

Accurate quantitation of regulated mycotoxins by UHPLC-MS/MS

Dr. Thomas Glauner

Senior LCMS Applications Chemist Agilent Technologies

In cooperation with:

Elisabeth Varga*
Rudolf Krska*
Rainer Schuhmacher*

Franz Berthiller*

*Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln)
University of Natural Resources and Life Sciences Vienna, Austria

Outline

- Mycotoxins
- Stable isotope dilution assay (SIDA) for the mycotoxins regulated in the European Union
 - Reasons
 - Approaches
 - Sample Preparation and Method
 - Results
 - Summary and conclusions

Mycotoxins

Background

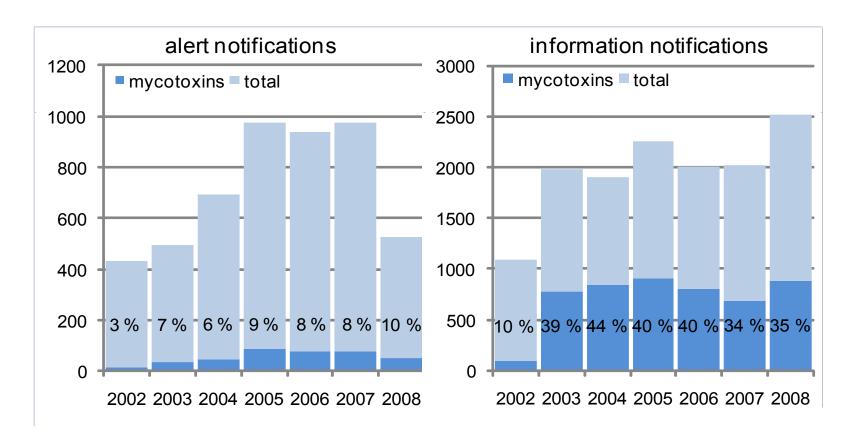
```
myces (Greek) = fungus
toxicum (Latin) = toxic
```

```
} = Mycotoxin
```

- low molecular weight, toxic, secondary metabolites of fungi
- produced by e.g.:
 - Fusarium sp., Aspergillus sp., Penicillium sp.
- toxicity:
 - acute toxic, carcinogenic, mutagenic, teratogenic, estrogenic
 and immunotoxic effects

Mycotoxins

Why are they an issue?


- >25% of all agricultural commodities are contaminated with mycotoxins
- annual losses of several hundred million tons of food worldwide
- annual economical losses: 1 billion USD (US only)
- 100+ countries have regulations for the control of mycotoxins in food and feed

Mycotoxins

Relevance for food control

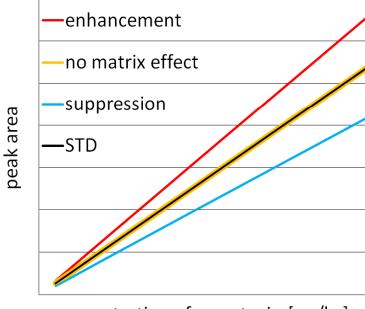
- Notifications concerning mycotoxins
 - (RASFF-Annual reports 2002-2008)

Food contaminants online

FERA FC24 database access

- Free access to the RASFF alerts and notifications via FC24 database
- Registration through Agilent website

(http://www.chem.agilent.com/en-US/solutions/foodtesting-agriculture/Pages/default.aspx)



Accurate quantitation of mycotoxins Reasons

- European Commission Regulation (EC) No 1881/2006
 - set maximum residue levels (MRL) for mycotoxins
- Single target versus multi-target methods

BUT:

- Electrospray ionisation (ESI)
 - matrix effects hamper accurate mass spectrometric quantification
- Quantification of regulated mycotoxins at a very high degree of accuracy is required

concentration of mycotoxin [µg/kg]

