Notices

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number
G1311-90011

Edition
11/08

Printed in Germany
Agilent Technologies
Hewlett-Packard-Strasse 8
76337 Waldbronn

Research Use Only
Not for use in Diagnostic Procedures.

Warranty

The material contained in this document is provided “as is,” and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as “Commercial computer software” as defined in DFAR 252.227-7014 (June 1995), or as a “commercial item” as defined in FAR 2.101(a) or as “Restricted computer software” as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies’ standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.
Contents

Optimize the Compressibility Compensation Setting 60

6 Troubleshooting and Test Functions 63
 Agilent Lab Advisor Software 64
 Overview of the Pump’s Indicators and Test Functions 65
 Status Indicators 66
 User Interfaces 68

7 Maintenance 69
 Introduction to Repairing the Pump 70
 Early Maintenance Feedback (EMF) 73
 Overview of Repairing the Pump 75
 Simple Repairs 77

8 Parts and Materials for Maintenance 105
 Overview of Main Assemblies 106
 Pump Head Assembly 110
 Pump Head Assembly with Seal Wash Option 112
 Outlet Ball Valve Assembly 114
 Purge Valve Assembly 115
 Active Inlet Valve Assembly 116
 Accessory Kit G1311-68705 117
 Seal Wash Option Kit G1311-68711 118

9 Identifying Cables 119
 Cable Overview 120
 Analog Cables 122
 Remote Cables 125
 BCD Cables 130
 External Contact Cable 132
 CAN/LAN Cables 133
 Auxiliary Cable 134
 RS-232 Cables 135

10 Appendix 137
 General Safety Information 138
Contents

Lithium Batteries Information 142
Radio Interference 143
Sound Emission 144
Agilent Technologies on Internet 145
1

Introduction

Introduction to the Quaternary Pump 8
Overview of the Hydraulic Path 9
 How Does the Pump Work? 11
 How Does Compressibility Compensation Work? 14
 How Does Variable Stroke Volume Work? 14
 Early Maintenance Feedback (EMF) 15
Instrument Layout 16
The Electronics 17
Electrical Connections 18
Agilent 1200 Series Interfaces 20
Introduction to the Quaternary Pump

The quaternary pump comprises a solvent cabinet, a vacuum degasser and a four-channel gradient pump. The four-channel gradient pump comprises a high-speed proportioning valve and a pump assembly. It provides gradient generation by low pressure mixing. Degassing is a must for a low-pressure gradient system therefore the Agilent 1200 Series vacuum degasser is part of the quaternary pump system. A solvent cabinet provides enough space for four one-liter bottles. An active seal wash (optional) is available when the quaternary pump is used with concentrated buffer solutions.

Figure 1 Overview of the Quaternary Pump
Overview of the Hydraulic Path

The quaternary pump is based on a two-channel, dual plunger in-series design which comprises all essential functions that a solvent delivery system has to fulfill. Metering of solvent and delivery to the high-pressure side are performed by one pump assembly which can generate pressure up to 400 bar.

Degassing of the solvents is done in a vacuum degasser and solvent compositions are generated on the low-pressure side by a high-speed proportioning valve.

The pump assembly includes a pump head with an active inlet valve which has an replaceable cartridge, and an outlet valve. A damping unit is connected between the two plunger chambers. A purge valve including a PTFE frit is fitted at the pump outlet for convenient priming of the pump head.

An active seal wash (optional) is available when the quaternary pump is used with concentrated buffer solutions.
1 Introduction
Overview of the Hydraulic Path

Figure 2 Hydraulic Path of the Quaternary Pump
How Does the Pump Work?

The liquid runs from the solvent reservoir through the degasser to the MCGV and from there to the active inlet valve. The pump assembly comprises two substantially identical plunger/chamber units. Both plunger/chamber units comprise a ball-screw drive and a pump head with one sapphire plunger for reciprocating movement in it.

A servo-controlled variable reluctance motor drives the two ball-screw drives in opposite directions. The gears for the ball-screw drives have different circumferences (ratio 2:1) allowing the first plunger to move at twice the speed of the second plunger. The solvent enters the pump head close to the bottom limit and leaves it at its top. The outer diameter of the plunger is smaller than the inner diameter of the pump head chamber allowing the solvent to fill the gap in between. The first plunger has a stroke volume in the range of 20–100 µl depending on the flow rate. The microprocessor controls all flow rates in a range of 1 µl–10 ml/min. The inlet of the first plunger/chamber unit is connected to the active inlet valve which is processor-controlled opened or closed allowing solvent to be drawn into the first plunger pump unit. The variable reluctance motor drives the two ball-screw drives in opposite directions. The gears for the ball-screw drives have different circumferences (ratio 2:1) allowing the first plunger to move at twice the speed of the second plunger. The solvent enters the pump head close to the bottom limit and leaves it at its top. The outer diameter of the plunger is smaller than the inner diameter of the pump head chamber allowing the solvent to fill the gap in between.

The outlet of the first plunger/chamber unit is connected through the outlet ball valve and the damping unit to the inlet of the second plunger/chamber unit. The outlet of the purge valve assembly is then connected to the following chromatographic system.
1 Introduction
Overview of the Hydraulic Path

Figure 3 Principle of the Pump

When turned on, the quaternary pump runs through an initialization procedure to determine the upper dead center of the first plunger. The first plunger moves slowly upwards into the mechanical stop of chamber and from there it moves back a predetermined path length. The controller stores this plunger position in memory. After this initialization the quaternary pump starts operation with the set parameters. The active inlet valve is opened and the down-moving plunger draws solvent into the first chamber. At the same time the second plunger is moving upwards delivering into the system. After a controller-defined stroke length (depending on the flow rate) the drive motor is stopped and the active inlet valve is closed. The motor direction is reversed and moves the first plunger up until it reaches the stored upper limit and at
the same time moving the second plunger downwards. Then the sequence starts again moving the plungers up and down between the two limits. During the up movement of the first plunger the solvent in the chamber is pressed through the outlet ball valve into the second chamber. The second plunger draws in half of the volume displaced by the first plunger and the remaining half volume is directly delivered into the system. During the drawing stroke of the first plunger, the second plunger delivers the drawn volume into the system.

For solvent compositions from the solvent bottles A, B, C, D the controller divides the length of the intake stroke in certain fractions in which the gradient valve connects the specified solvent channel to the pump input.

Table 1 Pump Details

<table>
<thead>
<tr>
<th>Details</th>
<th>Material Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay volume</td>
<td>800–1100 µl, dependent on back pressure</td>
</tr>
<tr>
<td>Materials in contact with mobile phase</td>
<td></td>
</tr>
<tr>
<td>DCGV</td>
<td>PTFE</td>
</tr>
<tr>
<td>Pump head</td>
<td>SST, gold, sapphire, ceramic</td>
</tr>
<tr>
<td>inlet valve</td>
<td>SST, gold, sapphire, ruby, ceramic, PTFE</td>
</tr>
<tr>
<td>Outlet valve</td>
<td>SST, gold, sapphire, ruby</td>
</tr>
<tr>
<td>Adapter</td>
<td>SST, gold</td>
</tr>
<tr>
<td>Purge valve</td>
<td>SST, gold, PTFE, ceramic, PEEK</td>
</tr>
<tr>
<td>Damping unit</td>
<td>Gold, SST</td>
</tr>
</tbody>
</table>

For quaternary pump specifications, see “Site Requirements and Specifications” on page 21.
How Does Compressibility Compensation Work?

The compressibility of the solvents in use will affect retention-time stability when the back pressure in the system changes (for example, ageing of column). In order to minimize this effect, the pump provides a compressibility compensation feature which optimizes the flow stability according to the solvent type. The compressibility compensation is set to a default value and can be changed through the user interface.

Without a compressibility compensation the following will happen during a stroke of the first plunger. The pressure in the plunger chamber increases and the volume in the chamber will be compressed depending on backpressure and solvent type. The volume displaced into the system will be reduced by the compressed volume.

With a compressibility value set the processor calculates a compensation volume, that is depending on the backpressure in the system and the selected compressibility. This compensation volume will be added to the normal stroke volume and compensates the previous described loss of volume during the delivery stroke of the first plunger.

How Does Variable Stroke Volume Work?

Due to the compression of the pump-chamber volume each plunger stroke of the pump will generate a small pressure pulsation, influencing the flow ripple of the pump. The amplitude of the pressure pulsation is mainly dependent on the stroke volume and the compressibility compensation for the solvent in use. Small stroke volumes will generate pressure pulsations of smaller amplitude than higher stroke volumes at same flow rates. In addition the frequency of the pressure pulsations will be higher. This will decrease the influence of flow pulsations on quantitative results.

In gradient mode smaller stroke volumes resulting in less flow ripple will improve composition ripple.

The module uses a processor-controlled spindle system to drive its plungers. The normal stroke volume is optimized for the selected flow rate. Small flow rates use a small stroke volume while higher flow rates use a higher stroke volume.
The stroke volume for the pump is set to AUTO mode. This means that the stroke is optimized for the flow rate in use. A change to larger stroke volumes is possible but not recommended.

Early Maintenance Feedback (EMF)

The early maintenance feedback (EMF) feature monitors the usage of specific components in the instrument, and provides feedback when the user-settable limits have been exceeded. The visual feedback in the user interface provides an indication that maintenance procedures should be scheduled.

For details on EMF counters and how to use them, see Agilent Lab Advisor.
Instrument Layout

The industrial design of the module incorporates several innovative features. It uses Agilent’s E-PAC concept for the packaging of electronics and mechanical assemblies. This concept is based upon the use of expanded polypropylene (EPP) layers foam plastic spacers in which the mechanical and electronic boards components of the module are placed. This pack is then housed in a metal inner cabinet which is enclosed by a plastic external cabinet. The advantages of this packaging technology are:

- virtual elimination of fixing screws, bolts or ties, reducing the number of components and increasing the speed of assembly/disassembly,
- the plastic layers have air channels molded into them so that cooling air can be guided exactly to the required locations,
- the plastic layers help cushion the electronic and mechanical parts from physical shock, and
- the metal inner cabinet shields the internal electronics from electromagnetic interference and also helps to reduce or eliminate radio frequency emissions from the instrument itself.
The electronics are comprised of four main components:

- The low pressure pump main board (LPM).
- Power supply.

Optional:

- Interface board (BCD/external contacts).
- LAN Communication Card.

Low-Pressure Pump Main Board (LPM)

The board controls all information and activities of all assemblies within the module. The operator enters parameters, changes modes and controls the module through interfaces (CAN, GPIB or RS-232C) connected to the user-interfaces.

The Main Power Supply Assembly

The main power supply comprises a closed assembly (no component-level repair possibility). The power supply provides all DC voltages used in the module. The line voltage can vary in a range from 100 – 120 or 220 – 240 volts AC ± 10 % and needs no manual setting.

Optional Interface Boards

The Agilent 1200 Series modules have one optional board slot that allows to add an interface board to the modules. Optional interface boards for the Agilent 1200 Series are:

- BCD Board
- LAN Communication Card
Electrical Connections

- The GPIB connector is used to connect the pump with a computer. The address and control switch module next to the GPIB connector determines the GPIB address of your pump. The switches are preset to a default address (“Agilent 1200 Series Interfaces” on page 20). This address is recognized at power cycling the module.

- The CAN bus is a serial bus with high speed data transfer. The two connectors for the CAN bus are used for internal Agilent 1200 Series module data transfer and synchronization.

- One analog output provides a pressure signal for integrators or data handling systems.

- The interface board slot is used for external contacts and BCD bottle number output or LAN connections.

- The REMOTE connector may be used in combination with other analytical instruments from Agilent Technologies if you want to use features such as start, stop, common shut down, prepare, and so on.

- With the appropriate software, the RS-232C connector may be used to control the module from a computer through a RS-232C connection. See your software documentation for further information.

- The power input socket accepts a line voltage of 100–120 or 220–240 volts AC ± 10% with a line frequency of 50 or 60 Hz. Maximum power consumption is 220 VA. There is no voltage selector on your module because the power supply has wide-ranging capability. There are no externally accessible fuses, because automatic electronic fuses are implemented in the power supply. The security lever at the power input socket prevents the module cover from being taken off when line power is still connected.
Figure 4 Rear View of Pump - Electrical Connections and Label
The Agilent 1200 Series modules provide the following interfaces:

Table 2 Agilent 1200 Series Interfaces

<table>
<thead>
<tr>
<th>Interface Type</th>
<th>Pumps</th>
<th>Autosampler</th>
<th>DA Detector</th>
<th>VW Detector</th>
<th>Thermostatted Column Compartment</th>
<th>Vacuum Degasser</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>GPIB</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>RS-232C</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>APG Remote</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Analog</td>
<td>Yes</td>
<td>No</td>
<td>2 ×</td>
<td>1 ×</td>
<td>No</td>
<td>Yes(^1)</td>
</tr>
<tr>
<td>Interface board(^2)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

\(^1\) The vacuum degasser will have a special connector for specific use. For details, see the degasser manual.

\(^2\) The interface board slot (not common to all modules) provides specific interfacing needs (external contacts, BCD, LAN and so on).
2 Site Requirements and Specifications

Site Requirements 22
 Power Consideration 22
 Power Cords 23
 Bench Space 24
 Environment 24
Physical Specifications 25
Performance Specifications 26
Site Requirements

A suitable environment is important to ensure optimum performance of the instrument.

Power Consideration

The module power supply has wideranging capability (see Table 3 on page 25). It accepts any line voltage in the range described in the above mentioned table. Consequently there is no voltage selector in the rear of the module. There are also no externally accessible fuses, because automatic electronic fuses are implemented in the power supply.

WARNING

Incorrect line voltage at the instrument

Shock hazard or damage of your instrumentation can result, if the devices are connected to a line voltage higher than specified.

➔ Connect your instrument to the specified line voltage.

WARNING

Module is partially energized when switched off, as long as the power cord is plugged in.

Repair work at the module can lead to personal injuries, e.g. shock hazard, when the cover is opened and the module is connected to power.

➔ Remove the power cable from the instrument before opening the cover.

➔ Do not connect the power cable to the Instrument while the covers are removed.
CAUTION

Unaccessible power plug.

In case of emergency it must be possible to disconnect the instrument from the power line at any time.

➔ Make sure the power connector of the instrument can be easily reached and unplugged.

➔ Provide sufficient space behind the power socket of the instrument to unplug the cable.

Power Cords

Different power cords are offered as options with the module. The female end of all power cords is identical. It plugs into the power-input socket at the rear of the module. The male end of each power cord is different and designed to match the wall socket of a particular country or region.

WARNING

The absence of ground connection and the use of an unspecified power cord can lead to electric shock or short circuit.

Electric Shock

➔ Never operate your instrumentation from a power outlet that has no ground connection.

➔ Never use a power cord other than the Agilent Technologies power cord designed for your region.

