see “Solvent information for parts of the 1260 Infinity Bio-inert LC system” on page 49.

Table 1 Bio-inert Materials

<table>
<thead>
<tr>
<th>Module</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio-inert Flow Cells:</td>
<td>PEEK, zirconium oxide, sapphire, PTFE</td>
</tr>
<tr>
<td>Standard flow cell bio-inert, 10 mm, 13 µl, 120 bar (12 MPa) for MWD/DAD, includes Capillary Kit Flow Cells BIO (p/n G5615-68755) (p/n G5615-60022) (for Agilent 1260 Infinity Diode Array Detectors DAD G1315C/ D)</td>
<td></td>
</tr>
<tr>
<td>Max-Light Cartridge Cell Bio-inert (10 mm, V(σ) 1.0 µl) (p/n G5615-60018) and Max-Light Cartridge Cell Bio-inert (60 mm, V(σ) 4.0 µl) (p/n G5615-60017) (for Agilent 1290 Infinity Diode Array Detectors DAD G4212A/ B)</td>
<td>PEEK, fused silica</td>
</tr>
<tr>
<td>Bio-inert flow cell, 8 µL, 20 bar (pH 1-12) includes Capillary Kit Flow Cells BIO (p/n G5615-68755) (p/n G5615-60005) (for Agilent 1260 Infinity Fluorescence Detector FLD G1321B)</td>
<td>PEEK, fused silica, PTFE</td>
</tr>
<tr>
<td>Bio-inert heat-exchanger G5616-60050 for 1290 Infinity Thermostatted Column Compartment (G1316C)</td>
<td>PEEK (steel-cladded)</td>
</tr>
<tr>
<td>Bio-inert Valve heads</td>
<td>G4235A, G5631A, G5639A: PEEK, ceramic (Al₂O₃ based)</td>
</tr>
<tr>
<td>Bio-inert Connection capillaries</td>
<td>Upstream of sample-introduction: • Titanium Downstream of sample-introduction: • Agilent uses stainless-steel-cladded PEEK capillaries, which keep the flow path free of steel and provide pressure stability to more than 600 bar.</td>
</tr>
</tbody>
</table>
Overview of the Module

The Autosampler transport mechanism uses an X-Z-theta robot to optimize the positioning of the sampling arm on the well plate. Once the sampling arm is positioned over the programmed sample position, the programmed sample volume is drawn by the metering device into the sampling needle. The sampling arm then moves to the injection position where the sample is flushed onto the column.

The Autosampler employs a vial/plate pusher mechanism to hold down the vial or the plate while the needle is drawn back from the sample vessel (a must in case a septum is used). This vial/plate pusher employs a sensor to detect the presence of a plate and to ensure accurate movement regardless of the plate used.

All axes of the transport mechanism (x-,z-,theta-robot) are driven by stepper-motors. Optical encoders ensure the correct operation of the movement.

The standard metering device provides injection volumes from 0.1 – 100 µL. The entire flow path including the metering device is always flushed by the mobile phase after injection for minimum internal carry-over.

An additional needle flush station with a peristaltic pump is installed to wash the outside of the needle. This reduces the already low carry-over for very sensitive analysis.

The bottle containing the mobile phase for the wash procedure will be located in the solvent bottle cabinet. Produced waste during this operation is channeled safely away through a waste drain.

The six-port (only 5 ports are used) injection valve unit is driven by a high-speed hybrid stepper motor. During the sampling sequence, the valve unit bypasses the autosampler, and connects flow from the pump to the column directly. During injection and analysis, the valve unit directs the flow through the autosampler which ensures that the entire sample is injected onto the column, and that the metering unit and needle are always free from sample residue before the next sampling sequence begins.

Control of the vial/plate temperature in the thermostatted autosampler is achieved using an additional Agilent 1290 Infinity Series module; the Agilent
1 Introduction

Overview of the Module

1290 Infinity Series thermostat for ALS/FC/Spotter. The thermostat contains Peltier-controlled heat-exchangers. A fan draws air from the area above the sample vial tray of the autosampler. It is then blown through the fins of the cooling/heating module. There it is cooled or heated according to the temperature setting. The thermostatted air enters the autosampler through a recess underneath the special designed sample tray. The air is then distributed evenly through the sample tray ensuring effective temperature control, regardless of how many vials are in the tray. In cooling mode condensation is generated on the cooled side of the Peltier elements. This condensed water is safely guided into a waste bottle for condensed water.
Autosampler Principle

The movements of the autosampler components during the sampling sequence are monitored continuously by the autosampler processor. The processor defines specific time windows and mechanical ranges for each movement. If a specific step of the sampling sequence is not completed successfully, an error message is generated. Solvent is bypassed from the autosampler by the injection valve during the sampling sequence. The needle moves to the desired sample vial position and is lowered into the sample liquid in the vial to allow the metering device to draw up the desired volume by moving its plunger back a certain distance. The needle is then raised again and moved onto the seat to close the sample loop. Sample is applied to the column when the injection valve returns to the mainpass position at the end of the sampling sequence.

The standard sampling sequence occurs in the following order:

1. The injection valve switches to the bypass position.
2. The plunger of the metering device moves to the initialization position.
3. The needle lock moves up.
4. The needle moves to the desired sample vial position.
5. The needle lowers into the vial.
6. The metering device draws the preset sample volume.
7. The needle lifts out of the vial.
8. The needle is then moved onto the seat to close the sample loop.
9. The needle lock moves down.
10. The injection cycle is completed when the injection valve switches to the mainpass position.

If needle wash is required it will be done between step 7 and 8.

Injection Sequence

Before the start of the injection sequence, and during an analysis, the injection valve is in the mainpass position. In this position, the mobile phase flows through the autosampler metering device, sample loop, and needle, ensuring all parts in contact with sample are flushed during the run, thus minimizing carry-over.

![Figure 1 Mainpass Position](image)

When the sample sequence begins, the valve unit switches to the bypass position. Solvent from the pump enters the valve unit at port 1, and flows directly to the column through port 6.
Figure 2 Bypass Position

The standard injection starts with *draw sample from vial*. In order to do this the needle moves to the desired sample vial position and is lowered into the sample liquid in the vial to allow the metering device to draw up the desired volume by moving its plunger back a certain distance. The needle is then raised again and moved onto the seat to close the sample loop. In case of an injector program several steps are interspersed at this point.
Flush the Needle

Before injection and to reduce the carry-over for very sensitive analysis, the outside of the needle can be washed in a flush port located behind the injector port on the sampling unit. As soon as the needle is on the flush port a peristaltic pump delivers some solvent during a defined time to clean the outside of the needle. At the end of this process the needle returns to the injection port.
The final step is the inject-and-run step. The six-port valve is switched to the main-pass position, and directs the flow back through the sample loop, which now contains a certain amount of sample. The solvent flow transports the sample onto the column, and separation begins. This is the beginning of a run within an analysis. In this stage, all major performance-influencing hardware is flushed internally by the solvent flow. For standard applications no additional flushing procedure is required.
1 Introduction

Autosampler Principle

Figure 5 Inject and Run
Early Maintenance Feedback

Maintenance requires the exchange of components which are subject to wear or stress. Ideally, the frequency at which components are exchanged should be based on the intensity of usage of the module and the analytical conditions, and not on a predefined time interval. The early maintenance feedback (EMF) feature monitors the usage of specific components in the instrument, and provides feedback when the user-selectable limits have been exceeded. The visual feedback in the user interface provides an indication that maintenance procedures should be scheduled.

EMF Counters

EMF counters increment with use and can be assigned a maximum limit which provides visual feedback in the user interface when the limit is exceeded. Some counters can be reset to zero after the required maintenance procedure.

Using the EMF Counters

The user-settable EMF limits for the EMF Counters enable the early maintenance feedback to be adapted to specific user requirements. The useful maintenance cycle is dependent on the requirements for use. Therefore, the definition of the maximum limits need to be determined based on the specific operating conditions of the instrument.

Setting the EMF Limits

The setting of the EMF limits must be optimized over one or two maintenance cycles. Initially the default EMF limits should be set. When instrument performance indicates maintenance is necessary, take note of the values displayed by the EMF counters. Enter these values (or values slightly less than the displayed values) as EMF limits, and then reset the EMF counters to zero. The next time the EMF counters exceed the new EMF limits, the EMF flag will be displayed, providing a reminder that maintenance needs to be scheduled.
Instrument Layout

The industrial design of the module incorporates several innovative features. It uses Agilent’s E-PAC concept for the packaging of electronics and mechanical assemblies. This concept is based upon the use of expanded polypropylene (EPP) layers of foam plastic spacers in which the mechanical and electronic boards components of the module are placed. This pack is then housed in a metal inner cabinet which is enclosed by a plastic external cabinet. The advantages of this packaging technology are:

- virtual elimination of fixing screws, bolts or ties, reducing the number of components and increasing the speed of assembly/disassembly,
- the plastic layers have air channels molded into them so that cooling air can be guided exactly to the required locations,
- the plastic layers help cushion the electronic and mechanical parts from physical shock, and
- the metal inner cabinet shields the internal electronics from electromagnetic interference and also helps to reduce or eliminate radio frequency emissions from the instrument itself.
This chapter provides information on environmental requirements, physical and performance specifications.
Site Requirements

A suitable environment is important to ensure optimal performance of the module.

Power Consideration

The module power supply has wide ranging capabilities and accepts any line voltage in the range mentioned in Table 2 on page 27. Consequently, there is no voltage selector in the rear of the module. There are also no externally accessible fuses, because automatic electronic fuses are implemented in the power supply.

WARNING
Module is partially energized when switched off, as long as the power cord is plugged in.

Repair work at the module can lead to personal injuries, e.g. shock hazard, when the cover is opened and the module is connected to power.

⇒ Make sure that it is always possible to access the power plug.
⇒ Remove the power cable from the instrument before opening the cover.
⇒ Do not connect the power cable to the Instrument while the covers are removed.

WARNING
Incorrect line voltage at the module

Shock hazard or damage of your instrument can result if the devices are connected to line voltage higher than specified.

⇒ Connect your module to the specified line voltage.
Inaccessible power plug.
In case of emergency it must be possible to disconnect the instrument from the power line at any time.

➔ Make sure the power connector of the instrument can be easily reached and unplugged.

➔ Provide sufficient space behind the power socket of the instrument to unplug the cable.

Power Cords

Different power cords are offered as options with the module. The female end of all power cords is identical. It plugs into the power-input socket at the rear. The male end of each power cord is different and designed to match the wall socket of a particular country or region.

WARNING Absence of ground connection or use of unspecified power cord

The absence of ground connection or the use of unspecified power cord can lead to electric shock or short circuit.

➔ Never operate your instrumentation from a power outlet that has no ground connection.

➔ Never use a power cord other than the Agilent Technologies power cord designed for your region.

WARNING Use of unsupplied cables

Using cables not supplied by Agilent Technologies can lead to damage of the electronic components or personal injury.

➔ Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.
Bench Space

The module dimensions and weight (see Table 2 on page 27) allow you to place the module on almost any desk or laboratory bench. It needs an additional 2.5 cm (1.0 inches) of space on either side and approximately 8 cm (3.1 inches) in the rear for air circulation and electric connections.

If the bench should carry an Agilent system, make sure that the bench is designed to bear the weight of all modules.

The module should be operated in a horizontal position.

Condensation

Condensation within the module

Condensation will damage the system electronics.

➔ Do not store, ship or use your module under conditions where temperature fluctuations could cause condensation within the module.

➔ If your module was shipped in cold weather, leave it in its box and allow it to warm slowly to room temperature to avoid condensation.
Physical Specifications

Table 2 Physical Specifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>15.5 kg (35 lbs)</td>
<td></td>
</tr>
<tr>
<td>Dimensions (height × width × depth)</td>
<td>200 x 345 x 440 mm (8 x 13.5 x 17 inches)</td>
<td></td>
</tr>
<tr>
<td>Line voltage</td>
<td>100 - 240 VAC, ± 10%</td>
<td>Wide-ranging capability</td>
</tr>
<tr>
<td>Line frequency</td>
<td>50 or 60 Hz, ± 5%</td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td>300 VA / 200 W / 683 BTU</td>
<td>Maximum</td>
</tr>
<tr>
<td>Ambient operating temperature</td>
<td>4–55 °C (41–131 °F)</td>
<td></td>
</tr>
<tr>
<td>Ambient non-operating temperature</td>
<td>-40– 70 °C (-4–158 °F)</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>< 95%, at 25– 40 °C (77–104 °F)</td>
<td>Non-condensing</td>
</tr>
<tr>
<td>Operating Altitude</td>
<td>Up to 2000 m (6562 ft)</td>
<td></td>
</tr>
<tr>
<td>Non-operating altitude</td>
<td>Up to 4600 m (15091 ft)</td>
<td>For storing the module</td>
</tr>
<tr>
<td>Safety standards: IEC, CSA, UL</td>
<td>Installation Category II, Pollution Degree 2</td>
<td>For indoor use only.</td>
</tr>
</tbody>
</table>
Specifications

Table 3 Specifications - Agilent 1260 Infinity Bio-inert High-Performance Autosampler (G5667A)

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection range</td>
<td>0.1 – 100 µL in 0.1 µL increments. Up to 40 µL with reduced injection volume kit (hardware modification required). Up to 1500 µL with multiple draw (hardware modification required)</td>
</tr>
<tr>
<td>Precision</td>
<td>Typically < 0.25 % RSD from 5 – 100 µL. Typically < 0.5 % RSD from 2 – 5 µL. Typically < 0.7 % RSD from 1 – 2 µL volume. Measured with injections of caffeine in water</td>
</tr>
<tr>
<td>Injection Accuracy</td>
<td>1 % (10 µL, n=10)</td>
</tr>
<tr>
<td>Pressure range</td>
<td>Up to 600 bar (8700 psi)</td>
</tr>
<tr>
<td>Sample viscosity range</td>
<td>0.2 – 5 cp</td>
</tr>
<tr>
<td>Sample capacity</td>
<td>2 x well plates (MTP) + 10 x 2.0 mL vials 108 x 2 mL vials in 2 x 54 vial plate plus 10 additional 2 mL vials 30 x 6 mL vials in 2 x 15 vial plate plus 10 additional 2 mL vials 54 Eppendorf tubes (0.5/1.5/2 mL) in 2 x 27 Eppendorf tube plates</td>
</tr>
<tr>
<td>Injection cycle time</td>
<td>Typically < 17 s using the following standard conditions: Default draw speed: 100 µL/ min. Default eject speed: 100 µL/ min. Injection volume: 5 µL</td>
</tr>
<tr>
<td>Carry-over</td>
<td>Typically <0.004 %</td>
</tr>
<tr>
<td></td>
<td>For measurement conditions see 1, 2, 3</td>
</tr>
<tr>
<td>pH-range</td>
<td>1-13 (short term 14)</td>
</tr>
<tr>
<td>Sample cooling</td>
<td>Optional with G1330B 4 – 40 °C</td>
</tr>
</tbody>
</table>
| Materials in flow path | Upstream of sample-introduction:
 • titanium, gold, PTFE, PEEK, zirconium oxide
 Downstream of sample-introduction:
 • PEEK, zirconium oxide |
| GLP features | Early maintenance feedback (EMF), electronic records of maintenance and errors |
Specifications

Table 3 Specifications - Agilent 1260 Infinity Bio-inert High-Performance Autosampler (G5667A)

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications</td>
<td>Controller-area network (CAN). RS232C, APG-remote standard, optional four external contact closures and BCD vial number output</td>
</tr>
<tr>
<td>Safety features</td>
<td>Leak detection and safe leak handling, low voltages in maintenance areas, error detection and display</td>
</tr>
</tbody>
</table>

1. Chromatographic conditions: Column: Agilent ZORBAX SB-C18, 2.1 x 50 mm 1.8 µm (p/n 827700-902); mobile phase: A: 0.1 % TFA in water, B: 0.1 % TFA in acetonitrile; isocratic: %B = 35%; flow rate: 0.5 mL/min; temperature: 30 °C

2. UV-detection: Sample: 1200 ng/µl chlorhexidine (dissolved in mobile phase A), 1 µL injected and measured on G4212A DAD (10 mm cell); Wavelength: 257 nm +/- 4; ref. 360 nm +/- 16; slit 4 nm, 10 Hz

3. MS-detection: Sample: 50 ng/µl chlorhexidine (dissolved in mobile phase A), 1 µL injected and measured on Agilent 6460 QQQ (in specified conditions); M RM 1: 505.5 → 170 (CE: 36 V); M RM 2: 505.5 → 201.2 (CE: 20 V); fragmentor: 150 V, delta EM V(+): 200 V

4. For solvent compatibility, refer to section "Solvent information for parts of the 1260 Infinity Bio-inert LC system" in the manual.
2 Site Requirements and Specifications
Specifications
3 Installing the Autosampler

Unpacking the Autosampler 32
 Damaged Packaging 32
 Delivery Checklist 32
 Autosampler Accessory Kit Contents 33

Optimizing the Stack Configuration 34
 One Stack Configuration 35
 Two Stack Configuration 37

Installing the Autosampler 39
Flow Connections to the Autosampler 41
Installation of stainless steel cladded PEEK capillaries 42

This chapter provides information on unpacking, checking on completeness, stack considerations and installation of the autosampler.
Unpacking the Autosampler

Damaged Packaging

If the delivery packaging shows signs of external damage, please call your Agilent Technologies sales and service office immediately. Inform your service representative that the instrument may have been damaged during shipment.

