Notices

© Agilent Technologies, Inc. 2008-2009

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

User Guide Part Number
G5415-90020
July/2007

Contact Information
Agilent Technologies Inc.
Automation Solutions
5301 Stevens Creek Blvd.
Santa Clara, CA 95051
USA
Technical Support: 1.800.979.4811
or +1.408.345.8011
service.automation@agilent.com
Customer Service: 1.866.428.9811
or +1.408.345.8356
orders.automation@agilent.com
European Service: +44 12081443513
euroservice.automation@agilent.com
Documentation feedback:
documentation.automation@agilent.com
Web: http://www.agilent.com

Acknowledgements
Microsoft and Windows are registered trademarks of the Microsoft Corporation in the United States and other countries.

Warranty
The material contained in this document is provided “as is,” and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses
The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend
If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as “Commercial computer software” as defined in DFAR 252.227-7014 (June 1995), or as a “commercial item” as defined in FAR 2.101(a) or as “Restricted computer software” as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies’ standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Safety Notices
A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.
Letter to our Customers

Dear Customer,

The Agilent Technologies acquisition of Velocity11 resulted in the following changes:

- Creation of Agilent Technologies Automation Solutions, formerly Velocity11
- Renaming of some Velocity11 products
- New Customer Service and Technical Support contact information
- New website address for product information

Please make a note of the following changes as they impact this user guide.

Velocity11 product name changes

<table>
<thead>
<tr>
<th>Velocity11 product name</th>
<th>Changes to ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access2 Automated Microplate Loader</td>
<td>Automated Centrifuge Loader</td>
</tr>
<tr>
<td>Element Automation System</td>
<td>BioCel 900 System</td>
</tr>
<tr>
<td>IWorks Device Driver Programming Interface</td>
<td>VWorks DCL Interface</td>
</tr>
<tr>
<td>PlatePierce Seal Piercing Station</td>
<td>Microplate Seal Piercer</td>
</tr>
<tr>
<td>VCode Barcode Print and Apply Station</td>
<td>Microplate Barcode Labeler</td>
</tr>
<tr>
<td>Velocity11 Robot</td>
<td>3-Axis Robot</td>
</tr>
<tr>
<td>VHooks Integration Interface</td>
<td>VWorks Hooks Interface</td>
</tr>
<tr>
<td>VPrep Pipetting System</td>
<td>Vertical Pipetting Station</td>
</tr>
<tr>
<td>VSpin Microplate Centrifuge</td>
<td>Microplate Centrifuge</td>
</tr>
<tr>
<td>VStack Labware Stacker</td>
<td>Labware Stacker</td>
</tr>
</tbody>
</table>

New contact information

Documentation feedback: documentation.automation@agilent.com
Technical Support: 1.800.979.4811 or +1.408.345.8011
service.automation@agilent.com
Customer Service: 1.866.428.9811 or +1.408.345.8356
orders.automation@agilent.com
European Service: +44 12081443513
euroservice.automation@agilent.com
Web: http://www.agilent.com
Contents

Chapter 1. Introduction ... 1
Who should read this guide .. 2
About Velocity11 user guides ... 3
What this guide covers ... 5
About devices .. 6
About device drivers .. 7
Installing device drivers ... 9
Adding devices ... 10
About diagnostics ... 11
Opening diagnostics .. 12
About profiles .. 15
Setting the properties for a device ... 16
Adding and linking Sub Process tasks 19
Using JavaScript to set task parameters 21
About reader output files ... 22
About device initialization ... 25

Chapter 2. FLIPR Tetra .. 27
Workflow for configuring the FLIPR Tetra 28
Creating a FLIPR Tetra profile .. 29
About FLIPR Tetra device locations .. 30
About FLIPR Tetra tasks .. 31
Setting the FLIPR Tetra Change Instance task parameters 32
Setting the FLIPR Tetra Load Tips and Unload Tips task parameters 34
Setting FLIPR Tetra Loop task parameters 35
Setting FLIPR Tetra Run Protocol task parameters 36
Managing FLIPR Tetra profiles ... 38
Operating the FLIPR Tetra with diagnostics 39
Introduction

This chapter introduces Velocity11 device drivers and provides some basic procedures that are needed to use them.

A Velocity11 device driver is software that plugs into VWorks or BenchWorks software to allow them to control a specific device.

Before reading this guide, you should be familiar with the VWorks or BenchWorks software user interface. Information about using VWorks or BenchWorks software can be found in the VWorks Version 3 Automation Control User Guide or BenchWorks Automation Control User Guide.

To set up and use Velocity11 device drivers, become familiar with the content in this guide as well as the guides for the devices that use VWorks or BenchWorks software.

This chapter contains the following topics:

- “Who should read this guide” on page 2
- “About Velocity11 user guides” on page 3
- “What this guide covers” on page 5
- “About devices” on page 6
- “About device drivers” on page 7
- “Installing device drivers” on page 9
- “Adding devices” on page 10
- “About diagnostics” on page 11
- “Opening diagnostics” on page 12
- “About profiles” on page 15
- “Setting the properties for a device” on page 16
- “Adding and linking Sub Process tasks” on page 19
- “Using JavaScript to set task parameters” on page 21
- “About reader output files” on page 22
- “About device initialization” on page 25
Who should read this guide

This user guide is for people with the following job roles:

<table>
<thead>
<tr>
<th>Job role</th>
<th>Responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrator</td>
<td>Someone who writes software and configures hardware controlled by device drivers.</td>
</tr>
</tbody>
</table>
| Lab manager, administrator, or technician | Someone who is responsible for:
 - Installing device drivers
 - Managing device drivers
 - Developing the applications that are run using device drivers
 - Solving the more challenging problems that might arise
 - Developing training materials and standard operating procedures for operators |
| Operator | Someone who performs the daily production work using the device driver and solves routine problems. Your organization may choose to create its own procedures for operators including the procedures in this guide. |

Related topics

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contacting Velocity11</td>
<td>http://www.velocity11.com/contact.html</td>
</tr>
<tr>
<td>Accessing online help</td>
<td>"About Velocity11 user guides" on page 3</td>
</tr>
<tr>
<td>Device drivers</td>
<td>"About device drivers" on page 7</td>
</tr>
</tbody>
</table>
About Velocity11 user guides