Matrix effects in ESI-MS and quantitation

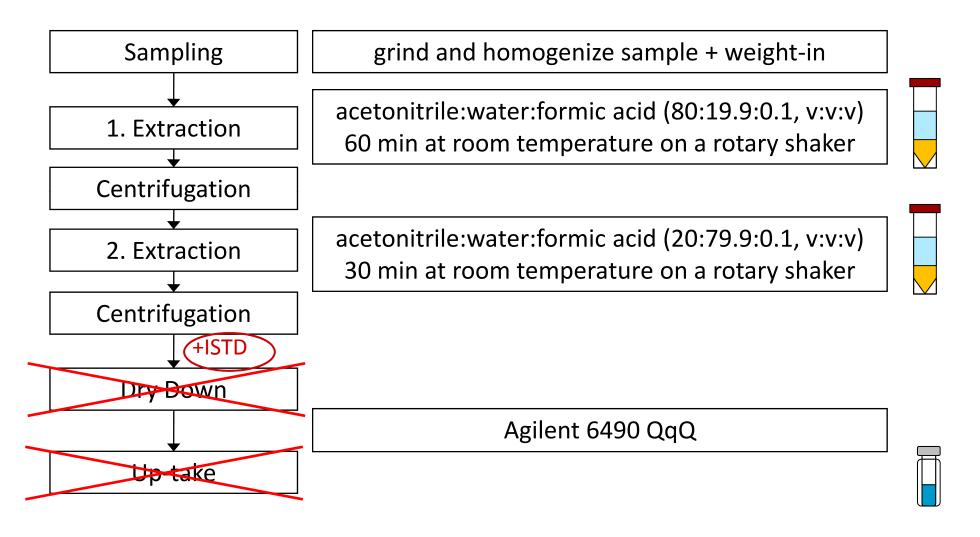
Approaches

- Dilution of the sample
 - method less sensitive
- Matrix matched calibration
 - tedious
 - differences within one commodity not compensated
- Standard addition to each sample
 - more runs
 - more costs (time and standards)
- Internal calibration
 - similar compounds (ZAN for ZEN)
 - deuterium or ¹³C-labelled compounds
 - until this year: only single analyte or group analyte IS-addition
 - usually associated with rather high costs



Stable Isotope Dilution Assay (SIDA)Aims

- Development of a method fulfilling:
 - covering all regulated mycotoxins in solid food matrices
 - providing best possible accuracy
 - easy to handle
 - cost effective
- Stable isotope dilution assay (SIDA) for LC-MS/MS
 - 11 mycotoxins
 - ¹³C-labelled compounds as internal standards
 - validation of the method for maize


Multiple Reaction Monitoring

Principles

Sample preparation

Universal extraction procedure

Stable Isotope Dilution Assay (SIDA)

HPLC method

Agilent 1290 Infinity LC system consisting of:

- binary pump
- wellplate sampler
- column compartment
- diode array detector (not used)

HPLC method

Separation column: ZORBAX Eclipse Plus C-18 RRHD column,

100 x 2.1 mm, 1.8 µm @ 30°C

Mobile phase: A: 5 mM HCOONH₄+ 0.1% formic acid

B: methanol + 5 mM HCOONH₄ + 0.1% formic acid

Flow: 0.35 ml/min

Gradient: 0.00 min 30 % B

0.50 min 30 % B 8.00 min 100 % B 9.50 min 100 % B

9.60 min 30 % B

Inj.Vol.: 3 µl

Stable Isotope Dilution Assay (SIDA)

MS method

CapVoltage:

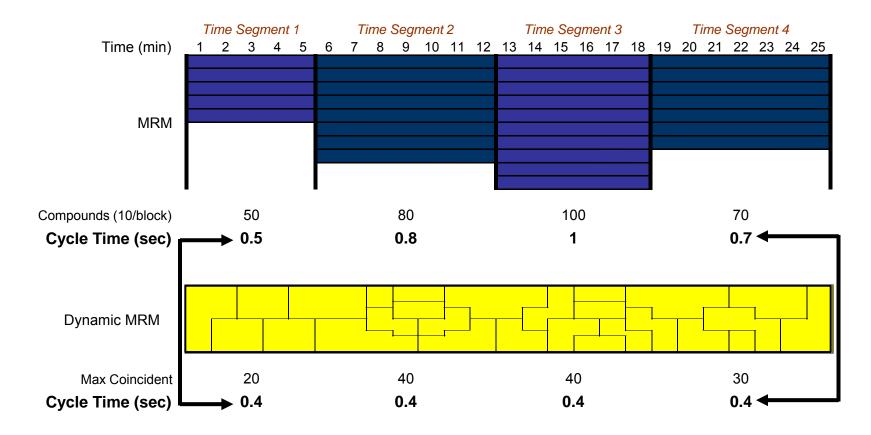
Nozzle voltage

Spray chamber conditions:

Gas temp.: 140°C
Dry gas: 16 l/min
Nebulizer: 25 psi
Sheath gas temp: 350°C
Sheath gas flow: 11 l/min

