What is the Agilent 6210 TOF LC/MS system?

The Agilent TOF is an orthogonal-axis time-of-flight mass spectrometer (oa-TOF). That is, the ions reaching the time-of-flight chamber are impelled in a direction perpendicular to their original path.

You can set up an Agilent time-of-flight mass spectrometer system (TOF) in several configurations:

- For normal flow LC/MS with a binary pump, quaternary pump, well-plate sampler (or autosampler) and ESI, APCI, APPI or MMI ion sources
- For microflow LC/MS with a capillary pump, micro well-plate sampler and ESI, APCI or MMI ion source
- For nanoflow LC/MS with a nanopump, micro well-plate sampler and nanospray source or dual nanospray source
- TOF system with an AP-MALDI source

Each Agilent system has advantages for drug discovery — high throughput sample screening with highly sensitive detection and accurate mass assignment.

Each system uses the same Agilent MassHunter Software to enable these advantages, although the AP-MALDI TOF system uses only the TOF portion of the software.
You use the Agilent MassHunter Software for setting up and running data acquisition. For data analysis, you have two choices. You can use the PE Sciex Analyst QS 1.1 software package which Agilent provides which is especially modified for the Agilent 6210 LC/MS TOF system.

You can also use the Agilent MassHunter Workstation Qualitative Analysis program and the Agilent MassHunter Workstation Quantitative Analysis program. Both of these programs are included. Before using either of these programs, you need to translate your data files from the WIFF format to the format used by these Agilent programs using the Translator program. You can run this program interactively or directly from a worklist. The translator program is included in the Agilent MassHunter Workstation Qualitative Analysis program’s installation.

What’s New in A.02.02

Agilent MassHunter Software has many new features in this revision.

- Priming of the flush pump for WPS is now supported.
- Seal Wash for Pumps is now supported.
- Minimum Carryover Reduction for WPS is now supported.
- G1315D DAD is now supported.
- G1329B ALS is now supported.
- Device Reorder Utility is now available.
- WIFF files can be translated when running a Data Analysis method into the data format used by the Agilent MassHunter Workstation Qualitative Analysis program and the Agilent MassHunter Workstation Quantitative Analysis program. Both Analyst and Agilent MassHunter Workstation Qualitative Analysis programs must be installed for this feature to work.
- Saturation limit has been removed from both the EFC and Mass List reports.

This guide is valid for A.02.xx revisions of the Agilent 6210 MassHunter Software, where xx refers to minor revisions of the software that do not affect the technical accuracy of this guide.
Where to find information

Online Help

Press F1 To get more information about a pane or dialog box, place the cursor on the part of the pane or dialog box of interest and press F1.

Help menu From the Help menu, access “How-to” help and reference help.

PE-Sciex Analyst online help Refer to Analyst online help to learn how to view, quantitate and report on Agilent 6210 LC/MS TOF results.

Documents

You can find these manuals delivered with the TOF hardware or software. You can also find a PDF version on the installation CD-ROM, in the Manuals folder.

TOF User’s Guide Use this guide to install and set up the TOF hardware. This guide also contains background information to help you operate, maintain and troubleshoot the TOF.

6210 LC/MS TOF System Installation Guide This guide is used by the Agilent customer engineer to install the 6210 LC/MS TOF hardware and MassHunter Software, configure the instrument, and verify performance.

You can find these manuals on the installation CD-ROM, in the Manuals folder.

Concepts Guide - The Big Picture Learn the background information to help you make selections in the software.

Familiarization Guide Do the exercises to learn to use the MassHunter Software.

Training

Familiarization Guide Use this guide as a training lab.

Training Courses Visit www.chem.agilent.com to view a listing of training courses for the Agilent 6210 LC/MS TOF system.
Instructional overview

1 Install the TOF hardware

Use the Agilent G1969 LC/MSD TOF User’s Guide to install the hardware.

2 Install the software

Use the instructions in the Agilent 6210 Time-of-Flight LC/MS System Installation Guide to install both the MassHunter Software and the Analyst software. The sequence in which you install the software is listed below:
 a Install Analyst QS 1.1.
 b Install the Agilent MassHunter Software.
 c Configure the instrument for the first time.
 d Start the software and verify performance.