"Defective on arrival" problems

If there are signs of damage, please do not attempt to install the module. Inspection by Agilent is required to evaluate if the instrument is in good condition or damaged.

➔ Notify your Agilent sales and service office about the damage.
➔ An Agilent service representative will inspect the instrument at your site and initiate appropriate actions.

Delivery Checklist

Ensure all parts and materials have been delivered with the autosampler. For this compare the shipment content with the checklist included in each instrument box. Please report missing or damaged parts to your local Agilent Technologies sales and service office.

Table 4 Autosampler Checklist

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autosampler</td>
<td>1</td>
</tr>
<tr>
<td>Power cable</td>
<td>1</td>
</tr>
<tr>
<td>User manual on Documentation CD (part of the shipment - not module specific)</td>
<td>1</td>
</tr>
<tr>
<td>Accessory kit</td>
<td>1</td>
</tr>
</tbody>
</table>
Autosampler Accessory Kit Contents

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G5667-68755</td>
<td>Accessory kit (bio-inert)</td>
</tr>
<tr>
<td>G5667-60500</td>
<td>PEEK/ SST capillary (bio-inert) 0.17 mm ID, 400 mm long</td>
</tr>
<tr>
<td>5181-1519</td>
<td>CAN cable, Agilent module to module, 1 m</td>
</tr>
<tr>
<td>5063-6527</td>
<td>Tubing assembly, i.d. 6 mm, o.d. 9 mm, 1.2 m (to waste)</td>
</tr>
</tbody>
</table>
Optimizing the Stack Configuration

If your module is part of a complete Agilent 1260 Infinity Liquid Chromatograph, you can ensure optimum performance by installing the following configurations. These configurations optimize the system flow path, ensuring minimum delay volume.
One Stack Configuration

Ensure optimum performance by installing the modules of the Agilent 1260 Infinity LC System in the following configuration (See Figure 6 on page 35 and Figure 7 on page 36). This configuration optimizes the flow path for minimum delay volume and minimizes the bench space required.

Figure 6 Recommended Stack Configuration for 1260 (Front View)
3 Installing the Autosampler
Optimizing the Stack Configuration

Figure 7 Recommended Stack Configuration for 1260 (Rear View)
Two Stack Configuration

To avoid excessive height of the stack when the autosampler thermostat is added to the system it is recommended to form two stacks. Some users prefer the lower height of this arrangement even without the autosampler thermostat. A slightly longer capillary is required between the pump and autosampler. (See Figure 8 on page 37 and Figure 9 on page 38).

Figure 8 Recommended Two Stack Configuration for 1260 (Front View)
3 Installing the Autosampler

Optimizing the Stack Configuration

Figure 9 Recommended Two Stack Configuration for 1260 (Rear View)
Installing the Autosampler

Parts required
- Autosampler
- Power cord

Hardware required
Other cables see below and section “Cable Overview” on page 156

Software required
ChemStation and/or Instant Pilot G4208A with the appropriate revisions, see Table 3 on page 28

WARNING
Module is partially energized when switched off, as long as the power cord is plugged in.

Repair work at the module can lead to personal injuries, e.g. shock hazard, when the cover is opened and the module is connected to power.

➔ Make sure that it is always possible to access the power plug.

➔ Remove the power cable from the instrument before opening the cover.

➔ Do not connect the power cable to the Instrument while the covers are removed.

CAUTION
"Defective on arrival" problems
If there are signs of damage, please do not attempt to install the module. Inspection by Agilent is required to evaluate if the instrument is in good condition or damaged.

➔ Notify your Agilent sales and service office about the damage.

➔ An Agilent service representative will inspect the instrument at your site and initiate appropriate actions.

1. Place the Autosampler in the stack, see “Optimizing the Stack Configuration” on page 34.

2. Ensure the power switch on the front of the module is OFF (switch stands out).
3 Connect the power cable to the power connector at the rear of the module.

![Figure 10 Rearview of Autosampler](image)

4 Connect the CAN cable to other Agilent 1260 Infinity modules.

5 Connect the APG remote cable (optional) for non-Agilent instruments.

6 Turn on the power by pushing the button at the lower left hand side of the module.

 The power button stays pressed in and the status LED should be green.

 NOTE When the line power button stands out and the green light is off, the module is turned off.

 NOTE The module was shipped with default configuration settings. For changing these settings, please refer to service manual "Setting the 8-bit configuration switch".
Flow Connections to the Autosampler

Parts required

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
</tr>
<tr>
<td>Capillaries and tubing from Accessory Kit.</td>
</tr>
</tbody>
</table>

Preparations

Autosampler is installed in system.

NOTE

This procedure shows the Autosampler outside of a system. In an Agilent 1260 Infinity Liquid Chromatograph, the Autosampler is located between a Pump (above) and the Thermostatted Column Compartment (below), see “Optimizing the Stack Configuration” on page 34

WARNING

Toxic, flammable and hazardous solvents, samples and reagents

The handling of solvents, samples and reagents can hold health and safety risks.

➔ When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor and follow good laboratory practice.

➔ The amount of substances should be reduced to the minimal volume required for the analysis.

➔ Do not operate the instrument in an explosive atmosphere.

1. Open the front cover by pressing the button on the right side of the module.
2. Install the capillary from the pump outlet into the port 1 of the injection valve.
3. Install the capillary from the port 6 of the injection valve to the TCC.

NOTE

The Autosampler can only be operated with the front and side covers closed.
Installation of stainless steel cladded PEEK capillaries

Installation of Stainless Steel Cladded PEEK Capillaries

The Agilent 1260 Infinity Bio-inert LC System uses PEEK capillaries, which are cladded with stainless steel. These capillaries combine the high pressure stability of steel with the inertness of PEEK. They are used in the high pressure flow path after sample introduction (needle seat capillary) through the TCC/heat exchangers to the column. Such capillaries need to be installed carefully in order to keep them tight without damaging them by overtightening.

CAUTION

Strong force/torque will damage SST cladded PEEK capillaries

Be careful when installing stainless steel cladded PEEK capillaries.

➔ See Agilent 1260 Infinity Bio-inert Quaternary LC System Manual for correct installation.
This chapter provides information on connecting the autosampler to the Agilent ChemStation PC.
4 LAN Configuration
Setting up the module in a LAN environment

Setting up the module in a LAN environment

It is not recommended to connect an Agilent 1260 Infinity system via the G5667A Autosampler. The detector is producing the most data in the stack, followed by the pump, and it is therefore highly recommended to use either of these modules for the LAN connection.
Connecting the module via LAN

If the G5667A Autosampler is being operated as a standalone module or if a connection via LAN is required regardless of above mentioned recommendation, a G1369A LAN card has to be used. For installation and configuration, see the G1369A documentation.
4 **LAN Configuration**
Connecting the module via LAN
This chapter provides information on how to set up the autosampler for an analysis and explains the basic settings.
Preparing the Autosampler

Preparation of the Autosampler

For best performance of the autosampler:

- When using the Autosampler in a system with a vacuum degassing unit, shortly degas your samples before using them in the autosampler.
- Filter samples before use in 1260 system. Use High pressure filter kit (p/n 5067-4638) for inline filtering.
- When using buffer solutions, flush the system with water before switching it off.
- Check the autosampler plungers for scratches, grooves and dents when changing the piston seal. Damaged plungers cause micro leaks and will decrease the lifetime of the seal.
- Priming and Purging the System - When the solvents have been exchanged or the system has been turned off for a certain time (for example, overnight) oxygen will re-diffuse into the solvent channel. Therefore priming and purging of the system is required before starting an application.

Table 5 Choice of Priming Solvents for Different Purposes

<table>
<thead>
<tr>
<th>Activity</th>
<th>Solvent</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>After an installation</td>
<td>Isopropanol</td>
<td>Best solvent to flush air out of the system</td>
</tr>
<tr>
<td>When switching between reverse phase and normal phase (both times)</td>
<td>Isopropanol</td>
<td>Best solvent to flush air out of the system</td>
</tr>
<tr>
<td>After an installation</td>
<td>Ethanol or methanol</td>
<td>Alternative to isopropanol (second choice) if no isopropanol is available</td>
</tr>
<tr>
<td>To clean the system when using buffers</td>
<td>Bidistilled water</td>
<td>Best solvent to re-dissolve buffer crystals</td>
</tr>
<tr>
<td>After a solvent change</td>
<td>Bidistilled water</td>
<td>Best solvent to re-dissolve buffer crystals</td>
</tr>
</tbody>
</table>
Solvent Information

Observe the following recommendations on the use of solvents.

- Follow recommendations for avoiding the growth of algae, see pump manuals.
- Small particles can permanently block capillaries and valves. Therefore always filter solvents through 0.4 µm filters.
- Avoid or minimize the use of solvents, which may corrode parts in the flow path. Consider specifications for the pH range given for different materials like flow cells, valve materials etc. and recommendations in subsequent sections.

Solvent information for parts of the 1260 Infinity Bio-inert LC system

For the Agilent 1260 Infinity Bio-inert LC system, Agilent Technologies uses highest quality materials (see “Bio-inert Materials” on page 11) in the flow path (also referred to as wetted parts), which are widely accepted by life scientists, as they are known for optimum inertness towards biological samples and ensure best compatibility to common samples and solvents over a wide pH range. Explicitly, the complete flow path is free of stainless steel and free of other alloys containing metals like iron, nickel, cobalt, chromium, molybdenum or copper, which can interfere with biological samples. The flow downstream of the sample introduction does not contain metals at all.

However there are no materials, which combine suitability for versatile HPLC instrumentation (valves, capillaries, springs, pump heads, flow cells etc.) with complete compatibility to all possible chemicals and application conditions. This section gives recommendations, which solvents should be preferred. Chemicals which are known to cause issues should be avoided or exposure should be minimized, e.g. for short term cleaning procedures. After using potentially aggressive chemicals, the system should be flushed with compatible standard HPLC solvents.
PEEK

PEEK (Polyether-Ether Ketones) combines excellent properties regarding biocompatibility, chemical resistance, mechanical and thermal stability and is therefore the material of choice for biochemical instrumentation. It is stable in the specified pH range and inert to many common solvents. There is still a number of known incompatibilities to chemicals like chloroform, methylene chloride, THF, DMSO, strong acids (nitric acid > 10 %, sulphuric acid > 10 %, sulfonic acids, trichloroacetic acid), halogenes or aqueous halogene solutions, phenol and derivatives (cresols, salicylic acid etc.).

When used above room temperature, it is sensitive to bases and various organic solvents, which can cause PEEK to swell. As normal PEEK capillaries are very sensitive to high pressure especially under such conditions, Agilent uses stainless-steel cladded PEEK capillaries in order to keep the flow path free of steel and to ensure pressure stability to at least 600 bar. In case of doubt, please consult common literature about the chemical compatibility of PEEK.

Titanium

Titanium is highly resistant to oxidizing acids (e.g. nitric, perchloric and hypochlorous acid) over a wide range of concentrations and temperatures, which is due to a thin oxide layer on the surface, which is stabilized by oxidizing compounds. Reducing acids (e.g. hydrochloric, sulfuric and phosphoric acid) can slightly corrode titanium, which increases with acid concentration and temperature. For example the corrosion rate of 3 % HCl (about pH 0.1) at room temperature is about 13 µm/year. At room temperature, titanium is resistant to concentrations of about 5 % sulfuric acid (about pH 0.3). The addition of nitric acid to hydrochloric or sulfuric acids significantly reduces corrosion rates. Titanium is subject to corrosion in anhydrous methanol, which can be avoided by adding a small amount of water (about 3 %). Slight corrosion is possible with ammonia > 10 %.

Fused silica

Fused silica is inert against all common solvents and acids except hydrofluoric acid. It is corroded by strong bases and should not be used above pH 12 at room temperature. The corrosion of flow cell windows can negatively affect measurement results. For a pH larger than 12, the use of flow cells with sapphire windows is recommended.
Gold

Gold is inert against all common HPLC solvents, acids and bases within the specified pH range. It can be corroded by complexing cyanides and concentrated acids like aqua regia (a mixture of concentrated hydrochloric and nitric acid).

Zirconium Oxide

Zirconium Oxide (ZrO$_2$) is inert against almost all common acids, bases and solvents. There are no documented incompatibilities for HPLC applications.

Platinum/Iridium

Platinum/Iridium is inert against almost all common acids, bases and solvents. There are no documented incompatibilities for HPLC applications.

PTFE

PTFE (polytetrafluorethen, Teflon$^\circledR$) is inert against almost all common acids, bases and solvents. There are no documented incompatibilities for HPLC applications.

Sapphire, Ruby and Al$_2$O$_3$-based ceramics

Sapphire, Ruby and ceramics based on Al$_2$O$_3$ are inert against almost all common acids, bases and solvents. There are no documented incompatibilities for HPLC applications.

Data above were collected from external resources and are meant as a reference. Agilent cannot guarantee for the completeness and correctness of such information. Information can also not be generalized due to catalytic effects of impurities like metal ions, complexing agents, oxygen etc. Most data available refers to room temperature (typically 20 – 25 °C, 68 – 77 °F). If corrosion is possible it usually increases at higher temperatures. In case of doubt, additional resources should be consulted.
Setting up the Autosampler with Agilent ChemStation

The setup of the Autosampler is shown with the Agilent ChemStation B.04.02 SP1 1260. Depending on the controller (e.g. Agilent Instant Pilot, EZChrom Elite) the screens look different. For the Instant Pilot refer to “Main Screens of the Autosampler with Agilent Instant Pilot (G4208A)” on page 62.

NOTE

This section describes the autosampler settings only. For information on the Agilent ChemStation or other 1260 Infinity modules refer to the corresponding documentation.
Figure 11 ChemStation Method & Run Control

After successful load of the ChemStation, you should see the module as an active item in the graphical user interface (GUI).
5 Using the Module
Setting up the Autosampler with Agilent ChemStation

The Autosampler User Interface

Within the Autosampler user interface, there are active areas. If you move the mouse cursor across the icons (tray, EMF button), the cursor will change and you may click on the icon to

- Turn on/off the autosampler (1)
- Configure the sample tray (2)
- Get the status of the EMF (Early Maintenance Feature) (3)
- Switch injection valve to Mainpass / Bypass (4)

Instrument actuals Information

- Injection volume
- Sample location

A right-click into the Active Area will open a menu to

- Show the Control User Interface (special module settings)
- Show the Method User interface (same as via menu Instrument – Setup G1367E)
- Set Error Method
- Identify Device
- Home Arm
- Reset Sampler
- Wash Needle
- Needle Up
- Valve Mainpass / Bypass (same as click on the valve icon)
- Switch on Tray Illumination
- Edit Well Plate Types
- Wellplate Configuration (same as click on the Tray icon)
Module Status shows Run / Ready / Error state and “Not Ready text” or “Error text”.
- Error (Red)
- Not ready (yellow)
- Ready (green)
- Pre run, Post run (purple)
- Run (blue)
- Idle (green)
- Offline (dark gray)
- Standby (light gray)

EMF Status shows Run / Ready / Error state and “Not Ready text” or “Error text”.
- Offline (gray)
- Ok. No Maintenance required (green)
- EMF warning. Maintenance might be required (yellow)
- EMF warning. Maintenance required (red)
Control Settings

These settings are available via right click on the Active Area of the ALS GUI.

Missing Vessel: The handling of missing vessels can be configured.

Illumination: Can be turned on / off

Linked Pump: To configure which pump delivers flow to the Autosampler.

Prime Flush Pump: Priming the Needle wash flush pump.
Method Parameter Settings

These settings are available via Menu > Instrument > Setup Agilent 1260 Infinity Autosampler or via right click on the Active area.

NOTE

The signal window in the lower part is not shown when opening the parameter settings via right mouse on the Autosampler user interface.
5 Using the Module

Setting up the Autosampler with Agilent ChemStation

Injection Mode

| Injection Mode | 1.00 µL | Standard injection | Injection with needle wash |

The settable Injection volume range is from 0.1 - 20.0 µl/min. Select to use **Standard injection** or **Injection with Needle wash**.

Needle wash

| Needle wash | Flush Port | Time: 3.0 sec | Location: | Repeat: 3 times |

It is possible to select between using the built in flush port of the Autosampler or using a non-capped vial. Using needle wash is required to obtain minimum carry-over.

Stop Time

| Stop Time | 1.00 min |

An autosampler **Stop Time** can be set.
Injection Cleaning

The **Injection Valve Cleaning** section allows you to specify the valve switching times at the end of overlap or sample flush. Times 1 ... 4 are the times when the valve switches to bypass (for time 1) or to mainpass and bypass (for times 2, 3 and 4). The times must be specified in ascending order. You can also switch the times to off. Between the first and second, and second and third valve switches, a rinse is executed using the rinse volumes specified in the Injector Cleaning section. **Valve movements** specifies the number of times that the valve switches from mainpass to bypass at times 2, 3 and 4 in the field. The maximum value is 2; default is 1.
The pretreatment/injector program comprises a series of numbered lines, each specifying an operation that the autosampler carries out sequentially. When you activate a pretreatment/injector program, it replaces the standard injection cycle.