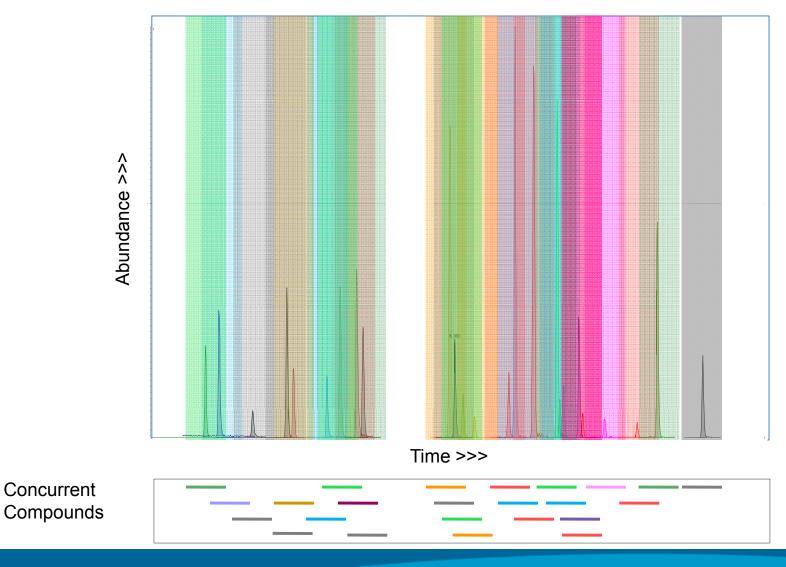
Positive	Negative	
4000 V	3000 V	
0 V	0 V	

Automatic setup of MRM tables based on selected cycle time, retention times and retention time windows for the individual compounds


•	Cycle time	400 ms
•	Interscan delay	3.5 ms
•	Total No. of MRMs	33
•	Maximum No. Of concurrent MRMs	12
•	Minimum Dwell time	39.8 ms
•	Maximum Dwell time	196.5 ms

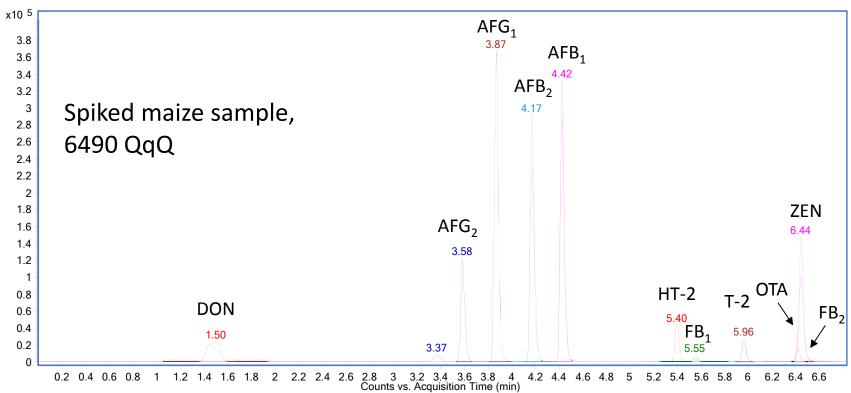
100

Dynamic MRM functionality


Comparison of MRM and DMRM

• 2 x shorter cycle times supports narrow chromatographic peaks, more analytes or longer dwell per analyte.

Dynamic MRM functionality


DMRM simulation

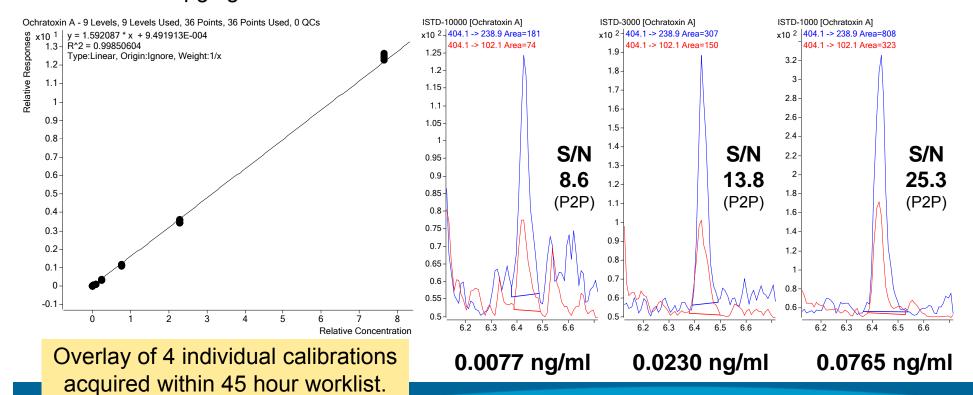
Stable Isotope Dilution Assay (SIDA)