3 Set up and run samples

The roadmap below shows you the steps to set up and run a sample from start to finish. Follow the instructions on the next pages to get started and to learn where to find the information to help you with each step in this roadmap.

Read the Concepts Guide for background on these steps.
Step 1—Start the software

The instructions below include the following assumptions:

- The hardware and software are installed.
- The instrument is configured.

Use instructions in the *Installation Guide* to configure the instrument for the first time.
- The LC modules and the TOF are turned on, but the pump is not running.

Start software/check configuration

1. Double-click the Agilent TOF group on your desktop.

2. Double-click the TOF icon to start the software engines.

Figure 1 Agilent TOF group window
3 Click Start.

4 When all of the engines say “Running”, click Close.

5 Double-click the TOF icon in the Agilent TOF group (Figure 1).

The main window appears. See Figure 2 on page 7. The top pane of this window is the Instrument Status pane. (Figure below)

6 Make sure that the LC modules are the ones that you want configured with the instrument. (See below.)

- Select File > Print > Instrument Configuration, OR

- Check the headers of the LC modules labeled in the Instrument Status pane.

If LC modules other than those you intend to use appear in the Instrument Status pane or the Configuration report, use the Online Help to access instructions to reconfigure the instrument.
Four panes—where you do most of your work

When you first start the MassHunter Software, the main window appears. You do almost all of your work within the four panes of this main window. These panes provide the tools to set up acquisition methods, run samples interactively or automatically, monitor instrument status and monitor runs.
Show/hide the panes

You can show one pane at a time on the screen or up to four panes. You can never hide all four panes. To show or hide a pane, you click on the icons in the main window toolbar.

When you click on a pane, the active pane is outlined in blue. Press F1 to obtain help on the active pane. You can also drag a pane border to resize the pane.

Instrument Status pane

You may have several different LC modules in your LC stack, for example, both a well-plate sampler and micro well-plate sampler. With this pane you can make sure that the correct LC module is configured.

You also set non-method control and configuration parameters for the LC devices and TOF and monitor the status of the device parameters during a run.

Real-time Plot pane

With this pane you monitor the plot of chromatograms and spectra in real time.
Method pane

With this pane you enter instrument settings for acquisition methods and sample information to run individual samples interactively.

Worklist pane

With this pane you enter sample information for individual samples and information for batch samples. When you run the worklist, the samples and batches are automatically run in the order listed in the worklist.
Step 2—Prepare the instrument

Read and follow the steps in the user information listed below to learn how to prepare the instrument for a run.

- The steps on the next pages that take you through the roadmap below.
- Chapter 2 of the Concepts Guide, Instrument Preparation, for background information that you may need to prepare the 6210 LC/MS TOF.
- Chapter 1, Prepare the instrument, in the Familiarization Guide to learn to prepare the LC and TOF to run an ESdemo sample.
- Online Help under Master Task List, LC Startup and TOF optimization and calibration.

<table>
<thead>
<tr>
<th>Start here!</th>
<th>Prepare the LC modules</th>
<th>Set up parameters display (actuals)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepare the instrument</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set up DAD real-time plot displays (optional)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>View and work with the system logbook</td>
<td>Prepare the TOF</td>
<td></td>
</tr>
</tbody>
</table>
Prepare LC modules

Switch LC stream to Waste

While you purge the LC pump and condition or equilibrate the column, you can tune and calibrate the TOF. During this time you do not want effluent streaming into the TOF.

If you specify that the LC stream goes to Waste and not to the TOF, the stream passes through the DAD. You can then monitor the fluctuations of the DAD real-time chromatogram and spectra before a run.

1 Click the Method pane icon to view the Method pane.

![Figure 3](Image)

2 Click the MS-TOF tab of the Method pane.
3 Click the Data tab within the MS-TOF tab.
4 Select Waste if not already selected.
5 Click Apply.
Purge the LC pump

You purge the binary pump manually.