Select **Append** to add the contents of the edit line to the end of the table.
Select **Insert** to insert the contents of the edit line above the currently-selected line.
Select **Delete** to delete the currently selected line.
Select **Clear All** to clear all pretreatment/injector program functions from the table.
Select **Move up** to move the currently selected line one position up in the order of execution.
Select **Move down** to move the currently selected line one position down in the order of execution.
Select **Cut** to delete the currently-selected line and place it on the clipboard.
Select **Copy** to copy the currently selected line to the clipboard.
Select **Paste** to paste the line on the clipboard at the current position.
Module Configuration

These settings are available via menu **Instrument > More 1260 Infinity ALS > Autosampler Configuration**.

- **Device name**: based on the module.
- **Type ID**: based on the module (product number). Some modules may allow changing the type based on hardware/ firmware. This results in a change of features and functions.
- **Serial number**: based on the module.
- **Firmware revision**: based on the module.
- **Options**: lists installed options.
Using the Module

Main Screens of the Autosampler with Agilent Instant Pilot (G4208A)

Main Screens of the Autosampler with Agilent Instant Pilot (G4208A)

Below the main screens for the use of the autosampler are shown.

The Control screen allows
- System: On/Off
- System: Get Ready
- System: Clear Errors
- HIP ALS: Wash needle

The System Info screen lists details of the autosampler
- Firmware revision
- On-time
- Main Board information
- Transport assembly information
- Sampling unit information
- Syringe information
The **Configure** screen allows to configure:
- Symbolic Name of module
- Volumes
- On Missing Vessel behaviour
- Plate configuration
- Flush-Out Pump
- Serial Interface configuration
- Sample Illumination

The **Method** screen lists all method parameters of the autosampler. These can be edited.
The **Maintenance** screen allows
- EMF setup
- logging of maintenance activities
- module identification (blinking LED)
Firmware updates can be done via the System Maintenance screen.

The **Diagnosis** screen provides access to module specific tests.
- Injector steps
6 Optimizing Performance

Delay Volume and Extra-Column Volume 66
 Delay Volume 66
How to Configure the Optimum Delay Volume 67
How to Achieve Higher Injection Volumes 69
How to Achieve High Throughput 71
How to Achieve Higher Resolution 72
How to Achieve Higher Sensitivity 75
How to Achieve Lowest Carry Over 76

This chapter gives hints on how to optimize the performance or use additional devices.
6 Optimizing Performance
Delay Volume and Extra-Column Volume

Delay Volume and Extra-Column Volume

The *delay volume* is defined as the system volume between the point of mixing in the pump and the top of the column.

The *extra-column volume* is defined as the volume between the injection point and the detection point, excluding the volume in the column.

Delay Volume

In gradient separations, this volume causes a delay between the mixture changing in the pump and that change reaching the column. The delay depends on the flow rate and the delay volume of the system. In effect, this means that in every HPLC system there is an additional isocratic segment in the gradient profile at the start of every run. Usually the gradient profile is reported in terms of the mixture settings at the pump and the delay volume is not quoted even though this will have an effect on the chromatography. This effect becomes more significant at low flow rates and small column volumes and can have a large impact on the transferability of gradient methods. It is important, therefore, for fast gradient separations to have small delay volumes, especially with narrow bore columns (e.g., 2.1 mm i.d.) as often used with mass spectrometric detection.

The delay volume in a system includes the volume in the pump from the point of mixing, connections between pump and autosampler, volume of the flow path through the autosampler and connections between autosampler and column.
How to Configure the Optimum Delay Volume

For very fast gradients over 0.5 min the delay volume of the system can be easily reduced without changing the physical configuration of the system. The change is achieved by changing the behavior of the autosampler.

The 80 µl delay volume of the autosampler is due to the flow path from the injection valve through the metering device, needle, needle seat and connecting capillaries back to the injection valve (see Figure 12 on page 68). To make an injection the valve switches from mainpass to bypass so that the metering device can draw the sample into the needle capillary. The injection is made when the valve switches back to mainpass and the sample is flushed onto the column. The valve remains in this position during analysis so that the autosampler is continually flushed and hence the gradient has to flow through this delay volume to reach the column. This can be eliminated by switching the injection valve from mainpass to bypass after the injection has been made and the injected sample has been flushed onto the column. In practice this can be done a few seconds after injection and is activated by selecting the “Automatic Delay Volume Reduction” (ADVR) function in the autosampler setup menu. The Flush-out Factor (typically 5 times injection volume) ensures that enough time is allowed to flush the sample out of the injector before switching to bypass. This effectively reduces the system delay volume with 270 µL.
When using ADVR it should be noted that the gradient has already started at the pump at the instant of injection. The question should be asked whether the gradient has already reached the autosampler, in which case a small step in the gradient will result. This happens when the delay volume is less than the flush-out volume and is not necessarily a problem but may be a factor to be considered in a method transfer. With a flush-out factor of 5 and an injection volume of 10 µl, the autosampler will allow 50 µl to pass through before switching to bypass which, with a delay volume of 50 µl, means the gradient just reached the injection valve. Smaller injection volumes will have no effect but for larger injection volumes this will introduce a small step in the gradient. The flow rate in use will also have an impact on the decision to use ADVR or not. At 0.2 ml/min the delay time saved is 21 seconds while at 1.0 ml/min it is 4 seconds.

The ADVR function is unlikely to be suitable for applications involving compounds which are known to cause carry-over problems.
How to Achieve Higher Injection Volumes

The standard configuration of the Agilent 1260 Infinity Autosampler includes a variable volume sample loop for up to 20 µl injections. The metering device can inject a maximum volume of 40 µl and the sample loop cartridge can be exchanged to allow this. The system delay volume due to the autosampler will increase accordingly.

Whenever a method is scaled down from a larger column to a smaller column it is important that the method translation makes an allowance for reducing the injection volume in proportion to the volume of the column to maintain the performance of the method. This is to keep the volume of the injection at the same percentage volume with respect to the column. This is particularly important if the injection solvent is stronger (more eluotropic) than the starting mobile phase and any increase will affect the separation particularly for early running peaks (low retention factor). In some cases it is the cause of peak distortion and the general rule is to keep the injection solvent the same or weaker than the starting gradient composition. This has a bearing on whether, or by how much, the injection volume can be increased and the user should check for signs of increased dispersion (wider or more skewed peaks and reduced peak resolution) in trying to increase the injection size. If an injection is made in a weak solvent then the volume can probably be increased further because the effect will be to concentrate the analyte on the head of the column at the start of the gradient. Conversely if the injection is in a stronger solvent than the starting mobile phase then increased injection volume will spread the band of analyte down the column ahead of the gradient resulting in peak dispersion and loss of resolution.

Perhaps the main consideration in determining injection volume is the diameter of the column as this will have a big impact on peak dispersion. Peak heights can be higher on a narrow column than with a larger injection on a wider column because there is less peak dispersion. With 2.1 mm i.d. columns typical injection volumes might range up to 5 to 10 µl but it is very dependent on the chemistry of the analyte and mobile phase as discussed above. In a gradient separation injection volumes of about 5 % of the column volume might be achieved whilst maintaining good resolution and peak dispersion.

One way to achieve larger injections is to use a trapping column selected by a switching valve to capture and concentrate the injection before switching it,
i.e. injecting it, onto an analytical column, see Figure 13 on page 70. The valve can be conveniently located in the Thermostatted Column Compartment.
How to Achieve High Throughput

The injection can be optimized for speed remembering that drawing the sample too fast can reduce the reproducibility. Marginal gains are to be made here as the sample volumes used tend towards the smaller end of the range in any case. A significant portion of the injection time is the time taken with the needle movements to and from the vial and into the flush port. These manipulations can be performed while the previous separation is running. This is known as "overlapped injection" and it can be easily turned on from the autosampler setup screen in the ChemStation Control Software. The autosampler can be told to switch the flow through the autosampler to bypass after the injection has been made and then after, for example, 3 minutes into a 4 minutes run to start the process of aspirating the next sample and preparing for injection. This can typically save 0.5 to 1 minute per injection.
How to Achieve Higher Resolution

Increased resolution in a separation will improve the qualitative and quantitative data analysis, allow more peaks to be separated or offer further scope for speeding up the separation. This section considers how resolution can be increased by examining the following points:

- Optimize selectivity
- Smaller particle-size packing
- Longer Columns
- Shallower gradients, faster flow

Resolution between two peaks is described by the resolution equation:

\[R_s = \frac{1}{4} \sqrt{N} \frac{(\alpha - 1)(k_2 + 1)}{\alpha k_2} \]

where

- \(R_s \) = resolution,
- \(N \) = plate count (measure of column efficiency),
- \(\alpha \) = selectivity (between two peaks),
- \(k_2 \) = retention factor of second peak (formerly called capacity factor).

The term that has the most significant effect on resolution is the selectivity, \(\alpha \), and practically varying this term involves changing the type of stationary phase (C18, C8, phenyl, nitrile etc.), the mobile phase and temperature to maximize the selectivity differences between the solutes to be separated. This is a substantial piece of work which is best done with an automated method development system which allows a wide range of conditions on different columns and mobile phases to be assessed in an ordered scouting protocol. This section considers how to get higher resolution with any chosen stationary and mobile phases. If an automated method development system was used in the decision on phases it is likely that short columns were used for fast analysis in each step of the scouting.
The resolution equation shows that the next most significant term is the plate count or efficiency, N, and this can be optimized in a number of ways. N is inversely proportional to the particle size and directly proportional to the length of a column and so smaller particle size and a longer column will give a higher plate number. The pressure rises with the inverse square of the particle size and proportionally with the length of the column. This is the reason that the 1260 Infinity LC system was designed to go to 600 bar so that it can run sub-two-micron particles and column length can be increased to 100 mm or 150 mm. There are even examples of 100 mm and 150 mm columns linked to give 250 mm length. Resolution increases with the square root of N so doubling the length of the column will increase resolution by a factor of 1.4. What is achievable depends on the viscosity of the mobile phase as this relates directly to the pressure. Methanol mixtures will generate more back pressure than acetonitrile mixtures. Acetonitrile is often preferred because peak shapes are better and narrower in addition to the lower viscosity but methanol generally yields better selectivity (certainly for small molecules less than about 500 Da). The viscosity can be reduced by increasing the temperature but it should be remembered that this can change the selectivity of the separation. Experiment will show if this leads to increase or decrease in selectivity. As flow and pressure are increased it should be remembered that frictional heating inside the column will increase and that can lead to slightly increased dispersion and possibly a small selectivity change both of which could be seen as a reduction in resolution. The latter case might be offset by reducing the temperature of the thermostat by a few degrees and again experiment will reveal the answer.

The van Deemter curve shows that the optimum flow rate through an STM column is higher than for larger particles and is fairly flat as the flow rate increases. Typical, close to optimum, flow rates for STM columns are: 2 ml/min for 4.6 mm i.d.; and 0.4 ml/min for 2.1 mm i.d. columns.
In isocratic separations, increasing the retention factor, k, results in better resolution because the solute is retained longer. In gradient separations the retention is described by k^* in the following equation:

$$k^* = \frac{t_G}{\Delta B} \cdot \frac{F}{V_m} \cdot \frac{100}{S}$$

where:
- k^* = mean k value,
- t_G = time length of gradient (or segment of gradient) (min),
- F = flow (ml/min),
- V_m = column delay volume,
- ΔB = change in fraction of solvent B during the gradient,
- S = constant (ca. 4-5 for small molecules).

This shows that k and hence resolution can be increased by having a shallower gradient (2 to 5 %/min change is a guideline), higher flow rate and a smaller volume column. This equation also shows how to speed up an existing gradient – if the flow is doubled but the gradient time is halved, k^* remains constant and the separation looks the same but happens in half the time. Recently published research has shown how a shorter STM column (at temperatures above 40 °C) can generate higher peak capacity than a longer STM column by virtue of running it faster. (Refer to Petersson et al., J.Sep.Sci, 31, 2346-2357, 2008, Maximizing peak capacity and separation speed in liquid chromatography).
How to Achieve Higher Sensitivity

The sensitivity of a separation method is linked to the choice of stationary and mobile phases as good separation with narrow peaks and a stable baseline with minimal noise are desirable. The choice of instrument configuration will have an effect and a major impact is the setup of the detector. This section considers how sensitivity is affected by:

- Pump mixer volume
- Narrower columns
- Detector flow cell
- Detector parameters

In addition, the discussion on detector parameters also mentions the related topics of selectivity and linearity.

Columns

Sensitivity is specified as a signal-to-noise ratio (S/N) and hence the need to maximize peak height and minimize baseline noise. Any reduction in peak dispersion will help to maintain peak height and so extra-column volume should be minimized by use of short, narrow internal diameter, connection capillaries and correctly installed fittings. Using smaller inner diameter columns should result in higher peak height and is therefore ideal for applications with limited sample amounts. If the same sample amount can be injected on a smaller i.d. column, then the dilution due to column diameter will be less and the sensitivity will increase. For example, decreasing the column i.d. from 4.6 mm to 2.1 mm results in a theoretical gain in peak height of 4.7 times due to the decreased dilution in the column. For a mass spectrometer detector, the lower flow rates of narrow columns can result in higher ionization efficiencies and therefore higher sensitivity.
How to Achieve Lowest Carry Over

Carryover is measured when residual peaks from a previous active-containing injection appear in a subsequent blank solvent injection. There will be carryover between active injections which may lead to erroneous results. The level of carryover is reported as the area of the peak in the blank solution expressed as a percentage of the area in the previous active injection. The Agilent 1260 Infinity autosampler is optimized for lowest carryover by careful design of the flow path and use of materials in which sample adsorption is minimized. A carryover figure of 0.002 % should be achievable even when a triple quadrupole mass spectrometer is the detector. Operating settings of the autosampler allow the user to set appropriate parameters to minimize carryover in any application involving compounds liable to stick in the system.

The following functions of the autosampler can be used to minimize carryover:

- Internal needle wash
- External needle wash
- Needle seat backflush
- Injection valve cleaning

The flow path, including the inside of the needle, is continuously flushed in normal operation, providing good elimination of carryover for most situations. Automated delay volume reduction (ADVR) will reduce the delay volume but will also reduce the flushing of the autosampler and should not be used with analytes where carryover might be a problem.

The outside of the needle can be washed using a wash vial in a specific location or the needle can be washed using the flush port. If a wash vial in a tray location specified by the user is chosen then this vial should have no septum and should contain a solvent suitable for washing the sample from the needle. The septum is not used to avoid wiping contamination off the needle on the downstream only to re-apply it on the upstroke. The needle can be dipped into the vial multiple times. This will be effective in removing a small degree of carryover but for more effective washing of the outside of the needle use the flushport.

The flush port is located above and behind the needle seat and a peristaltic pump delivers the wash solvent. It has a volume of 0.68 ml and the peristaltic pump delivers 6 ml/min, which means the flush port volume is completely
refilled with fresh solvent in 7 s. If the flush port is selected, the user can set how long the outside of the needle is to be washed with fresh solvent. This may be as low as two or three seconds in routine situations where carryover is less of a problem and 10 to 20 s for more complete washing. It is recommended that washing the outside of the needle in the flush port should be standard procedure to avoid contaminating the needle seat. If the needle seat becomes contaminated it will have to be back-flushed, by manually changing the flow connections, to clean it. This is one of the tasks that can be automated using the Flexible Cube module.

The flush port and its solvent delivery pump and tubing should be regularly flushed to ensure the lowest carryover. For example, before using the system each day, prime the flush pump for three minutes with appropriate solvent.

When other measures have failed to eliminate carryover it might be that analyte is sticking inside the injector valve. The injector valve can be set to make additional switching movements to clean out the flow path in the valve if problems occur here with carryover. If the problem compounds need a high percentage of organic phase for elution, it is recommended to switch the injection valve at the high percentage of organic phase after the last peak has eluted. It is also recommended to switch the injection valve again after the initial conditions for the mobile phase have stabilized. This ensures that the bypass groove in the rotor seal of the valve contains the gradient start conditions, which is especially important for flow rates below 0.5 ml/min.

For samples where the outside of the needle cannot be cleaned sufficiently with water or alcohol from the flush pump use wash vials with an appropriate solvent. With an injector program several wash vials can be used for cleaning.

The optimum carry-over performance of the Autosampler is achieved after a run-in period of new instruments or after the exchange of consumable parts (like needle, needle seat and valve parts). During injections in this period, surfaces of these parts adjust to each other. After this period, we recommend back-flushing the needle seat in order to get the sealing areas between needle and needle seat clean. Regular Preventive Maintenance service is recommended as the carry-over performance of the Autosampler depends on the integrity of these consumable parts. Using the G4227A Flexible Cube will additionally improve the carry-over performance and life time of these parts.
6 Optimizing Performance
How to Achieve Lowest Carry Over
This chapter gives an overview about the troubleshooting and diagnostic features and the different user interfaces.
Overview of the Module’s Indicators and Test Functions

Status Indicators

The module is provided with two status indicators which indicate the operational state (prerun, run, and error states) of the module. The status indicators provide a quick visual check of the operation of the module.

Error Messages

In the event of an electronic, mechanical or hydraulic failure, the module generates an error message in the user interface. For each message, a short description of the failure, a list of probable causes of the problem, and a list of suggested actions to fix the problem are provided (see chapter Error Information).

Test Functions

A series of test functions are available for troubleshooting and operational verification after exchanging internal components (see Tests and Calibrations).