Chromatogram

- due to same MRM transitions baseline separation required for:
 - fumonisin B2 and B3
 - aflatoxin G1 and ¹³C-aflatoxin B1
 - aflatoxin G2 and ¹³C-aflatoxin B2

Internal calibration in solvent

Aflatoxin B1

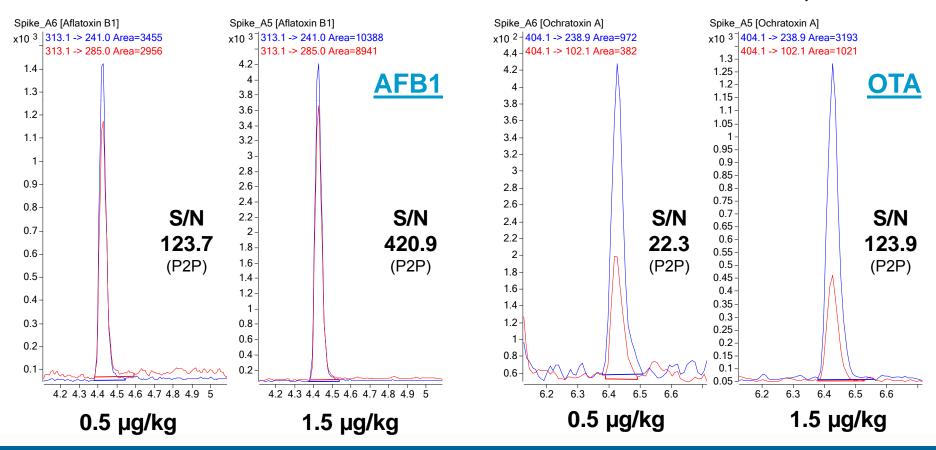

- Challenging compound due to low MRLs
 - 0.1 µg/kg in processed cereal based baby food
 - 2 to 12 μg/kg in nuts and cereals

Internal calibration in solvent

Ochratoxin A

- Challenging compound due to low MRLs
 - 0.5 µg/kg in processed cereal based baby food
 - 3.0 / 5.0 μg/kg in processed / unprocessed cereals
 - 10.0 µg/kg in dried vine fruit

Validation of SIDA method


Experimental setup and results

- Linear range (external calibration in solvent)
 - 4 orders of magnitude for all toxins, 5 orders for Aflatoxins, T-2, and ZEN
- Costs
 - Additional price per IS per sample is between 0.01 to 1.40 €
 - Price for all 11 IS per sample < 2.00 €
- Full validation for maize
 - Maize: matrix for which most mycotoxins are regulated
 - known for matrix effects and matrix interferences
 - more costs (time and standards)
 - Spiking with native mycotoxins before extraction
 - Six concentration levels with 3 replicates
 - Spiking with ¹³C-labelled mycotoxins before analysis to compensate matrix effects in ESI
 - No sample clean-up

Validation of SIDA method in maize

Extraction of spiked blank maize and reference materials

- Blank maize sample spiked with native mycotoxins before extraction
 - includes 10-fold dilution of matrix in the final extract due to extraction procedure

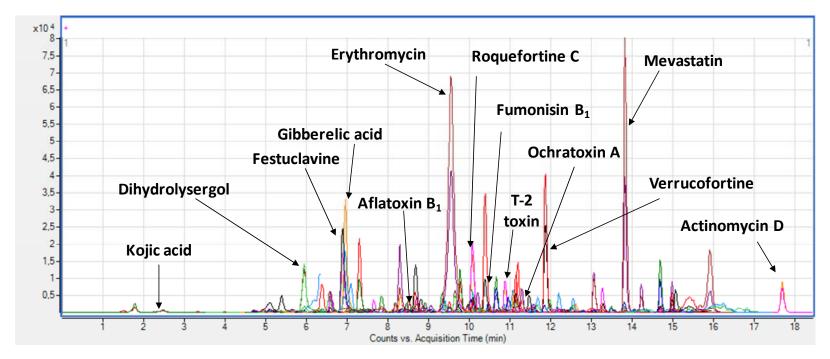
Validation of SIDA method

Results – Sample preparation

- Extraction efficiency
 - Determined by spiking of blank samples before extraction
 - First extraction: 80% acetonitrile content (60 min)
 - recovery between 80 and 110% except for FB1 and FB2
 - Second extraction: 20% acetonitrile content (30 min)
 - improved extraction recovery for FB1 and FB2 to approx. 90%
- Matrix effects
 - Signal suppression
 - 50 to 60% aflatoxins
 - 50% DON
 - Signal enhancement
 - Fumonisins, HT-2, T2, OTA
 - Effectively compensated by ISTD