<table>
<thead>
<tr>
<th>About this topic</th>
<th>This topic describes the different formats of Velocity11 user information and explains how to access the user information.</th>
</tr>
</thead>
</table>
| Formats available | Velocity11 user information is provided to you as:
| | - Online help
| | - A PDF file
| | - A printed book
| | The information in each format is the same but each format has different benefits. |
| Where to find user information | Online help
| | The online help is added to your computer with the Velocity11 lab automation system software installation.
| | PDF file
| | The PDF file of the user guide is on the software CD that is supplied with the product.
| | Velocity11 website
| | You can search the online help or download the latest version of any PDF file from the Velocity11 website at www.velocity11.com.
| | Note: All Velocity11 user information can be searched from the website at www.velocity11.com. |
| Online help | The online help is the best format to use when you are working at the computer and when you want to perform fast or advanced searches for information.
| | To open the online help:
| | 1. In the Velocity11 lab automation software, press F1. The online help window opens.
| | Main features
| | The online help window contains the following:
| | - Navigation pane. Consists of four tabs. The Contents, Index, and Search tabs provide different ways to locate information. The Using tab contains information about using the help system.
| | - Content pane. Displays the online help topics.
| | - Navigation buttons. Enables you to navigate through the pages. The online help includes a navigation pane, content pane, and navigation buttons. |
Computer requirements
To open a user guide in PDF format, you need a PDF viewer. You can download a free PDF viewer from the internet.

Printing and searching
The user guides in PDF format are mainly for printing additional copies. You can perform simple searches in the PDF file, although these searches are much slower than online help searches.

More information
For more information about using PDF documents, see the user documentation for the PDF viewer.

Related topics

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who this guide is for</td>
<td>“Who should read this guide” on page 2</td>
</tr>
<tr>
<td>What’s in this guide</td>
<td>“What this guide covers” on page 5</td>
</tr>
<tr>
<td>Device driver plug-ins</td>
<td>“About device drivers” on page 7</td>
</tr>
</tbody>
</table>
What this guide covers

About this topic
This topic presents an overview of what procedures and information are provided in this user guide.
This guide explains how to:
- Install the driver for the device
- Configure the device in the device manager
- Set and use the tasks associated with the device
- Use Device Diagnostics

Also read
Information about device drivers not covered in this guide and about running VWorks or BenchWorks software can be found in the *VWorks Version 3 Automation Control User Guide* or the *BenchWorks Automation Control User Guide*.

Driver version
To find version information for a driver in VWorks:
1. Start VWorks.
2. Click **Help** and select **About VWorks**.
 The **About VWorks** dialog box lists the version numbers of all the current software for all the devices and plug-ins.

To find version information for a driver in BenchWorks:
1. Start BenchWorks.
2. Click **Help** and select **About BenchWorks**.
 The **About BenchWorks** dialog box lists the version numbers of all the current software for all the devices and plug-ins.

Firmware version
Some devices have firmware installed on them. Because each device is different, the version number may not be the same for all devices.

To find version information for device firmware:
1. Open **Device Diagnostics** dialog box.
2. Click **About**.
 The **About Device Control** message box appears displaying the current version of firmware.

What this guide does not cover
This guide does not cover the following:
- The operation of the device
- The operation of VWorks or BenchWorks software
- Velocity11 devices, such as the PlateLoc Sealer, VCode Microplate Labeler, and VPrep Pipettor when used in stand-alone mode
VWorks or
BenchWorks
compatibility

If you have purchased a device driver plug-in and are installing it
yourself, check with the Velocity11 Technical Support to be sure your
version of VWorks or BenchWorks software and the device driver plug-in
are using the same version of IWorks software.

BenchWorks
versions

Device driver plug-ins used with BenchWorks software may not include
some newer features that were specifically added for use with VWorks
software and that are described in this manual.

Related topics

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who this guide is for</td>
<td>“Who should read this guide” on page 2</td>
</tr>
<tr>
<td>User documentation</td>
<td>“About Velocity11 user guides” on page 3</td>
</tr>
<tr>
<td>Device driver plug-ins</td>
<td>“About device drivers” on page 7</td>
</tr>
</tbody>
</table>

About devices

About this topic

This topic presents a definition of a Velocity11 device and the device
file.

Read this topic if you are unfamiliar with Velocity11 devices and VWorks
or BenchWorks software.

Device defined

A device is an item on your lab automation system that has an entry in
the device manager. A device can be a robot, an instrument, or a
location on the lab automation system that can hold a piece of labware.

Examples of devices:

- Velocity11 robot
- Human robot
- PlateLoc Thermal Plate Sealer
- Labcyte Echo550
- Platepad
- VPrep shelf
- Waste

Device file defined

The data entered into the device manager and saved as a device file
contains the configuration information for your devices.
Device file location

Device files have the file name format file name.dev and are stored in the folder location that you specify when saving the file.

Related topics

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device diagnostics</td>
<td>"About diagnostics“ on page 11</td>
</tr>
<tr>
<td>Device profiles</td>
<td>"About profiles” on page 15</td>
</tr>
<tr>
<td>Adding a device to the device manager</td>
<td>"Adding devices” on page 10</td>
</tr>
</tbody>
</table>

About device drivers

About this topic

This topic describes what device drivers are and what they do. Velocity11 device drivers enable mechanical devices or software programs to work with VWorks or BenchWorks software.

Read this topic if you are:

- An administrator in charge of installing device drivers and managing Velocity11 devices
- A lab automation system integrator who writes software and configures hardware controlled by VWorks or BenchWorks software

Device driver defined

A Velocity11 device driver enables VWorks or BenchWorks software to control and communicate with the specific type of device. Each type of device that you operate with VWorks or BenchWorks software requires a device driver.

For example, VWorks software uses the:

- VPrep Pipettor device driver to communicate with the Velocity11 VPrep Pipettor device
- Softmax Reader device driver to communicate with Molecular Devices readers

Plug-in defined

A plug-in is a software program that when added to another program extends it.