WARNING

Use of unsupplied cables

Using cables not supplied by Agilent Technologies can lead to damage of the electronic components or personal injury.

➔ Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.
2 Site Requirements and Specifications

Site Requirements

Bench Space

The module dimensions and weight (see Table 3 on page 25) allow to place the module on almost any laboratory bench. It needs an additional 2.5 cm (1.0 inches) of space on either side and approximately 8 cm (3.1 inches) in the rear for the circulation of air and electric connections.

If the bench should carry a complete Agilent 1200 Series system, make sure that the bench is designed to carry the weight of all the modules.

NOTE

The module should be operated in a horizontal position!

Environment

Your module will work within specifications at ambient temperatures and relative humidity as described in Table 3 on page 25.

CAUTION

Condensation within the module

Condensation will damage the system electronics.

➔ Do not store, ship or use your module under conditions where temperature fluctuations could cause condensation within the module.

➔ If your module was shipped in cold weather, leave it in its box and allow it to warm slowly to room temperature to avoid condensation.
Physical Specifications

Table 3 Physical Specifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>11 kg (25 lbs)</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>140 x 345 x 435 mm (5.5 x 13.5 x 17 inches)</td>
<td></td>
</tr>
<tr>
<td>Line voltage</td>
<td>100 – 240 VAC, ± 10%</td>
<td>Wide-ranging capability</td>
</tr>
<tr>
<td>Line frequency</td>
<td>50 or 60 Hz, ± 5%</td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td>180 VA, 55 W / 188 BTU</td>
<td>Maximum</td>
</tr>
<tr>
<td>Ambient operating temperature</td>
<td>4–55 °C (41–131 °F)</td>
<td></td>
</tr>
<tr>
<td>Ambient non-operating</td>
<td>40–70 °C (-4–158 °F)</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>< 95%, at 25–40 °C (77–104 °F)</td>
<td>Non-condensing</td>
</tr>
<tr>
<td>Operating Altitude</td>
<td>Up to 2000 m (6500 ft)</td>
<td></td>
</tr>
<tr>
<td>Non-operating altitude</td>
<td>Up to 4600 m (14950 ft)</td>
<td>For storing the module</td>
</tr>
</tbody>
</table>
Performance Specifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic system</td>
<td>Dual plunger in series pump with proprietary servo-controlled variable stroke drive, floating plungers and active inlet valve</td>
</tr>
<tr>
<td>Setable flow range</td>
<td>0.001 – 10 ml/min, in 0.001 ml/min increments</td>
</tr>
<tr>
<td>Flow range</td>
<td>0.2 – 10.0 ml/min</td>
</tr>
<tr>
<td>Flow precision</td>
<td>£ 0.07% RSD, or £ 0.02 min SD whatever is greater, based on retention time at constant room temperature</td>
</tr>
<tr>
<td>Flow accuracy</td>
<td>± 1% or 10 µl/min whatever is greater</td>
</tr>
</tbody>
</table>
| Pressure | Operating range 0 – 40 MPa (0 – 400 bar, 0 – 5880 psi) up to 5 ml/min
 Operating range 0 – 20 MPa (0 – 200 bar, 0 – 2950 psi) up to 10 ml/min |
| Pressure pulsation | < 2 % amplitude (typically < 1 %), at 1 ml/min isopropanol, at all pressures > 1 MPa (10 bar) |
| Compressibility compensation | User-selectable, based on mobile phase compressibility |
| Recommended pH range | 1.0 – 12.5, solvents with pH < 2.3 should not contain acids which attack stainless steel |
| Gradient formation | Low pressure quaternary mixing/gradient capability using proprietary high-speed proportioning valve Delay volume 800 – 1100 µl, dependent on back pressure |
| Composition Range | 0 – 95 % or 5 – 100 %, user selectable |
| Composition Precision | < 0.2 % RSD, at 0.2 and 1 ml/min |
| Control and data evaluation | Agilent control software (e.g. ChemStation, EZChrom, OL, etc.) |
| Communications | Controller-area network (CAN), GPIB, RS-232C, APG Remote: ready, start, stop and shut-down signals, LAN optional |
Performance Specification Agilent 1200 Series Quaternary Pump

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety and maintenance</td>
<td>Extensive diagnostics, error detection and display (through control module and Agilent Lab Monitor & Diagnostic Software), leak detection, safe leak handling, leak output signal for shutdown of pumping system. Low voltages in major maintenance areas.</td>
</tr>
<tr>
<td>GLP features</td>
<td>Early maintenance feedback (EMF) for continuous tracking of instrument usage in terms of seal wear and volume of pumped mobile phase with user-settable limits and feedback messages. Electronic records of maintenance and errors.</td>
</tr>
<tr>
<td>Housing</td>
<td>All materials recyclable.</td>
</tr>
</tbody>
</table>
2 Site Requirements and Specifications

Performance Specifications
3 Installing the Pump

Unpacking the Quaternary Pump 30
 Damaged Packaging 30
 Delivery Checklist 30
 Accessory Kit Contents G1311-68705 31
 Accessory Kit Contents—Vacuum Degasser 32
Optimizing the Stack Configuration 33
Installing the Quaternary Pump 36
Connecting Modules and Control Software 39
 Connecting Agilent 1200 Series modules 39
 Connecting an Agilent 1200 Series Vacuum Degasser 40
 Connecting control software and/or control modules 40
Flow Connections of the Quaternary Pump 41
Priming and Purging the System 44
 Priming with a Syringe 45
 Priming with the Pump 47
Unpacking the Quaternary Pump

Damaged Packaging

Upon receipt of your module, inspect the shipping containers for any signs of damage. If the containers or cushioning material are damaged, save them until the contents have been checked for completeness and the instrument has been mechanically and electrically checked. If the shipping container or cushioning material is damaged, notify the carrier and save the shipping material for the carrier’s inspection.

Delivery Checklist

Ensure all parts and materials have been delivered with the quaternary pump. The delivery checklist is shown in Table 5 on page 30. To aid in parts identification, please see “Parts and Materials for Maintenance” on page 105. Please report missing or damaged parts to your local Agilent Technologies sales and service office.

Table 5 Quaternary Pump Checklist (continued)

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quaternary pump</td>
<td>1</td>
</tr>
<tr>
<td>Solvent cabinet</td>
<td>1 (5065-9981)</td>
</tr>
<tr>
<td>Solvent bottles</td>
<td>4 (3 transparent 9301-1420, 1 amber 9301-1450)</td>
</tr>
<tr>
<td>Bottle head assembly</td>
<td>4 (G1311-60003)</td>
</tr>
<tr>
<td>Waste tube, purge valve</td>
<td>1 (5062-2461, reorder number, 5 m)</td>
</tr>
<tr>
<td>Vacuum degasser</td>
<td>1</td>
</tr>
<tr>
<td>Solvent tubes for the degasser</td>
<td>4 (G1322-67300)</td>
</tr>
<tr>
<td>cablesPower</td>
<td>2</td>
</tr>
<tr>
<td>CAN cable</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 5 Quaternary Pump Checklist (continued)

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote cable</td>
<td>As ordered</td>
</tr>
<tr>
<td>Signal cable</td>
<td>As ordered</td>
</tr>
<tr>
<td>Service Manual</td>
<td>2 (1 for the pump, 1 for the degasser)</td>
</tr>
<tr>
<td>Accessory kit (see “Accessory Kit Contents G1311-68705” on page 31)</td>
<td>1</td>
</tr>
</tbody>
</table>

Accessory Kit Contents G1311-68705

Table 6 Accessory Kit Contents G1311-68705

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capillary, pump to injection device, length 900 mm, ID 0.17 mm</td>
<td>G1329-87300</td>
</tr>
<tr>
<td>Seal insert tool</td>
<td>01018-23702</td>
</tr>
<tr>
<td>Wrench; 1/4 – 5/16 inch</td>
<td>8710-0510</td>
</tr>
<tr>
<td>Wrench; 14 mm</td>
<td>8710-1924</td>
</tr>
<tr>
<td>Hex key 4 mm</td>
<td>8710-2392</td>
</tr>
<tr>
<td>Corrugated Waste Tube (1.2 m)</td>
<td>no PN</td>
</tr>
<tr>
<td>Corrugated Waste tube (reorder number, 5 m)</td>
<td>5062-2463</td>
</tr>
<tr>
<td>Velocity regulator (reorder number, pack of 3)</td>
<td>5062-2486</td>
</tr>
<tr>
<td>PTFE Frit</td>
<td>01018-22707</td>
</tr>
</tbody>
</table>
3 Installing the Pump
Unpacking the Quaternary Pump

Accessory Kit Contents—Vacuum Degasser

Table 7 Accessory Kit Contents G1322-68705

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syringe</td>
<td>5062-8534</td>
<td>1</td>
</tr>
<tr>
<td>Syringe adapter</td>
<td>9301-1337</td>
<td>1</td>
</tr>
<tr>
<td>Waste tube (reorder number, 5 m)</td>
<td>5062-2463</td>
<td>1.2 m</td>
</tr>
<tr>
<td>Connecting tubes labeled A to D</td>
<td>G1322-67300</td>
<td>4</td>
</tr>
</tbody>
</table>
Optimizing the Stack Configuration

If your module is part of a complete Agilent 1200 Series system, you can ensure optimum performance by limiting the configuration of the system stack to the following configuration. This configuration optimizes the system flow path, ensuring minimum delay volume.

Flow connections in the stack:
Example setup with 0.17mm ID green capillaries

Solvent bottles - degasser:
G1311-60003 (bottle-head assembly, PTFE-tubings)

Degasser - pump:
G1322-67300 (PTFE-tubings)
Pump - autosampler:
G1312-67305 (SST, green)
Pump purge valve - waste:
5062-2461 (PTFE tubing wide bore, recorder pack)

Instant Pilot

Autosampler - column compartment:
G1313-87305 (SST, green)

Column compartment - Column: G1316-87300 (SST, green)

Column - detector:
DAD G1315-87311 (SST, coated)
VWD 5062-8522 (PEEK)

Detector - waste:
DAD 0890-1713 (PTFE, wide bore)
VWD 5062-8535 (PEEK)
5062-2463 (corrugated waste tubing, recorder pack)

Figure 5 Recommended Stack Configuration (Front View)
3 Installing the Pump
Optimizing the Stack Configuration

NOTE
For a detailed view of the flow connections refer to the section “Flow Connections” in the product information of the individual modules.

Figure 6 Recommended Stack Configuration (Rear View)
Optimizing the Stack Configuration

Installing the Pump

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Analog signal to recorder, for PN see “Cable Overview” on page 120</td>
</tr>
<tr>
<td>2</td>
<td>CAN Bus cable for inter module communications</td>
</tr>
<tr>
<td></td>
<td>5181-1561 (0,5m)</td>
</tr>
<tr>
<td></td>
<td>5161-1519 (1,0m)</td>
</tr>
<tr>
<td>3</td>
<td>CAN Bus cable to handheld controller</td>
</tr>
<tr>
<td>4</td>
<td>Remoter cable</td>
</tr>
<tr>
<td></td>
<td>5061-3378</td>
</tr>
<tr>
<td></td>
<td>Pressure output to recorder, for PN see “Cable Overview” on page 120</td>
</tr>
<tr>
<td>5</td>
<td>AC power</td>
</tr>
<tr>
<td>6</td>
<td>GPIB or LAN to control software, for PN see “Cable Overview” on page 120</td>
</tr>
</tbody>
</table>

NOTE

If a single stack configuration becomes too high, e.g. if an additional module like a G1327A ALS Thermostat is added or if your bench is to high, a two stack configuration may be a better setup. Separate the stack between pump and autosampler and place the stack containing the pump on the right side of the stack containing the autosampler.
Installing the Quaternary Pump

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pump</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Power cord, for other cables see text below and “Cable Overview” on page 120 Control Software (ChemStation, EZChrom, OL, etc.) G4208A or G1323B and/or a handheld controller (Instant Pilot or Control Module)</td>
<td></td>
</tr>
</tbody>
</table>

Preparations

- Locate bench space.
- Provide power connections.
- Unpack the pump.

WARNING

Module is partially energized when switched off, as long as the power cord is plugged in.

Repair work at the module can lead to personal injuries, e.g. shock hazard, when the cover is opened and the module is connected to power.

→ Make sure that it is always possible to access the power plug.

→ Remove the power cable from the instrument before opening the cover.

→ Do not connect the power cable to the Instrument while the covers are removed.

CAUTION

"Defective on arrival" problems

If there are signs of damage, please do not attempt to install the module. Inspection by Agilent is required to evaluate if the instrument is in good condition or damaged.

→ Notify your Agilent sales and service office about the damage.

→ An Agilent service representative will inspect the instrument at your site and initiate appropriate actions.

1. Place the module on the bench in a horizontal position.
2 Ensure the power switch on the front of the module is OFF (switch stands out).

3 At the rear of the module move the security lever to its maximum right position.

4 Connect the power cable to the power connector at the rear of the module. The security lever will prevent that the cover is opened while the power cord is connected to the module.

5 Connect the required interface cables to the quaternary pump, see “Connecting Modules and Control Software” on page 39.
3 Installing the Pump
Installing the Quaternary Pump

6 Connect all capillaries, solvent tubes and waste tubing (see “Flow Connections of the Quaternary Pump” on page 41).

7 Press power switch to turn on the module.

NOTE The power switch stays pressed in and a green indicator lamp in the power switch is on when the module is turned on. When the line power switch stands out and the green light is off, the module is turned off.

8 Purge the quaternary pump (see “Priming and Purging the System” on page 44).

NOTE The pump was shipped with default configuration settings.
Connecting Modules and Control Software

WARNING

Use of unsupplied cables

Using cables not supplied by Agilent Technologies can lead to damage of the electronic components or personal injury.

➔ Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

Connecting Agilent 1200 Series modules

1. Place the individual modules in a stack configuration as shown in Figure 5 on page 33.

2. Ensure the power switches on the front of the modules are OFF (switches stand out).

3. Plug a CAN cable into the CAN connector at the rear of the respective module (except vacuum degasser).

4. Connect the CAN cable to the CAN connector of the next module, see Figure 6 on page 34.

5. Press in the power switches to turn on the modules.
Connecting an Agilent 1200 Series Vacuum Degasser

1. Place the vacuum degasser in the stack of modules as shown in Figure 5 on page 33.
2. Ensure the power switch on the front of the vacuum degasser is OFF (switch stands out).
3. Plug an APG cable into the APG remote connector at the rear of the module.
4. Connect the APG cable to the APG remote connector of the pump, see Figure 6 on page 34.
5. Press in the power switches to turn on the vacuum degasser.

NOTE

The AUX output allows the user to monitor the vacuum level in the degasser chamber.