1. Right-click the binary pump status box in the Instrument Status pane.

2. Select Standby in the shortcut menu.

3. Turn the black valve on the front of the pump counter-clockwise two turns.

4. Click the Bin Pump tab in the Method pane.

5. Enter a Flow of 5 ml/min, and click Apply.

6. Select On in the binary pump shortcut menu.

7. After purging, enter the flow you use to equilibrate the column, and click Apply.

8. Close the black valve. Purge for about 9 minutes to pass about 45 mL or 3X the volume for the binary pump.
Purge the capillary or nano pump

1. Right-click pump device in the Instrument Status pane to bring up pump device menu.

2. Select Purge to bring up the Pump Purge System dialog box.

3. Start the purge with this dialog box and bring up the monitoring dialog box.

4. Monitor the purge with this dialog box and click Cancel after the purge is complete.
Condition or equilibrate the column

After you purge the pump, you set up to condition or equilibrate the column.

- Enter and download LC parameters, OR open a conditioning method.
- Change any non-method control parameters, if necessary.
- Monitor the baseline and adjust the plot to make sure the column is equilibrated and the baseline stable. (See “Set up to view real-time parameter values (actuals)” on page 16 and “Set up DAD chromatographic and spectral displays (optional)” on page 17.)

Enter and download LC parameters or open a conditioning method

1. Select Open from the File menu to open a method, OR enter LC parameters in the Method pane.

2. Click Apply to send the parameters to the LC.

You can also load a method using the Methods selection box in the Combo bar.
Change non-method control/configuration parameters, if necessary. With these menus, you can set the time to automatically turn the module on or off, you can set maximum values or you can configure the autosampler.

Right-click the LC module in the Instrument Status pane to bring up the control menu for that module.
Set up to view real-time parameter values (actuals)

As you prepare for a run and during a run, you want to see the actual values of the instrument parameters. You can do this in the Instrument Status pane.

1. Right-click the Actuals box to bring up Setup item.
2. Click Setup to bring up the tool to select instrument actuals.
3. Select actuals to set up to view the actual conditions in the Instrument Status pane.
Set up DAD chromatographic and spectral displays (optional)

As you condition the column, you set up the displays to monitor the effluent.

Set up chromatographic display

1. Right-click the signal plot to bring up the signal shortcut menu.
2. Select Change to bring up the tool for selecting the signal and its plot parameters.
3. Select a DAD signal that you intend to monitor, and click Add.
4. Highlight a Selected Signal.
5. Set the y and x axis ranges, and click OK.

The real-time plot now displays the DAD signal. (See next page.)
Set up spectral display

The default spectral display is a TOF line spectrum above the chromatogram and a profile spectrum to the right of the chromatogram.

1. Right-click the line or profile spectral plot to bring up the spectra shortcut menu.

2. If you clicked the line spectral plot, select the DAD spectrum as the spectrum to view.

Or, if you right-clicked the profile spectral plot, select Line first, then select the DAD spectrum.
Prepare the TOF

Calibrate the TOF

You calibrate the TOF more frequently than you tune the TOF. Agilent recommends that you do a 10 mass calibration. Make sure that you open the method corresponding to your ion source before you calibrate or tune the TOF to set default TOF acquisition parameters.

• ESIAutotune.m for ESI
• nanoESIAutotune.m for nanospray or dual nanospray
• APPIAutotune.m for APPI
• APPIAutotunePolaritySWPos for APPI
• MMIAutotunePolaritySWPos for MMI
You cannot calibrate the TOF with a MALDI source installed.

If the method loaded does not match the current ion source, then a warning is given.

Polarity Switching

If you are using Polarity Switching, you need to use a different autotune method. For each source, there is a positive and a negative method for Polarity Switching. The name of the autotune method has either “PolaritySWPos” or “PolaritySWNeg” appended to it.