Diagnostic Signals

The module has several signals (internal temperatures, voltages and currents of lamps) that can be used for diagnosing baseline problems; see Diagnostic Signals.
Status Indicators

Two status indicators are located on the front of the module. The lower left indicates the power supply status, the upper right indicates the module status.

![Figure 14 Location of Status Indicators](image)

Power Supply Indicator

The power supply indicator is integrated into the main power switch. When the indicator is illuminated *(green)* the power is *ON*.
Module Status Indicator

The module status indicator indicates one of six possible module conditions:

- When the status indicator is OFF (and power switch light is on), the module is in a prerun condition, and is ready to begin an analysis.
- A green status indicator, indicates the module is performing an analysis (run mode).
- A yellow indicator indicates a not-ready condition. The module is in a not-ready state when it is waiting for a specific condition to be reached or completed (for example, immediately after changing a set point), or while a self-test procedure is running.
- An error condition is indicated when the status indicator is red. An error condition indicates the module has detected an internal problem which affects correct operation of the module. Usually, an error condition requires attention (e.g. leak, defective internal components). An error condition always interrupts the analysis.
- A red-blinking (modules with on-board LAN) or yellow-blinking (modules without on-board LAN) indicator indicates that the module is in resident mode (e.g. during update of main firmware).
- A fast red-blinking (modules with on-board LAN) or fast yellow-blinking (modules without on-board LAN) indicator indicates that the module is in boot loader mode (e.g. during update of main firmware). In such a case try to re-boot the module or try a cold-start.
User Interfaces

- Depending on the user interface, the available tests and the screens/reports may vary.
- Preferred tool should be the Agilent Diagnostic Software, see “Agilent Lab Advisor software.
- The Agilent ChemStation B.04.02 and above do not include any maintenance/test functions.
- Screenshots used within these procedures are based on the Agilent Lab Advisor Software.
Agilent Diagnostic Software

The Agilent Lab Advisor software is a standalone product that can be used with or without data system. Agilent Lab Advisor software helps to manage the lab for high quality chromatographic results and can monitor in real time a single Agilent LC or all the Agilent GCs and LCs configured on the lab intranet.

Agilent Lab Advisor software provides diagnostic capabilities for all Agilent 1200 Infinity Series modules. This includes diagnostic capabilities, calibration procedures and maintenance routines for all the maintenance routines.

The Agilent Lab Advisor software also allows users to monitor the status of their LC instruments. The Early Maintenance Feedback (EMF) feature helps to carry out preventive maintenance. In addition, users can generate a status report for each individual LC instrument. The tests and diagnostic features as provided by the Agilent Lab Advisor software may differ from the descriptions in this manual. For details refer to the Agilent Lab Advisor software help files.

This manual provides lists with the names of Error Messages, Not Ready messages, and other common issues.

The Instrument Utilities is a basic version of the LabAdvisor with limited functionality required for installation, use and maintenance. No advanced repair, troubleshooting and monitoring functionality is included.
8

Error Information

What are Error Messages 87

General Error Messages 88
 Timeout 88
 Shut-Down 89
 Remote Timeout 89
 Synchronization Lost 90
 Leak 90
 Leak Sensor Open 91
 Leak Sensor Short 91
 Compensation Sensor Open 92
 Compensation Sensor Short 92
 Fan Failed 93

Module Error Messages 94
 Exhaust Fan Failed 94
 Front Door Error 94
 Side Door Error 95
 Arm Movement Failed or Arm Movement Timeout 95
 Valve to Bypass Failed 96
 Valve to Mainpass Failed 96
 Needle Lock Failed 97
 Needle to Needle Seat Position 97
 Needle Carrier Failed 98
 Missing Vial or Missing Wash Vial 98
 Initialization Failed 99
 Metering Home Failed 100
 Motor Temperature 100
 Invalid Vial Position 101
 Peristaltic Pump Error 102
This chapter describes the meaning of error messages, and provides information on probable causes and suggested actions how to recover from error conditions.
What are Error Messages

Error messages are displayed in the user interface when an electronic, mechanical, or hydraulic (flow path) failure occurs which requires attention before the analysis can be continued (for example, repair, or exchange of consumables is necessary). In the event of such a failure, the red status indicator at the front of the module is switched on, and an entry is written into the module logbook.
General Error Messages

General error messages are generic to all Agilent series HPLC modules and may show up on other modules as well.

Timeout

The timeout threshold was exceeded.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 The analysis was completed successfully, and the timeout function</td>
<td>Check the logbook for the occurrence and source of a not-ready condition. Restart</td>
</tr>
<tr>
<td>switched off the module as requested.</td>
<td>the analysis where required.</td>
</tr>
<tr>
<td>2 A not-ready condition was present during a sequence or multiple-injection</td>
<td>Check the logbook for the occurrence and source of a not-ready condition. Restart</td>
</tr>
<tr>
<td>run for a period longer than the timeout threshold.</td>
<td>the analysis where required.</td>
</tr>
</tbody>
</table>
Shut-Down

An external instrument has generated a shut-down signal on the remote line. The module continually monitors the remote input connectors for status signals. A LOW signal input on pin 4 of the remote connector generates the error message.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Leak detected in another module with a CAN connection to the system.</td>
<td>Fix the leak in the external instrument before restarting the module.</td>
</tr>
<tr>
<td>2 Leak detected in an external instrument with a remote connection to the system.</td>
<td>Fix the leak in the external instrument before restarting the module.</td>
</tr>
<tr>
<td>3 Shut-down in an external instrument with a remote connection to the system.</td>
<td>Check external instruments for a shut-down condition.</td>
</tr>
</tbody>
</table>

Remote Timeout

A not-ready condition is still present on the remote input. When an analysis is started, the system expects all not-ready conditions (for example, a not-ready condition during detector balance) to switch to run conditions within one minute of starting the analysis. If a not-ready condition is still present on the remote line after one minute the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Not-ready condition in one of the instruments connected to the remote line.</td>
<td>Ensure the instrument showing the not-ready condition is installed correctly, and is set up correctly for analysis.</td>
</tr>
<tr>
<td>2 Defective remote cable.</td>
<td>Exchange the remote cable.</td>
</tr>
<tr>
<td>3 Defective components in the instrument showing the not-ready condition.</td>
<td>Check the instrument for defects (refer to the instrument’s documentation).</td>
</tr>
</tbody>
</table>
Synchronization Lost

During an analysis, the internal synchronization or communication between one or more of the modules in the system has failed.

The system processors continually monitor the system configuration. If one or more of the modules is no longer recognized as being connected to the system, the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CAN cable disconnected.</td>
<td>• Ensure all the CAN cables are connected correctly.</td>
</tr>
<tr>
<td></td>
<td>• Ensure all CAN cables are installed correctly.</td>
</tr>
<tr>
<td>2 Defective CAN cable.</td>
<td>Exchange the CAN cable.</td>
</tr>
<tr>
<td>3 Defective main board in another module.</td>
<td>Switch off the system. Restart the system, and determine which module or modules are not recognized by the system.</td>
</tr>
</tbody>
</table>

Leak

A leak was detected in the module.

The signals from the two temperature sensors (leak sensor and board-mounted temperature-compensation sensor) are used by the leak algorithm to determine whether a leak is present. When a leak occurs, the leak sensor is cooled by the solvent. This changes the resistance of the leak sensor which is sensed by the leak-sensor circuit on the main board.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Loose fittings.</td>
<td>Ensure all fittings are tight.</td>
</tr>
<tr>
<td>2 Broken capillary.</td>
<td>Exchange defective capillaries.</td>
</tr>
</tbody>
</table>
Leak Sensor Open

The leak sensor in the module has failed (open circuit).

The current through the leak sensor is dependent on temperature. A leak is detected when solvent cools the leak sensor, causing the leak-sensor current to change within defined limits. If the current falls outside the lower limit, the error message is generated.

Probable cause	Suggested actions
1. Leak sensor not connected to the main board. | Please contact your Agilent service representative.
2. Defective leak sensor. | Please contact your Agilent service representative.
3. Leak sensor incorrectly routed, being pinched by a metal component. | Please contact your Agilent service representative.

Leak Sensor Short

The leak sensor in the module has failed (short circuit).

The current through the leak sensor is dependent on temperature. A leak is detected when solvent cools the leak sensor, causing the leak-sensor current to change within defined limits. If the current increases above the upper limit, the error message is generated.

Probable cause	Suggested actions
1. Defective flow sensor. | Please contact your Agilent service representative.
2. Leak sensor incorrectly routed, being pinched by a metal component. | Please contact your Agilent service representative.
Compensation Sensor Open

The ambient-compensation sensor (NTC) on the main board in the module has failed (open circuit).

The resistance across the temperature compensation sensor (NTC) on the main board is dependent on ambient temperature. The change in resistance is used by the leak circuit to compensate for ambient temperature changes. If the resistance across the sensor increases above the upper limit, the error message is generated.

Probable cause Suggested actions
1 Defective main board. Please contact your Agilent service representative.

Compensation Sensor Short

The ambient-compensation sensor (NTC) on the main board in the module has failed (short circuit).

The resistance across the temperature compensation sensor (NTC) on the main board is dependent on ambient temperature. The change in resistance is used by the leak circuit to compensate for ambient temperature changes. If the resistance across the sensor falls below the lower limit, the error message is generated.

Probable cause Suggested actions
1 Defective main board. Please contact your Agilent service representative.
Fan Failed

The cooling fan in the module has failed.

The hall sensor on the fan shaft is used by the main board to monitor the fan speed. If the fan speed falls below a certain limit for a certain length of time, the error message is generated.

Probable cause

1. Fan cable disconnected.
2. Defective fan.
3. Defective main board.

Suggested actions

1. Please contact your Agilent service representative.
2. Please contact your Agilent service representative.
3. Please contact your Agilent service representative.
Module Error Messages

These errors are autosampler specific.

Exhaust Fan Failed

The exhaust fan in the module has failed.

The hall sensor on the fan shaft is used by the main board to monitor the fan speed. If the fan speed falls below a certain value the error message is generated and the module shuts down.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Fan cable disconnected.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>2 Defective fan.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>3 Defective main board.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>

Front Door Error

The front door and/or the SLS board are damaged.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 The sensor on the SLS board is defective.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>2 The door is bent or the magnet is misplaced/ broken.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>
Side Door Error

The side door and/or the main board are damaged.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 The door is bent or the magnet is misplaced/broken.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>2 The sensor on the main board is defective.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>

Arm Movement Failed or Arm Movement Timeout

The transport assembly was unable to complete a movement in one of the axes.

The processor defines a certain time window for the successful completion of a movement in any particular axis. The movement and position of the transport assembly is monitored by the encoders on the stepper motors. If the processor does not receive the correct position information from the encoders within the time window, the error message is generated.

See figure for axes identification.

- Arm Movement 0 Failed: X-axis.
- Arm Movement 1 Failed: Z-axis.
- Arm Movement 2 Failed: Theta (needle carrier rotation).

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mechanical obstruction.</td>
<td>Ensure unobstructed movement of the transport assembly.</td>
</tr>
<tr>
<td>2 High friction in the transport assembly.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>3 Defective motor assembly.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>4 Defective sample transport assembly flex board.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>5 Defective main board.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>
Valve to Bypass Failed

The injection valve failed to switch to the bypass position.

The switching of the injection valve is monitored by two microswitches on the valve assembly. The switches detect the successful completion of the valve movement. If the valve fails to reach the bypass position, or if the microswitch does not close, the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Valve in an intermediate position between the By-and the Main position.</td>
<td>Turn the WPS main power OFF and ON.</td>
</tr>
<tr>
<td>2 Defective injection valve.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>3 Defective main board.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>

Valve to Mainpass Failed

The injection valve failed to switch to the mainpass position.

The switching of the injection valve is monitored by two microswitches on the valve assembly. The switches detect the successful completion of the valve movement. If the valve fails to reach the mainpass position, or if the microswitch does not close, the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Valve in an intermediate position between the bypass and mainpass positions.</td>
<td>Turn the sampler main power OFF and ON.</td>
</tr>
<tr>
<td>2 Defective injection valve.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>3 Defective main board.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>
Needle Lock Failed

The lock assembly on the sampling unit failed to move successfully.

The upper and lower positions of the needle lock are monitored by position sensors on the sampling unit flex board. The sensors detect the successful completion of the needle lock movement. If the needle lock fails to reach the end point, or if the sensors fail to recognize the needle lock movement, the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Defective or dirty position sensor.</td>
<td>Clean the position sensor.</td>
</tr>
<tr>
<td>2 Sticking spindle assembly.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>3 Defective needle drive motor</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>4 Defective main board.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>

Needle to Needle Seat Position

The needle failed to reach the end position in the needle seat.

The position of the needle is monitored by a position encoder on the needle carrier. If the needle fails to reach the end point, or if the encoder fails to recognize the needle carrier movement, the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Bad sample transport/ sampling unit alignment</td>
<td>Do an auto-alignment</td>
</tr>
<tr>
<td>2 Bent needle.</td>
<td>Check and exchange the needle assembly if necessary.</td>
</tr>
<tr>
<td>3 Missing needle.</td>
<td>Clean or change the needle seat assembly if necessary.</td>
</tr>
<tr>
<td>4 Blocked seat.</td>
<td>Exchange the needle carrier assembly.</td>
</tr>
<tr>
<td>5 Defective position sensor in the needle carrier assembly.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>6 Defective 1260 Infinity board.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>
Error Information
Module Error Messages

Needle Carrier Failed

The needle carrier on the Sample Transport Assembly failed to move correctly.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Defective Z-motor.</td>
<td>Exchange the needle carrier assembly.</td>
</tr>
<tr>
<td>2 Vial pusher blocked.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>3 Bad needle carrier positioning in X or Theta.</td>
<td>Exchange the needle carrier assembly.</td>
</tr>
<tr>
<td>4 Defective vial pusher sensor.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>5 Defective 1260 Infinity main board.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>

Missing Vial or Missing Wash Vial

No vial was found in the position defined in the method or sequence.

When the needle carrier moves to a vial and the needle goes into the vial, the position of the needle is monitored by an encoder behind the vial pusher. If no vial is present, the encoder detects an error and the message “missing vial” is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 No vial in the position defined in the method or sequence.</td>
<td>Install the sample vial in the correct position, or edit the method or sequence accordingly.</td>
</tr>
<tr>
<td>2 Defective needle carrier assembly.</td>
<td>Exchange the needle carrier assembly.</td>
</tr>
<tr>
<td>3 Defective transport assembly flex board.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>4 Defective 1260 Infinity board.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>
Initialization Failed

The autosampler failed to complete initialization correctly.

The autosampler initialization procedure moves the needle arm and transport assembly to their home positions in a predefined routine. During initialization, the processor monitors the position sensors and motor encoders to check for correct movement. If one or more of the movements is not successful, or is not detected, the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Side door not installed correctly.</td>
<td>• Check if the side door is installed correctly.</td>
</tr>
<tr>
<td></td>
<td>• Check if the magnet is in place in the side door.</td>
</tr>
<tr>
<td>2 Sample transport/sampling unit not aligned correctly.</td>
<td>Do an auto-alignment</td>
</tr>
<tr>
<td>3 Mechanical obstruction.</td>
<td>Ensure unobstructed movement of the transport assembly.</td>
</tr>
<tr>
<td>4 Defective sampling unit flex board.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>5 Defective transport assembly flex board.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>6 Defective sampling unit motor.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>7 Defective 1260 Infinity main board.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>
Metering Home Failed

The metering plunger has failed to move back to the home position.

The home position sensor on the sampling unit flex board monitors the home position of the plunger. If the plunger fails to move to the home position, or if the sensor fails to recognize the plunger position, the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Dirty or defective sensor.</td>
<td>Exchange the sampling unit flex board.</td>
</tr>
<tr>
<td>2. Broken plunger.</td>
<td>Exchange the metering plunger and seal.</td>
</tr>
<tr>
<td>3. Defective metering-drive motor.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>4. Defective 1260 Infinity board.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>

Motor Temperature

One of the motors of the transport assembly has drawn excessive current, causing the motor to become too hot. The processor has switched off the motor to prevent damage to the motor.

See figure for motor identification.

- Motor 0 temperature: X-axis motor.
- Motor 2 temperature: Theta (gripper rotation) motor.
- Motor 1 temperature: Z-axis motor.

The processor monitors the current drawn by each motor and the time the motor is drawing current. The current drawn by the motors is dependent on the load on each motor (friction, mass of components etc.). If the current drawn is too high, or the time the motor draws current is too long, the error message is generated.
Invalid Vial Position

The vial position defined in the method or sequence does not exist.

The reflection sensors on the transport assembly flex board are used to check automatically which sample trays are installed (coding on tray). If the vial position does not exist in the current sample tray configuration, the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Incorrect tray installed.</td>
<td>Install the correct trays, or edit the method or sequence accordingly.</td>
</tr>
<tr>
<td>2 Incorrect tray definition.</td>
<td>Install the correct trays, or edit the method or sequence accordingly.</td>
</tr>
<tr>
<td>3 Incorrect vial positions defined in the method or sequence.</td>
<td>Install the correct trays, or edit the method or sequence accordingly.</td>
</tr>
<tr>
<td>4 Tray recognition defective (dirty sample tray or defective transport assembly flex board).</td>
<td>• Ensure the coding surfaces of the sample tray are clean (located at the rear of the sample tray).
• Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>
Peristaltic Pump Error

The peristaltic pump motor in the autosampler has failed.