Connecting control software and/or control modules

1. Ensure the power switches on the front of the modules in the stack are OFF (switches stand out).
2. Plug a GPIB cable into the GPIB connector at one of the modules, preferably at the detector (MUST for the DAD).
3. Connect the GPIB cable to the Agilent control software in use.
4. Plug a CAN cable into the CAN connector of the control module.
5. Connect the CAN cable to the CAN connector of one of the modules.
6. Press in the power switches to turn on the modules.

NOTE

Do not connect the Agilent control software or the control module with the vacuum degasser.

NOTE

The Agilent control software (e.g. ChemStation, EZChrom, OL, etc.) can also be connected to the system through a LAN cable, which requires the installation of a LAN-board. For more information about connecting the control module or Agilent control software refer to the respective user manual. For connecting the Agilent 1200 Series equipment to non-Agilent 1200 Series equipment, see “Introduction to the Quaternary Pump” on page 8.
Flow Connections of the Quaternary Pump

Tools required

Two wrenches 1/4–5/16 inch for capillary connections

Parts required

Description

Other modules

Parts from accessory kit, see “Accessory Kit Contents G1311-68705” on page 31

Preparations

• Pump is installed in the LC system.

WARNING

When opening capillary or tube fittings solvents may leak out.
The handling of toxic and hazardous solvents and reagents can hold health risks.

⇒ Please observe appropriate safety procedures (for example, goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the solvent vendor, especially when toxic or hazardous solvents are used.

1 Remove the front cover by pressing the snap fasteners on both sides.

Figure 8 Removing the Front Cover
3 Installing the Pump

Flow Connections of the Quaternary Pump

2 Place the vacuum degasser and the solvent cabinet on top of the quaternary pump.

3 Put the bottle-head assemblies into solvent reservoirs containing your mobile phase and place the bottle in the solvent cabinet.

4 Connect the inlet tubes from the bottle-head assemblies to the inlet connectors A to D (typically the left connection of the channel) of the vacuum degasser. Fix the tubes in the tube clips of the vacuum degasser.

5 Connect the solvent tubes to the outlet connectors (typically right connection of the channel) of the vacuum degasser.

6 Connect the syringe adapter from the degasser accessory kit to the solvent tube of channel A.

7 Using a piece of sanding paper connect the waste tubing to the purge valve and place it into your waste system.

8 If the pump is not part of a Agilent 1200 Series System stack or placed on the bottom of a stack, connect the corrugated waste tube to the waste outlet of the pump leak handling system.

9 Connect the pump outlet capillary (pump to injection device) to the outlet of the purge valve.
10 Prime your system before first use (see “Priming and Purging the System” on page 44).

Figure 9 Flow Connections of the Quaternary Pump
If a degasser is installed, it can be primed either by drawing solvent through the degasser with a syringe or by pumping with the pump.

Priming the vacuum degasser or system with a syringe is recommended, when:
- vacuum degasser or connected tubings are used for the first time or vacuum tubes are empty or
- changing to solvents that are immiscible with the solvent currently in the vacuum tubes.

Priming the system by using the pump at high flow rate (3–5 ml/min) is recommended, when:
- pumping system was turned off for a length of time (for example, overnight) and if volatile solvent mixtures are used, or
- solvents have been changed.
Priming with a Syringe

WARNING
When opening capillary or tube fittings solvents may leak out.
The handling of toxic and hazardous solvents and reagents can hold health risks.

→ Please observe appropriate safety procedures (for example, goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the solvent vendor, especially when toxic or hazardous solvents are used.

Before using a new degasser or new tubings for the first time:

1. Prime all tubings with at least 30 ml of iso-propanol no matter whether the channels will be used with organic mobile phase or with water.

NOTE
If you are changing to a solvent that is immiscible with the solvent currently in the tubing continue as follows:

2. Replace the current solvent with adequate organic solvent (see table above), if current solvent is organic or with water, if current solvent is an inorganic buffer or contains salt.

3. Disconnect solvent outlet tube of the channel that is supposed to be primed from your pump.

4. Connect syringe adapter to solvent outlet tube.

5. Push syringe adapter onto syringe.

6. Pull syringe plunger to draw at least 30 ml of solvent through degasser and tubing.

7. Replace the priming solvent with the new solvent of your choice.

8. Pull syringe plunger to draw at least 30 ml of solvent through degasser and tubing.

9. Disconnect syringe adapter from solvent tube.

10. Connect the solvent tube to the appropriate channel of the MCGV.

11. Repeat step 3 on page 45 to step 10 on page 45 for the other solvent channels.
3 Installing the Pump

Priming and Purging the System

NOTE When priming the vacuum degasser with a syringe the solvent is drawn through the degasser tubes very quickly. The solvent at the degasser outlet will therefore not be fully degassed. Pump for approximately 10 minutes with your selected flow rate before starting any application. This will allow the vacuum degasser to properly degas the solvent in the degasser tubes.

NOTE The pump should never be used for priming empty tubings (never let the pump run dry). Use the syringe to draw enough solvent for completely filling the tubings to the pump inlet before continuing to prime with the pump.
Priming with the Pump

When the pumping system has been turned off for a certain time (for example, overnight) oxygen will rediffuse into the solvent channels between the vacuum degasser and the pump. Solvents containing volatile ingredients will slightly lose these, if left in the degasser without flow for a prolonged period of time. Therefore priming of the vacuum degasser and the pumping system is required before starting an application.

1. Open the purge valve of your pump (by turning it counterclockwise) and set flow rate to 3-5 ml/min.
2. Flush the vacuum degasser and all tubes with at least 30 ml of solvent.
3. Set flow to required value of your application and close the purge valve.
4. Pump for approximately 10 minutes before starting your application.
5. Repeat step 1 to step 4 for other solvent channels, where needed.

Table 8 Choice of Priming Solvents for Different Purposes

<table>
<thead>
<tr>
<th>Activity</th>
<th>Solvent</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>After an installation</td>
<td>Isopropanol</td>
<td>Best solvent to flush air out of the system</td>
</tr>
<tr>
<td>When switching between reverse phase and normal phase (both times)</td>
<td>Isopropanol</td>
<td>Best solvent to flush air out of the system</td>
</tr>
<tr>
<td>After an installation</td>
<td>Ethanol or Methanol</td>
<td>Alternative to Isopropanol (second choice) if no Isopropanol is available</td>
</tr>
<tr>
<td>To clean the system when using buffers</td>
<td>Bidistilled water</td>
<td>Best solvent to re-dissolve buffer crystals</td>
</tr>
<tr>
<td>After a solvent change</td>
<td>Bidistilled water</td>
<td>Best solvent to re-dissolve buffer crystals</td>
</tr>
<tr>
<td>After the installation of normal phase seals (P/N 0905-1420)</td>
<td>Hexane + 5% Isopropanol</td>
<td>Good wetting properties</td>
</tr>
</tbody>
</table>
3 Installing the Pump
Priming and Purging the System
4

Using the Quaternary Pump

Hints for Successful Use of the Quaternary Pump 50
Solvent Information 51
Prevent Blocking of Solvent Filters 52
Algae Growth in HPLC Systems 53
 How to Prevent and/or Reduce the Algae Problem 54
Hints for Successful Use of the Quaternary Pump

- Always place the solvent cabinet with the solvent bottles on top of the quaternary pump (or at a higher level).

- When using salt solutions and organic solvents in the Agilent 1200 Series Quaternary Pump it is recommended to connect the salt solution to one of the bottom gradient valve ports and the organic solvent to one of the upper gradient valve ports. It is best to have the organic channel directly above the salt solution channel. Regular flushing with water of all MCGV channels is recommended to remove all possible salt deposits in the valve ports.

- Before operating the quaternary pump flush the vacuum degasser with at least two volumes (30 ml), especially when turned off for a certain length of time (for example, during the night) and volatile solvent mixtures are used in the channels (see “Priming and Purging the System” on page 44).

- Prevent blocking of solvent inlet filters (never use the pump without solvent inlet filter). Growth of algae should be avoided (see “Prevent Blocking of Solvent Filters” on page 52).

- Check purge valve frit and column frit in regular time intervals. A blocked purge valve frit can be identified by black or yellow layers on its surface or by a pressure greater than 10 bar, when pumping distilled water at a rate of 5 ml/min with an open purge valve.

- When using the quaternary pump at low flow rates (for example, 0.2 ml/min) check all 1/16-inch fittings for any signs of leaks.

- Whenever exchanging the pump seals the purge valve frit should be exchanged, too.

- When using buffer solutions, flush the system with water before switching it off. The seal wash option should be used when buffer concentrations of 0.1 Molar or higher will be used for long time periods.

- Check the pump plungers for scratches when changing the plunger seals. Scratched plungers will lead to micro leaks and will decrease the lifetime of the seal.

- Pressurize the system according to the wear in procedure after changing the plunger seals (see “Exchanging the Pump Seals and Seal Wear-in Procedure” on page 89).
Solvent Information

Always filter solvents through 0.4 µm filters, small particles can permanently block the capillaries and valves. Avoid the use of the following steel-corrosive solvents:

- Solutions of alkali halides and their respective acids (for example, lithium iodide, potassium chloride, and so on).
- High concentrations of inorganic acids like sulfuric and nitric acid, especially at higher temperatures (replace, if your chromatography method allows, by phosphoric acid or phosphate buffer which are less corrosive against stainless steel).
- Halogenated solvents or mixtures which form radicals and/or acids, for example:
 2CHCl₃ + O₂ → 2COCl₂ + 2HCl
 This reaction, in which stainless steel probably acts as a catalyst, occurs quickly with dried chloroform if the drying process removes the stabilizing alcohol.
- Chromatographic grade ethers, which can contain peroxides (for example, THF, dioxane, di-isopropylether). Such ethers should be filtered through dry aluminium oxide which adsorbs the peroxides.
- Mixtures of carbon tetrachloride with 2-propanol or THF dissolve stainless steel.
Prevent Blocking of Solvent Filters

Contaminated solvents or algae growth in the solvent bottle will reduce the lifetime of the solvent filter and will influence the performance of the module. This is especially true for aqueous solvents or phosphate buffers (pH 4 to 7). The following suggestions will prolong lifetime of the solvent filter and will maintain the performance of the module.

- Use a sterile, if possible amber, solvent bottle to slow down algae growth.
- Filter solvents through filters or membranes that remove algae.
- Exchange solvents every two days or refilter.
- If the application permits add 0.0001-0.001M sodium azide to the solvent.
- Place a layer of argon on top of your solvent.
- Avoid exposure of the solvent bottle to direct sunlight.

NOTE

Never use the system without solvent filter installed.
Algae Growth in HPLC Systems

The presence of algae in HPLC systems can cause a variety of problems that may be incorrectly diagnosed as instrument or application problems. Algae grow in aqueous media, preferably in a pH range of 4-8. Their growth is accelerated by buffers, for example phosphate or acetate. Since algae grow through photosynthesis, light will also stimulate their growth. Even in distilled water small-sized algae grow after some time.

Instrumental Problems Associated With Algae

Algae deposit and grow everywhere within the HPLC system causing:

- Deposits on ball valves, inlet or outlet, resulting in unstable flow or total failure of the pump.
- Small pore solvent inlet filters to plug, resulting in unstable flow or total failure of the pump.
- Small pore high pressure solvent filters, usually placed before the injector to plug resulting in high system pressure.
- Column filters to plug giving high system pressure.
- Flow cell windows of detectors to become dirty resulting in higher noise levels (since the detector is the last module in the flow path, this problem is less common).

Symptoms Observed with the Agilent 1200 Series HPLC

In contrast to the HP 1090 and HP 1050 Series HPLC systems which use helium degassing, algae have a better chance to grow in systems such as the Agilent 1200 Series where helium is not used for degassing (most algae need oxygen and light for growth).

The presence of algae in the Agilent 1200 Series can cause the following to occur:

- PTFE frits, part number 01018-22707, (purge valve assembly) and column filter blockage causing increased system pressure. Algae appear as white or yellowish-white deposits on filters. Typically black particles from the
normal wear of the piston seals do not cause the PTFE frits to block over short-term usage. Please refer to the section “Exchanging the Purge Valve Frit or the Purge Valve” on page 85 in this manual.

- Short lifetime of solvent filters (bottle head assembly). A blocked solvent filter in the bottle, especially when only partly blocked, is more difficult to identify and may show up as gradient performance problems, intermittent pressure fluctuations etc.
- Algae growth may also be the possible source for failures of the ball valves and other components in the flow path.

How to Prevent and/or Reduce the Algae Problem

- Always use freshly prepared solvents, especially use demineralized water which was filtered through about 0.2 μm filters.
- Never leave mobile phase in the instrument for several days without flow.
- Always discard “old” mobile phase.
- Use the amber solvent bottle (part number 9301-1450) supplied with the instrument for your aqueous mobile phase.
- If possible add a few mg/l sodium azide or a few percent organic solvent to the aqueous mobile phase.
5

Optimizing Performance

Operational Hints for the Vacuum Degasser 56
Operational Hints for the Multi Channel Gradient Valve (MCGV) 57
When to use the Seal Wash Option 58
When to Use Alternative Seals 59
Optimize the Compressibility Compensation Setting 60
Operational Hints for the Vacuum Degasser

If you are using the vacuum degasser for the first time, if the vacuum degasser was switched off for any length of time (for example, overnight), or if the vacuum degasser lines are empty, you should prime the vacuum degasser before running an analysis.

The vacuum degasser can be primed either by drawing solvent through the degasser with a syringe or by pumping with the quaternary pump.

Priming the degasser with a syringe is recommended, when:

- vacuum degasser is used for the first time, or vacuum tubes are empty, or
- changing to solvents that are immiscible with the solvent currently in the vacuum tubes.

Priming the vacuum degasser by using the quaternary pump at high flow rate is recommended, when:

- quaternary pump was turned off for a length of time (for example, during night) and volatile solvent mixtures are used, or
- solvents have been changed.

For more information see the Service Manual for the Agilent 1200 Series vacuum degasser.
Optimizing Performance
Operational Hints for the Multi Channel Gradient Valve (MCGV)

Operational Hints for the Multi Channel Gradient Valve (MCGV)

In a mixture of salt solutions and organic solvent the salt solution might be well dissolved in the organic solvent without showing precipitations. However in the mixing point of the gradient valve, at the boundary between the two solvents, micro precipitation is possible. Gravity forces the salt particles to fall down. Normally the A channel of the valve is used for the aqueous/salt solution and the B channel of the pump is used for the organic solvent. If used in this configuration the salt will fall back into the salt solution and will be dissolved. When using the pump in a different configuration (e.g., D - salt solution, A - organic solvent) the salt can fall into the port of the organic solvent and may lead to performance problems.