• ESIAutotunePolaritySWPos.m for ESI
• ESIAutotunePolaritySWNeg.m for ESI
• nanoESIAutotunePolaritySWPos.m for nanospray or dual nanospray
• nanoESIAutotunePolaritySWNeg.m for nanospray or dual nanospray
• APPIAutotunePolaritySWPos.m for APPI
• APPIAutotunePolaritySWNeg.m for APPI
• MMIAutotunePolaritySWPos.m for MMI
• MMIAutotunePolaritySWNeg.m for MMI
You will need to perform four autotunes to correctly tune the TOF system when using Polarity Switching. First, you need to tune in both positive and negative modes. Then, you need to tune using the Polarity Switching methods in both positive and negative modes.
Check and do a tune

1. Click the MSTOF tab in the Method pane and select ion polarity.

2. Enter calibration parameters.

3. Click Calibrate if you have already chosen the ten masses.

4. Click to make sure that the calibration is satisfactory.

5. If you want to select a different set of masses or you want to use a different calibration standard, click Show Extended.

6. Select masses to use for calibration, OR load another mass list.

7. Then calibrate again.
1. Click the Tune tab under the MSTOF tab.

2. Check to see if the TOF needs tuning.

3. Click Autotune for a tune that takes 15-20 minutes or Quicktune for a tune that takes 1-3 minutes.

4. Or click Show Extended to do a manual tune on the parameters that need adjusting.

After you do a tune, the optimized parameters appear in the Parameters panel.

If you do a manual tune, you must also do a calibration. Autotune and Quicktune include mass calibration with one mass.

After you do a tune, the optimized parameters appear in the Parameters panel.
Switch LC stream to MS

After you condition the column and calibrate and tune the TOF, you switch the LC stream from Waste to MS.

1. Click the Method pane icon to view the Method pane.

![Figure 4 Data tab of the MS-TOF tab in the Method pane]

2. Click the MS-TOF tab of the Method pane.
3. Click the Data tab within the MS-TOF tab.
4. Select MS in the LC Stream (Seg.) section.
5. Click Apply.

Monitor TOF baseline and spectral displays

If you did not monitor the LC baseline with a DAD, skip this module. Make sure that the TOF baseline is stable and no spectra of interfering intensity appear in the display.

If you did monitor the LC baseline with a DAD, follow these steps.

1. Right-click the chromatogram display.
2. Select Change.
3. Highlight the TIC signal in the list of Selected Signals.
4. Set the x and y axis ranges.
5. Click OK.
6. Right-click the spectral displays.
7. Select TOF spectra >Line or Profile.
8. Monitor the baseline and spectra.
View the system logbook for events and errors

As you prepare the instrument, you may run into an error that you want to troubleshoot. You do this through the System Logbook Viewer.

Select System Logbook Viewer from the Tools menu.

OR, click the Log icon.

Export the logbook to print the logbook.

Click icon to find or filter an event, or to show or hide a column.
Step 3—Set up acquisition methods

Read and follow the steps in the user information listed below to learn how to set up methods.

- The steps on the next pages that take you through the roadmap below.
- Chapter 3 of the *Concepts Guide, Acquisition Methods*, to learn background information to help you set up methods.
- Exercise 2, Set up an Acquisition Method, in the *Familiarization Guide*
- *Online Help* for the tasks that correspond to the roadmap steps and the tasks listed on the next pages.

<table>
<thead>
<tr>
<th>Start Here!</th>
<th>1 Enter LC parameters</th>
<th>2 Select polarity and enter TOF parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 Set up to change TOF parameters during run</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 Enable reference mass correction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 Set up TOF signals for the real-time plot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 Save and print the acquisition method</td>
<td></td>
</tr>
</tbody>
</table>
Enter LC parameter values

- You can also enter pre-run/post-run scripts in the Properties tab.
- Enter LC parameters in the LC module tabs.

Do not modify scripts provided by Agilent because these scripts may be overwritten the next time you upgrade the Agilent software.

Enter TOF parameter values

1. Select ion polarity.
2. Enter TOF parameters in the Data, and Acquisition tabs.

You enter these values for the initial time 0.0 min and the whole run and for one scan, unless you add other time segments and scans. See the next page.

Right-click each field to find the maximum and minimum values.