Plug-in device drivers

Some device drivers are incorporated directly into the VWorks or BenchWorks software application. Other device drivers are distributed as plug-ins. All the device drivers covered in this guide are the plug-in type.
Advantages of distributing device drivers as plug-ins are:

- You only need to install the plug-ins for the devices you use.
- When new plug-ins become available, they can be easily added. There is no need to re-install the VWorks or BenchWorks software application.

IWorks interface

The device driver plug-ins and VWorks or BenchWorks software use IWorks software as a common interface to communicate with each other. Using a common interface allows the creation of a device driver plug-in without the necessity of changing the software.

!! IMPORTANT !! Both VWorks or BenchWorks software and the device driver must be using the same version of IWorks to work properly.

Writing your own device driver

If you are a lab automation system integrator who writes software and configures hardware controlled by VWorks or BenchWorks software, you can write your own driver plug-in for a new device. Contact the Velocity11 Technical Support for information about how to do this.

What functions do the device drivers provide?

Once installed, the following items are enabled:

- Tasks associated with the device.
 Device-specific tasks appear in the Protocol Tasks list and are available for use in protocol editor processes.

- Task parameters associated with the device.
 Device-specific task parameters appear in the Protocol Task Parameters toolbar. These determine the conditions with which to execute the tasks of the device.

- Diagnostic commands specific to the device.
 Device-specific diagnostic commands and options appear in the Device Diagnostics dialog box. These commands enable direct control of the device.

Related topics

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding a device to the device manager</td>
<td>“Adding devices” on page 10</td>
</tr>
<tr>
<td>Opening diagnostics</td>
<td>“Opening diagnostics” on page 12</td>
</tr>
<tr>
<td>Installing a device driver</td>
<td>“Installing device drivers” on page 9</td>
</tr>
<tr>
<td>Devices</td>
<td>“About devices” on page 6</td>
</tr>
</tbody>
</table>
Installing device drivers

About this topic

Devices are integrated into VWorks or BenchWorks software using device driver plug-ins. Plug-ins need to be installed before the device can be configured and used.

This topic describes how to install device drivers if they are not already installed on your system. Read this topic if you are an administrator in charge of managing Velocity11 devices.

Procedure

To install device drivers:

1. Insert the device driver installation disc into the CD-ROM of the computer running VWorks or BenchWorks software.
2. Follow the on-screen instructions for installation, selecting the default values when available.
3. When finished, exit VWorks or BenchWorks software.
4. Log off Windows and restart your computer.
5. Start VWorks or BenchWorks software.

<table>
<thead>
<tr>
<th>For this application...</th>
<th>The default location for the device driver is...</th>
</tr>
</thead>
<tbody>
<tr>
<td>VWorks software</td>
<td>C:\VWorks Workspace\bin\plugins</td>
</tr>
<tr>
<td>BenchWorks software</td>
<td>C:\Program Files\Velocity11\BenchWorks\plugins</td>
</tr>
</tbody>
</table>

Related topics

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device drivers</td>
<td>“About device drivers” on page 7</td>
</tr>
<tr>
<td>Opening diagnostics</td>
<td>“Opening diagnostics” on page 12</td>
</tr>
</tbody>
</table>
Adding devices

About this topic

To configure your lab automation system to use a device, you need to add it to a device file in VWorks or BenchWorks software. The VWorks or BenchWorks software device manager uses the information in the device file to communicate and operate the device within the automation system.

This topic describes how to:

- Create a new device file (if one does not already exist)
- Add devices
- Save the device file

Read this topic if you are an administrator in charge of managing Velocity 11 devices.

Procedure

To add devices to a device file:

1. Make sure that the devices are physically networked to the VWorks or BenchWorks software computer and turned on.
2. Start VWorks or BenchWorks software and login as an Administrator.
3. Do one of the following:
 - If you have an existing device file that you want to add to, select File > Device File, click Open, and select your device file.
 - If you are creating a new device file, select File > Device File and click New.
4. Click the Device Manager tab.
5. Click New device in the Device List toolbar and enter a name for the device you are adding.
6. In the device manager, set the Device type. The default type is Plate Pad, Standard.

7. Repeat step 5 and step 6 for each device.
Chapter 1: Introduction

FLiPR Tetra Device Driver User Guide

8. Select **File > Device File > Save.**

If you are creating a new device file, you are prompted to enter a name for your device file.

Alternatively, you can select **File > Save All.** This saves the device file and the current protocol file at the same time.

Related topics

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device drivers</td>
<td>“About device drivers” on page 7</td>
</tr>
<tr>
<td>Setting generic device properties</td>
<td>“Setting the properties for a device” on page 16</td>
</tr>
<tr>
<td>Adding a sub-process to a protocol</td>
<td>“Adding and linking Sub Process tasks” on page 19</td>
</tr>
<tr>
<td>Opening diagnostics</td>
<td>“Opening diagnostics” on page 12</td>
</tr>
</tbody>
</table>

About diagnostics

About this topic

This topic presents an overview of diagnostics software.

Read this topic if you need to set up or troubleshoot a device running VWorks or BenchWorks software.

Background

Devices can be controlled in real time directly through the VWorks or BenchWorks software Diagnostics using simple commands.

Diagnostics software is used for:

- Troubleshooting
- Setting teachpoints
- Performing manual operations outside a protocol
- Creating and editing profiles

For example, if an error occurs during a run that leaves a plate and the robot where they should not be, you can use robot diagnostics to move the plate and return the robot to its home position.

Types of diagnostics software

Devices and robots manufactured by Velocity11 include their own diagnostics software. You can find instructions for using this software in the relevant user guide.
Opening diagnostics

About this topic

Every device has diagnostics software to assist you with troubleshooting and setting up the device. This topic describes how to open a device’s diagnostics in VWorks or BenchWorks software.

Read this topic if you need to access a device’s diagnostics to perform a device setup task or manually operate a device.

Procedure 1

If you are using VWorks 4 software

To open Diagnostics:

1. Click Diagnostics on the Control toolbar.

2. In the device file’s window, select the device. Expand the general name of the device, if necessary.

3. Click Device diagnostics located at the bottom of the window. The device’s diagnostics dialog box opens.

If you are using VWorks 3 or BenchWorks software

To open Diagnostics:

1. Click Diagnostics on the Control toolbar.
2. In the **Diagnostics** window, select the device. Expand the general name of the device, if necessary.