The current on the motor is used by the MTP board to monitor the speed of the peristaltic pump motor. If the current falls below a certain value, the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Defective motor.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>2 Defective SUD board.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
<tr>
<td>3 Defective 1260 Infinity main board.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>

Vessel or Wash Vessel Error

The needle does not reach the target position in the vial or in the vessel of the well plate.

The sensor behind the vial pusher in the needle carrier assembly detects the successful completion of the needle movement to the vessel. If the needle fails to reach the end point, the sensor fails to recognize the needle movement and the error message is generated.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Bad vessel definition in the plate configuration.</td>
<td>Check the vessel definition in the plate configuration.</td>
</tr>
<tr>
<td>2 Closing mat to rigid/ thick.</td>
<td>Check that the closing mats is not too thick.</td>
</tr>
<tr>
<td>3 Bad X or Theta positioning.</td>
<td>Exchange the needle carrier assembly.</td>
</tr>
<tr>
<td>4 Defective encoder on the needle carrier assembly.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>
Vessel Stuck to Needle

The vessel sticks to the needle when the needle moves up.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Closing mat to rigid/thick.</td>
<td>Check that the closing mat is not too thick.</td>
</tr>
<tr>
<td>2. Bad X or Theta positioning and the needle sticks into the wall between two holes.</td>
<td>Exchange the needle carrier assembly.</td>
</tr>
<tr>
<td>3. Defective encoder on the needle carrier assembly.</td>
<td>Please contact your Agilent service representative.</td>
</tr>
</tbody>
</table>

Rear Blind Seat Missing

Rear blind seat is missing although claimed to exist by main board information – occurs during initialization or if the blind seat location has to be used.

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Blind seat is missing.</td>
<td>Install blind seat.</td>
</tr>
</tbody>
</table>
8 Error Information
Module Error Messages
9 Test Functions and Calibration

Introduction 106

System Pressure Test 107
 System Pressure Test Evaluation 108

Sample Transport Self Alignment 109

Maintenance Positions 111
 Maintenance Positions 111
 Change Needle 112
 Change Loop Capillary 113
 Arm Position 113
 Change Needle Carrier 114
 Change Metering Device 114

Injector Steps 115
 Injector Steps 115
 Step Commands 117

This chapter describes the tests for the module.
Introduction

All tests are described based on the Agilent Lab Advisor Software B.01.04. Other user interfaces may not provide any test or just a few.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Comment</th>
<th>Available Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agilent Instrument Utilities</td>
<td>Maintenance tests available</td>
<td>• System Pressure test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sample transport Self Alignment</td>
</tr>
<tr>
<td>Agilent Lab Advisor</td>
<td>All tests are available</td>
<td>• System Pressure test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sample transport Self Alignment</td>
</tr>
<tr>
<td>Agilent ChemStation</td>
<td>No tests available</td>
<td>• Pressure</td>
</tr>
<tr>
<td></td>
<td>Adding of pressure to</td>
<td>• Pressure ripple</td>
</tr>
<tr>
<td></td>
<td>chromatographic signals possible</td>
<td>• Temperature mainboard</td>
</tr>
</tbody>
</table>

For details on the use of the interface refer to the interface documentation.
System Pressure Test

The test determines the leak rate of the system between pump outlet valves and a blank nut. The blank nut can be positioned at different locations in the system before the flow cell, to determine and verify the leak rate of individual modules and components. The test allows for setting the pressure at which the test is performed. The leak rate of high pressure parts are not always a linear function and therefore it is recommended to perform the test at a pressure that correspond to the normal operating pressure of the system.

When

In case of a suspected leak. To verify successful execution of maintenance tasks.

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01080-83202</td>
<td>Blank nut</td>
</tr>
</tbody>
</table>

Preparations

Solvents must be present in both channels.

1. Run the **System pressure test** with the recommended user interface (for further information see Online-Help of user interface).

![System Pressure Test - Result](image-url)
System Pressure Test Evaluation

System Pressure Test Failed

<table>
<thead>
<tr>
<th>Probable cause</th>
<th>Suggested actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Pump leakages</td>
<td>Perform the Pump Head Leak test.</td>
</tr>
<tr>
<td>2 Loose or leaky fittings</td>
<td>Tighten the fittings or replace capillaries.</td>
</tr>
<tr>
<td>3 Autosampler leakages</td>
<td>Perform the Autosampler Leak test.</td>
</tr>
<tr>
<td>4 Thermostatted Column Compartment valve leakages</td>
<td>Replace the TCC valve rotor seal.</td>
</tr>
</tbody>
</table>

NOTE

- Notice the difference between error in the test and a failed result! An error is caused by an abnormal termination during the operation of the test, whereas a failed result indicates that the test results were not within the specified limits.

- Often it is only a damaged blank nut (poorly shaped from over tightening) that causes the test to fail. Before investigating any other possible sources of failure make sure that the blank nut you are using is in a good condition and properly tightened.
Sample Transport Self Alignment

The sample transport self alignment uses predefined positions on the well plate tray to calibrate the positioning of the needle. The sample transport self alignment is required to compensate for larger deviations in positioning the needle carrier. The sample transport self alignment is required after disassembling the system or when you exchange the sample transport, the sampling unit, the tray or the MTP main board. This function is in the calibration screen of the Lab Advisor.

When
After disassembling the module or by larger deviations in the positioning of the needle.

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
</tr>
</tbody>
</table>

Preparations
Well plate tray needs to be installed and empty.
9 Test Functions and Calibration
Sample Transport Self Alignment

1 Run the **Transport Alignment** with the recommended user interface (for further information see Online-Help of user interface).

![Figure 17 Sample Transport Self Alignment - Running](image-url)
Maintenance Positions

Some maintenance procedures require the needle arm, metering device, and needle carrier to be moved to specific positions to enable easy access to components. The maintenance functions move these assemblies into the appropriate maintenance position. In the Agilent Lab Advisor Software the maintenance positions can be selected from the **Tools** icon.

When

When performing Maintenance on the module.

Parts required

| # | Description | 1 | None |

Preparations

None
9 Test Functions and Calibration
Maintenance Positions

1 Run the **Maintenance Positions** with the recommended user interface (for further information see Online-Help of user interface).

![Figure 18 Maintenance Positions– Running](image)

Change Needle

The position is positioning the needle carrier so that there is easy access for changing needle or needle seat. The position is to the far left, and the current to the motors are off, so that the arm can be turned while servicing the module.

![Figure 19 Maintenance Positions– Change Needle](image)
Change Loop Capillary

The Change Loop Capillary command positions the arm in the middle of the tray at half height to enable easy exchange of the loop cartridge.

![Change Loop Capillary](image)

Figure 20 Maintenance Positions– Change Loop Capillary

Arm Position

The home position of the autosampler ensures a better access to the tray area and for exchanging trays. When transporting the module it is highly recommended to use the Park Arm command, in order to place the Arm in a position for safe transport.

![Arm Position](image)

Figure 21 Maintenance Positions– Arm Position
Change Needle Carrier

The **Change Needle Carrier** function moves the needle to the front of the autosampler, enabling easy access to the needle carrier mechanism.

Figure 22 Maintenance Positions - Needle Carrier

- **Start** moves the needle to the front of the sample-tray area.
- **End** resets the autosampler after the needle carrier has been changed.

Change Metering Device

When removing the metering device is necessary (by exchanging the metering seal for instance), the metering drive needs to be moved to a position at the far back, in order to prevent seal and/or piston damage.

Figure 23 Maintenance Positions - Change Metering device
Injector Steps

Each movement of the sampling sequence can be done under manual control. This is useful during troubleshooting, where close observation of each of the sampling steps is required to confirm a specific failure mode or verify successful completion of a repair. Each injector step command actually consists of a series of individual commands that move the autosampler components to predefined positions, enabling the specific step to be done.

When

When troubleshooting the module.

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
</tr>
</tbody>
</table>

Preparations

None
9 Test Functions and Calibration

Injector Steps

1 Run the **Injector steps** with the recommended user interface (for further information see Online-Help of user interface).

![Injector Steps– Running](image)

Figure 24 Injector Steps– Running
Step Commands

Table 6 Step Commands

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve Bypass</td>
<td>Switches injection valve to the bypass position.</td>
<td></td>
</tr>
<tr>
<td>Plunger Home</td>
<td>Moves the plunger to the home position.</td>
<td></td>
</tr>
<tr>
<td>Needle Up</td>
<td>Lifts the needle arm to the upper position.</td>
<td>Command also switches the valve to bypass if it is not already in that position.</td>
</tr>
<tr>
<td>Move to Location</td>
<td>Move the needle arm to the vial location on the plate.</td>
<td></td>
</tr>
<tr>
<td>Needle into Sample</td>
<td>Lowers the needle into the vial.</td>
<td></td>
</tr>
<tr>
<td>Draw</td>
<td>Metering device draws the defined injection volume.</td>
<td>Command lifts the needle, and lowers the needle into the sample. Command can be done more than once (maximum draw volume of 40/100/4000 µL cannot be exceeded). Use Plunger Home to reset the metering device.</td>
</tr>
<tr>
<td>Needle Up</td>
<td>Lifts the needle out of the vial.</td>
<td></td>
</tr>
<tr>
<td>Needle into Seat</td>
<td>Lowers the needle arm into the seat.</td>
<td></td>
</tr>
<tr>
<td>Valve Mainpass</td>
<td>Switches the injection valve to the mainpass position.</td>
<td></td>
</tr>
<tr>
<td>Needle Up/Mainpass</td>
<td>Moves needle arm to waste position and switches the injection valve to the mainpass position.</td>
<td></td>
</tr>
</tbody>
</table>
Test Functions and Calibration
Injector Steps
This chapter describes the maintenance of the Autosampler
Figure 25 on page 120 shows the main user accessible assemblies of the autosampler. These parts can be accessed from the front (simple repairs) and don't require to remove the autosampler from the system stack.
Warnings and Cautions

WARNING Electrical shock
Repair work at the module can lead to personal injuries, e.g. shock hazard, when the cover is opened.

➔ Do not remove the metal top cover of the module. No serviceable parts inside.
➔ Only certified persons are authorized to carry out repairs inside the module.

WARNING Personal injury or damage to the product
Agilent is not responsible for any damages caused, in whole or in part, by improper use of the products, unauthorized alterations, adjustments or modifications to the products, failure to comply with procedures in Agilent product user guides, or use of the products in violation of applicable laws, rules or regulations.

➔ Use your Agilent products only in the manner described in the Agilent product user guides.

WARNING Sharp metal edges
Sharp-edged parts of the equipment may cause injuries.

➔ To prevent personal injury, be careful when getting in contact with sharp metal areas.
WARNING

Toxic, flammable and hazardous solvents, samples and reagents

The handling of solvents, samples and reagents can hold health and safety risks.

➔ When working with these substances observe appropriate safety procedures (for example by wearing goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the vendor, and follow good laboratory practice.

➔ The volume of substances should be reduced to the minimum required for the analysis.

➔ Do not operate the instrument in an explosive atmosphere.

CAUTION

Safety standards for external equipment

➔ If you connect external equipment to the instrument, make sure that you only use accessory units tested and approved according to the safety standards appropriate for the type of external equipment.

CAUTION

Sample degradation and contamination of the instrument

Metal parts in the flow path can interact with the bio-molecules in the sample leading to sample degradation and contamination.

➔ For bio-inert applications, always use dedicated bio-inert parts, which can be identified by the bio-inert symbol or other markers described in this manual.

➔ Do not mix bio-inert and non-inert modules or parts in a bio-inert system.

NOTE

The electronics of the autosampler will not allow operation of the autosampler when the top cover and the top foam are removed. A safety light switch on the main board will inhibit the operation of the fan immediately. Voltages for the other electronic components will be turned off after 30 seconds. The status lamp will light up red and an error will be logged into the logbook of the user interface. Always operate the autosampler with the top covers in place.
Overview of Maintenance

The following pages describe maintenance (simple repairs) of the autosampler that can be carried out without opening the main cover.

Table 7 Overview of Maintenance

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Typical Frequency</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change needle/ needle seat</td>
<td>60,000 needle into seat</td>
<td></td>
</tr>
<tr>
<td>Change metering seal</td>
<td>30,000 injections</td>
<td></td>
</tr>
<tr>
<td>Peristaltic pump cartridge</td>
<td>3000 hours on-time</td>
<td></td>
</tr>
<tr>
<td>Change rotor seal</td>
<td>30,000 injections</td>
<td></td>
</tr>
</tbody>
</table>
Cleaning the module

The module case should be kept clean. Cleaning should be done with a soft cloth slightly dampened with water or a solution of water and mild detergent. Do not use an excessively damp cloth as liquid could drip into the module.

WARNING

Liquid dripping into the electronic compartment of your module.

Liquid in the module electronics can cause shock hazard and damage the module.

➔ Do not use an excessively damp cloth during cleaning.

➔ Drain all solvent lines before opening any fittings.
Removing the needle assembly

When
When the limit in the needle into seat counter in the EM F is exceeded or when needle shows indications of damage, blockage or leaks.

8710-0510 ¼ inch wrench

<table>
<thead>
<tr>
<th>Parts required</th>
<th>#</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 G5667-87200</td>
<td></td>
<td>Needle assembly (bio-inert)</td>
<td></td>
</tr>
</tbody>
</table>

Preparations
In order to avoid leaks, close the shutoff valves in the pump or remove tubings from solvent bottles.

WARNING
Risk of injury by uncovered needle
An uncovered needle is a risk of harm to the operator.

➔ Be careful when you remove the needle carrier assembly.
➔ Use the silicon safety tube supplied with every new needle.

NOTE
It is recommended to always exchange the needle assembly and the needle seat at the same time to prevent premature leakage.
10 Maintenance
Removing the needle assembly

1. In the user interface start the maintenance mode and select Change needle/seat function. In the Agilent Lab Advisor software the Change needle/seat function can be found in the Tools section.

2. Open the front door and remove the side door.

3. Turn the Needle carrier 90° clockwise.

4. Flip the Leak guide open.
5 Attach a 5/16 inch wrench to hold the position at the needle assembly. Use a 1/4 inch wrench to loosen the fitting of the loop capillary.

6 Pinch the holder clamp, pull back and remove the loop capillary from the needle assembly.
Installing the needle assembly

When

When the limit in the needle into seat counter in the EM F is exceeded or when needle shows indications of damage, blockage or leaks.

Tools required

<table>
<thead>
<tr>
<th>p/ n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8710-0510</td>
<td>¼ inch wrench</td>
</tr>
</tbody>
</table>

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>p/ n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G5667-87200</td>
<td>Needle assembly (bio-inert)</td>
</tr>
</tbody>
</table>

Preparations

In order to avoid leaks, close the shutoff valves in the pump or remove tubings from solvent bottles.

WARNING

Risk of injury by uncovered needle

An uncovered needle is a risk of harm to the operator.

➔ Be careful when you remove the needle carrier assembly.

➔ Use the silicon safety tube supplied with every new needle.

NOTE

It is recommended to always exchange the needle assembly and the needle seat at the same time to prevent premature leakage.
1. Push the silicon safety tube delivered with every needle over the needle.

2. Insert the loop capillary into the needle assembly and tighten the fitting hand tight.

3. Pinch the holder clamp and reinsert the needle assembly into the needle carrier.

4. Attach a 5/16 inch wrench to hold the position at the needle assembly. Use a 1/4 inch wrench to tighten the fitting of the loop capillary.
Maintenance

Installing the needle assembly

<table>
<thead>
<tr>
<th>Step</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Close the leak guide</td>
</tr>
<tr>
<td>6</td>
<td>To align the needle, position the Positioning tool on the needle socket.</td>
</tr>
<tr>
<td>7</td>
<td>When Rotating the tool to position the needle it has to be moved beyond the end point to get the correct position.</td>
</tr>
<tr>
<td></td>
<td>Check the alignment of the needle in the needle pusher of the needle carrier by viewing from several directions to see that it is aligned in the center of the needle pusher.</td>
</tr>
<tr>
<td></td>
<td>NOTE</td>
</tr>
<tr>
<td></td>
<td>The needle must be centered in the needle pusher as all alignment by the Autosampler is calculated from the needle pusher position.</td>
</tr>
<tr>
<td>8</td>
<td>Remove the silicon safety tube from the needle.</td>
</tr>
<tr>
<td>9</td>
<td>In the user interface exit the Change needle/seat function and exit the maintenance mode. In the Lab Advisor software the Change needle/seat function can be found in the Tools section.</td>
</tr>
<tr>
<td>10</td>
<td>Re-install the side door and close the front door.</td>
</tr>
</tbody>
</table>
Exchanging the Needle Seat

When seat is visibly damaged, blocked or leaks.

<table>
<thead>
<tr>
<th>Tools required</th>
<th>p/ n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8710-0510</td>
<td>¼ inch wrench</td>
<td></td>
</tr>
<tr>
<td>8710-0510</td>
<td>¼ inch wrench flat head screwdriver</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parts required</th>
<th>#</th>
<th>p/ n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>G5667-87017</td>
<td>Seat assembly (bio-inert), 0.17 mm ID, 100 mm</td>
</tr>
</tbody>
</table>

Preparations
In order to avoid leaks, close the shutoff valves in the pump or remove tubings from solvent bottles.