NOTE

When using salt solutions and organic solvents in the Agilent 1200 Series Quaternary Pump it is recommended to connect the salt solution to one of the bottom ports and the organic solvent to one of the upper gradient valve ports. It is best to have the organic channel directly above the salt solution channel. Regular flushing with water of all MCGV channels is recommended to remove all possible salt deposits in the valve ports.
When to use the Seal Wash Option

Highly-concentrated buffer solutions will reduce the lifetime of the seals and plungers in your pump. The seal wash option allows to maintain the seal lifetime by flushing the back side of the seal with a wash solvent.

The seal wash option is strongly recommended when buffer concentrations of 0.1 Molar or higher will be used for long time periods in the pump.

The seal wash option can be ordered by quoting part number 01018-68722 (kit contains all parts needed for one pump head). The active seal wash option kit can be ordered by quoting part number G1311-68711.

The seal wash option comprises a support ring, secondary seal, gasket and seal keeper for both plunger sides. A wash bottle filled with water/isopropanol (90/10) should be placed above the pump in the solvent cabinet and gravity will maintain a flow through the pump head removing all possible buffer crystals from the back of the pump seal. For the active seal wash a peristaltic pump is pumping the solvent through the pump head.

NOTE

Running dry is the worst case for a seal and drastically reduces its lifetime. The seal will build up sticky layers on the surface of the plunger. These sticky layers will also reduce the lifetime of the primary seal. Therefore the tubes of the wash option should always be filled with solvent to prolong the lifetime of the wash seal. Always use a mixture of bidistilled water (90 %) and isopropanol (10 %) as wash solvent. This mixture prevents bacteria growth in the wash bottle and reduces the surface tension of the water.

For information on the installation of the active seal wash option refer to “Installing the Seal Wash Option” on page 94.
When to Use Alternative Seals

The standard seal for the pump can be used for most applications. However, applications that use normal phase solvents (for example, hexane) are not suited for the standard seal and require a different seal when used for a longer time in the pump.

For applications that use normal phase solvents (for example, hexane) we recommend the use of the polyethylene seals, part number 0905-1420 (pack of 2). These seals have less abrasion compared to the standard seals.

NOTE Polyethylene seals have a limited pressure range 0–200 bar. When used above 200 bar their lifetime will be significantly reduced. **DO NOT** apply the seal wear-in procedure performed with new standard seals at 400 bar.
Optimize the Compressibility Compensation Setting

The compressibility compensation default setting is 100×10^{-6}/bar for the quaternary pump. This setting represents an average value. Under normal conditions the default setting reduces the pressure pulsation to values (below 1% of system pressure) that will be sufficient for most applications and for all gradient analyses. For applications using sensitive detectors, the compressibility settings can be optimized by using the values for the various solvents described in Table 9 on page 61. If the solvent in use is not listed in the compressibility tables, when using isocratic mixtures of solvents and if the default settings are not sufficient for your application the following procedure can be used to optimize the compressibility settings.

When using mixtures of solvents it is not possible to calculate the compressibility of the mixture by interpolating the compressibility values of the pure solvents used in that mixture or by applying any other calculation. In these cases the following empirical procedure has to be applied to optimize your compressibility setting.

1. Start the pump with the required flow rate.
2. Before starting the optimization procedure, the flow must be stable. Use degassed solvent only.
3. Your pump must be connected to a control software (e.g. ChemStation, EZChrom, OL, etc.) or handheld controller with which the pressure and %-ripple can be monitored, otherwise connect a signal cable between the pressure output of the pump and a recording device (for example, 339X integrator) and set parameters.
 - Zero 50%
 - Att 2^3 Chart
 - Speed 10 cm/min
4. Start the recording device with the plot mode.
5. Starting with a compressibility setting of 10×10^{-6}/bar increase the value in steps of 10. Re-zero the integrator as required. The compressibility compensation setting that generates the smallest pressure ripple is the optimum value for your solvent composition.
Table 9 Solvent Compressibility

<table>
<thead>
<tr>
<th>Solvent (pure)</th>
<th>Compressibility (10^-6/bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>126</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>115</td>
</tr>
<tr>
<td>Benzene</td>
<td>95</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>110</td>
</tr>
<tr>
<td>Chloroform</td>
<td>100</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>118</td>
</tr>
<tr>
<td>Ethanol</td>
<td>114</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>104</td>
</tr>
<tr>
<td>Heptane</td>
<td>120</td>
</tr>
<tr>
<td>Hexane</td>
<td>150</td>
</tr>
<tr>
<td>Isobutanol</td>
<td>100</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>100</td>
</tr>
<tr>
<td>Methanol</td>
<td>120</td>
</tr>
<tr>
<td>1-Propanol</td>
<td>100</td>
</tr>
<tr>
<td>Toluene</td>
<td>87</td>
</tr>
<tr>
<td>Water</td>
<td>46</td>
</tr>
</tbody>
</table>
5 Optimizing Performance
Optimize the Compressibility Compensation Setting
6 Troubleshooting and Test Functions

Agilent Lab Advisor Software 64
Overview of the Pump’s Indicators and Test Functions 65
Status Indicators 66
 Power Supply Indicator 66
 Instrument Status Indicator 67
User Interfaces 68
Agilent Lab Advisor Software

The Agilent Lab Advisor Software is a standalone product that can be used with or without data system. Agilent Lab Advisor helps to manage the lab for high quality chromatographic results and can monitor in real time a single Agilent LC or all the Agilent GCs and LCs configured on the lab intranet.

Agilent Lab Advisor provides diagnostic capabilities for all Agilent 1200 Series HPLC modules. This includes tests and calibrations procedures as well as the different injector steps to perform all the maintenance routines.

Agilent Lab Advisor also allows users to monitor the status of their LC instruments. The Early Maintenance Feedback (EMF) feature helps to carry out preventive maintenance. In addition, users can generate a status report for each individual LC instrument. The tests and diagnostic features as provided by the Agilent Lab Advisor Software may differ from the descriptions in this manual. For details refer to the Agilent Lab Advisor help files.

This manual provides lists with the names of Error Messages, Not Ready messages, and other common issues.
Overview of the Pump’s Indicators and Test Functions

Status Indicators

The quaternary pump is provided with two status indicators which indicate the operational state (prerun, run, and error states) of the quaternary pump. The status indicators provide a quick visual check of the operation of the quaternary pump (see “Status Indicators” on page 66).

Error Messages

In the event of an electronic, mechanical or hydraulic failure, the instrument generates an error message in the user interface. For details on error messages and error handling, please refer to the Agilent Lab Monitor & Diagnostic Software.

Pressure Test

The pressure test is a quick test designed to determine the pressure tightness of the system.

Leak Test

The leak test is a diagnostic test designed to determine the pressure tightness of the quaternary pump.
Status Indicators

Two status indicators are located on the front of the module. The lower left one indicates the power supply status, the upper right one indicates the module status.

Figure 10 Location of Status Indicators

Power Supply Indicator

The power supply indicator is integrated into the main power switch. When the indicator is illuminated (*green*) the power is ON.

When the indicator is off, the module is turned OFF. Otherwise check power connections, availability of power or check functioning of the power supply.
Instrument Status Indicator

The instrument status indicator indicates one of four possible instrument conditions:

- When the status indicator is OFF (and power switch light is ON), the module is in a prerun condition, and is ready to begin an analysis.
- A green status indicator, indicates the module is performing an analysis (run mode).
- A yellow indicator indicates a not-ready condition. The module is in a not-ready state when it is waiting for a specific condition to be reached or completed (for example, immediately after changing a setpoint), or while a self-test procedure is running.
- An error condition is indicated when the status indicator is red. An error condition indicates the module has detected an internal problem which affects correct operation of the module. Usually, an error condition requires attention (for example, leak, defective internal components). An error condition always interrupts the analysis.
- A flashing yellow status indicator indicates that the module is in its resident mode. Call your local service provider for assistance upon observing this error condition.
- A flashing red status indicator indicates a severe error during the startup procedure of the module. Call your local service provider for assistance upon observing this error condition.
User Interfaces

Depending on the User Interface, the available test vary. Some descriptions are only available in the Service Manual.

Table 10 Test Functions available vs. User Interface

<table>
<thead>
<tr>
<th>Test</th>
<th>ChemStation</th>
<th>Instant Pilot G4208A</th>
<th>Control Module G1323B</th>
<th>Agilent Lab Monitor & Diagnostic Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Test</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Leak Test</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
7 Maintenance

Introduction to Repairing the Pump 70
Simple Repairs 70
Exchanging Internal Parts 70
Warnings and Cautions 71
Using the ESD Strap 72
Cleaning the Module 72

Early Maintenance Feedback (EMF) 73
EMF Counters 73
Using the EMF Counters 74

Overview of Repairing the Pump 75
Simple Repairs 77
Checking and Cleaning the Solvent Filter 78
Exchanging the Active Inlet Valve 79
Exchanging the Active Inlet Valve Cartridge 81
Exchanging the Outlet Ball Valve 83
Exchanging the Purge Valve Frit or the Purge Valve 85
Removing the Pump Head Assembly 88
Exchanging the Pump Seals and Seal Wear-in Procedure 89
Exchanging the Plungers 92
Installing the Seal Wash Option 94
Exchanging the Wash Seals 97
Reinstalling the Pump Head Assembly 100
Exchanging the Multi-Channel Gradient Valve (MCGV) 101
Exchanging the Optional Interface Board 103
Replacing the Module’s Firmware 104
Introduction to Repairing the Pump

Simple Repairs

The module is designed for easy repair. The most frequent repairs such as plunger seal change and purge valve frit change can be done from the front of the module with the module in place in the system stack.

These repairs are described in “Simple Repairs” on page 77.

Exchanging Internal Parts

Some repairs may require exchange of defective internal parts. Exchange of these parts requires removing the module from the stack, removing the covers, and disassembling the module. The security lever at the power input socket prevents that the module cover is taken off when line power is still connected.
Warnings and Cautions

WARNING
Module is partially energized when switched off, as long as the power cord is plugged in.

Repair work at the module can lead to personal injuries, e.g. shock hazard, when the cover is opened and the module is connected to power.

➔ Make sure that it is always possible to access the power plug.

➔ Remove the power cable from the instrument before opening the cover.

➔ Do not connect the power cable to the instrument while the covers are removed.

WARNING
Sharp metal edges

Sharp-edged parts of the equipment may cause injuries.

➔ To prevent personal injury, be careful when getting in contact with sharp metal areas.

WARNING
When opening capillary or tube fittings solvents may leak out.

The handling of toxic and hazardous solvents and reagents can hold health risks.

➔ Please observe appropriate safety procedures (for example, goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the solvent vendor, especially when toxic or hazardous solvents are used.

CAUTION
Electronic boards are static sensitive and should be handled with care so as not to damage them. Touching electronic boards and components can cause electrostatic discharge (ESD).

ESD can damage electronic boards and components.

➔ Be sure to hold the board by the edges and do not touch the electrical components. Always use an ESD protection (for example, an ESD wrist strap) when handling electronic boards and components.
Using the ESD Strap

Electronic boards are sensitive to electronic discharge (ESD). In order to prevent damage, always use an ESD strap when handling electronic boards and components.

1. Unwrap the first two folds of the band and wrap the exposed adhesive side firmly around your wrist.

2. Unroll the rest of the band and peel the liner from the copper foil at the opposite end.

3. Attach the copper foil to a convenient and exposed electrical ground.

![Using the ESD Strap](image)

Figure 11 Using the ESD Strap

Cleaning the Module

WARNING

Liquid dripping into the electronic compartment of your module.

Liquid in the module electronics can cause shock hazard and damage the module.

➔ Do not use an excessively damp cloth during cleaning.

➔ Drain all solvent lines before opening any fittings.

The module case should be kept clean. Cleaning should be done with a soft cloth slightly dampened with water or a solution of water and a mild detergent. Do not use an excessively damp cloth that liquid can drip into the module.
Early Maintenance Feedback (EMF)

Maintenance requires the exchange of components in the flow path which are subject to mechanical wear or stress. Ideally, the frequency at which components are exchanged should be based on the intensity of usage of the instrument and the analytical conditions, and not on a predefined time interval. The early maintenance feedback (EMF) feature monitors the usage of specific components in the instrument, and provides feedback when the user-settable limits have been exceeded. The visual feedback in the user interface provides an indication that maintenance procedures should be scheduled.

EMF Counters

The pump provides a series of EMF counters for the pump head. Each counter increments with pump use, and can be assigned a maximum limit which provides visual feedback in the user interface when the limit is exceeded. Each counter can be reset to zero after maintenance has been done. The pump provides the following EMF counters:

- Pump Liquimeter
- Pump seal wear

Pump Liquimeter

The pump liquimeter displays the total volume of solvent pumped by the pump head since the last reset of the counters. The pump liquimeter can be assigned an EMF (maximum) limit. When the limit is exceeded, the EMF flag in the user interface is displayed.

Seal Wear Counters

The seal wear counters display a value derived from pressure and flow (both contribute to seal wear). The values increment with pump usage until the counters are reset after seal maintenance. Both seal wear counters can be assigned an EMF (maximum) limit. When the limit is exceeded, the EMF flag in the user interface is displayed.
Using the EMF Counters

The user-settable EMF limits for the EMF counters enable the early maintenance feedback to be adapted to specific user requirements. The wear of pump components is dependent on the analytical conditions, therefore, the definition of the maximum limits need to be determined based on the specific operating conditions of the instrument.

Setting the EMF Limits

The setting of the EMF limits must be optimized over one or two maintenance cycles. Initially, no EMF limit should be set. When performance indicates maintenance is necessary, take note of the values displayed by pump liquimeter and seal wear counters. Enter these values (or values slightly less than the displayed values) as EMF limits, and then reset the EMF counters to zero. The next time the EMF counters exceed the new EMF limits, the EMF flag will be displayed, providing a reminder that maintenance needs to be scheduled.
Overview of Repairing the Pump

Figure 12 shows the main assemblies of the quaternary pump. The pump head and its parts do require normal maintenance (for example, seal exchange) and can be accessed from the front (simple repairs). Replacing internal parts will require to remove the quaternary pump from its stack and to open the top cover.
Overview of Repairing the Pump

1	Active inlet valve, “Exchanging the Active Inlet Valve” on page 79
2	Purge valve, “Exchanging the Purge Valve Frit or the Purge Valve” on page 85
3	Outlet ball valve, “Exchanging the Outlet Ball Valve” on page 83
4	Pump head, “Reinstalling the Pump Head Assembly” on page 100
5	Pump drive
6	LPM board
7	Power supply
8	Fan
9	Damping unit
10	MCGV, “Exchanging the Multi-Channel Gradient Valve (MCGV)” on page 101
11	Leak sensor
Simple Repairs

The procedures described in this section can be done with the quaternary pump in place in the system stack.

