Innovative Thermal Desorption From Agilent Technologies

Vivek Dhyani
Application Chemist
What is thermal desorption (TD)?
How does thermal desorption compare to Head Space?

- Thermal desorption (TD) is the process of extraction/desorption of analytes from the sample media using heat and a flow of inert gas.
- Head Space and TD system:
How do TD and SecureTD-Q work on Agilent systems?
Stage 1: primary (tube) desorption with optional (inlet) split

Patented TD heated valve is inert and low volume, ensuring quantitative recovery of high boilers
How do TD and SecureTD-Q work on Agilent systems?
Stage 2: secondary (trap) desorption with optional (outlet) split

Patented TD heated valve is inert and low volume, ensuring quantitative recovery of high boilers
Overview of the thermal desorption process
Sampling - Selective concentration – Desorption – Transfer - Measurement

- On-line
- Electrically-cooled cryogen free focusing trap
- Direct desorption of materials
- Canisters
- Sorbent Tubes
- Also purge and trap....

~200 µL injection of vapour into GC(-MS)

Water and volatile Interferences may be purged to vent

Agilent Technologies
Summary of Applications for
Food / Flavour / Fragrance

- Fragrance profiling of ingredients in consumer products / toiletries, plus identification of trace level toxics in product
- Characterisation of natural products
- Odour profiling
- Taint / off-odour analysis
- Volatile organics in dried foodstuffs
Direct Desorption

• Tube Sampling:
UNITY- Direct Heated Inlet for On-line Sampling of Headspace (HS) Vapours (Dynamic HS)

- Vapours from sealed vessels can be purged, with carrier gas, directly into the focusing trap.
- HS vapours in air can also be pumped from the sample container through the focusing trap.
- The sample inlet line is heated and inert.
- The sampling cycle may be repeated before trap desorption.
- Converts equilibrium HS into pulsed ‘purge and trap’.
Tube sampling

Diversified: Vapors Sampling

Diffusive Sampling

Axial and Radial
Pump Tube Sampling Contd

- Flec Pump:
 - Constant Flow
 - Calibration
 - 4-1000ml/ min

SKC- Constant Pressure
Calibration Required
5ml – 4 L/min

Agilent Technologies
Pumped Sampling- Extended

Multiple Tube Sampler-
Portable

MTS-32
Tube Sampling Extended

Micro Chamber

Agilent Technologies
Micro Chamber-Extended

- Off-line sampling of bulk vapours onto tubes
- Applicability not limited to materials emissions testing
- Used for sampling VOCs from bulk foodstuffs, consumer products
 - e.g. Tobacco, shampoo, dairy products
- Possibility of foil liners to hold sample
- Permeation accessory – food packaging testing
SPE-tD Cartridges-Tube Sampling

Liquid Samples

- PDMS coated cartridge acts as adsorbent
- Primarily used for sampling dissolved volatiles in aqueous solutions (e.g. water, beverages)
Auto-Sampler

Auto sampler
Tray
Ultra 50 : 50

Agilent Technologies
Automated TD-GCMS system for sorbent tubes
Electratively-cooled, focusing trap (cryogen-free) for operation over **wide boiling range**

Quartz cold traps: easy to change without breakage. The 60 mm x 2 mm bore sorbent bed and 100°C/sec heating rate give optimum retention and efficient desorption, **without risk of ice blockage.**

Other key features include:
- **Backflush** desorption
- Compatible with **splitless** desorption at 2 ml/min
- **No liquid cryogen** required.
- Compatible with both whole air and sorbent tubes.
- **Simple purging of solvent / water**

![Gas flow during focusing and trap desorption](image)

Quantitative retention of acetylene – No liq. N₂

Quantitative recovery of 5/6-ring PAHs

Agilent Technologies
Guarantee sample and data integrity with a method-compliant leak test