WARNING
Risk of injury by uncovered needle
An uncovered needle is a risk of harm to the operator.

➔ Be careful when you remove the needle carrier assembly.
➔ Use the silicon safety tube supplied with every new needle.
10 **Maintenance**
Exchanging the Needle Seat

<table>
<thead>
<tr>
<th>Step</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the user interface start the maintenance mode and select Change needle/ seat function. In the Agilent Lab Advisor software the Change needle/ seat function can be found in the Tools section.</td>
</tr>
<tr>
<td>2</td>
<td>Open the front door.</td>
</tr>
<tr>
<td>3</td>
<td>Disconnect the seat capillary from the Injection valve.</td>
</tr>
<tr>
<td>4</td>
<td>With a Flat head screw driver carefully lift out the needle seat from the holder.</td>
</tr>
</tbody>
</table>
Next Steps:

5. Insert the new Needle seat. Press it firmly in position.

6. In the user interface exit the **Change needle/seat** function and exit the maintenance mode. In the Lab Advisor software the **Change needle/seat** function can be found in the **Tools** section.
Replacing the Rotor seal

When

Poor injection-volume reproducibility
Leaking injection valve

Tools required

Description
Wrench 1/4 inch
Hexagonal key, 9/64 inch

Parts required

p/ n Description
0101-1416 Rotor seal, 3 grooves, max. 600 bar

Preparations

Remove front cover.
Remove the leak tubing (if necessary).

CAUTION

Damage of the stator face

The stator face is held in place by the stator head. When removing the stator head, the stator face might fall out of the valve.

➔ When removing the stator head, ensure the stator face does not fall out of the valve.
1. Remove all capillary fittings from the injection-valve ports.

2. Loosen each fixing bolt two turns at a time. Remove the bolts from the head.

3. Remove the stator head, stator face and stator ring.

4. Remove the rotor seal and isolation seal.
10 Maintenance
Replacing the Rotor seal

5 Install the new rotor seal and isolation seal. Ensure the metal spring inside the isolation seal faces towards the valve body.

6 Install the stator ring with the short of the two pins facing towards you at the 12 O’Clock position. Ensure the ring sits flat on the valve body.

7 Place the stator face in place on the stator head.

8 Install stator head and stator face. Tighten the bolts alternately two turns at a time until the stator head is secure.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Reconnect the pump capillaries to the valve ports.</td>
</tr>
<tr>
<td>10</td>
<td>Slide the waste tube into the waste holder in the leak tray.</td>
</tr>
<tr>
<td>11</td>
<td>Install the front cover.</td>
</tr>
</tbody>
</table>
Removing the metering seal

When
When poor injection volume reproducibility or when metering device is leaking.

Tools required

<table>
<thead>
<tr>
<th>p/ n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8710-0510</td>
<td>¼ inch wrench</td>
</tr>
<tr>
<td>8710-2392</td>
<td>4 mm Hex key</td>
</tr>
</tbody>
</table>

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>p/ n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G5611-21503</td>
<td>Piston seal (bio-inert)</td>
</tr>
</tbody>
</table>

1. In the user interface start the maintenance mode and select **Change metering device** function. In the Agilent Lab Advisor software the **Change metering device** function can be found in the **Tools** section.

2. Open the front door.
3 Remove the two attached capillaries with a ¼ inch wrench.

4 Unscrew alternately the two fixing screws with a 4 mm hex key.

5 Pull the metering device away from the sampling unit.

6 Remove the two fixing screws at the base of the metering device.
10 Maintenance
Removing the metering seal

7 Remove the head body.

8 Using the piston carefully remove the metering seal. Clean the chamber and ensure all particular matter is removed.
Installing the metering seal

When
When poor injection volume reproducibility or when metering device is leaking.

Tools required
<table>
<thead>
<tr>
<th>p/ n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8710-0510</td>
<td>¼ inch wrench</td>
</tr>
<tr>
<td>8710-2392</td>
<td>4 mm Hex key</td>
</tr>
</tbody>
</table>

Parts required
<table>
<thead>
<tr>
<th>#</th>
<th>p/ n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G5611-21503</td>
<td>Piston seal (bio-inert)</td>
</tr>
</tbody>
</table>

Preparations
Removing the metering seal, see “Removing the metering seal” on page 138.

1. Install the new metering seal. Press it firmly into position. Avoid any offset angle as it might deform the seal.

2. Reassemble the metering device. Make sure to tighten screws firmly and have the tag on the right side looking from the front.
10 Maintenance
Installing the metering seal

3 Press the piston into the seal.

4 Reinstall the metering device to the sampling unit by tightening the two fixing screws alternately with a 4 mm hex key.

5 Connect the two capillaries to the metering device using a 1/4 inch wrench.

Next Steps:
6 Close the front door.
7 In the user interface exit the Change Metering device function and exit the maintenance mode. In the Lab Advisor software the Change Metering device function can be found in the Tools section.
Replacing Peristaltic Pump Cartridge

When Tubing blocked or broken

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>p/ n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5065-4445</td>
<td>Peristaltic pump cartridge</td>
</tr>
</tbody>
</table>

NOTE
The peristaltic pump cartridge is a replaceable unit. The tubing inside the pump is not replaceable.

1. Remove the corrugated leak tubing.

2. Press the two clips on the front of the peristaltic pump cartridge.
10 Maintenance
Replacing Peristaltic Pump Cartridge

3. Pull the cartridge forward off the motor shaft.

4. Disconnect the tubing leading to the wash port and the tubing coming from the solvent bottle.

5. Connect the wash port tubing to the upper tubing of the new cartridge (use sand paper to get a good grip on the tubing).

6. Connect the tubing coming from the solvent bottle to the lower tubing of the new cartridge.
7 Push the cartridge onto the motor shaft until the clips click into place.

8 Reinstall the corrugated leak tubing.
Installing the Interface Board

When
At installation or when defective.

- Flat head screwdriver

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Interface board</td>
</tr>
</tbody>
</table>

CAUTION

Electronic boards are sensitive to electrostatic discharge (ESD) and should be handled with care so as not to damage them. Touching electronic boards and components can cause electrostatic discharge. ESD can damage electronic boards and components.

➔ Be sure to hold the board by the edges and do not touch the electrical components. Always use an ESD protection (for example, an ESD wrist strap) when handling electronic boards and components.

1 Switch OFF the autosampler at the main power switch.
2 Disconnect cables from the interface board connectors.
3 Loosen the screws. Slide out the interface board from the autosampler.
4 Install the interface board. Secure the screws.
5 Reconnect the cables to the board connectors

![Image of interface board installation](image-url)
Replacing the Module Firmware

When

The installation of newer firmware might be necessary
• if a newer version solves problems of older versions or
• to keep all systems on the same (validated) revision.

The installation of older firmware might be necessary
• to keep all systems on the same (validated) revision or
• if a new module with newer firmware is added to a system or
• if third part control software requires a special version.

Tools required

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAN/ RS-232 Firmware Update Tool</td>
</tr>
<tr>
<td>OR Agilent Lab Advisor software</td>
</tr>
<tr>
<td>OR Instant Pilot G4208A</td>
</tr>
</tbody>
</table>

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Firmware, tools and documentation from Agilent web site</td>
</tr>
</tbody>
</table>

Preparations

Read update documentation provided with the Firmware Update Tool.

To upgrade/downgrade the module’s firmware carry out the following steps:

1. Download the required module firmware, the latest LAN/RS-232 FW Update Tool and the documentation from the Agilent web.

2. For loading the firmware into the module follow the instructions in the documentation.

Module Specific Information

There is no specific information for this module.
10 Maintenance
Replacing the Module Firmware
This chapter provides information on parts material required for the module.
Parts for Maintenance

Overview of Maintenance Parts

For bio-inert modules use bio-inert parts only!

<table>
<thead>
<tr>
<th>Item</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0101-1416</td>
<td>Rotor seal, 3 grooves, max. 600 bar</td>
</tr>
<tr>
<td>2</td>
<td>G5611-21503</td>
<td>Piston seal (bio-inert)</td>
</tr>
<tr>
<td>3</td>
<td>G5667-87200</td>
<td>Needle assembly (bio-inert)</td>
</tr>
<tr>
<td>4</td>
<td>G5667-87017</td>
<td>Seat assembly (bio-inert), 0.17 mm ID, 100 mm</td>
</tr>
<tr>
<td>5</td>
<td>G5667-60310</td>
<td>Loop capillary (bio-inert)</td>
</tr>
<tr>
<td>6</td>
<td>G5667-60003</td>
<td>Analytical head (bio-inert)</td>
</tr>
<tr>
<td>7</td>
<td>5068-0060</td>
<td>Bio-inert stator head</td>
</tr>
<tr>
<td>8</td>
<td>0100-1851</td>
<td>Stator face, ceramic</td>
</tr>
<tr>
<td>9</td>
<td>G5667-40500</td>
<td>Tool for needle adjustment</td>
</tr>
<tr>
<td>10</td>
<td>5067-4695</td>
<td>Sapphire piston</td>
</tr>
<tr>
<td>11</td>
<td>5067-4131</td>
<td>2 position/ 6port injection valve (bio-inert)</td>
</tr>
</tbody>
</table>
Vial Trays

<table>
<thead>
<tr>
<th>Item</th>
<th>p/ n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G2258-60011</td>
<td>Tray for 2 plates + 10 x 2 mL vials</td>
</tr>
<tr>
<td>2</td>
<td>0515-0866</td>
<td>Screws for springs</td>
</tr>
<tr>
<td>3</td>
<td>G1313-09101</td>
<td>Spring</td>
</tr>
<tr>
<td>4</td>
<td>0570-1574</td>
<td>Spring stud</td>
</tr>
<tr>
<td>5</td>
<td>G1329-60000</td>
<td>Tray base</td>
</tr>
<tr>
<td>6</td>
<td>G1329-43200</td>
<td>Adapter air channel</td>
</tr>
<tr>
<td></td>
<td>G1367-47200</td>
<td>Plug channel</td>
</tr>
<tr>
<td>7</td>
<td>G4226-60021</td>
<td>Tray for 100 micro vials</td>
</tr>
</tbody>
</table>
Recommended Plates and Closing Mats

Table 8 Recommended plates and closing mat

<table>
<thead>
<tr>
<th>Description (Part Number)</th>
<th>Rows</th>
<th>Columns</th>
<th>Plate height</th>
<th>Volume (μL)</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>384Agilent (p/n 5042-1388)</td>
<td>16</td>
<td>24</td>
<td>14.4</td>
<td>80</td>
<td>30</td>
</tr>
<tr>
<td>384Corning (No Agilent PN)</td>
<td>16</td>
<td>24</td>
<td>14.4</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>384Nunc (No Agilent PN)</td>
<td>16</td>
<td>24</td>
<td>14.4</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>96 Agilent (p/n 5042-1386)</td>
<td>8</td>
<td>12</td>
<td>14.3</td>
<td>500</td>
<td>10, 120</td>
</tr>
<tr>
<td>96 Agilent (p/n 5042-1385)</td>
<td>8</td>
<td>12</td>
<td>14.3</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>96 Agilent conical (p/n 5042-8502)</td>
<td>8</td>
<td>12</td>
<td>17.3</td>
<td>150</td>
<td>25</td>
</tr>
<tr>
<td>96 Capped Agilent (p/n 5065-4402)</td>
<td>8</td>
<td>12</td>
<td>47.1</td>
<td>300</td>
<td>1</td>
</tr>
<tr>
<td>96 Corning (No Agilent PN)</td>
<td>8</td>
<td>12</td>
<td>14.3</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>96 Corning V (No Agilent PN)</td>
<td>8</td>
<td>12</td>
<td>14.3</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>96 Deep Agilent 31mm (p/n 5042-6454)</td>
<td>8</td>
<td>12</td>
<td>31.5</td>
<td>1000</td>
<td>50</td>
</tr>
<tr>
<td>96 Deep Nunc 31mm (No Agilent PN)</td>
<td>8</td>
<td>12</td>
<td>31.5</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>96 Deep Ritter 41mm (No Agilent PN)</td>
<td>8</td>
<td>12</td>
<td>41.2</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>96 Greiner (No Agilent PN)</td>
<td>8</td>
<td>12</td>
<td>14.3</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>96 Greiner V (No Agilent PN)</td>
<td>8</td>
<td>12</td>
<td>14.3</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>96 Nunc (No Agilent PN)</td>
<td>8</td>
<td>12</td>
<td>14.3</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Closing mat for all 96 Agilent plates (p/n 5042-1389)</td>
<td>8</td>
<td>12</td>
<td></td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

NOTE Using vessels higher than 41 mm, will result in needle not being able to reach bottom of vessel.
Recommended Vial Plates

<table>
<thead>
<tr>
<th>p/ n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2255-68700</td>
<td>Vial plate for 54 x 2 mL vials (6/ pk)</td>
</tr>
<tr>
<td>5022-6539</td>
<td>Vial plate for 15 x 6 mL vials (1/ pk)</td>
</tr>
<tr>
<td>5022-6538</td>
<td>Vial plate for 27 Eppendorf tubes (1/ pk)</td>
</tr>
</tbody>
</table>
Accessory Kit

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G5667-68755</td>
<td>Accessory kit (bio-inert)</td>
</tr>
<tr>
<td>G5667-60500</td>
<td>PEEK/ SST capillary (bio-inert) 0.17 mm ID, 400 mm long</td>
</tr>
<tr>
<td>5181-1519</td>
<td>CAN cable, Agilent module to module, 1 m</td>
</tr>
<tr>
<td>5063-6527</td>
<td>Tubing assembly, i.d. 6 mm, o.d. 9 mm, 1.2 m (to waste)</td>
</tr>
</tbody>
</table>
This chapter provides information on cables used with the 1260 series of HPLC modules.
12 Identifying Cables

Cable Overview

NOTE
Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>35900-60750</td>
<td>Agilent module to 3394/ 6 integrators</td>
</tr>
<tr>
<td>35900-60750</td>
<td>Agilent 35900A A/ D converter</td>
</tr>
<tr>
<td>01046-60105</td>
<td>Analog cable (BNC to general purpose, spade lugs)</td>
</tr>
</tbody>
</table>

Remote cables

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03394-60600</td>
<td>Agilent module to 3396A Series I integrators</td>
</tr>
<tr>
<td></td>
<td>3396 Series II / 3395A integrator, see details in section “Remote Cables” on page 160</td>
</tr>
<tr>
<td>03396-61010</td>
<td>Agilent module to 3396 Series III / 3395B integrators</td>
</tr>
<tr>
<td>5061-3378</td>
<td>Agilent module to Agilent 35900 A/ D converters (or HP 1050/ 1046A/ 1049A)</td>
</tr>
<tr>
<td>01046-60201</td>
<td>Agilent module to general purpose</td>
</tr>
</tbody>
</table>

BCD cables

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03396-60560</td>
<td>Agilent module to 3396 integrators</td>
</tr>
<tr>
<td>G1351-81600</td>
<td>Agilent module to general purpose</td>
</tr>
</tbody>
</table>
CAN cables

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5181-1516</td>
<td>CAN cable, Agilent module to module, 0.5 m</td>
</tr>
<tr>
<td>5181-1519</td>
<td>CAN cable, Agilent module to module, 1 m</td>
</tr>
</tbody>
</table>

LAN cables

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5023-0203</td>
<td>Cross-over network cable, shielded, 3 m (for point to point connection)</td>
</tr>
<tr>
<td>5023-0202</td>
<td>Twisted pair network cable, shielded, 7 m (for point to point connection)</td>
</tr>
</tbody>
</table>

RS-232 cables

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1530-60600</td>
<td>RS-232 cable, 2 m</td>
</tr>
<tr>
<td>RS232-61600</td>
<td>Instrument to PC, 9-to-9 pin (female). This cable has special pin-out, and is not compatible with connecting printers and plotters. It's also called "Null Modem Cable" with full handshaking where the wiring is made between pins 1-1, 2-3, 3-2, 4-6, 5-5, 6-4, 7-8, 8-7, 9-9.</td>
</tr>
<tr>
<td>5181-1561</td>
<td>RS-232 cable, 8 m</td>
</tr>
</tbody>
</table>
Analog Cables

One end of these cables provides a BNC connector to be connected to Agilent modules. The other end depends on the instrument to which connection is being made.

Agilent Module to 3394/6 Integrators

<table>
<thead>
<tr>
<th>p/n 35900-60750</th>
<th>Pin 3394/6</th>
<th>Pin Agilent module</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Shield</td>
<td>Analog -</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Center</td>
<td>Analog +</td>
<td></td>
</tr>
</tbody>
</table>
Agilent Module to BNC Connector

<table>
<thead>
<tr>
<th>p/ n 8120-1840</th>
<th>Pin BNC</th>
<th>Pin Agilent module</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shield</td>
<td>Shield</td>
<td>Analog -</td>
</tr>
<tr>
<td></td>
<td>Center</td>
<td>Center</td>
<td>Analog +</td>
</tr>
</tbody>
</table>

Agilent Module to General Purpose

<table>
<thead>
<tr>
<th>p/ n 01046-60105</th>
<th>Pin</th>
<th>Pin Agilent module</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Black</td>
<td>Analog -</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Red</td>
<td>Analog +</td>
<td></td>
</tr>
</tbody>
</table>
Remote Cables

One end of these cables provides a Agilent Technologies APG (Analytical Products Group) remote connector to be connected to Agilent modules. The other end depends on the instrument to be connected to.