Table 11 Simple Repair Procedures

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Typical Frequency</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Checking and Cleaning the Solvent Filter” on page 78</td>
<td>If solvent filter is blocked</td>
<td>Gradient performance problems, intermittent pressure fluctuations</td>
</tr>
<tr>
<td>“Exchanging the Active Inlet Valve” on page 79</td>
<td>If internally leaking</td>
<td>Pressure ripple unstable, run leak test for verification</td>
</tr>
<tr>
<td>“Exchanging the Outlet Ball Valve” on page 83</td>
<td>If internally leaking</td>
<td>Pressure ripple unstable, run leak test for verification</td>
</tr>
<tr>
<td>“Exchanging the Purge Valve Frit or the Purge Valve” on page 85</td>
<td>If internally leaking</td>
<td>Solvent dripping out of waste outlet when valve closed</td>
</tr>
<tr>
<td>“Exchanging the Purge Valve Frit or the Purge Valve” on page 85</td>
<td>If the frit shows indication of contamination or blockage</td>
<td>A pressure drop of > 10 bar across the frit (5 ml/min H₂O with purge open) indicates blockage</td>
</tr>
<tr>
<td>“Exchanging the Pump Seals and Seal Wear-in Procedure” on page 89</td>
<td>If pump performance indicates seal wear</td>
<td>Leaks at lower pump head side, unstable retention times, pressure ripple unstable — run leak test for verification</td>
</tr>
<tr>
<td>“Exchanging the Plungers” on page 92</td>
<td>If scratched</td>
<td>Seal life time shorter than normally expected — check plungers while changing the seals</td>
</tr>
<tr>
<td>“Installing the Seal Wash Option” on page 94</td>
<td>If seals show indication of leaks</td>
<td>Leaks at lower pump head side, loss of wash solvent</td>
</tr>
<tr>
<td>“Exchanging the Optional Interface Board” on page 103</td>
<td>If defective</td>
<td>Error condition, indicated by red status indicator</td>
</tr>
</tbody>
</table>
Checking and Cleaning the Solvent Filter

Small particles can permanently block the capillaries and valves of the module. Damage of the module.

➔ Always filter solvents.

➔ Never use the module without solvent inlet filter.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the filter is in good condition the solvent will freely drip out of the solvent tube (hydrostatic pressure). If the solvent filter is partly blocked only very little solvent will drip out of the solvent tube.</td>
</tr>
</tbody>
</table>

Cleaning the Solvent Filter

When
If solvent filter is blocked

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Concentrated nitric acid (35%)</td>
</tr>
<tr>
<td>1</td>
<td>Bidistilled water</td>
</tr>
<tr>
<td>1</td>
<td>Beaker</td>
</tr>
</tbody>
</table>

Preparations
• Remove solvent inlet tube from the adapter at the AIV

1 Remove the blocked solvent filter from the bottle-head assembly and place it in a beaker with concentrated nitric acid (35%) for one hour.

2 Thoroughly flush the filter with bidistilled water (remove all nitric acid, some capillary columns can be damaged by nitric acid).

3 Replace the filter.
Exchanging the Active Inlet Valve

When
If internally leaking (backflow)

Tools required
- Wrench 14 mm
- Pair of Tweezers

Parts required
<table>
<thead>
<tr>
<th>#</th>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G1312-60025</td>
<td>Active inlet valve body</td>
</tr>
<tr>
<td>1</td>
<td>5062-8562</td>
<td>Valve cartridge (400 bar)</td>
</tr>
</tbody>
</table>

Preparations
Switch off pump at the main power switch and unplug the power cable

1. Remove the front cover.
2. Unplug the active inlet valve cable from the connector.
3. Disconnect the solvent inlet tube at the inlet valve (be aware that solvent may leak out of the tube due to hydrostatic flow).
4. Unscrew the adapter from the active inlet valve.
5. Using a 14 mm wrench loosen the active inlet valve and remove the valve from pump head.

Active inlet valve body

Valve cartridge

Figure 13 Active Inlet Valve Assembly

6. Insert the new valve into the pump head. Using the 14 mm wrench turn the nut until it is hand tight.
7 Position the valve so that the solvent inlet tube connection points towards the front.

8 Using the 14 mm wrench tighten the nut by turning the valve in its final position (not more than a quarter turn).

9 Reconnect the adapter at the active inlet valve.

10 Reconnect the solvent inlet tube to the adapter. Reconnect the active inlet valve cable to the connector in the Z-panel.

11 Reinstall the front cover.

NOTE

After an exchange of the valve it may take several ml of pumping with the solvent used in the current application, before the flow stabilizes at a %-ripple as low as it used to be when the system was still working properly.
Exchanging the Active Inlet Valve Cartridge

When
If internally leaking (backflow)

Tools required
- Wrench 14 mm
- Pair of Tweezers

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G1312-60025</td>
<td>Active inlet valve body</td>
</tr>
<tr>
<td>1</td>
<td>5062-8562</td>
<td>Valve cartridge (400 bar)</td>
</tr>
</tbody>
</table>

Preparations
Switch off pump at the main power switch and unplug the power cable

Figure 14 Exchanging the Active Inlet Valve

1. Remove the front cover.
2. Unplug the active inlet valve cable from the connector.
7 Maintenance
Simple Repairs

3 Disconnect the solvent inlet tube at the inlet valve (be aware that solvent may leak out of the tube due to hydrostatic flow).

4 Unscrew the adapter from the active inlet valve.

5 Using a 14 mm wrench loosen the active inlet valve and remove the valve from pump head.

6 Using a pair of tweezers remove the valve cartridge from the actuator assembly.

7 Before inserting the new valve cartridge clean the area in the actuator assembly. Flush the cartridge area thoroughly with alcohol.

8 Insert a new valve cartridge into the actuator assembly (make sure the valve cartridge is fully inserted into the actuator assembly).

9 Insert the valve into the pump head. Using the 14 mm wrench turn the nut until it is hand tight.

10 Position the valve so that the solvent inlet tube connection points towards the front.

11 Using the 14 mm wrench tighten the nut by turning the valve in its final position (not more than a quarter turn).

12 Reconnect the adapter at the active inlet valve.

13 Reconnect the solvent inlet tube to the adapter. Reconnect the active inlet valve cable to the connector in the Z-panel.

14 Reinstall the front cover.

NOTE

After an exchange of the valve cartridge it may take several ml of pumping with the solvent used in the current application, before the flow stabilizes at a %-ripple as low as it used to be when the system was still working properly.
Exchanging the Outlet Ball Valve

When
If internally leaking

Tools required
- Wrench 1/4 inch
- Wrench 14 mm

Parts required
<table>
<thead>
<tr>
<th>#</th>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G1311-60012</td>
<td>Outlet ball valve</td>
</tr>
</tbody>
</table>

Preparations
- Switch off pump at the main power switch
- Remove the front cover

NOTE
Before exchanging the outlet ball valve you can try to clean it in a sonic bath for 5 – 10 minutes. Place the valve in an upright position in a small beaker with alcohol.

1. Using a 1/4 inch wrench disconnect the valve capillary from the outlet ball valve.
2. Using the 14 mm wrench loosen the valve and remove it from the pump body.
3. Check that the new valve is assembled correctly and that the gold seal is present (if the gold seal is deformed, it should be replaced).
4 Reinstall the outlet ball valve and tighten the valve.
5 Reconnect the valve capillary.

Figure 16 Exchanging the Outlet Ball Valve
Exchanging the Purge Valve Frit or the Purge Valve

When

- Frit – when plunger seals are exchanged or when contaminated or blocked (pressure drop of > 10 bar across the frit at a flow rate of 5 ml/min of H₂O with purge valve opened)
- Purge valve – if internally leaking

Tools required

- Wrench 1/4 inch
- Wrench 14 mm
- Pair of tweezers or toothpick

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>01018-22707</td>
<td>PTFE frit (pack of 5)</td>
</tr>
<tr>
<td>1</td>
<td>G1311-60009</td>
<td>Purge valve</td>
</tr>
</tbody>
</table>

Preparations

- Switch off pump at the main power switch
- Remove the front cover

1. Using a 1/4 inch wrench disconnect the pump outlet capillary at the purge valve.
2. Disconnect the waste tube. Beware of leaking solvents due to hydrostatic pressure.
3. Using the 14 mm wrench unscrew the purge valve and remove it.
4. Remove the plastic cap with the gold seal from the purge valve.
5 Using a pair of tweezers or a toothpick remove the frit.

![Diagram of purge valve parts]

Figure 17 Purge Valve Parts

6 Place a new frit into the purge valve with the orientation of the frit as shown above.

7 Reinstall the cap with the gold seal.

NOTE Before reinstallation always check the gold seal. A deformed seal should be exchanged.

8 Insert the purge valve into the pump head and locate the pump outlet capillary and the waste tube as shown in Figure 18 on page 87.
9 Tighten the purge valve and reconnect outlet capillary and waste tubing.

Figure 18 Exchanging the Purge Valve
Removal of the Pump Head Assembly

When
- Exchanging the seals
- Exchanging the plungers
- Exchanging seals of the seal wash option

Tools required
- Wrench 1/4 inch
- 4-mm hexagonal key

Preparations
Switch off pump at the main power switch and unplug the power cable

CAUTION
Damage of the pump drive
Starting the pump when the pump head is removed may damage the pump drive.
➔ Never start the pump when the pump head is removed.

1. Remove the front cover.
2. Disconnect the Active Inlet Valve cable.
3. Using a 1/4 inch wrench remove the outlet capillary.

4. Disconnect the capillary from the Outlet Ball Valve.
5. Remove the waste tubing and disconnect the Active Inlet Valve tubing.
6. Remove the capillary at the bottom of the Pumphead.
7. Using a 4 mm hexagonal key, stepwise loosen the two Pumphead screws and remove the Pumphead from the Pump Drive.
Exchanging the Pump Seals and Seal Wear-in Procedure

When
Seal leaking, if indicated by the results of the leak test.

Tools required
- Wrench 1/4 inch
- 4-mm hexagonal key

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5063-6589</td>
<td>standard Seals (pack of 2)</td>
</tr>
<tr>
<td></td>
<td>0905-1420</td>
<td>Seals (pack of 2) for normal phase applications</td>
</tr>
<tr>
<td>1</td>
<td>0100-1847</td>
<td>For the seal wear-in procedure: Adapter AIV to inlet tube</td>
</tr>
<tr>
<td>1</td>
<td>5022-2159</td>
<td>Restriction capillary</td>
</tr>
</tbody>
</table>

Preparations
- Switch off pump at the main power switch
- Remove the front cover
- “Removing the Pump Head Assembly” on page 88

1. Place the pump head on a flat surface. Loosen the lock screw (two revolutions) and while holding the lower half of the assembly carefully pull the pump head away from the plunger housing.

2. Remove the support rings from the plunger housing and lift the housing away from the plungers.

![Diagram of parts and assembly](image-url)
7 Maintenance
Simple Repairs

3 Using one of the plungers carefully remove the seal from the pump head (be careful not to break the plunger). Remove wear retainers, if still present.

Seal

4 Insert new seals into the pump head.

Seals

5 Reassemble the Pumphead assembly.

Pump head
Support ring
Plunger housing
Seal Wear-in Procedure

This procedure is required for standard seals only (5063-6589), but it will definitely damage the normal phase application seals (0905-1420).

1. Place a bottle with 100 ml of Isopropanol in the solvent cabinet and place a tubing (including bottle head assembly) in the bottle.
2. Screw the adapter (0100-1847) to the AIV and connect the inlet tube from the bottle head directly to it.
3. Connect the restriction capillary (5022-2159) to the purge valve. Insert its other end into a waste container.
4. Open the purge valve and purge the system for 5 minutes with isopropanol at a flow rate of 2 ml/min.
5. Close the purge valve, set the flow to a rate adequate to achieve a pressure of 350 bar. Pump 15 minutes at this pressure to wear in the seals. The pressure can be monitored at your analog output signal, with the handheld controller, Chemstation or any other controlling device connected to your pump.
6. Turn OFF the pump, slowly open the purge valve to release the pressure from the system, disconnect the restriction capillary and reinstall the bottle with the solvent for your application.
7. Rinse your system with the solvent used for your next application.

NOTE

This procedure is required for standard seals only (5063-6589), but it will definitely damage the normal phase application seals (0905-1420).
Exchanging the Plungers

When
When scratched

Tools required
- Wrench 1/4 inch
- 4-mm hexagonal key

Parts required
<table>
<thead>
<tr>
<th>#</th>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5063-6586</td>
<td>Plunger</td>
</tr>
</tbody>
</table>

Preparations
- Switch off pump at the main power switch
- Remove the front cover
- “Removing the Pump Head Assembly” on page 88

1. Disassemble the Pumphead assembly.

2. Check the plunger surface and remove any deposits or layers. Cleaning can be done with alcohol or tooth paste. Replace plunger if scratched.
3 Reassemble the Pumphead assembly.

- Pump head
- Support ring
- Plunger housing
Installing the Seal Wash Option

When
When installing seal wash option

Tools required
• 4-mm hexagonal key
• Screwdriver Pozidrive #1

Parts required
Part number Description
1 G1311-68711 Active Seal Wash Option kit (Isocratic or Quaternary pump)
1 G1312-68711 Active Seal Wash Option kit (Binary pump)

Preparations
• Switch off the pump at the main power switch
• Remove the front cover
• Remove the top cover and foam

1 By using a screwdriver remove the metal plug in the z-panel.

![Figure 19](image-url) Removing the metal plug from the z-panel

2 Insert the socket, delivered with the Seal Wash pump assembly, into the hole on the z-panel.

3 Guide the wire of the active seal wash assembly through the hole and screw it onto the z-panel.

4 Guide the wire over the fan and plug the connector onto the mainboard connector P7.
5 Replace the foam and top cover.
6 Disconnect all capillaries and tubes from the pump head and disconnect the active inlet valve cable.
7 Using a 4-mm hexagonal key stepwise loosen and remove the two pump head screws and remove the pump head from the pump drive.
8 Place the pump head, on the backside of the plunger housing, on a flat surface. Loosen the lock screw (two revolutions) and while holding the lower half of the assembly carefully pull the pump head away from the plunger housing.
9 Remove the support rings from the plunger housing and lift the housing away from the plungers.
10 Install the support ring assembly from the active seal wash option kit into the plunger housing.

Figure 20 Wire connected to the mainboard.

Figure 21 Inserting the active seal wash support rings.
11 Place the support rings on the plunger housing (plungers not installed) and snap the pump head and plunger housing together.

12 Insert the plungers and carefully press them into the seal.

13 Tighten the lock screw.

14 Slide the pump head assembly onto the metering drive. Apply a small amount of pump head grease (part number 79846-65501) to the pumphead screws and the balls of the spindle drive. Tighten the pumphead screws stepwise with increasing torque.

15 Reconnect all capillaries, tubes and the active inlet valve cable to its connector.

16 Route the wash inlet tube into a bottle filled with a mixture of distilled water and isopropanol (90/10) and place the bottle above the pump in the solvent cabinet.