![Diagnostics window]

3. Click **Device diagnostics**. The device's diagnostics dialog box opens.

Procedure 2

If you are using VWorks4 software

To open Diagnostics:
1. Click the **Device File** tab.
2. Select the device from the **Devices** toolbar. Expand the general name of the device, if necessary.

![Device File tab]

3. Click **Device diagnostics** located at the bottom of the **Devices** toolbar.

![Device diagnostics]

The device's diagnostics dialog box opens.

If you are using VWork3 or BenchWorks software

To open Diagnostics:
1. Click the **Device Manager** tab.
2. Select the device from the **Device List** toolbar. Expand the general name of the device, if necessary.
3. Click **Device diagnostics** located at the bottom of the **Device List** toolbar.

The device’s diagnostics dialog box opens.

Related topics

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostics</td>
<td>“About diagnostics” on page 11</td>
</tr>
<tr>
<td>About device drivers</td>
<td>“About device drivers” on page 7</td>
</tr>
<tr>
<td>Adding a device to the device manager</td>
<td>“Adding devices” on page 10</td>
</tr>
<tr>
<td>Setting generic device properties</td>
<td>“Setting the properties for a device” on page 16</td>
</tr>
</tbody>
</table>
About profiles

About this topic

This topic describes what profiles are and what they do.
Read this topic if you are an administrator in charge of managing Velocity11 devices.

Profiles defined

A profile contains the initialization settings needed for communication between a device and device driver. The data in a profile is used by VWorks or BenchWorks software to identify each device on the network.

A profile can also contain other basic settings that you are unlikely to change once set up.

Because profiles identify device driver devices on the network, each device driver device must have its own profile.

You can create, modify, and delete profiles as needed.

Stored settings

Profiles are stored in the Windows registry.

The settings stored in a device driver profile include:

- Whether the device is connected using serial or Ethernet
- If the device is connected using Ethernet, the Device ID of the device on the network
- If the device is connected using serial, the COM port that the controlling computer uses for communication
- Configuration of accessories

Related topics

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device drivers</td>
<td>"About device drivers” on page 7</td>
</tr>
<tr>
<td>Adding a device to the device manager</td>
<td>“Adding devices” on page 10</td>
</tr>
<tr>
<td>Opening device diagnostics</td>
<td>“Opening diagnostics” on page 12</td>
</tr>
</tbody>
</table>
Setting the properties for a device

About this topic
The device properties provide VWorks or BenchWorks software with additional information about the device's current configuration, such as which profile to use, and stores the information in the device file. The device file is automatically loaded when you open a protocol.

The device properties need to be set when configuring the device. Typically, these properties only need to be set once. This topic describes how to set the following device properties:

- General
- Teachpoint
- Barcode
- Location (for devices with multiple teachpoints)
- Device Properties

Read this topic if you are an administrator in charge of managing Velocity 11 devices.

Before you start
Make sure that you have installed the device driver plug-in and have added the device to the device manager.

See “Related information” for procedures on how to do these tasks.

Setting general properties

To set the general properties for a device:

1. Click the Device Manager tab.
2. Select the device from the Device List toolbar. (Expand the device name, if necessary.)

 Note: For devices with Locations, see “Setting location properties” on page 17. If no Locations, continue with step 3.

3. In the General group, set the following:
 a. Approach height. This is the height to raise the robot gripper above the teachpoint when the robot moves the plate horizontally towards or away from it.
 b. Allowed/prohibited labware. Click the adjacent field to open the dialog box. Move the labware classes by selecting them and clicking one of the arrow buttons.

4. In the Device Properties, select the desired profile if it is not already selected.
5. Select File > Device File > Save to save the changes to the device file.
Setting teachpoints

Teachpoints are the coordinates in space that a robot travels to in order to interact with a device. Only the devices that are accessible by robots are able to have teachpoints.

To set the teachpoint properties:
1. Open the Device Properties page.
2. In the Teachpoints property group, set the following:
 a. Device is accessible from robot robot’s name. Choose Yes or No.

Setting barcode location

If your device has a barcode reader, indicate where the reader is located.

To set the barcode readers property:
1. In the Barcode Readers property group, set the side that has the barcode to Yes.
2. Enter the number of the COM port to which the device is connected.

Setting location properties

Note: The options available under Location groups might differ for software and hardware device drivers. Software devices do not have robot-accessible labware positions.

For hardware devices that have more than one robot-accessible labware position, the approach height, allowable/prohibited labware, teachpoint, and barcode properties are located under Location groups.

To set the Location properties:
1. Hardware device drivers only. Set the Use linked location. Follow the procedure in “Setting the Use linked location” on page 18.
2. Hardware device drivers only Set the Teachpoints. Follow the procedure in “Setting teachpoints” on page 17.
3. *Some software device drivers only.* Set the **Approach height** and **Allowed/prohibited Labware.** Follow the procedure in “Setting general properties” on page 16.

4. Set the **Barcode Readers** location. Follow the procedure in “Setting barcode location” on page 17.

5. Assign the **Labware** used by the location by selecting the correct labware type from the list.

6. In the **Device Properties**, select the desired profile if it is not already selected.

7. Select **File > Device File > Save** to save the changes to the device file.

Setting the Use linked location

Currently, this feature is enabled for the special situations in which there is a storage device such as a PlateHub Carousel, StoreX, or Cytomat and a robot, such as the Velocity11 Translator robot that is shuttling plates between systems.

To use this feature, select yes and then select the device location to which you want to link. This tells the software that the current device location is the same physical location as the device selected from the Device to use list.

Note: Selecting this option when it is not enabled will have no effect on the system.

Related topics

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device drivers</td>
<td>“About device drivers” on page 7</td>
</tr>
<tr>
<td>Installing a device driver plug-in</td>
<td>“Installing device drivers” on page 9</td>
</tr>
<tr>
<td>Profiles</td>
<td>“About profiles” on page 15</td>
</tr>
<tr>
<td>Adding a device to the device manager</td>
<td>“Adding devices” on page 10</td>
</tr>
<tr>
<td>Opening diagnostics</td>
<td>“Opening diagnostics” on page 12</td>
</tr>
</tbody>
</table>
Adding and linking Sub Process tasks

About this topic
This topic describes how to add a sub-process to a protocol and configure it. Read this topic if you are an administrator or technician and are responsible for creating protocols in VWorks or BenchWorks software.