Agilent Module to 3396A Integrators

<table>
<thead>
<tr>
<th>p/n 03394-60600</th>
<th>Pin 3396A</th>
<th>Pin Agilent module</th>
<th>Signal Name</th>
<th>Active (TTL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1 - White</td>
<td>Digital ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>2 - Brown</td>
<td>Prepare run</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3 - Gray</td>
<td>Start</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>4 - Blue</td>
<td>Shut down</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>5 - Pink</td>
<td>Not connected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>6 - Yellow</td>
<td>Power on</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>5,14</td>
<td>7 - Red</td>
<td>Ready</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8 - Green</td>
<td>Stop</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>9 - Black</td>
<td>Start request</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>13, 15</td>
<td></td>
<td>Not connected</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Agilent Module to 3396 Series II / 3395A Integrators

Use the cable Agilent module to 3396A Series I integrators (p/n 03394-60600) and cut pin #5 on the integrator side. Otherwise the integrator prints START; not ready.
Agilent Module to 3396 Series III / 3395B Integrators

<table>
<thead>
<tr>
<th>Pin 33XX</th>
<th>Pin Agilent module</th>
<th>Signal Name</th>
<th>Active (TTL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1 - White</td>
<td>Digital ground</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>2 - Brown</td>
<td>Prepare run</td>
<td>Low</td>
</tr>
<tr>
<td>3</td>
<td>3 - Gray</td>
<td>Start</td>
<td>Low</td>
</tr>
<tr>
<td>NC</td>
<td>4 - Blue</td>
<td>Shut down</td>
<td>Low</td>
</tr>
<tr>
<td>NC</td>
<td>5 - Pink</td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>6 - Yellow</td>
<td>Power on</td>
<td>High</td>
</tr>
<tr>
<td>14</td>
<td>7 - Red</td>
<td>Ready</td>
<td>High</td>
</tr>
<tr>
<td>4</td>
<td>8 - Green</td>
<td>Stop</td>
<td>Low</td>
</tr>
<tr>
<td>NC</td>
<td>9 - Black</td>
<td>Start request</td>
<td>Low</td>
</tr>
<tr>
<td>13, 15</td>
<td></td>
<td>Not connected</td>
<td></td>
</tr>
</tbody>
</table>

Agilent Module to Agilent 35900 A/D Converters

<table>
<thead>
<tr>
<th>Pin 35900 A/D</th>
<th>Pin Agilent module</th>
<th>Signal Name</th>
<th>Active (TTL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - White</td>
<td>1 - White</td>
<td>Digital ground</td>
<td></td>
</tr>
<tr>
<td>2 - Brown</td>
<td>2 - Brown</td>
<td>Prepare run</td>
<td>Low</td>
</tr>
<tr>
<td>3 - Gray</td>
<td>3 - Gray</td>
<td>Start</td>
<td>Low</td>
</tr>
<tr>
<td>4 - Blue</td>
<td>4 - Blue</td>
<td>Shut down</td>
<td>Low</td>
</tr>
<tr>
<td>5 - Pink</td>
<td>5 - Pink</td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td>6 - Yellow</td>
<td>6 - Yellow</td>
<td>Power on</td>
<td>High</td>
</tr>
<tr>
<td>7 - Red</td>
<td>7 - Red</td>
<td>Ready</td>
<td>High</td>
</tr>
<tr>
<td>8 - Green</td>
<td>8 - Green</td>
<td>Stop</td>
<td>Low</td>
</tr>
<tr>
<td>9 - Black</td>
<td>9 - Black</td>
<td>Start request</td>
<td>Low</td>
</tr>
</tbody>
</table>
Agilent Module to General Purpose

<table>
<thead>
<tr>
<th>p/n 01046-60201</th>
<th>Pin Universal</th>
<th>Pin Agilent module</th>
<th>Signal Name</th>
<th>Active (TTL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 - White</td>
<td>Digital ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 - Brown</td>
<td>Prepare run</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 - Gray</td>
<td>Start</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 - Blue</td>
<td>Shut down</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 - Pink</td>
<td>Not connected</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 - Yellow</td>
<td>Power on</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 - Red</td>
<td>Ready</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 - Green</td>
<td>Stop</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 - Black</td>
<td>Start request</td>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>
BCD Cables

One end of these cables provides a 15-pin BCD connector to be connected to the Agilent modules. The other end depends on the instrument to be connected to.

Agilent Module to General Purpose

<table>
<thead>
<tr>
<th>p/n G1351-81600</th>
<th>Wire Color</th>
<th>Pin Agilent module</th>
<th>Signal Name</th>
<th>BCD Digit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Green</td>
<td>1</td>
<td>BCD 5</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Violet</td>
<td>2</td>
<td>BCD 7</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Blue</td>
<td>3</td>
<td>BCD 6</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Yellow</td>
<td>4</td>
<td>BCD 4</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td>5</td>
<td>BCD 0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Orange</td>
<td>6</td>
<td>BCD 3</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>7</td>
<td>BCD 2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Brown</td>
<td>8</td>
<td>BCD 1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Gray</td>
<td>9</td>
<td>Digital ground</td>
<td>Gray</td>
</tr>
<tr>
<td></td>
<td>Gray/pink</td>
<td>10</td>
<td>BCD 11</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>Red/blue</td>
<td>11</td>
<td>BCD 10</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>White/green</td>
<td>12</td>
<td>BCD 9</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Brown/green</td>
<td>13</td>
<td>BCD 8</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>not connected</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>not connected</td>
<td>15</td>
<td>+5 V</td>
<td>Low</td>
</tr>
</tbody>
</table>
Agilent Module to 3396 Integrators

<table>
<thead>
<tr>
<th>p/n 03396-60560</th>
<th>Pin 3396</th>
<th>Pin Agilent module</th>
<th>Signal Name</th>
<th>BCD Digit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>BCD 5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>BCD 7</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>BCD 6</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>BCD 4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>BCD0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>BCD 3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>BCD 2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>BCD 1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>Digital ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>15</td>
<td>+5 V</td>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>
CAN/ LAN Cables

Both ends of this cable provide a modular plug to be connected to Agilent modules CAN or LAN connectors.

CAN Cables

<table>
<thead>
<tr>
<th>p/ n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5181-1516</td>
<td>CAN cable, Agilent module to module, 0.5 m</td>
</tr>
<tr>
<td>5181-1519</td>
<td>CAN cable, Agilent module to module, 1 m</td>
</tr>
</tbody>
</table>

LAN Cables

<table>
<thead>
<tr>
<th>p/ n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5023-0203</td>
<td>Cross-over network cable, shielded, 3 m (for point to point connection)</td>
</tr>
<tr>
<td>5023-0202</td>
<td>Twisted pair network cable, shielded, 7 m (for point to point connection)</td>
</tr>
</tbody>
</table>
One end of this cable provides a 15-pin plug to be connected to Agilent modules interface board. The other end is for general purpose.

<table>
<thead>
<tr>
<th>p/n G1103-61611</th>
<th>Color</th>
<th>Pin Agilent module</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>1</td>
<td>EXT 1</td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td>2</td>
<td>EXT 1</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>3</td>
<td>EXT 2</td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td>4</td>
<td>EXT 2</td>
<td></td>
</tr>
<tr>
<td>Grey</td>
<td>5</td>
<td>EXT 3</td>
<td></td>
</tr>
<tr>
<td>Pink</td>
<td>6</td>
<td>EXT 3</td>
<td></td>
</tr>
<tr>
<td>Blue</td>
<td>7</td>
<td>EXT 4</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>8</td>
<td>EXT 4</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>9</td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td>Violet</td>
<td>10</td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td>Grey/ pink</td>
<td>11</td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td>Red/ blue</td>
<td>12</td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td>White/ green</td>
<td>13</td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td>Brown/ green</td>
<td>14</td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td>White/ yellow</td>
<td>15</td>
<td>Not connected</td>
<td></td>
</tr>
</tbody>
</table>
Agilent Module to PC

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1530-60600</td>
<td>RS-232 cable, 2 m</td>
</tr>
</tbody>
</table>
| RS232-61600 | RS-232 cable, 2.5 m
Instrument to PC, 9-to-9 pin (female). This cable has special pin-out, and is not compatible with connecting printers and plotters. It's also called "Null Modem Cable" with full handshaking where the wiring is made between pins 1-1, 2-3, 3-2, 4-6, 5-5, 6-4, 7-8, 8-7, 9-9. |
| 5181-1561 | RS-232 cable, 8 m |

Identifying Cables

Agilent Module to PC
12 Identifying Cables
Agilent 1200 Module to Printer

Agilent 1200 Module to Printer

<table>
<thead>
<tr>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5181-1529</td>
<td>Cable Printer Serial & Parallel, is a SUB-D 9 pin female vs. Centronics connector on the other end (NOT FOR FW UPDATE). For use with G1323 Control Module.</td>
</tr>
</tbody>
</table>
13 Hardware Information

Firmware Description 170
Interfaces 173
 Overview Interfaces 175
Setting the 8-bit Configuration Switch 179
 Communication Settings for RS-232C 180
 Special Settings 182
Electrical Connections 183
 Rear view of the module 184
 Information on Instrument Serial Number 184

This chapter describes the autosampler in more detail on hardware and electronics.
The firmware of the instrument consists of two independent sections:
- a non-instrument specific section, called *resident system*
- an instrument specific section, called *main system*

Resident System

This resident section of the firmware is identical for all Agilent 1100/1200/1220/1260/1290 series modules. Its properties are:
- the complete communication capabilities (CAN, LAN and RS-232C)
- memory management
- ability to update the firmware of the 'main system'

Main System

Its properties are:
- the complete communication capabilities (CAN, LAN and RS-232C)
- memory management
- ability to update the firmware of the 'resident system'

In addition the main system comprises the instrument functions that are divided into common functions like
- run synchronization through APG remote,
- error handling,
- diagnostic functions,
- or module specific functions like
 - internal events such as lamp control, filter movements,
 - raw data collection and conversion to absorbance.
Firmware Updates

Firmware updates can be done using your user interface:

- PC and Firmware Update Tool with local files on the hard disk
- Instant Pilot (G4208A) with files from a USB Flash Disk
- Agilent LabAdvisor software B.01.03 and above

The file naming conventions are:

PPPP_RVVV_XXX.dlb, where

PPPP is the product number, for example, 1315AB for the G1315A/B DAD,

R the firmware revision, for example, A for G1315B or B for the G1315C DAD,

VVV is the revision number, for example 102 is revision 1.02,

XXX is the build number of the firmware.

For instructions on firmware updates refer to section *Replacing Firmware* in chapter "Maintenance" or use the documentation provided with the Firmware Update Tools.

NOTE
Update of main system can be done in the resident system only. Update of the resident system can be done in the main system only.

Main and resident firmware must be from the same set.

![Figure 27 Firmware Update Mechanism](image-url)
13 Hardware Information
Firmware Description

NOTE

Some modules are limited in downgrading due to their main board version or their initial firmware revision. For example, a G1315C DAD SL cannot be downgraded below firmware revision B.01.02 or to a A.xx.xx.

Some modules can be re-branded (e.g. G1314C to G1314B) to allow operation in specific control software environments. In this case the feature set of the target type are use and the feature set of the original are lost. After re-branding (e.g. from G1314B to G1314C), the original feature set is available again.

All these specific informations are described in the documentation provided with the firmware update tools.

The firmware update tools, firmware and documentation are available from the Agilent web.

• http://www.chem.agilent.com/EN-US/SUPPORT/DOWNLOADS/FIRMWARE/Pages/LC.aspx
The Agilent 1200 Infinity Series modules provide the following interfaces:

Table 9 Agilent 1200 Infinity Series Interfaces

<table>
<thead>
<tr>
<th>Module</th>
<th>CAN</th>
<th>LAN/ BCD (optional)</th>
<th>LAN (on-board)</th>
<th>RS-232</th>
<th>Analog</th>
<th>APG Remote</th>
<th>Special</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1310B Iso Pump</td>
<td>2</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>G1311B Quat Pump</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1311C Quat Pump VL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1312B Bin Pump</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1312C Bin Pump VL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1376A Cap Pump</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2226A Nano Pump</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G5611A Bio-inert Quat Pump</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G4220A/ B Bin Pump</td>
<td>2</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>THERMOSTAT for G1330B</td>
</tr>
<tr>
<td>G1361A Prep Pump</td>
<td>2</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>CAN-DC- OUT for CAN slaves</td>
</tr>
<tr>
<td>Samplers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1329B ALS</td>
<td>2</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>THERMOSTAT for G1330B</td>
</tr>
<tr>
<td>G2260A Prep ALS</td>
<td>2</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>THERMOSTAT for G1330B</td>
</tr>
<tr>
<td>G1364B FC-PS</td>
<td>2</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>THERMOSTAT for G1330B</td>
</tr>
<tr>
<td>G1364C FC-AS</td>
<td>2</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>THERMOSTAT for G1330B</td>
</tr>
<tr>
<td>G1364D FC-μS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1367E HiP ALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1377A HiP micro ALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2258A DL ALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G5664A Bio-inert FC-AS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G5667A Bio-inert Autosampler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G4226A ALS</td>
<td>2</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
13 Hardware Information

Interfaces

<table>
<thead>
<tr>
<th>Module</th>
<th>CAN</th>
<th>LAN/ BCD (optional)</th>
<th>LAN (on-board)</th>
<th>RS-232</th>
<th>Analog</th>
<th>APG Remote</th>
<th>Special</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detectors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1314B VWD VL</td>
<td>2</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>G1314C VWD VL+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1314E/F VWD</td>
<td>2</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>G4212A/ B DAD</td>
<td>2</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>G1315C DAD VL+</td>
<td>2</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>2</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>G1365C MWD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1315D DAD VL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1365D MWD VL</td>
<td>2</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1331B FLD</td>
<td>2</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>G1362A RID</td>
<td>2</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>G4280A ELSD</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>EXT Contact AUTOZERO</td>
</tr>
</tbody>
</table>

Others							
G1170A Valve Drive	2	No	No	No	No	No	Requires a HOST module with on-board LAN (e.g. G4212A or G4220A with minimum firmware B.06.40 or C.06.40) or with additional G1369C LAN Card
G1316A/ C TCC	2	No	No	Yes	No	Yes	
G1322A DEG	No	No	No	No	No	Yes	AUX
G1379B DEG	No	No	No	Yes	No	No	AUX
G4227A Flex Cube	2	No	No	No	No	No	
G4240A CHIP CUBE	2	Yes	No	Yes	No	Yes	CAN-DC- OUT for CAN slaves THERM OSTAT for G1330A/ B (NOT USED)
Overview Interfaces

CAN

The CAN is inter-module communication interface. It is a 2-wire serial bus system supporting high speed data communication and real-time requirement.

LAN

The modules have either an interface slot for an LAN card (e.g. Agilent G1369A/B LAN Interface) or they have an on-board LAN interface (e.g. detectors G1315C/D DAD and G1365C/D MWD). This interface allows the control of the module/system via a connected PC with the appropriate control software.

NOTE

If an Agilent detector (DAD/ MWD/ FLD/ VWD/ RID) is in the system, the LAN should be connected to the DAD/ MWD/ FLD/ VWD/ RID (due to higher data load). If no Agilent detector is part of the system, the LAN interface should be installed in the pump or autosampler.
Interfaces

RS-232C (Serial)

The RS-232C connector is used to control the module from a computer through RS-232C connection, using the appropriate software. This connector can be configured with the configuration switch module at the rear of the module. Refer to Communication Settings for RS-232C.

NOTE

There is no configuration possible on main boards with on-board LAN. These are pre-configured for:
- 19200 baud,
- 8 data bit with no parity and
- one start bit and one stop bit are always used (not selectable).

The RS-232C is designed as DCE (data communication equipment) with a 9-pin male SUB-D type connector. The pins are defined as:

Table 10 RS-232C Connection Table

<table>
<thead>
<tr>
<th>Pin</th>
<th>Direction</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In</td>
<td>DCD</td>
</tr>
<tr>
<td>2</td>
<td>In</td>
<td>RxD</td>
</tr>
<tr>
<td>3</td>
<td>Out</td>
<td>TxD</td>
</tr>
<tr>
<td>4</td>
<td>Out</td>
<td>DTR</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>In</td>
<td>DSR</td>
</tr>
<tr>
<td>7</td>
<td>Out</td>
<td>RTS</td>
</tr>
<tr>
<td>8</td>
<td>In</td>
<td>CTS</td>
</tr>
<tr>
<td>9</td>
<td>In</td>
<td>RI</td>
</tr>
</tbody>
</table>
Analog Signal Output

The analog signal output can be distributed to a recording device. For details refer to the description of the module’s main board.

APG Remote

The APG Remote connector may be used in combination with other analytical instruments from Agilent Technologies if you want to use features as common shut down, prepare, and so on.

Remote control allows easy connection between single instruments or systems to ensure coordinated analysis with simple coupling requirements.

The subminiature D connector is used. The module provides one remote connector which is inputs/outputs (wired- or technique).