- The TD flow path is ‘broken into’ every time another TD sample tube is introduced. International standard methods for thermal desorption require:
 - A stringent leak test before each tube is desorbed
 - That the leak test occurs at ambient temperature and without gas flow
- Every tube on an Agilent UNITY or ULTRA-UNITY TD is automatically leak tested
- The leak test is carried out by isolating the tube, trap and other TD flow path components at elevated pressure. If there is a leak, the pressure in the flow path falls and this is detected by a pressure transducer
- Carrier gas continues to be supplied to the GC(-MS) throughout the leak test
- Tubes which fail the leak test are preserved intact for the operator to check at the end of a sequence & the numbers are logged in the sequence reporter. The instrument proceeds to the next sample.
- Leak test failures trigger the start of a blank GC run to keep the TD sequence synchronised with the GC(-MS) sequence
Seamless interfacing of the TD with Agilent 6890 EPC
carrier gas control facilitates Retention Time Locking

Resettable methods

• EPC through the entire TD-GC(MS) system offers total flow read-out, enhanced leak diagnostics and pneumatic programming that is directly linked to the GC oven programme.

Constant pressure

• Using the EPC module of a 6890 / 6850 S/S injector with column head-pressure-regulation enables complete stabilisation of TD-GC(-MS) retention times even under different split flow conditions

More reliable compound identification.

• Retention time stability allows the creation of Rt-locked databases for TD applications and the use of spectral Deconvolution Reporting Software (DRS) – see next slides

UNITYe – GCMS with and column head pressure
regulated EPC offers retention time stability independent of split flow, trap temperature, sorbent choice, etc

Agilent Technologies
Other enhancements offered by Agilent TD systems

• **Horizontal tubes prevent material samples shifting or falling out of the tube** during desorption. (Material samples – drug powders, plastic pellets, adhesives, etc – can move, fall out or even drip out of tubes which are manoeuvred and desorbed vertically. This can lead to blockage of the TD flow path and catastrophic system failure.)

• **Multiple tubes can be desorbed** into the focusing trap before secondary (trap) desorption and GC(MS) analysis. This offers one analysis for a ‘chain’ of multiple sorbent tubes used at a single monitoring point. It can also be used to boost sensitivity for ultra-trace level monitoring applications.
TC-20 - Multi-tube conditioning and dry-purge unit**

- The TC-20 offers cost-effective, simultaneous conditioning of up to 20 tubes
- Conditioning temperatures from 50 to 400°C
- The TC-20 also allows ambient temperature dry purging of up to 20 tubes simultaneously - in the sampling direction
- Delivers same flow through all tubes, however many or few are attached
- Allows use of low cost N₂
- Frees up TD-GCMS analytical capacity
Application areas for thermal desorption
(www.markes.com)

Environmental and occupational health & safety

Food, flavour, fragrance & odour profiling

Residual volatiles & materials emissions testing

Military, forensic and counter-terrorism
Direct Desorption

Direct desorption of volatiles from dried foodstuffs

Direct desorption of dried animal-feed pellets weighed into an empty glass tube

Typical analytes: Carvacrol, cineole, thymol, eugenol and hydrocarbons

Concentration: Sub to low ppm
Direct Desorption

Vapours extracted from a leaf sample. Direct desorption (blue trace) followed by repeat analysis of re-collected sample (black trace) run with lower split ratio to enhance sensitivity.

Typical analytes:
Range of terpenoid compounds, including:
α-cedrene, α-cadinene and T-cadinol

Concentration: Sub to low ppm
Aroma Analysis in Whisky

Purging of water and ethanol from whisky HS vapours allows selective concentration of key olfactory compounds – ketones, esters, etc.
Micro Chamber

Fragrance profiling of toiletries using the \(\mu \)-CTE

Fragrance profile from shampoo obtained using the \(\mu \)-CTE

Typical Analytes:
Esters, fatty acids, terpenes and solvents
SPE-tD extraction of organics from drinking water

Profile of sub-ppb level organics extracted from drinking water using the SPE-tD cartridge

Typical analytes:
Geosmin, methyl isoborneol, phenols and trichloroanisoles

Concentrations: Sub to low ppb
Chromatoprobe

Direct sample Insertion:

Sample Amount
Resolution
Targeted Analysis

(Adapted from Proff Amirov website for understanding and discussion).
Conclusion

Thank You