Before you read this
Before you read this topic, become familiar with the topics in the VWorks Version 3 Automation Control User Guide or BenchWorks Automation Control User Guide describing what a protocol is and how it is created.

Sub Process task defined
Sub Process tasks indicate the existence of a subroutine within a protocol. Sub-processes typically contain a series of liquid handling tasks used by devices such as the VPrep Pipettor or Multimek dispenser.

Adding a Sub Process task
The first step in creating a pipette process is to add a Sub Process task to the protocol editor. Drag the Sub Process icon into the process.

Setting Sub Process task parameters
When you add the Sub Process task, a new sub-process is started in the pipette process editor. This process is identified by its sub-process link icon.

Because you can have more than one sub-process in a protocol, you must link the Sub Process task to the correct sub-process.

To link the Sub Process task to the correct sub-process:
1. In the Protocol Editor, add a Sub Process task to the protocol and then select it in the protocol sequence.
2. In the Protocol Task Parameters toolbar, select the sub-process that you want to use for this pipetting task from the Use Sub Process list.
3. If there is only one sub-process and you need to create a second one, click **Add New**.

Associating the sub-process to a device

Because you can have more than one device that uses sub-processes on a lab automation system, you must link each sub-process link icon with one or more devices that you want the sub-process to be able to use. You do this by setting the parameter for the sub-process link icon.

To link a Sub Process task to a device:

1. In the **Pipette Process Editor**, select the **Sub Process** link icon.

2. In the **Available devices** list of the **Pipette Task Parameters** toolbar, select one or more pipettors to link to and click **Add**.

The selected pipettors move to the lower box and become available for use.
Chapter 1: Introduction
FLIPR Tetra Device Driver User Guide

Using JavaScript to set task parameters

About this topic
JavaScript programs (scripts) can be used to change the parameters of a protocol task immediately before it is scheduled. This extends the capability of VWorks or BenchWorks software because the parameters can be changed dynamically during a run, based on the following:

- Information passed from an external source, such as a database
- The number of times the protocol has cycled
- Feedback on changing conditions during the run

This topic describes the use of JavaScript to set task parameters in a protocol.

Read this topic if you are an administrator or technician responsible for creating VWorks or BenchWorks software protocols and want to add functionality to a task using JavaScript.

Where scripts are written
Scripts can be written in two ways:

- Directly into the box in the Advanced Settings tab of the Task Parameters toolbar
- As an external file that is located by clicking Browse in the Advanced Settings tab and navigating to its location on the hard drive

Note: You can also call an external file by embedding the “open(“ function in the box.

The following screenshot displays a short script that prints the parameters of a task to the log toolbar, just before the task runs. In this case, the script is written directly in the Advanced Settings box.

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device drivers</td>
<td>"About device drivers" on page 7</td>
</tr>
<tr>
<td>Setting common device properties</td>
<td>"Setting the properties for a device" on page 16</td>
</tr>
<tr>
<td>Adding a device to the device manager</td>
<td>"Adding devices" on page 10</td>
</tr>
<tr>
<td>Creating protocols</td>
<td>VWorks Version 3 Automation Control User Guide</td>
</tr>
<tr>
<td></td>
<td>BenchWorks Automation Control User Guide</td>
</tr>
</tbody>
</table>
For more information about using JavaScript, refer to the *VWorks Version 3 Automation Control User Guide* or the *BenchWorks Automation Control User Guide*.

Related topics

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
</table>
| Using JavaScript in protocols | ❑ *VWorks Version 3 Automation Control User Guide*
| | ❑ *BenchWorks Automation Control User Guide* |
| Adding tasks to protocols | ❑ *VWorks Version 3 Automation Control User Guide*
| | ❑ *BenchWorks Automation Control User Guide* |

About reader output files

About this topic

Plug-in device drivers that are written for plate readers have a common way of naming their output files. This topic explains the concepts related to output file naming. By reading this topic, you will learn how to prevent data in the reader output files from being overwritten by newer data.

Read this topic if you are an operator who wants to make changes to the task parameters for one of these readers:

❑ VR4000
❑ Analyst GT
❑ Fusion
❑ Viewlux
❑ Tecan readers

Plug-in default output file

When you first install a reader device driver plug-in, all data recorded during a protocol or by a manual read using diagnostics software is written to a single file stored in the C: drive.
The exact name of the file is specific to the device. For example, the RVSI VR4000 device driver creates a file with the name vialreaderresults.txt.

This file can only store data for one read, which means that the set of data for each read overwrites the last set in the file. To avoid this problem you must set up an output file naming convention.

Profile default output file name

Some device drivers allow more than one device of that type to be used in the lab automation system. In this case, each device must have its own profile. Even if you have only one device, you can still set up multiple profiles for it, with each storing different settings.

In these cases, you probably want each profile to have a separate default output filename to prevent the data from runs using one profile overwriting those of another.

Filename suffixes

To prevent the data from one read overwriting the data from another, you need to append a variable suffix to the file name. You can append a date/time stamp and one or more bar codes on the rack or plate.

<table>
<thead>
<tr>
<th>Suffixes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date/time stamp</td>
<td>Append the following to the output filenames:</td>
</tr>
<tr>
<td>South bar code</td>
<td></td>
</tr>
<tr>
<td>West bar code</td>
<td></td>
</tr>
<tr>
<td>North bar code</td>
<td></td>
</tr>
<tr>
<td>East bar code</td>
<td></td>
</tr>
</tbody>
</table>

Example

The example output file folder below shows that a profile default file name of output.txt was created at one time. At another time, a suffix was appended in the profile for the device driver, which added a barcode identifier to the file name (for example output_C100040329.txt).
Overriding output file names with tasks

You can override the default output file name that is set in the profile using the Output filename property of the Read task parameters.

This allows you to use different output file names for every task.

The suffix used for the file name that you set in the task parameters is taken from the suffix specified in the device diagnostics profile. So if you select date/time stamp in the profile, the date/time stamp will also be appended during a run in which you have specified a different file name.