All entries in the Tune, Calibration and Parameters tabs are not saved with the method.
Set up to change TOF parameters with segments and scans

1. For the initial run time of 0.0 and 1 scan, enter TOF values.

2. Enter the next time for which you want to change segment values and click Add.

3. Add up to four scans for each time segment, including the initial time.

4. For each scan, change a value or values.

Note that Ion Polarity can be changed for each time segment. The label for that section will be “Ion Polarity (Seg.)” if there are more than one time segments.

Note the values you can change with each time segment.

Note the values you can change with each scan.
Enable reference mass correction

You enable for mass correction during a run to obtain the specified mass accuracy.

Set up for mass correction

1. Enable reference mass correction.
2. Mark Bottle A to use the Agilent reference std.
3. Set the auto recalibration parameters.
4. Mark the masses that you want to use for the correction.

If the list is blank or you want a different list for another standard, click the Select Masses button.

If you want to create a new mass list or modify the existing default lists, click Edit Mass Lists. See next page.
Edit mass list

1. Select the default mass list for your ion source and polarity.

2. Enter a new name into the Name field.

3. Click Save As New List.

4. Add or delete masses to the new list.

5. Click Save List.
Set up signals for the real-time plot

Select the signal that you want to see in the real-time plot.

You can also select different time segments and scans to monitor.

Save and print the method

Select Save in the File menu to save the currently opened method, OR select Save As in the File menu to save a new method.

Select Print > Acquisition Method in the File menu to set up to print a method.

Or, click the Save icon for the method.
Step 4—Acquire data

Read and follow the steps in the user information listed below to learn how to acquire data.

- The steps on the next pages that take you through the roadmap below.
- Chapter 4 of the Concepts Guide, Data Acquisition, to learn background information to help you acquire data.
- Chapters 3 and 4 of the Familiarization Guide
- Online Help for the tasks that correspond to the roadmap steps and the tasks listed on the next pages.

<table>
<thead>
<tr>
<th>Start Here!</th>
<th>Acquire data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Set up and run an interactive sample.</td>
</tr>
<tr>
<td>2</td>
<td>Set up and run a worklist</td>
</tr>
<tr>
<td>3</td>
<td>Print a real-time plot report</td>
</tr>
<tr>
<td>4</td>
<td>Modify a worklist in progress</td>
</tr>
<tr>
<td>5</td>
<td>Print a worklist report</td>
</tr>
</tbody>
</table>
Set up and run interactive samples

1. Open a method using the menu item or the Combo bar.
2. Click the Sample tab in the Method pane.
3. Enter the sample name and custom variables.
4. Select a project and enter the data file name.
5. Select Acquisition Only.
6. Click this Start to run interactive single samples.

You can only create projects in Analyst. See “Step 5—Analyze data” on page 35.

Even though Both Acquisition and DA is a selection in the “Part of method to run” list, it is not available for single samples in this version of software.
Set up and run worklists (e.g., empirical formula confirmation)

1. Right-click here to bring up the worklist shortcut menu.

2. Select Add Multiple Samples to add a series of samples to the worklist.

3. Select Add column(s) to add a column for the empirical formula.

4. Enter the generic name (Formula_x) and formula for an EFC column.

 You must select default.annm to produce an empirical formula confirmation report.

You can also add batches of samples whose information and data you may want to keep together.

You can see an example of the resulting worklist on the next page.

You can also select Show/Hide columns to hide unnecessary columns.
Print a real-time plot report

- To print a real-time plot report during the run, select Print > Real-Time Plot.
Modify the worklist in progress

You can modify any row below the row located under the running row (shaded blue).

If the last selected row is executing, then all rows are locked.

When you place the cursor on the row to be edited, tracking is automatically turned off. To turn tracking back on, you must check the worklist menu item, Track Worklist Run.

Print the worklist

Select Print > Worklist to print the worklist report.
Step 5—Analyze data

The primary tool for analyzing and reporting on results is PE-Sciex Analyst QS. PE-Sciex has modified their software specifically to accommodate the Agilent TOF system requirements.

Read and follow the steps in the user information listed below to learn how to review TOF data and customize the data analysis method, default.anm, used to confirm empirical formulas.