17 Route the outlet of the wash tube into a waste container.

Figure 22 Pumphead after completed installation.
Exchanging the Wash Seals

When

When maintaining seal wash option

Tools required

- 4-mm hexagonal key

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0905-1175</td>
<td>Wash seal</td>
</tr>
<tr>
<td>6</td>
<td>5062-2484</td>
<td>Gasket, seal wash (pack of 6)</td>
</tr>
</tbody>
</table>

Preparations

- Switch off pump at the main power switch
- Remove the front cover

1. Disconnect all capillaries and tubes from the pump head and disconnect the active inlet valve cable.

2. Using a 4-mm hexagonal key stepwise loosen and remove the two pump head screws and remove the pump head from the pump drive.
7 Maintenance
Simple Repairs

3 Remove the seal keeper and the seal wash support rings from the plunger housing. Remove the seal keeper from the support ring assembly.

4 Using the blade of a flat-blade screwdriver remove the seal wash gasket and the secondary seal from the support ring.

5 Using the insert tool press the secondary seal (spring pointing upwards) into the recess of the support ring. Place a seal wash gasket in the recess of the support ring.

6 Place the support rings on the plunger housing (plungers not installed) and snap the pump head and plunger housing together.
7 Insert the plungers and carefully press them into the seal.

8 Tighten the lock screw.

9 Slide the pump head assembly onto the metering drive. Apply a small amount of pump head grease to the pumphead screws and the balls of the spindle drive. Tighten the pumphead screws stepwise with increasing torque.

10 Reconnect all capillaries, tubes and the active inlet valve cable to its connector.
Reinstalling the Pump Head Assembly

When reassembling the pump

Tools required
- 4-mm hexagonal key

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>79846-65501</td>
<td>Pump head grease</td>
</tr>
</tbody>
</table>

1. Apply a small amount of grease on the back of the pistons.
2. Slide the Pumphead Assembly onto the Pumpdrive.
3. Using a 4 mm hexagonal key tighten the Pumphead screws stepwise with increasing torque.

4. Reconnect the capillaries, tubing and the Active Inlet Valve cable to the connector.
5. Reinstall the front cover.
Exchanging the Multi-Channel Gradient Valve (MCGV)

Tools required
- Pozidriv #1

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G1311-69701</td>
<td>MCGV (exchange assembly)</td>
</tr>
</tbody>
</table>

Preparations
- Switch the quaternary pump off at the power switch.
- Remove the front cover to have access to the pump mechanics.

NOTE

The lifetime of the multi-channel gradient valve can be maintained by regularly flushing the valve, especially when using buffer solutions. If using buffer solutions, flush all channels of the valve with water to prevent precipitation of the buffer. Salt crystals can be forced into an unused channel and form plugs that may lead to leaks of that channel. Such leaks will interfere with the general performance of the valve. When using buffer solutions and organic solvents in the Agilent 1200 Series Quaternary Pump, it is recommended to connect the buffer solution to one of the bottom ports and the organic solvent to one of the upper gradient valve ports. It is best to have the organic channel directly above the salt solution channel (e.g., A - salt solution, B - organic solvent).

1. Disconnect the connecting tube, waste tube and the solvent tubes from the MCGV, unclip them from the tube clips and place them into the solvent cabinet to avoid flow by hydrostatic pressure.

2. Press the lower sides of the cover to unclip it. Remove the cover.
3 Disconnect the MCGV cable, unscrew the two holding screws and remove the valve.

4 Place the new MCGV into position. Make sure that the valve is positioned with the A-channel at the bottom-right position. Tighten the two holding screws and connect the cable to its connector.

5 Replace the MCGV cover. Reconnect the waste funnel with the waste tube holder in the top cover. Insert waste tube in the holder in the waste pan and clip tube to the MCGV cover.

6 Reconnect the tube from the active inlet valve to the middle position of the MCGV and then the solvent tubes at channel A to D of the MCGV. Make sure the orientation of the channels on the cover is labelled as shown below, otherwise re-label the cover.
Exchanging the Optional Interface Board

When
Board defective

Parts required

<table>
<thead>
<tr>
<th>#</th>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G1351-68701</td>
<td></td>
</tr>
</tbody>
</table>

CAUTION

Electrostatic discharge at electronic boards and components

Electronic boards and components are sensitive to electrostatic discharge (ESD).

➔ In order to prevent damage always use an ESD protection (for example, the ESD wrist strap from the accessory kit) when handling electronic boards and components.

1 Switch off the pump at the main power switch, unplug the pump from line power.
2 Disconnect cables from the interface board connectors.
3 Loosen the screws. Slide out the interface board from the pump.
4 Install the new interface board. Secure screws.
5 Reconnect the cables to the board connector.
6 Reconnect the pump to line power.
Replacing the Module’s Firmware

When

The installation of newer firmware might be necessary

• if a newer version solves problems of older versions or
• to keep all systems on the same (validated) revision.

The installation of older firmware might be necessary

• to keep all systems on the same (validated) revision or
• if a new module with newer firmware is added to a system or
• if third part control software requires a special version.

Tools required

• LAN/RS-232 Firmware Update Tool or
• Agilent Lab Monitor & Diagnostic Software (LMD)
• Instant Pilot G4208A (only if supported by module)
• Control Module G1323B (only if supported by module)

Parts required

Description

Firmware, tools and documentation from Agilent web site

Preparations

Read update documentation provided with the Firmware Update Tool.

To upgrade/downgrade the module’s firmware the following steps have to be performed:

1. Download the required module firmware, the latest LAN/RS-232 FW Update Tool and the documentation from the Agilent web.
2. Load the firmware into the module as described in the documentation.

NOTE

Due to a different hardware platform, there is no way to convert a G1314D VWD and the G1314E VWD SL Plus to a G1314A/B VWD or G1314C VWD SL.
8

Parts and Materials for Maintenance

Overview of Main Assemblies 106
Pump Head Assembly 110
Pump Head Assembly with Seal Wash Option 112
Outlet Ball Valve Assembly 114
Purge Valve Assembly 115
Active Inlet Valve Assembly 116
Accessory Kit G1311-68705 117
Seal Wash Option Kit G1311-68711 118
Overview of Main Assemblies

Figure 24 Overview of Main Assemblies (Front View)
Table 12 Repair Parts - Pump Housing and Main Assemblies (Front View)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pump head, see “Pump Head Assembly” on page 110</td>
<td>G1311-60004</td>
</tr>
<tr>
<td>2</td>
<td>Pump drive assembly</td>
<td>G1311-60001</td>
</tr>
<tr>
<td></td>
<td>Exchange assembly — pump drive</td>
<td>G1311-69001</td>
</tr>
<tr>
<td>3</td>
<td>Cable assembly — AIV to main board</td>
<td>G1311-61601</td>
</tr>
<tr>
<td>4</td>
<td>Low-pressure pump main board (LPM)</td>
<td>G1311-66520</td>
</tr>
<tr>
<td></td>
<td>Exchange assembly — LPM board</td>
<td>G1311-69520</td>
</tr>
<tr>
<td>5</td>
<td>Cable to MCGV</td>
<td>G1311-61600</td>
</tr>
<tr>
<td>6</td>
<td>Fan assembly</td>
<td>3160-1016</td>
</tr>
<tr>
<td>7</td>
<td>Damping unit</td>
<td>79835-60005</td>
</tr>
<tr>
<td>8</td>
<td>Leak pan — pump</td>
<td>5042-8590</td>
</tr>
<tr>
<td>9</td>
<td>Multi-gradient assembly (MCGV)</td>
<td>G1311-67701</td>
</tr>
<tr>
<td></td>
<td>Exchange assembly — MCGV</td>
<td>G1311-69701</td>
</tr>
<tr>
<td>10</td>
<td>Screw, M4, 40 mm Ig — MCGV</td>
<td>0515-0906</td>
</tr>
<tr>
<td>11</td>
<td>Rubber holder — MCGV</td>
<td>1520-0401</td>
</tr>
<tr>
<td></td>
<td>MCGV cover</td>
<td>G1311-44101</td>
</tr>
</tbody>
</table>
8 Parts and Materials for Maintenance
Overview of Main Assemblies

Figure 25 Overview of Main Assemblies (Rear View)
Table 13 Repair Parts - Pump Housing and Main Assemblies (Rear View)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nut M14 — analog output</td>
<td>2940-0256</td>
</tr>
<tr>
<td>2</td>
<td>Washer — analog output</td>
<td>2190-0699</td>
</tr>
<tr>
<td>3</td>
<td>Standoff — remote connector</td>
<td>1251-7788</td>
</tr>
<tr>
<td>4</td>
<td>Standoff — GPIB connector</td>
<td>0380-0643</td>
</tr>
<tr>
<td>5</td>
<td>Power supply (behind rear panel)</td>
<td>0950-2528</td>
</tr>
<tr>
<td>6</td>
<td>Screw, M4, 7 mm lg — power supply</td>
<td>0515-0910</td>
</tr>
<tr>
<td>7</td>
<td>Washer — power supply</td>
<td>2190-0409</td>
</tr>
</tbody>
</table>
Pump Head Assembly

Table 14 Pump Head Assembly

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Complete assembly, including items marked with *</td>
<td>G1311-60004</td>
</tr>
<tr>
<td>1*</td>
<td>Sapphire plunger</td>
<td>5063-6586</td>
</tr>
<tr>
<td>2</td>
<td>Plunger housing (including spring)</td>
<td>G1311-60002</td>
</tr>
<tr>
<td>2*</td>
<td>Plunger housing (including spring)</td>
<td>5063-6589</td>
</tr>
<tr>
<td>3</td>
<td>Support ring</td>
<td>5001-3739</td>
</tr>
<tr>
<td>3*</td>
<td>Support ring</td>
<td>0905-1420</td>
</tr>
<tr>
<td>4</td>
<td>Seal (pack of 2) or Seal (pack of 2), for normal phase applications</td>
<td>5063-6589</td>
</tr>
<tr>
<td>4*</td>
<td>Seal (pack of 2), for normal phase applications</td>
<td>0905-1420</td>
</tr>
<tr>
<td>5</td>
<td>Pump chamber housing</td>
<td>G1311-25200</td>
</tr>
<tr>
<td>6</td>
<td>Active inlet valve body</td>
<td>G1312-60025</td>
</tr>
<tr>
<td></td>
<td>Replacement cartridge for active inlet valve (400 bar)</td>
<td>5062-8562</td>
</tr>
<tr>
<td>7</td>
<td>Outlet ball valve</td>
<td>G1311-60012</td>
</tr>
<tr>
<td>8</td>
<td>Screw lock</td>
<td>5042-1303</td>
</tr>
<tr>
<td>8*</td>
<td>Screw lock</td>
<td>0515-2118</td>
</tr>
<tr>
<td>9</td>
<td>Purge valve assembly</td>
<td>G1311-60009</td>
</tr>
<tr>
<td>10</td>
<td>Screw M5, 60 mm lg</td>
<td></td>
</tr>
</tbody>
</table>
Figure 26 Pump Head Assembly
Pump Head Assembly with Seal Wash Option

Table 15 Pump Head Assembly with Seal Wash Option

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Complete assembly, including parts marked with *</td>
<td>G1311-60005</td>
</tr>
<tr>
<td>1</td>
<td>Sapphire plunger</td>
<td>5063-6586</td>
</tr>
<tr>
<td>2</td>
<td>Plunger housing (including spring)</td>
<td>G1311-60002</td>
</tr>
<tr>
<td>3</td>
<td>Support ring, seal wash</td>
<td>5062-2465</td>
</tr>
<tr>
<td>4</td>
<td>Secondary seal</td>
<td>0905-1175</td>
</tr>
<tr>
<td>5</td>
<td>Wash tube (1.0 m)</td>
<td>0890-1764</td>
</tr>
<tr>
<td>6</td>
<td>Gasket, seal wash (pack of 6)</td>
<td>5062-2484</td>
</tr>
<tr>
<td>7</td>
<td>Seal keeper</td>
<td>5001-3743</td>
</tr>
<tr>
<td>8</td>
<td>Seal (pack of 2) or Sealing (pack of 2), for normal phase applications</td>
<td>5063-6589</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0905-1420</td>
</tr>
<tr>
<td>9</td>
<td>Pump chamber housing</td>
<td>G1311-25200</td>
</tr>
<tr>
<td>10</td>
<td>Active inlet valve body</td>
<td>G1312-60025</td>
</tr>
<tr>
<td></td>
<td>Replacement cartridge for active inlet valve (400 bar)</td>
<td>5062-8562</td>
</tr>
<tr>
<td>11</td>
<td>Outlet ball valve (complete with cartridge)</td>
<td>G1311-60012</td>
</tr>
<tr>
<td>12</td>
<td>Screw lock</td>
<td>5042-1303</td>
</tr>
<tr>
<td>13</td>
<td>Purge valve</td>
<td>G1311-60009</td>
</tr>
<tr>
<td>14</td>
<td>Screw M5, 60 mm Ig</td>
<td>0515-2118</td>
</tr>
<tr>
<td>15</td>
<td>Seal wash pump assembly</td>
<td>5065-9953</td>
</tr>
<tr>
<td></td>
<td>Seal wash upgrade kit (see “Seal Wash Option Kit G1311-68711" on page 118)</td>
<td>01018-68722</td>
</tr>
</tbody>
</table>
Figure 27 Pump Head with Seal Wash Option
Outlet Ball Valve Assembly

Table 16 Outlet Ball Valve Assembly

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Outlet ball valve — complete assembly</td>
<td>G1311-60012</td>
</tr>
<tr>
<td>1</td>
<td>Socket cap</td>
<td>5042-1345</td>
</tr>
<tr>
<td>2</td>
<td>Outlet valve housing screw</td>
<td>01018-22410</td>
</tr>
<tr>
<td>3</td>
<td>Gold seal, outlet</td>
<td>5001-3707</td>
</tr>
<tr>
<td>4</td>
<td>Cap (pack of 4)</td>
<td>5062-2485</td>
</tr>
</tbody>
</table>

Figure 28 Outlet Ball Valve Assembly
Purge Valve Assembly

Table 17 Purge-Valve Assembly

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Valve body</td>
<td>No part number</td>
</tr>
<tr>
<td>2</td>
<td>PTFE frit (pack of 5)</td>
<td>01018-22707</td>
</tr>
<tr>
<td>3</td>
<td>Gold seal</td>
<td>5001-3707</td>
</tr>
<tr>
<td>4</td>
<td>Cap (pack of 4)</td>
<td>5062-2485</td>
</tr>
</tbody>
</table>

Figure 29 Purge-Valve Assembly
Active Inlet Valve Assembly

Table 18 Active Inlet Valve Assembly

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Active inlet valve body — No cartridge included</td>
<td>G1312-60025</td>
</tr>
<tr>
<td>2</td>
<td>Valve cartridge (400 bar)</td>
<td>5062-8562</td>
</tr>
</tbody>
</table>