Related topics

<table>
<thead>
<tr>
<th>For more information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opening diagnostics</td>
<td>“Opening diagnostics” on page 12</td>
</tr>
<tr>
<td>Profiles</td>
<td>“About profiles” on page 15</td>
</tr>
</tbody>
</table>
About device initialization

About this topic
When working in device diagnostics software, you are often required to initialize the device. This topic explains why device initialization is necessary.

Opening communications
Initializing a device opens communications with it. For example, if the device is connected with a serial cable, the COM port is opened, and if the device is connected with an Ethernet cable, the TCP/IP socket is connected.

Homing motors
Initializing a device homes motors that do not track their position along their line of travel. Homing a motor moves it until it triggers an event, called a home flag. This tells the motor its location.

The motors on some devices automatically move to their home positions when the device is turned on. The motors on other devices must be initialized to be homed.

Setting profile parameters
Initializing a device applies relevant parameters set in the device’s profile.

Setting state and memory variables
Most devices store variables in software or firmware. Initializing a device sets these variables to their initial values.

Related topics

<table>
<thead>
<tr>
<th>For information about…</th>
<th>See…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using Diagnostics</td>
<td>❑ “About diagnostics” on page 11</td>
</tr>
<tr>
<td></td>
<td>❑ “Opening diagnostics” on page 12</td>
</tr>
<tr>
<td>Workflow for configuring devices</td>
<td>“Adding devices” on page 10</td>
</tr>
</tbody>
</table>
Molecular Devices FLIPR Tetra is a multifunctional device that performs simultaneous liquid transfer and multi-wavelength kinetic readings on 96-, 384-, and 1536-well microplates.

The FLIPR Tetra can be integrated into a lab automation system using VWorks and BenchWorks.

This chapter contains the following topics:

- “Workflow for configuring the FLIPR Tetra” on page 28
- “Creating a FLIPR Tetra profile” on page 29
- “About FLIPR Tetra device locations” on page 30
- “About FLIPR Tetra tasks” on page 31
- “Setting the FLIPR Tetra Change Instance task parameters” on page 32
- “Setting the FLIPR Tetra Load Tips and Unload Tips task parameters” on page 34
- “Setting FLIPR Tetra Loop task parameters” on page 35
- “Setting FLIPR Tetra Run Protocol task parameters” on page 36
- “Managing FLIPR Tetra profiles” on page 38
- “Operating the FLIPR Tetra with diagnostics” on page 39
Workflow for configuring the FLIPR Tetra

About this topic
Before you can add FLIPR Tetra tasks to protocols, the device driver for it needs to be installed and the device configured in VWorks and BenchWorks.

This topic provides the workflow for configuring the FLIPR Tetra device. Read this topic if you are an administrator who wants to set up a FLIPR Tetra in VWorks and BenchWorks.

Before you start
Before you can configure the FLIPR Tetra device driver you must have installed it. For installation instructions, see “Setting the properties for a device” on page 16.

Workflow

<table>
<thead>
<tr>
<th>Step</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>“Adding devices” on page 10</td>
</tr>
<tr>
<td>2</td>
<td>“Creating a FLIPR Tetra profile” on page 29</td>
</tr>
<tr>
<td>3</td>
<td>“Setting the properties for a device” on page 16</td>
</tr>
</tbody>
</table>

Related topics

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device drivers</td>
<td>“About device drivers” on page 7</td>
</tr>
</tbody>
</table>
| Setting FLIPR Tetra task parameters | ❑ “Adding and linking Sub Process tasks” on page 19
❑ “Setting the FLIPR Tetra Change Instance task parameters” on page 32
❑ “Setting the FLIPR Tetra Load Tips and Unload Tips task parameters” on page 34
❑ “Setting FLIPR Tetra Loop task parameters” on page 35
❑ “Setting FLIPR Tetra Run Protocol task parameters” on page 36 |
| Using FLIPR Tetra Diagnostics | “Operating the FLIPR Tetra with diagnostics” on page 39 |
Creating a FLIPR Tetra profile

About this topic
This topic describes how to create a profile for the FLIPR Tetra.
Read this topic if you are an administrator who wants to set up a FLIPR Tetra in VWorks and BenchWorks.

Before you create a profile
Before you can create a profile, you must install the FLIPR Tetra device driver and add the FLIPR Tetra to the device manager.

Procedure
To create a FLIPR Tetra profile:
1. Open FLIPR Tetra Diagnostics.
2. Click the Profiles tab.
3. Click Create a new profile, enter a name, and click OK.

Default values appear in the previously empty boxes.

4. Optionally, enter new values for the Timeouts.
 Timeouts are the amount of time VWorks and BenchWorks will wait for a response from ScreenWorks software, which is communicating to the FLIPR Tetra, before displaying an error message.

5. Enter the FLIPR Tetra IP address and Port location used for the Ethernet connection.

6. If necessary, change the Protocol directory:
 a. Click the ellipsis button.
 b. In the Browse for Folder dialog box, navigate to the directory where the FLIPR Tetra protocols are stored.
c. Select the folder and click OK.

Note: The protocol directory should be located on the same computer as ScreenWorks.

7. Select the correct head size (corresponding to 96-, 384- or 1536-wells) from the Head Type list.

8. Select Log communication if you want to record a log of all communication events.

9. Click OK to save the settings and close the dialog box.

Related topics

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>The next step</td>
<td>“Setting the properties for a device” on page 16</td>
</tr>
<tr>
<td>The workflow this procedure belongs to</td>
<td>“Workflow for configuring the FLIPR Tetra” on page 28</td>
</tr>
<tr>
<td>Opening FLIPR Tetra Diagnostics</td>
<td>“Opening diagnostics” on page 12</td>
</tr>
<tr>
<td>Profiles</td>
<td>“About profiles” on page 15</td>
</tr>
</tbody>
</table>

About FLIPR Tetra device locations

About this topic
This topic lists which ScreenWorks positions correspond to the Location names in VWorks and BenchWorks. You need to know this when you set the device properties for the FLIPR Tetra.

Read this topic if you are an administrator who wants to set up a FLIPR Tetra in VWorks and BenchWorks.