- The steps on the next pages that take you through the roadmap below.
- Chapter 5 of the *Concepts Guide*, Data Analysis, to learn background information to help you analyze data.
- Chapters 3 and 4 of the *Familiarization Guide*.
- *Online Help* for the tasks that correspond to the roadmap steps and the tasks listed on the next pages.
- Consult the *PE-Sciex Analyst User’s Guide* and online help to learn how to perform other analysis operations not associated with the Agilent system.

<table>
<thead>
<tr>
<th>Start Here!</th>
<th>1 Start software and open data file</th>
<th>2 Review signals/chromatograms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analyze data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Review spectra and sample information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 Set up and generate a parameter optimization report</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 Customize the data analysis method, default.anm</td>
<td></td>
</tr>
</tbody>
</table>
Start the Analyst QS software and open a data file

1. Double-click the Analyst QS icon in the Agilent TOF Software group window.

2. Select the project that contains the data file.

3. Click to open .wiff files.
Review signals/chromatograms

1. Right-click on chromatogram to bring up the shortcut menu.

2. Do any of the bulleted tasks on this page in any order that you want.
 - Select List Data from the shortcut menu to see the results of integration.
 - Drag the cursor across a peak and select Show Spectrum from the shortcut menu to see the mass spectra in the peak.
 - To zoom into a peak, draw a rectangle under the peak baseline.
 - Select Extract Ion from the shortcut menu to produce an XIC (EIC) chromatogram.
 - Select Script > Agilent Peak Finder Parameters.dll to change integration parameters.

Method Setpoints by default are saved with the data file. Use the tool TOFSystemConfig to change whether Method Setpoints are saved. See the installation guide for more information.

See the next page to learn about spectral operations with Analyst.
Review spectra and sample information

1. Right-click on spectrum to bring up the shortcut menu.

- Select View Actuals from the shortcut menu to see the real-time TOF parameter values.

- Select Re-Calibrate TOF to recalibrate the TOF from Analyst.

- Click the sample information icon in the Analyst toolbar to view method and sample information on the data file.

File Information for Sample 1 (Test Sample) of esdemo.wiff

Name: C:\PE Sciem Data\Projects\Default\Data\sample
Original Name: C:\PE Sciem Data\Projects\Default\Data\sample
Software Version: Analyst QS

Log Information:
Column Oven: Agilent 1100 G1316A 0
Left Column Tag Information: Not Available
Right Column Tag Information: Not Available

Acquisition Info
Acquisition Method: N/A
Acquisition Time: Monday, May 12, 2003, 11:30:29 AM
Duration: 0.000 sec
Number Of Scans Acquired: 361
Periods In File: 1
Synchronization Mode: No Sync
Auto-Equilibration: Off
Set up and generate a parameter optimization report

1. Select Script > Parameter Optimization.dll in the Analyst main window.

2. Select the samples for the report.

3. Continue through the wizard, then click Finish.
Customize the data analysis method for empirical formula confirmation

1. Click the Data Analysis Editor icon in the TOF Software program folder.
2. Click the Formula Confirmation tab in the Data Analysis Method Editor window.
3. Enter values in the Formula Confirmation tabs to modify the default.anm method. Enter values in the Report Options tab to select which of the graphs to include. Enter values in the Screening tab to enable the database search.
4. Save the method.
5. Regenerate the report by rerunning the worklist in Data Analysis Only mode.

The EFC report can now also include a backward database search (called an EFC Database Screening Report). Based upon a formula, a mass is determined and then XICs are extracted for that mass to see if the compound can be found. You can limit the search of the database to formulas with a certain retention time tolerance. A value of -1 in the Retention time tolerance field indicates to not limit the search based upon retention time.
Create a data analysis method for Mass List Report

1. Click the Data Analysis Editor icon in the Agilent TOF Software program folder.

2. Select Select DA Operations menu item from the Edit menu in the Data Analysis Method Editor window.

3. Click Mass List in the Available Operations list and click the Add button. If any other option appears in the Selected Operations list, click on it and click the Remove button.