Figure 30 Active Inlet Valve Assembly
Accessory Kit G1311-68705

Table 19 Tools and Accessories

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrench 14 mm</td>
<td>8710-1924</td>
</tr>
<tr>
<td>Seal insert tool</td>
<td>01018-23702</td>
</tr>
<tr>
<td>PTFE Frit (pack of 5)</td>
<td>01018-22707</td>
</tr>
<tr>
<td>Corrugated waste tube (1.2 m)</td>
<td>no PN</td>
</tr>
<tr>
<td>Corrugated waste tube (reorder number), 5 m</td>
<td>5062-2463</td>
</tr>
<tr>
<td>Velocity regulator (reorder number, pack of 3)</td>
<td>5062-2486</td>
</tr>
<tr>
<td>Hex key 4 mm</td>
<td>8710-2392</td>
</tr>
<tr>
<td>Wrench 1/4 – 5/16 inch</td>
<td>8710-0510</td>
</tr>
<tr>
<td>Capillary, pump to injection device, length 900 mm, ID 0.17 mm</td>
<td>G1329-87300</td>
</tr>
</tbody>
</table>
Seal Wash Option Kit G1311-68711

Table 20 Active Seal Wash Option kit for module

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seal wash pump assembly (includes pump cassette and pump motor)</td>
<td>5065-9953</td>
</tr>
<tr>
<td>Pump cassette (Silicone)</td>
<td>5042-8507</td>
</tr>
<tr>
<td>Support ring, seal wash (2 EA)</td>
<td>5062-2465</td>
</tr>
<tr>
<td>Secondary seal (pre-installed in support rings)</td>
<td>0905-1175</td>
</tr>
<tr>
<td>Gasket, wash seal (2 EA) (for re-order pack of 6)</td>
<td>5062-2484</td>
</tr>
<tr>
<td>Seal keeper (2 EA)</td>
<td>5001-3743</td>
</tr>
<tr>
<td>Silicone rubber tubing 1mm I.D. (3 m)</td>
<td>0890-1764</td>
</tr>
<tr>
<td>Seal (pack of 2)</td>
<td>5063-6589</td>
</tr>
<tr>
<td>Seals insert tool</td>
<td>01018-2370</td>
</tr>
</tbody>
</table>
9
Identifying Cables

Cable Overview 120
Analog Cables 122
Remote Cables 125
BCD Cables 130
External Contact Cable 132
CAN/LAN Cables 133
Auxiliary Cable 134
RS-232 Cables 135
Cable Overview

NOTE

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog cables</td>
<td>3390/2/3 integrators</td>
<td>01040-60101</td>
</tr>
<tr>
<td></td>
<td>3394/6 integrators</td>
<td>35900-60750</td>
</tr>
<tr>
<td></td>
<td>Agilent 35900A A/D converter</td>
<td>35900-60750</td>
</tr>
<tr>
<td></td>
<td>General purpose (spade lugs)</td>
<td>01046-60105</td>
</tr>
<tr>
<td>Remote cables</td>
<td>3390 integrator</td>
<td>01046-60203</td>
</tr>
<tr>
<td></td>
<td>3392/3 integrators</td>
<td>01046-60206</td>
</tr>
<tr>
<td></td>
<td>3394 integrator</td>
<td>01046-60210</td>
</tr>
<tr>
<td></td>
<td>3396A (Series I) integrator</td>
<td>03394-60600</td>
</tr>
<tr>
<td></td>
<td>3396 Series II / 3395A integrator, see details in section “Remote Cables” on page 125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3396 Series III / 3395B integrator</td>
<td>03396-61010</td>
</tr>
<tr>
<td></td>
<td>HP 1050 modules / HP 1046A FLD</td>
<td>5061-3378</td>
</tr>
<tr>
<td></td>
<td>HP 1046A FLD</td>
<td>5061-3378</td>
</tr>
<tr>
<td></td>
<td>Agilent 35900A A/D converter</td>
<td>5061-3378</td>
</tr>
<tr>
<td></td>
<td>HP 1040 diode-array detector</td>
<td>01046-60202</td>
</tr>
<tr>
<td></td>
<td>HP 1090 liquid chromatographs</td>
<td>01046-60202</td>
</tr>
<tr>
<td></td>
<td>Signal distribution module</td>
<td>01046-60202</td>
</tr>
<tr>
<td>BCD cables</td>
<td>3396 integrator</td>
<td>03396-60560</td>
</tr>
<tr>
<td></td>
<td>General purpose (spade Lugs)</td>
<td>G1351-81600</td>
</tr>
<tr>
<td>Auxiliary</td>
<td>Agilent 1100 Series vacuum degasser</td>
<td>G1322-61600</td>
</tr>
</tbody>
</table>
Identifying Cables

Cable Overview

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN cables</td>
<td>Agilent 1100/1200 module to module, 0.5m lg</td>
<td>5181-1516</td>
</tr>
<tr>
<td></td>
<td>Agilent 1100/1200 module to module, 1m lg</td>
<td>5181-1519</td>
</tr>
<tr>
<td>External contacts</td>
<td>Agilent 1100/1200 Series interface board to general purpose</td>
<td>G1103-61611</td>
</tr>
<tr>
<td>GPIB cable</td>
<td>Agilent 1100/1200 module to ChemStation, 1 m</td>
<td>10833A</td>
</tr>
<tr>
<td></td>
<td>Agilent 1100/1200 module to ChemStation, 2 m</td>
<td>10833B</td>
</tr>
<tr>
<td>RS-232 cable</td>
<td>Agilent 1100/1200 module to a computer</td>
<td>34398A</td>
</tr>
<tr>
<td></td>
<td>This kit contains a 9-pin female to 9-pin female Null Modem (printer) cable and one adapter.</td>
<td></td>
</tr>
<tr>
<td>LAN cable</td>
<td>Twisted pair cross over LAN cable, (shielded 3m long) (for point to point connection)</td>
<td>5023-0203</td>
</tr>
<tr>
<td></td>
<td>Twisted pair cross over LAN cable, (shielded 7m long) (for point to point connection)</td>
<td>5023-0202</td>
</tr>
</tbody>
</table>
Analog Cables

One end of these cables provides a BNC connector to be connected to Agilent 1100/1200 Series modules. The other end depends on the instrument to which connection is being made.

Agilent 1100/1200 to 3390/2/3 Integrators

<table>
<thead>
<tr>
<th>Connector 01040-60101</th>
<th>Pin 3390/2/3</th>
<th>Pin Agilent 1100/1200</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Shield</td>
<td>Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Not connected</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Center</td>
<td>Signal +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Connected to pin 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Shield</td>
<td>Analog -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Connected to pin 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Key</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Not connected</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Agilent 1100/1200 to 3394/6 Integrators

<table>
<thead>
<tr>
<th>Connector 35900-60750</th>
<th>Pin 3394/6</th>
<th>Pin Agilent 1100/1200</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Shield</td>
<td>Analog -</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Center</td>
<td>Analog +</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of the connector](image)

Agilent 1100/1200 to BNC Connector

<table>
<thead>
<tr>
<th>Connector 8120-1840</th>
<th>Pin BNC</th>
<th>Pin Agilent 1100/1200</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shield</td>
<td>Shield</td>
<td>Analog -</td>
<td></td>
</tr>
<tr>
<td>Center</td>
<td>Center</td>
<td>Analog +</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of the BNC connector](image)
Identifying Cables

Analog Cables

Agilent 1100/1200 to General Purpose

<table>
<thead>
<tr>
<th>Connector: 01046-60105</th>
<th>Pin 3394/6</th>
<th>Pin Agilent 1100/1200</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Black</td>
<td>Analog -</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Red</td>
<td>Analog +</td>
<td></td>
</tr>
</tbody>
</table>

[Diagram of connector and cables]
Remote Cables

One end of these cables provides a Agilent Technologies APG (Analytical Products Group) remote connector to be connected to Agilent 1100/1200 Series modules. The other end depends on the instrument to be connected to.

Agilent 1100/1200 to 3390 Integrators

<table>
<thead>
<tr>
<th>Connector 01046-60203</th>
<th>Pin 3390</th>
<th>Pin Agilent 1100/1200</th>
<th>Signal Name</th>
<th>Active (TTL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1 - White</td>
<td>Digital ground</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>NC</td>
<td>2 - Brown</td>
<td>Prepare run</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3 - Gray</td>
<td>Start</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>4 - Blue</td>
<td>Shut down</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>5 - Pink</td>
<td>Not connected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>6 - Yellow</td>
<td>Power on</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>7 - Red</td>
<td>Ready</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>8 - Green</td>
<td>Stop</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>9 - Black</td>
<td>Start request</td>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>
9 Identifying Cables
Remote Cables

Agilent 1100/1200 to 3392/3 Integrators

<table>
<thead>
<tr>
<th>Connector 01046-60206</th>
<th>Pin 3392/3</th>
<th>Pin Agilent 1100/1200</th>
<th>Signal Name (TTL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>1 - White</td>
<td>Digital ground</td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>2 - Brown</td>
<td>Prepare run Low</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3 - Gray</td>
<td>Start Low</td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>4 - Blue</td>
<td>Shut down Low</td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>5 - Pink</td>
<td>Not connected</td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>6 - Yellow</td>
<td>Power on High</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>7 - Red</td>
<td>Ready High</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>8 - Green</td>
<td>Stop Low</td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>9 - Black</td>
<td>Start request Low</td>
</tr>
</tbody>
</table>

Agilent 1100/1200 to 3394 Integrators

<table>
<thead>
<tr>
<th>Connector 01046-60210</th>
<th>Pin 3394</th>
<th>Pin Agilent 1100/1200</th>
<th>Signal Name (TTL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
<td>1 - White</td>
<td>Digital ground</td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>2 - Brown</td>
<td>Prepare run Low</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3 - Gray</td>
<td>Start Low</td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>4 - Blue</td>
<td>Shut down Low</td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>5 - Pink</td>
<td>Not connected</td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>6 - Yellow</td>
<td>Power on High</td>
</tr>
<tr>
<td></td>
<td>5,14</td>
<td>7 - Red</td>
<td>Ready High</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8 - Green</td>
<td>Stop Low</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>9 - Black</td>
<td>Start request Low</td>
</tr>
<tr>
<td></td>
<td>13, 15</td>
<td></td>
<td>Not connected</td>
</tr>
</tbody>
</table>
NOTE

START and STOP are connected via diodes to pin 3 of the 3394 connector.

Agilent 1100/1200 to 3396A Integrators

<table>
<thead>
<tr>
<th>Connector:03394-60600</th>
<th>Pin 3394</th>
<th>Pin Agilent 1100/1200</th>
<th>Signal Name</th>
<th>Active (TTL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1 - White</td>
<td>Digital ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>2 - Brown</td>
<td>Prepare run</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3 - Gray</td>
<td>Start</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>4 - Blue</td>
<td>Shut down</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>5 - Pink</td>
<td>Not connected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>6 - Yellow</td>
<td>Power on</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>5,14</td>
<td>7 - Red</td>
<td>Ready</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8 - Green</td>
<td>Stop</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>9 - Black</td>
<td>Start request</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>13, 15</td>
<td></td>
<td></td>
<td>Not connected</td>
<td></td>
</tr>
</tbody>
</table>

Agilent 1100/1200 to 3396 Series II / 3395A Integrators

Use the cable part number: 03394-60600 and cut pin #5 on the integrator side. Otherwise the integrator prints START; not ready.
Identifying Cables

Remote Cables

Agilent 1100/1200 to 3396 Series III / 3395B Integrators

<table>
<thead>
<tr>
<th>Connector</th>
<th>03396-61010</th>
<th>Pin 33XX</th>
<th>Pin Agilent 1100/1200</th>
<th>Signal Name</th>
<th>Active (TTL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1 - White</td>
<td>Digital ground</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>2 - Brown</td>
<td>Prepare run</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3 - Gray</td>
<td>Start</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>4 - Blue</td>
<td>Shut down</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>5 - Pink</td>
<td>Not connected</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>6 - Yellow</td>
<td>Power on</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>7 - Red</td>
<td>Ready</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8 - Green</td>
<td>Stop</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>9 - Black</td>
<td>Start request</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13, 15</td>
<td>Not connected</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Agilent 1100/1200 to HP 1050, HP 1046A or Agilent 35900 A/D Converters

<table>
<thead>
<tr>
<th>Connector</th>
<th>5061-3378</th>
<th>Pin HP 1050/...</th>
<th>Pin Agilent 1100/1200</th>
<th>Signal Name</th>
<th>Active (TTL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 - White</td>
<td>Digital ground</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2 - Brown</td>
<td>Prepare run</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3 - Gray</td>
<td>Start</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4 - Blue</td>
<td>Shut down</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5 - Pink</td>
<td>Not connected</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6 - Yellow</td>
<td>Power on</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7 - Red</td>
<td>Ready</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8 - Green</td>
<td>Stop</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9 - Black</td>
<td>Start request</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Agilent 1100/1200 to HP 1090 LC or Signal Distribution Module

<table>
<thead>
<tr>
<th>Connector01046-60202</th>
<th>Pin HP 1090</th>
<th>Pin Agilent 1100/1200</th>
<th>Signal Name</th>
<th>Active (TTL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 - White</td>
<td>Digital ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>2 - Brown</td>
<td>Prepare run</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3 - Gray</td>
<td>Start</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4 - Blue</td>
<td>Shut down</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5 - Pink</td>
<td>Not connected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>6 - Yellow</td>
<td>Power on</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7 - Red</td>
<td>Ready</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8 - Green</td>
<td>Stop</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>9 - Black</td>
<td>Start request</td>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>

Agilent 1100/1200 to General Purpose

<table>
<thead>
<tr>
<th>Connector01046-60201</th>
<th>Pin Universal</th>
<th>Pin Agilent 1100/1200</th>
<th>Signal Name</th>
<th>Active (TTL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 - White</td>
<td>Digital ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2 - Brown</td>
<td>Prepare run</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3 - Gray</td>
<td>Start</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4 - Blue</td>
<td>Shut down</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5 - Pink</td>
<td>Not connected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6 - Yellow</td>
<td>Power on</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7 - Red</td>
<td>Ready</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8 - Green</td>
<td>Stop</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9 - Black</td>
<td>Start request</td>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>
BCD Cables

One end of these cables provides a 15-pin BCD connector to be connected to the Agilent 1200 Series modules. The other end depends on the instrument to be connected to

Agilent 1200 to General Purpose

<table>
<thead>
<tr>
<th>Connector G1351-81600</th>
<th>Wire Color</th>
<th>Pin Agilent 1200</th>
<th>Signal Name</th>
<th>BCD Digit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Green</td>
<td>1</td>
<td>BCD 5</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Violet</td>
<td>2</td>
<td>BCD 7</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Blue</td>
<td>3</td>
<td>BCD 6</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Yellow</td>
<td>4</td>
<td>BCD 4</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td>5</td>
<td>BCD 0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Orange</td>
<td>6</td>
<td>BCD 3</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>7</td>
<td>BCD 2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Brown</td>
<td>8</td>
<td>BCD 1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Gray</td>
<td>9</td>
<td>Digital ground</td>
<td>Gray</td>
</tr>
<tr>
<td></td>
<td>Gray/pink</td>
<td>10</td>
<td>BCD 11</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>Red/blue</td>
<td>11</td>
<td>BCD 10</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>White/green</td>
<td>12</td>
<td>BCD 9</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Brown/green</td>
<td>13</td>
<td>BCD 8</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>not connected</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>not connected</td>
<td>15</td>
<td>+5 V</td>
<td>Low</td>
</tr>
</tbody>
</table>
Agilent 1200 to 3396 Integrators

<table>
<thead>
<tr>
<th>Connector03396-60560</th>
<th>Pin 3392/3</th>
<th>Pin Agilent 1200</th>
<th>Signal Name</th>
<th>BCD Digit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>BCD 5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>BCD 7</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>BCD 6</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>BCD 4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>BCD0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>BCD 3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>BCD 2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>BCD 1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>Digital ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>15</td>
<td>+5 V</td>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>
One end of this cable provides a 15-pin plug to be connected to Agilent 1200 Series module’s interface board. The other end is for general purpose.