To provide maximum safety within a distributed analysis system, one line is dedicated to **SHUT DOWN** the system’s critical parts in case any module detects a serious problem. To detect whether all participating modules are switched on or properly powered, one line is defined to summarize the **POWER ON** state of all connected modules. Control of analysis is maintained by signal readiness **READY** for next analysis, followed by **START** of run and optional **STOP** of run triggered on the respective lines. In addition **PREPARE** and **START REQUEST** may be issued. The signal levels are defined as:

- standard TTL levels (0 V is logic true, + 5.0 V is false),
- fan-out is 10,
13 Hardware Information

Interfaces

- input load is 2.2 kOhm against +5.0 V, and
- output are open collector type, inputs/outputs (wired- or technique).

NOTE

All common TTL circuits operate with a 5 V power supply. A TTL signal is defined as "low" or L when between 0 V and 0.8 V and "high" or H when between 2.0 V and 5.0 V (with respect to the ground terminal).

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DGND</td>
<td>Digital ground</td>
</tr>
<tr>
<td>2</td>
<td>PREPARE</td>
<td>(L) Request to prepare for analysis (for example, calibration, detector lamp on). Receiver is any module performing pre-analysis activities.</td>
</tr>
<tr>
<td>3</td>
<td>START</td>
<td>(L) Request to start run / timetable. Receiver is any module performing run-time controlled activities.</td>
</tr>
<tr>
<td>4</td>
<td>SHUT DOWN</td>
<td>(L) System has serious problem (for example, leak: stops pump). Receiver is any module capable to reduce safety risk.</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Not used</td>
</tr>
<tr>
<td>6</td>
<td>POWER ON</td>
<td>(H) All modules connected to system are switched on. Receiver is any module relying on operation of others.</td>
</tr>
<tr>
<td>7</td>
<td>READY</td>
<td>(H) System is ready for next analysis. Receiver is any sequence controller.</td>
</tr>
<tr>
<td>8</td>
<td>STOP</td>
<td>(L) Request to reach system ready state as soon as possible (for example, stop run, abort or finish and stop injection). Receiver is any module performing run-time controlled activities.</td>
</tr>
<tr>
<td>9</td>
<td>START REQUEST</td>
<td>(L) Request to start injection cycle (for example, by start key on any module). Receiver is the autosampler.</td>
</tr>
</tbody>
</table>

Special Interfaces

Some modules have module specific interfaces/connectors. They are described in the module documentation.
Setting the 8-bit Configuration Switch

The 8-bit configuration switch is located at the rear of the module.

Modules that do not have their own LAN interface (e.g. the TCC) can be controlled through the LAN interface of another module and a CAN connection to that module.

![Configuration switch (settings depend on configured mode)](image)

Figure 29 Configuration switch (settings depend on configured mode)

All modules without on-board LAN:
- default should be ALL DIPS DOWN (= best settings)
 - Bootp mode for LAN and
 - 19200 baud, 8 data bit / 1 stop bit with no parity for RS-232
- DIP 1 DOWN and DIP 2 UP allows special RS-232 settings
- for boot/test modes DIPS 1+2 must be UP plus required mode

NOTE
For normal operation use the default (best) settings.

Switch settings provide configuration parameters for serial communication protocol and instrument specific initialization procedures.

NOTE
With the introduction of the Agilent 1260 Infinity, all GPIB interfaces have been removed. The preferred communication is LAN.
The following tables represent the configuration switch settings for the modules without on-board LAN only.

Table 12 8-bit Configuration Switch (without on-board LAN)

<table>
<thead>
<tr>
<th>Mode Select</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-232C</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEST/BOOT</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE

The LAN settings are done on the LAN Interface Card G1369A/B. Refer to the documentation provided with the card.

Communication Settings for RS-232C

The communication protocol used in the column compartment supports only hardware handshake (CTS/RTR).

Switches 1 in down and 2 in up position define that the RS-232C parameters will be changed. Once the change has been completed, the column instrument must be powered up again in order to store the values in the non-volatile memory.

Table 13 Communication Settings for RS-232C Communication (without on-board LAN)

<table>
<thead>
<tr>
<th>Mode Select</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-232C</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Use the following tables for selecting the setting which you want to use for RS-232C communication. The number 0 means that the switch is down and 1 means that the switch is up.
One start bit and one stop bit are always used (not selectable).
Per default, the module will turn into 19200 baud, 8 data bit with no parity.
Special Settings

The special settings are required for specific actions (normally in a service case).

Boot-Resident

Firmware update procedures may require this mode in case of firmware loading errors (main firmware part).

If you use the following switch settings and power the instrument up again, the instrument firmware stays in the resident mode. It is not operable as a module. It only uses basic functions of the operating system for example, for communication. In this mode the main firmware can be loaded (using update utilities).

<table>
<thead>
<tr>
<th>Mode Select</th>
<th>SW1</th>
<th>SW2</th>
<th>SW3</th>
<th>SW4</th>
<th>SW5</th>
<th>SW6</th>
<th>SW7</th>
<th>SW8</th>
</tr>
</thead>
<tbody>
<tr>
<td>No LAN</td>
<td>TEST/BOOT</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Forced Cold Start

A forced cold start can be used to bring the module into a defined mode with default parameter settings.

CAUTION Loss of data

Forced cold start erases all methods and data stored in the non-volatile memory. Exceptions are diagnosis and repair log books which will not be erased.

➔ Save your methods and data before executing a forced cold start.

If you use the following switch settings and power the instrument up again, a forced cold start has been completed.

<table>
<thead>
<tr>
<th>Mode Select</th>
<th>SW1</th>
<th>SW2</th>
<th>SW3</th>
<th>SW4</th>
<th>SW5</th>
<th>SW6</th>
<th>SW7</th>
<th>SW8</th>
</tr>
</thead>
<tbody>
<tr>
<td>No LAN</td>
<td>TEST/BOOT</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Electrical Connections

- The CAN bus is a serial bus with high speed data transfer. The two connectors for the CAN bus are used for internal module data transfer and synchronization.
- One analog output provides signals for integrators or data handling systems.
- The REMOTE connector may be used in combination with other analytical instruments from Agilent Technologies if you want to use features such as start, stop, common shut down, prepare, and so on.
- With the appropriate software, the RS-232C connector may be used to control the module from a computer through a RS-232C connection. This connector is activated and can be configured with the configuration switch.
- The power input socket accepts a line voltage of 100 – 240 VAC ± 10 % with a line frequency of 50 or 60 Hz. Maximum power consumption varies by module. There is no voltage selector on your module because the power supply has wide-ranging capability. There are no externally accessible fuses, because automatic electronic fuses are implemented in the power supply.

NOTE Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.
Information on Instrument Serial Number

The serial number information on the instrument labels provide the following information:

<table>
<thead>
<tr>
<th>CCXZZ00000</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>Country of manufacturing</td>
</tr>
<tr>
<td>X</td>
<td>Alphabetic character A-Z (used by manufacturing)</td>
</tr>
<tr>
<td>ZZ</td>
<td>Alpha-numeric code 0-9, A-Z, where each combination unambiguously denotes a module (there can be more than one code for the same module)</td>
</tr>
<tr>
<td>00000</td>
<td>Serial number</td>
</tr>
</tbody>
</table>
This chapter provides additional information on safety, legal and web.
General Safety Information

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Agilent Technologies assumes no liability for the customer’s failure to comply with these requirements.

WARNING

Ensure the proper usage of the equipment.
The protection provided by the equipment may be impaired.

➔ The operator of this instrument is advised to use the equipment in a manner as specified in this manual.

Safety Standards

This is a Safety Class I instrument (provided with terminal for protective earthing) and has been manufactured and tested according to international safety standards.

Operation

Before applying power, comply with the installation section. Additionally the following must be observed.

Do not remove instrument covers when operating. Before the instrument is switched on, all protective earth terminals, extension cords, auto-transformers, and devices connected to it must be connected to a protective earth via a ground socket. Any interruption of the protective earth grounding will cause a potential shock hazard that could result in serious personal injury. Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any intended operation.

Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, and so on) are used for replacement. The use of repaired fuses and the short-circuiting of fuse holders must be avoided.
Some adjustments described in the manual, are made with power supplied to the instrument, and protective covers removed. Energy available at many points may, if contacted, result in personal injury.

Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided whenever possible. When inevitable, this has to be carried out by a skilled person who is aware of the hazard involved. Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present. Do not replace components with power cable connected.

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

Do not install substitute parts or make any unauthorized modification to the instrument.

Capacitors inside the instrument may still be charged, even though the instrument has been disconnected from its source of supply. Dangerous voltages, capable of causing serious personal injury, are present in this instrument. Use extreme caution when handling, testing and adjusting.

When working with solvents please observe appropriate safety procedures (e.g. goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet by the solvent vendor, especially when toxic or hazardous solvents are used.
Safety Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Symbol]</td>
<td>The apparatus is marked with this symbol when the user should refer to the instruction manual in order to protect risk of harm to the operator and to protect the apparatus against damage.</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Indicates dangerous voltages.</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Indicates a protected ground terminal.</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Indicates eye damage may result from directly viewing the light produced by the deuterium lamp used in this product.</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>The apparatus is marked with this symbol when hot surfaces are available and the user should not touch it when heated up.</td>
</tr>
</tbody>
</table>

WARNING

A WARNING alerts you to situations that could cause physical injury or death.

➔ Do not proceed beyond a warning until you have fully understood and met the indicated conditions.

CAUTION

A CAUTION alerts you to situations that could cause loss of data, or damage of equipment.

➔ Do not proceed beyond a caution until you have fully understood and met the indicated conditions.
Lithium Batteries Information

WARNING Lithium batteries may not be disposed-off into the domestic waste. Transportation of discharged Lithium batteries through carriers regulated by IATA/ICAO, ADR, RID, IMDG is not allowed.

Danger of explosion if battery is incorrectly replaced.

➔ Discharged Lithium batteries shall be disposed off locally according to national waste disposal regulations for batteries.

➔ Replace only with the same or equivalent type recommended by the equipment manufacturer.

WARNING Lithiumbatteri - Eksplodingsfare ved fejlagtig håndtering.

Udskiftning må kun ske med batteri af samme fabrikat og type.

➔ Lever det brugte batteri tilbage til leverandøren.

WARNING Lithiumbatteri - Eksplodingsfare.

Ved udskiftning benyttes kun batteri som anbefalt av apparatfabrikanten.

➔ Brukt batteri returneres appararleverandoren.

NOTE Bij dit apparaat zijn batterijen geleverd. Wanneer deze leeg zijn, moet u ze niet weggooien maar inleveren als KCA.

Abstract

NOTE

This product complies with the WEEE Directive (2002/96/EC) marking requirements. The affixed label indicates that you must not discard this electrical/electronic product in domestic household waste.

Product Category: With reference to the equipment types in the WEEE Directive Annex I, this product is classed as a “Monitoring and Control instrumentation” product.

Do not dispose off in domestic household waste

To return unwanted products, contact your local Agilent office, or see www.agilent.com for more information.
Radio Interference

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

Test and Measurement

If test and measurement equipment is operated with equipment unscreened cables and/or used for measurements on open set-ups, the user has to assure that under operating conditions the radio interference limits are still met within the premises.
Sound Emission

Manufacturer’s Declaration

This statement is provided to comply with the requirements of the German Sound Emission Directive of 18 January 1991.

This product has a sound pressure emission (at the operator position) < 70 dB.

- Sound Pressure Lp < 70 dB (A)
- At Operator Position
- Normal Operation
- According to ISO 7779:1988/EN 27779/1991 (Type Test)
Use of Solvents

Observe the following recommendations on the use of solvents.

- Brown glass ware can avoid growth of algae.
- Avoid the use of the following steel-corrosive solvents:
 - Solutions of alkali halides and their respective acids (for example, lithium iodide, potassium chloride, and so on),
 - High concentrations of inorganic acids like sulfuric acid and nitric acid, especially at higher temperatures (if your chromatography method allows, replace by phosphoric acid or phosphate buffer which are less corrosive against stainless steel),
 - Halogenated solvents or mixtures which form radicals and/or acids, for example:
 \[2\text{CHCl}_3 + \text{O}_2 \rightarrow 2\text{COCl}_2 + 2\text{HCl}\]
 This reaction, in which stainless steel probably acts as a catalyst, occurs quickly with dried chloroform if the drying process removes the stabilizing alcohol,
 - Chromatographic grade ethers, which can contain peroxides (for example, THF, dioxane, di-isopropylether) such ethers should be filtered through dry aluminium oxide which adsorbs the peroxides,
 - Solvents containing strong complexing agents (e.g. EDTA),
 - Mixtures of carbon tetrachloride with 2-propanol or THF.

Use of Solvents with Agilent 1260 Infinity Bio-inert LC systems

Observe the following recommendations on the use of solvents with Agilent 1260 Infinity Bio-inert LC systems.

- Brown glass ware can avoid growth of algae.
- Small particles can permanently block capillaries and valves. Therefore always filter solvents through 0.4 µm filters.

Do not use solvents or samples which are not compatible with materials in the flow path (see in this manual "Bio-inert materials" and "Solvent information for parts of the 1260 Infinity Bio-inert LC system"."
Agilent Technologies on Internet

For the latest information on products and services visit our worldwide web site on the Internet at:

http://www.agilent.com

Select Products/ Chemical Analysis

It will provide also the latest firmware of the modules for download.
Index

8
8-bit configuration switch
without On-Board LAN 179

A
accessory kit 33, 154
Agilent Diagnostic software 84
Agilent Lab Advisor software 84
Agilent Lab Advisor 84
Agilent on internet 194
algae 193, 193
ambient operating temperature 27
ambient non-operating temperature 27
analog signal 177
analog cable 158
apg remote 177
arm 113
position 113
automated delay volume reduction 76

B
battery
safety information 189
BCD cable 163
bench space 26
bio-inert materials 11
blank nut 107
C
cable
analog 158
BCD 163
CAN 165
connecting APG remote 38
connecting CAN 38
connecting GPIB 38
connecting LAN 38
connecting the ChemStation 38
connecting the power external contact 166
LAN 165
remote 160
RS-232 167
cables
analog 156
BCD 156
CAN 157
LAN 157
overview 156
remote 156
RS-232 157
CAN
cable 165
carryover 76
cautions and warnings 121
cleaning 124
Communication settings
RS-232 C 180
compensation sensor open 92
compensation sensor short 92
condensation configuration one stack 35
two stack 37
D
defect on arrival 32
delay volume 66
delivery checklist 32
Diagnostic software 84
dimensions 27
E
electrical connections
descriptions of 183
electrostatic discharge (ESD) 146
EMF
early maintenance feedback 21
error messages
fan failed 93
rear blind seat missing 103
error messages
arm movement 95
autosampler 94
compensation sensor open 92
front door error 94
initialization failed 99
invalid vial position 101
leak sensor open 91
leak sensor short 91
leak 90
metering home failed 100
missing vial 98
motor temperature 100
needle lock failed 97
needle to needle seat position 97
peristaltic pump error 102
Index

remote timeout 89
shut-down 89
synchronization lost 90
timeout 88
valve to bypass failed 96
valve to mainpass failed 96
vessel error 102
vessel stuck to needle 103
external contact cable 166
extra-column volume 66

F
fan failed 93
firmware
description 170
main system 170
resident system 170
update tool 171
updates 171, 147
upgrade/downgrade 147
frequency range 27

G
general error messages 88

H
humidity 27

I
injection volume
achieving higher volumes 69
injector steps 115
installation
bench space 26
power considerations 24
instrument layout 22

internet 194

L
LAN
cable 165
leak sensor open 91
leak sensor short 91
leak 90
line frequency 27
line voltage 27
lithium batteries 189
loop capillary change 113

M
maintenance
feedback 21
overview 123, 150
positions 111
removing the needle assembly 125
replacing firmware 147
materials
bio-inert 11
message
remote timeout 89
metering device change 114

N
needle carrier change 114
needle change 112
non-operating altitude 27
non-operating temperature 27
operating Altitude 27
operating temperature 27
optimization
achieving higher sensitivity 75
achieving higher resolution 72
achieving lowest carryover column use 75
injection volumes 69
stack configuration 34

P
packaging
damaged 32
parts identification
cables 155
physical specifications 27
power supply indicator 81
power considerations 24
power consumption 27
power cords 25
power switch 39
principle
autosampler 15

R
remote
cable 160
repairs
cautions and warnings 121
replacing firmware 147
resolution
Optimization 72
RS-232C
cable 167
communication settings 180

S
safety class I 186
safety information
lithium batteries 189
Index

safety
 general information 186
 standards 27
 symbols 188
sensitivity
 optimization 75
serial number
 information 184
shut-down 89
site requirements
 power cords 25
solvent information 49
solvents 193, 193
special interfaces 178
specification
 physical 27
stack configuration 38
 rear view 38
status indicator 82
steps
 injector 115
step
 commands 117
synchronization lost 90
system setup and installation
 optimizing stack configuration 34
T
temperature sensor 90
test functions 80
timeout 88
troubleshooting
 error messages 87, 80
 status indicators 80, 81
V
 vial trays 151
 voltage range 27

W
 warnings and cautions 121
 weight 27
In This Book

This manual contains technical information about the Agilent 1260 Infinity Bio-inert High Performance Autosampler G5667A.

- introduction and specifications,
- installation,
- using and optimizing,
- troubleshooting and diagnose,
- maintenance,
- parts identification,
- hardware information,
- safety and related information.