4. Click OK to close the Select DA Operations dialog box.

5. Select the Report Type “Mass list report only”.

6. Enter values in the Mass List tabs to modify the method.

7. Save the method with a new name, using the File>Save As menu item.

8. To generate a mass list report, create a worklist that specifies the data analysis method created in the steps above. The report will be generated for each sample when you run the worklist.
Create a DA method for Mass List Report type Empirical Formula Generation

1. Click the Data Analysis Editor icon in the Agilent TOF Software program folder.
2. Select Select DA Operations menu item from the Edit menu in the Data Analysis Method Editor window.
3. Click Mass List in the Available Operations list and click the Add button. If any other option appears in the Selected Operations list, click on it and click the Remove button.
4. Click OK to close the Select DA Operations dialog box.
5. Select the Report Type “Include generation of empirical formulae”.
6. Enter values in the Mass List tabs to modify the method including the “Formula Generation” tab.
7. Save the method with a new name, using the File>Save As menu item.
8. To generate a mass list report, create a worklist that specifies the data analysis method created in the steps above. The report will be generated for each sample when you run the worklist.

The Mass List Report including Empirical Formula Generation identifies valid molecular formulas that match the masses found in your sample based upon the values entered in this tab.
Create a DA method for Mass List Report type Confirmation Screening

1. Click the Data Analysis Editor icon in the Agilent TOF Software program folder.

2. Select Select DA Operations item from the Edit menu in the Data Analysis Method Editor window.

3. Click Mass List in the Available Operations list and click the Add button. If any other option appears in the Selected Operations list, click on it and click the Remove button.

4. Click OK to close the Select DA Operations dialog box.

5. Select the Report Type “Include confirmation screening by database search”.

6. Enter values in the Mass List tabs to modify the method including the “Confirmation Screening” tab.

7. Save the method with a new name, using the File>Save As menu item.

8. To generate a mass list report, create a worklist that specifies the data analysis method created in the steps above. The report will be generated for each sample when you run the worklist.

The Mass List Report including Confirmation Screening is a forward screening report. After determining the mass, the database is searched for formulas with the corresponding mass.
Create a DA method for Molecular Features Extraction report

1. Click the Data Analysis Editor icon in the Agilent TOF Software program folder.
2. Select Select DA Operations item from the Edit menu in the Data Analysis Method Editor window.
3. Click Molecular Features Extraction in the Available Operations list and click the Add button. If any other option appears in the Selected Operations list, click on it and click the Remove button.
4. Click OK to close the Select DA Operations dialog box.
5. Select the Report Type “Molecular Feature Extraction only”.
6. Enter values in the Molecular Feature Extraction tabs to modify the method.
7. Save the method with a new name, using the File>Save As menu item.
8. To generate a molecular feature extraction report, create a worklist that specifies the data analysis method created in the steps above. The report will be generated for each sample when you run the worklist.

The Molecular Feature Extraction Report lists out masses of chemical compounds and a list of isotopes of a compound found in the sample. The MFE report shows isotopes in the form of multiple isotope cluster based on adducts used in the ionization.
Create a DA method for MFE Report including Confirmation Screening

1. Click the Data Analysis Editor icon in the Agilent TOF Software program folder.

2. Select Select DA Operations item from the Edit menu in the Data Analysis Method Editor window.

3. Click Molecular Feature Extraction in the Available Operations list and click the Add button. If any other option appears in the Selected Operations list, click on it and click the Remove button.

4. Click OK to close the Select DA Operations dialog box.

5. Select the Report Type “Include confirmation screening by database search”.

6. Enter values in the MFE tabs to modify the method including the “Confirmation Screening” tab.

7. Save the method with a new name, using the File>Save As menu item.

8. To generate a mass list report, create a worklist that specifies the data analysis method created in the steps above. The report will be generated for each sample when you run the worklist.

The Molecular Feature Extraction Report including Confirmation Screening is a forward screening report. After determining the mass, the database is searched for formulas with the corresponding mass.
In this book

This book contains brief instructions to help you get started with your Agilent 6210 Time-of-Flight TOF LC/MS system. This book shows you how to:

- Prepare the instrument for a run
- Set up acquisition methods
- Set up and run an interactive sample and worklists
- Review data

To submit comments about this guide, send an e-mail to feedback_lcms@agilent.com.