About FLIPR Tetra device locations
The FLIPR Tetra contains five locations that are accessible by the pipette head:

<table>
<thead>
<tr>
<th>In ScreenWorks, position...</th>
<th>Corresponds to Location (in VWorks and BenchWorks)...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2 (source)</td>
<td>Source 1 and Source 2</td>
</tr>
<tr>
<td>3 (read)</td>
<td>Read</td>
</tr>
<tr>
<td>4 (tips)</td>
<td>Source 3/Tips</td>
</tr>
<tr>
<td>5 (for tip washing)</td>
<td>Stage</td>
</tr>
</tbody>
</table>
After you have set up the FLIPR Tetra in VWorks and BenchWorks, you can add FLIPR Tetra tasks to protocols. This topic provides an overview of the tasks for FLIPR Tetra device.

Read this topic if you are:

- An administrator or technician who wants to create protocols using the FLIPR Tetra
- An operator who needs to make protocol-specific changes to some of the task parameters

FLIPR Tetra tasks

There are six tasks associated with FLIPR Tetra:

- Change Instance
- Load Tips
- Loop
- Run Protocol
- Unload Tips
- Sub Process

The first five tasks are associated with the pipette process editor and the last task is associated with the protocol editor. The Sub Process task is used to link a series of pipette tasks to a protocol.

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting FLIPR Tetra device properties</td>
<td>“Setting the properties for a device” on page 16</td>
</tr>
<tr>
<td>Configuring the FLIPR Tetra</td>
<td>“Workflow for configuring the FLIPR Tetra” on page 28</td>
</tr>
<tr>
<td>Device drivers</td>
<td>“About device drivers” on page 7</td>
</tr>
<tr>
<td>Adding a Sub Process task</td>
<td>“Adding and linking Sub Process tasks” on page 19</td>
</tr>
<tr>
<td>Using FLIPR Tetra Diagnostics</td>
<td>“Operating the FLIPR Tetra with diagnostics” on page 39</td>
</tr>
</tbody>
</table>
Chapter 2: FLIPR Tetra

FLIPR Tetra Device Driver User Guide

32

For information about... See...

Adding tasks to protocols

- VWorks Version 3 Automation Control User Guide
- BenchWorks Automation Control User Guide

Setting the FLIPR Tetra Change Instance task parameters

About this topic

At times your experimental protocol may call for a repeated action to multiple plates and the Change Instance task enables you to do that. The Change Instance task is available in the Pipette Process Editor after you have added a Sub Process (FLIPR Tetra) task to a protocol.

This topic describes how to set the Change Instance task parameters. Read this topic if you are:

- An administrator or technician who creates protocols using the FLIPR Tetra
- An operator who needs to make edits to some of the FLIPR Tetra task parameters

Change Instance task defined

The Change Instance pipette task instructs the robotic system to change plates.

Note: Because FLIPR Tetra has an internal plate handler, it is considered to be a robot by VWorks and BenchWorks.

Change Instance task example

An example which uses this task is shown below.

In this example, a new plate is brought in after the Run Flipr protocol task is executed. After the new plate is brought in, the loop repeats and the Run Flipr protocol task is repeated, in this case, 10 times.

Examples of actions that could occur within the Flipr protocol are:

- Dispensing a source reagent into a read plate and repeating this for 10 replicate plates
- Aspirating a large volume from a mother (source) plate and then dispensing a portion of this volume to daughter plates
Procedure

To set Change Instance pipette task parameters:

1. Set up a protocol and pipette processes following the example shown above.

2. From the list in the Pipette Task Parameters toolbar, select the plate on which to change instance.

3. If you are using a script in the protocol that involves task skipping, select the **Spawn plate only when needed** check box to force the robot to only bring in the next plate when the Change Instance task is reached.

 The script may otherwise override this flow.

Related topics

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device drivers</td>
<td>“About device drivers” on page 7</td>
</tr>
<tr>
<td>The workflow for setting up FLIPR Tetra</td>
<td>Workflow for configuring the FLIPR Tetra</td>
</tr>
<tr>
<td>Using FLIPR Tetra Diagnostics</td>
<td>Operating the FLIPR Tetra with diagnostics</td>
</tr>
<tr>
<td>Adding a Sub Process task</td>
<td>“Adding and linking Sub Process tasks” on page 19</td>
</tr>
</tbody>
</table>
Setting the FLIPR Tetra Load Tips and Unload Tips task parameters

About this topic

This topic describes how to set the Load Tips and Unload Tips task parameters. These tasks are only available in the Pipette Process Editor after you have added a Sub Process (FLIPR Tetra) task to a protocol.

Read this topic if you are:

- An administrator or technician who creates protocols for FLIPR Tetra
- An operator who needs to make a change to these tasks in a protocol

Load and Unload Tips task defined

The Load Tips and Unload Tips instructs the FLIPR Tetra pipette head to go to the stage position that has tips and either load or unload them.

Procedure

To set Load and Unload Tips task parameters:

1. Add a Load Tips or Unload Tips task to a protocol.
2. In the Pipette Task Parameters toolbar, click Tips position, plate and then select the labware in the tips position from the list.

 A new Tips position, location property appears.

3. Click Tips position, location and then select the stage position of the tips from the list.

Related topics

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
</table>
| Adding tasks to protocols | ❑ VWorks Version 3 Automation Control User Guide
 ❑ BenchWorks Automation Control User Guide |
| About Sub Process tasks | “Adding and linking Sub Process tasks” on page 19 |
Chapter 2: FLIPR Tetra

FLIPR Tetra Device Driver User Guide

Setting FLIPR Tetra Loop task parameters

About this topic

This topic describes how to set the Loop task parameters. The Loop task becomes available in the Pipette Process Editor after you have added a Sub Process (FLIPR Tetra) task to a protocol.

Read this topic if you are:

- An administrator or technician who creates protocols for FLIPR Tetra
- An operator who needs to make a change to this task in a protocol, such as the number of times the loop should repeat

Loop task defined

The Loop task allows you to repeat a set of tasks within a process.

Procedure

This procedure is illustrated with an example in which a FLIPR Tetra protocol is run on 10 different plates with a change of tips between each plate.

To set the FLIPR Tetra Loop task parameters:

1. In the **Pipette Process Editor**, construct the process you want to repeat.

2. Select the **Loop** task icon in the **Pipette Task** list and drag it into the process in front of the first task that you want to be in the loop.