Agilent 1200 Series Interface Board to general purposes

<table>
<thead>
<tr>
<th>Connector G1103-61611</th>
<th>Color</th>
<th>Pin Agilent 1200</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>1</td>
<td>EXT 1</td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td>2</td>
<td>EXT 1</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>3</td>
<td>EXT 2</td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td>4</td>
<td>EXT 2</td>
<td></td>
</tr>
<tr>
<td>Grey</td>
<td>5</td>
<td>EXT 3</td>
<td></td>
</tr>
<tr>
<td>Pink</td>
<td>6</td>
<td>EXT 3</td>
<td></td>
</tr>
<tr>
<td>Blue</td>
<td>7</td>
<td>EXT 4</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>8</td>
<td>EXT 4</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>9</td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td>Violet</td>
<td>10</td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td>Grey/pink</td>
<td>11</td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td>Red/blue</td>
<td>12</td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td>White/green</td>
<td>13</td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td>Brown/green</td>
<td>14</td>
<td>Not connected</td>
<td></td>
</tr>
<tr>
<td>White/yellow</td>
<td>15</td>
<td>Not connected</td>
<td></td>
</tr>
</tbody>
</table>
CAN/LAN Cables

Both ends of this cable provide a modular plug to be connected to Agilent 1200 Series module’s CAN or LAN connectors.

CAN Cables

<table>
<thead>
<tr>
<th>Description</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agilent 1200 module to module, 0.5 m</td>
<td>5181-1516</td>
</tr>
<tr>
<td>Agilent 1200 module to module, 1 m</td>
<td>5181-1519</td>
</tr>
<tr>
<td>Agilent 1200 module to control module</td>
<td>G1323-81600</td>
</tr>
</tbody>
</table>

LAN Cables

<table>
<thead>
<tr>
<th>Description</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-over network cable (shielded, 3 m long), (for point to point connection)</td>
<td>5023-0203</td>
</tr>
<tr>
<td>Twisted pair network cable (shielded, 7 m long) (for hub connections)</td>
<td>5023-0202</td>
</tr>
</tbody>
</table>
Auxiliary Cable

One end of this cable provides a modular plug to be connected to the Agilent 1100 Series vacuum degasser. The other end is for general purpose.

Agilent 1100 Series Degasser to general purposes

<table>
<thead>
<tr>
<th>Connector G1322-81600</th>
<th>Color</th>
<th>Pin Agilent 1100</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>White</td>
<td>1</td>
<td>Ground</td>
</tr>
<tr>
<td></td>
<td>Brown</td>
<td>2</td>
<td>Pressure signal</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yellow</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grey</td>
<td>5</td>
<td>DC + 5 V IN</td>
</tr>
<tr>
<td></td>
<td>Pink</td>
<td>6</td>
<td>Vent</td>
</tr>
</tbody>
</table>
RS-232 Cables

<table>
<thead>
<tr>
<th>Description</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-232 cable, instrument to PC, 9-to-9 pin (female) This cable has special pin-out, and is not compatible with connecting printers and plotters.</td>
<td>24542U
G1530-60600</td>
</tr>
<tr>
<td>RS-232 cable kit, 9-to-9 pin (female) and one adapter 9-pin (male) 25-pin female. Suited for instrument to PC.</td>
<td>34398A</td>
</tr>
<tr>
<td>Cable Printer Serial & Parallel, is a SUB-D 9 pin female vs. Centronics connector on the other end (NOT FOR FW UPDATE).</td>
<td>5181-1529</td>
</tr>
<tr>
<td>This kit contains a 9-pin female to 9-pin female Null Modem (printer) cable and one adapter. Use the cable and adapter to connect Agilent Technologies instruments with 9-pin male RS-232 connectors to most PCs or printers.</td>
<td>34398A</td>
</tr>
</tbody>
</table>
9 Identifying Cables
RS-232 Cables
10 Appendix

General Safety Information 138
Lithium Batteries Information 142
Radio Interference 143
Sound Emission 144
Agilent Technologies on Internet 145
General Safety Information

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Agilent Technologies assumes no liability for the customer’s failure to comply with these requirements.

WARNING

Ensure the proper usage of the equipment.

The protection provided by the equipment may be impaired.

➔ The operator of this instrument is advised to use the equipment in a manner as specified in this manual.

General

This is a Safety Class I instrument (provided with terminal for protective earthing) and has been manufactured and tested according to international safety standards.

Operation

Before applying power, comply with the installation section. Additionally the following must be observed.

Do not remove instrument covers when operating. Before the instrument is switched on, all protective earth terminals, extension cords, auto-transformers, and devices connected to it must be connected to a protective earth via a ground socket. Any interruption of the protective earth grounding will cause a potential shock hazard that could result in serious
personal injury. Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any intended operation.

Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, and so on) are used for replacement. The use of repaired fuses and the short-circuiting of fuse holders must be avoided.

Some adjustments described in the manual, are made with power supplied to the instrument, and protective covers removed. Energy available at many points may, if contacted, result in personal injury.

Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided whenever possible. When inevitable, this has to be carried out by a skilled person who is aware of the hazard involved. Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present. Do not replace components with power cable connected.

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

Do not install substitute parts or make any unauthorized modification to the instrument.

Capacitors inside the instrument may still be charged, even though the instrument has been disconnected from its source of supply. Dangerous voltages, capable of causing serious personal injury, are present in this instrument. Use extreme caution when handling, testing and adjusting.

When working with solvents please observe appropriate safety procedures (e.g. goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet by the solvent vendor, especially when toxic or hazardous solvents are used.
Appendix

General Safety Information

Safety Symbols

Table 21 Safety Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The apparatus is marked with this symbol when the user should refer to the instruction manual in order to protect risk of harm to the operator and to protect the apparatus against damage.</td>
</tr>
<tr>
<td></td>
<td>Indicates dangerous voltages.</td>
</tr>
<tr>
<td></td>
<td>Indicates a protected ground terminal.</td>
</tr>
<tr>
<td></td>
<td>Indicates eye damage may result from directly viewing the light produced by the deuterium lamp used in this product.</td>
</tr>
<tr>
<td></td>
<td>The apparatus is marked with this symbol when hot surfaces are available and the user should not touch it when heated up.</td>
</tr>
</tbody>
</table>

WARNING

A WARNING

alerts you to situations that could cause physical injury or death.

➔ Do not proceed beyond a warning until you have fully understood and met the indicated conditions.

CAUTION

A CAUTION

alerts you to situations that could cause loss of data, or damage of equipment.

➔ Do not proceed beyond a caution until you have fully understood and met the indicated conditions.

Abstract

NOTE

This product complies with the WEEE Directive (2002/96/EC) marking requirements. The affixed label indicates that you must not discard this electrical/electronic product in domestic household waste.

Product Category: With reference to the equipment types in the WEEE Directive Annex I, this product is classed as a “Monitoring and Control instrumentation” product.

Do not dispose off in domestic household waste

To return unwanted products, contact your local Agilent office, or see www.agilent.com for more information.
Lithium Batteries Information

WARNING
Lithium batteries may not be disposed-off into the domestic waste. Transportation of discharged Lithium batteries through carriers regulated by IATA/ICAO, ADR, RID, IMDG is not allowed.

Danger of explosion if battery is incorrectly replaced.

➔ Discharged Lithium batteries shall be disposed off locally according to national waste disposal regulations for batteries.

➔ Replace only with the same or equivalent type recommended by the equipment manufacturer.

WARNING
Lithiumbatteri - Eksplosionsfare ved fejlagtig håndtering.
Udskiftning må kun ske med batteri af samme fabrikat og type.

➔ Lever det brugte batteri tilbage til leverandøren.

WARNING
Lithiumbatteri - Eksplosionsfare.
Ved udskiftning benyttes kun batteri som anbefalt av apparatfabrikanten.

➔ Brukt batteri returneres appararleverandoren.

NOTE
Bij dit apparaat zijn batterijen geleverd. Wanneer deze leeg zijn, moet u ze niet weggooien maar inleveren als KCA.
Radio Interference

Cables supplied by Agilent Technologies are screened to provide optimized protection against radio interference. All cables are in compliance with safety or EMC regulations.

Test and Measurement

If test and measurement equipment is operated with unscreened cables, or used for measurements on open set-ups, the user has to assure that under operating conditions the radio interference limits are still met within the premises.
Sound Emission

Manufacturer’s Declaration

This statement is provided to comply with the requirements of the German Sound Emission Directive of 18 January 1991.

This product has a sound pressure emission (at the operator position) < 70 dB.

- Sound Pressure $L_p < 70$ dB (A)
- At Operator Position
- Normal Operation
- According to ISO 7779:1988/EN 27779/1991 (Type Test)
Agilent Technologies on Internet

For the latest information on products and services visit our worldwide website on the Internet at:

http://www.agilent.com

Select Products/Chemical Analysis

It will provide also the latest firmware of the Agilent 1200 Series modules for download.
Index

A
accessory kit, degasser 32
accessory kit 31
active inlet valve 79, 116
active seal wash 8, 58, 94
installing 94
adapter 79, 82
Agilent
Diagnostic Software 64
Lab Advisor Software 64
on internet 145
algae growth 52
alternative seal material 59
ambient operating temperature 25
ambient non-operating temperature 25
analog
cable 120, 122
AUTO mode 15
AUX output 40
auxiliary
cable 120, 134
B
ball-screw drive 11
battery
safety information 142
BCD board 17
BCD
cable 120, 130
bench space 24
bottle head assembly 30
bottle 30
buffer application 50
buffer solution 8, 101
C
cable
analog 120, 122
auxiliary 120, 134
BCD 120, 130
CAN 30, 133
external contact 132
external contacts 121
GPIB 121
interface 37
LAN 121, 133
power 30, 30
remote 31, 120, 125
RS-232 121, 135
signal 31
Cables
overview 120
CAN
cable 133
capillary, pump to injection device 31
changing solvents 45
cleaning the pump 72
composition precision 26
composition range 26
compressibility compensation 14, 26, 60
condensation 24
connecting tubes 32
connections, flow 41
control software 40, 40
counter, seal wear 73
counter, EMF 73
D
damaged packaging 30
damaged parts 30
degasser 30
delay volume 13, 33
delivery checklist 30
Diagnostic
software 64
dimensions 25
dual piston in-series design 9
E
early maintenance feedback (EMF) 16
electrical connections
descriptions of 18
electrostatic discharge (ESD) 71, 103
EMF limits 74
EMF counters 73
environment 22, 24
error condition 67
error messages 65
ESD (electrostatic discharge) strap 72
Exchanging the Active Inlet Valve Cartridge 81
exchanging
active inlet valve 77, 79
internal parts 70
multi channel gradient valve (MCGV) 101
outlet ball valve 83
outlet ball valve 77
pistons 77, 92
pump seals 77
purge valve frit 85
Index

prerun condition 67
pressure sensor readings 40
pressure pulsation 14, 26, 60
pressure range 59
pressure test 65
pressure, operating range 26
pressure 9
priming
with a pump 47
with a syringe 56
with a pump 44
with a syringe 44
with the pump 56
proportioning valve, high-speed 9
PTFE frit 85
PTFE frit 31
pump head assembly 110
pump head with seal wash 112
pump piston 50
purge valve frit 50
purge valve 85
purging the pump 44

R
radio interference 143
reassembling the pump head 100
recommended pH range 26
remote
cable 120, 125
removing
pump head assembly 88
repairs 77
replacing firmware 104
using the ESD strap 72
RS-232
cable 121
RS-232C
cable 135
run mode 67

S
safety class I 138
safety information
lithium batteries 142
safety
general information 138, 138
standards 25
symbols 140
sapphire piston 11
seal insert tool 31
seal wash 8, 58
seal wear counters 73
seal wash 9
installing 94
when to use 58
seal, alternative material 59
seals 89, 92, 94, 94, 97, 100
seal
wear-in 91
security lever 37, 70
setable flow range 26
shipping containers 30
simple repairs 77
simple repairs 70
site requirements 22
snap fasteners 41
solvent filters
cleaning 78
solvent inlet filters 50
solvent tubes, degasser 30
solvent tubes 32
solvent bottle 30
solvent cabinet 50
solvent filters
checking 78
prevent blocking 52
solvent information 51
sonic bath 83
sound emission 144
specification
physical 25
Stack Configuration
Front View 33
rear view 34
status indicator 65, 66
status lamp 66
stroke volume 11, 14
syringe adapter 32, 45
syringe 32

U
unpacking the pump 30

V
vacuum degasser 42, 50
vacuum degasser 8, 30
valve frit 85
variable reluctance motor 11
variable stroke volume 14
velocity regulator 31
voltage range 25

W
waste tube 32
waste tube 31
wear-in
procedure 91
weight 25
wrench 1/4 inch 83, 85, 88, 88, 89, 89, 92, 92, 97, 97, 101, 101
wrench 1/4 inch 100, 100
wrench 14 mm 79, 81, 83, 85
wrench, 1/4 - 5/16 inch 31
wrench, 14 mm 31
Index
In This Book

This manual contains user information about Agilent 1200 Series Quaternary Pump. The manual describes the following:

- introduction,
- site requirements and specifications,
- installing the pump,
- using the quaternary pump,
- optimizing performance,
- troubleshooting and test functions,
- maintenance,
- parts and materials for maintenance,
- identifying cables,
- appendix.