Validation of SIDA method

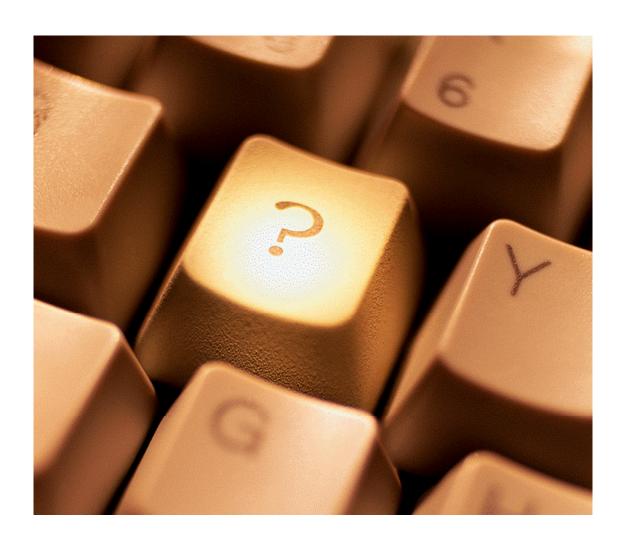
Results for maize


Analyte	LOQ in µg/kg	R _A ** in % ± RSD in %	
Aflatoxin B ₁	0.04	105	6
Aflatoxin B ₂	0.04	100	4
Aflatoxin G ₁	0.05	101	5
Aflatoxin G ₂	0.24	101	8
Deoxynivalenol	2.5	99	9
HT-2 toxin	2.0	98	7
T-2 toxin	0.17	99	6
Ochratoxin A	0.23	93	7
Zearalenone	0.97	103	11
Fumonisin B ₁	2.5	101	10
Fumonisin B ₂ 0.64		88	7

^{**} average for triplicate samples and 6 spiking levels

DMRM database for mycotoxins

Customize your mycotoxin method


- Multi-mycotoxin method for 242 mycotoxins and other fungal metabolites has been developed
 - Validated for different nuts
 - Transitions are shortly available as DMRM database

Summary

- UHPLC-MS/MS method
 - Improved chromatographic resolution
- Multiple extraction steps
 - Enhancement of extraction efficiency especially for fumonisins
- Dynamic MRM with fast polarity switching
 - Most abundant ionization mode and maximized dwell times within a single run
- Addition of internal standards after extraction
 - Compensation for matrix effects
 - Minimized costs
- Apparent recoveries of 88 to 105% for all mycotoxins
 - Evaluated by extraction of spiked maize samples
 - Validated by correct quantitation of 18 reference materials covering all toxin groups
- Sensitivity suitable for MRLs
 - Improved sensitivity of G6490 allows to omit sample concentration resulting in easier handling and improved robustness

Questions

Validation of SIDA method

Method characteristics and requirements

Analytes	Linear range ng/mL	LOQs (maize) µg/kg	MRLs (EC Reg. No 1881/2006)	Commodities
	0.0075 - 74.6	0.04	0.1	processed cereal-based baby food
Aflatoxin B₁			2.0-12 sum of aflatoxins: 4.0-15.0	nuts and cereals
Deoxynivalenol	0.23 - 225	2.5	200 500 - 1750	processed cereal-based baby food processed / unprocessed cereals, bread, pasta, breakfast cereals
Fumonisin B ₁	0.075 - 249	2.5	200 800 1000 / 4000	processed maize-based baby food
Fumonisin B ₂	0.075 - 251	0.64		maize-based breakfast cereals maize / unprocessed maize
HT-2 toxin	0.2 - 202	2.0	implementation of	unprocessed cereals and cereal
T-2 toxin	0.023 - 75.4	0.17	MRLs is expected in the near future	products
Ochratoxin A	0.023 – 23.0	0.23	0.5 3.0 / 5.0 10.0 15 / 20 / 80	processed cereal-based baby food processed / unprocessed cereals dried vine fruit spices / liquorice root / extract
Zearalenone	0.076 - 252	1.0	20 50 75-350	processed cereal-based baby food bread, biscuits, breakfast cereals processed / unprocessed cereals