 In this example, it is Load Tips.

 A **Loop** task and **End of loop** task icons are added to the process.

3. Drag the **End of loop** task icon to the right-hand side of the last task you want to be in the loop.

For information about...	**See...**
Using FLIPR Tetra Diagnostics | “Operating the FLIPR Tetra with diagnostics” on page 39
4. Select the **Loop** task icon and in the **Pipette Task Parameters** toolbar, enter the number of times you want the tasks inside the loop to run.

![Pipette Task Parameters](image)

Related topics

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding tasks to protocols</td>
<td>VWorks Version 3 Automation Control User Guide</td>
</tr>
<tr>
<td></td>
<td>BenchWorks Automation Control User Guide</td>
</tr>
<tr>
<td>About sub-processes</td>
<td>“Adding and linking Sub Process tasks” on page 19</td>
</tr>
<tr>
<td>Using FLIPR Tetra Diagnostics</td>
<td>“Operating the FLIPR Tetra with diagnostics” on page 39</td>
</tr>
</tbody>
</table>

Setting FLIPR Tetra Run Protocol task parameters

About this topic

When a Sub Process task is added to a protocol, the Run Protocol task is available in the Pipette Process Editor. This topic describes how to set the Run Protocol task parameters.

Read this topic if you are:

- An administrator or technician who writes protocols for the FLIPR Tetra
- An operator who needs to make changes to the parameters of this task at the protocol run time

Run Protocol task defined

A Run Protocol task executes a protocol that you have created in ScreenWorks using the source and read plates you have designated in the Pipette Task Parameters toolbar.
To set the FLIPR Tetra Run Protocol task parameters:

1. Add the Run Protocol task to a protocol.
2. In the Pipette Task Parameters toolbar, click Protocol File and then select the protocol file from the list.
3. Click on each of appropriate plate positions and then select the plate name from the list. A plate location property appears.
4. Click the plate location and select the location of the plate from the list.

Related topics

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding tasks to protocols</td>
<td>VWorks Version 3 Automation Control User Guide</td>
</tr>
<tr>
<td>Sub-processes</td>
<td>“Adding and linking Sub Process tasks” on page 19</td>
</tr>
<tr>
<td>Using FLIPR Tetra Diagnostics</td>
<td>“Operating the FLIPR Tetra with diagnostics” on page 39</td>
</tr>
</tbody>
</table>
Managing FLIPR Tetra profiles

About this topic
This topic describes how administrators and technicians can manage FLIPR Tetra profiles.

Managing profiles, operation timeouts, and connection details
To manage FLIPR Tetra profiles, timeouts, and connection details:
1. Open FLIPR Tetra Diagnostics.
2. Click the Profile tab.
3. Select a profile from the Profile name list.
4. Perform the management task.

Management tasks include the following:
- Updating the profile. Use this command to save edits to an existing profile.
- Copying a profile.
- Renaming a profile.
- Deleting a profile.

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Users and permissions</td>
<td>“Who should read this guide” on page 2</td>
</tr>
</tbody>
</table>
For more information about making changes to the **Timeouts** or **Connection Details**, look in “Related topics” on page 41.

Related topics

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opening FLIPR Tetra Diagnostics</td>
<td>“Opening diagnostics” on page 12</td>
</tr>
<tr>
<td>The workflow for setting up a FLIPR Tetra</td>
<td>“Workflow for configuring the FLIPR Tetra” on page 28</td>
</tr>
<tr>
<td>Operating the FLIPR Tetra using diagnostics software</td>
<td>“Operating the FLIPR Tetra with diagnostics” on page 39</td>
</tr>
</tbody>
</table>

Operating the FLIPR Tetra with diagnostics

About this topic

This topic describes how to:

- Initialize the FLIPR Tetra
- View connection, instrument, and plate status
- View current status of instrument subsystems
- Execute instrument operations
- Reset the device

Read this topic if you are an operator who wants to troubleshoot or operate the FLIPR Tetra using direct commands.

Before you start

Before you can send commands to the FLIPR Tetra, or receive status information from the FLIPR Tetra, you need to initialize it.

To initialize the FLIPR Tetra:

1. Open **FLIPR Tetra Diagnostics**.
2. Click the **Profiles** tab.
3. Click **Initialize this profile**.

Viewing connection, instrument, and plate status

To view connection and instrument status:

1. Open **FLIPR Tetra Diagnostics**.
2. Click the **Status** tab.
3. Make sure that the **Enable sensors** check box is selected.

Executing instrument operations

To execute FLIPR Tetra operations:

1. Open the **FLIPR Tetra Diagnostics** dialog box.
2. Click the **Status** tab.

3. From the list next to the **Loadplate** button, select the position which has the plate you want to control.
4. Click the operation: **Loadplate**, **Load tips**, or **Wash tips**.
5. To execute an experiment, select the ScreenWorks protocol from the list next to the **Run experiment** button.
6. Click **Run experiment**.

Resetting FLIPR Tetra

If an error has occurred while using the FLIPR Tetra, you may have to clear the error and reset the FLIPR Tetra device. This is performed in the FLIPR Tetra Diagnostics dialog box.

To reset the FLIPR Tetra:

1. Open **FLIPR Tetra Diagnostics**.
2. Click the **Status** tab.
 If an error occurs, the **Device error** indicator is lit and the **Clear error** and **Reset Device** buttons enabled.

3. Click **Clear error** and then click **Reset Device**.

Viewing subsystem status

To view status of FLIPR Tetra subsystems:
1. Open **FLIPR Tetra Diagnostics**.
2. Click the **Other** tab.

 This page is for viewing only.

Related topics

<table>
<thead>
<tr>
<th>For information about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opening FLIPR Tetra Diagnostics</td>
<td>“Opening diagnostics” on page 12</td>
</tr>
<tr>
<td>The workflow for setting up a FLIPR Tetra</td>
<td>“Workflow for configuring the FLIPR Tetra” on page 28</td>
</tr>
<tr>
<td>Making changes to timeouts or connection details</td>
<td>“Creating a FLIPR Tetra profile” on page 29</td>
</tr>
<tr>
<td>Initializing a device</td>
<td>“About device initialization” on page 25</td>
</tr>
</tbody>
</table>