Tune into Your Mass Spectrometer

Troubleshooting GC/MS and tune report interpretation

Angela Smith Henry, Ph.D. Applications Chemist CSD Supplies Division

24 June 2021

DE44363.5399305556

Autotune - 5977

Today

How often should I tune?

...and how do I determine the frequency of tuning?

Troubleshoot problems using the mass spectrometer

Tune timestamp: 1/28/2021 7:05 AM (UTC-05:00) C:\MASSHUNTER\GCMS\1\5977\atuneH2_3mm2021.u

343,938

467,811

57,672

69.00

218.90

502.00

Obi-Wan Kenobi

US1934M023

Open

17

-25

2415

135.69

-0.033

Pos

On

3

989.4

100.0%

136.0%

16.8%

Temperatures and Pressures				
MS Source	230	Turbo Speed	100.0	
MS Quad	150	Hi Vac	N/C	

Low	High	Step	Speed	Threshold	Peaks	Base	Abundance	Total Ion
10.00	701.00	0.10	3	100	263	219.00	459,136	1,825,819

0.60

0.62

0.62

Iso Ratio	Iso Abund	Iso m/z	Rel Abund	Abund	Actual m/z	Target m/z
1.5%	4,839	70.00	100.0%	328,448	69.00	69.00
4.3%	19,640	220.00	139.8%	459,136	219.00	219.00
8.4%	4,669	503.00	16.9%	55,424	502.00	502.00

Air/Water Check: H20 ~1.3% N2 ~1.4% O2 ~0.2% CO2 ~0.5% N2/H20 ~108.0%

Column(1) Flow: 1.20 Column(2): 0.00 ml/min Interface Temp: 250

Ramp Criteria:

Ion Focus maximum 90 volts using ion 502; Electron Multiplier Gain 100464.862 Repeller maximum 35 volts using ion 219; Gain Factor 1.0046

Mass Gain Values(Scan Speed): 23(3) 34(2) 41(1) 66(0) 118(FS1) 126(FS2)

TARGET MASS:	50	69	131	219	414	502	1050
Amu Offset	135.7	135.7	135.7	135.7	135.7	135.7	135.7
Entrance Lens Offset	13.2	13.2	13.2	13.2	13.2	13.2	13.2

Let's Start at the Beginning of Tuning

Tuning Compound: Perfluorotributylamine (PFTBA)

Location of PFTBA on 5973

Tune Report: PFTBA Fragments

Tune Report: PFTBA Fragments

Tune Report: PFTBA Fragments

Tuning Compound: Perfluorotributylamine (PFTBA)

9

Reviewing a Tune Report

Review in sections

Each section contains important information:

- Profile data and tune parameters
- Scan data and isotope ratios
- Atmospheric gases and instrument performance data

The quality or validity of a tune should not be judged by a single parameter.

Section 1: Profile Data

Visually confirm that the peaks are:

- 1. Symmetrical
- 2. Without spikes or noise
- 3. Without splitting, tailing or fronting
- 4. Peak widths are optimal—0.6 m/z at 50% height, and 1.0 m/z at 0% height

Section 1: Profile Data

Review:

Peak widths are optimal – 0.6 m/z at 50% height, and 1.0 m/z at 0% height

Relative abundance – 69 and 219 m/z > 400,000 (400,000 to 600,000 counts), 502 m/z \sim 10% of base peak

• For etune, 219 and 69 m/z may be similar in abundance

Section 1: Tune Parameters

List of tune parameters for the **source**, **quadrupole**, and **detector**

Ion Polarity	Pos	PFTBA	Open
Emission	34.6	Mass Gain	-669
Electron Energy	70.0	Mass Offset	-35
Filament	1	Amu Gain	1145
Repeller	30.91	Amu Offset	123.00
Ion Focus	90.3	Width219	-0.023
Entrance Lens	22.7	DC Polarity	Neg
Ent Lens Offset	14.11	HED Enable	On
Ion Body	0.00	EM Volts	1139.0
Post Extractor 1	0	Extractor Lens	0.00
Post Extractor 2	0	Scan Speed	3
JetClean Flow Actual/[Setpoint]	0.00 [0.00]	Averages	3

Ion Polarity	Pos	PFTBA	Open
Emission	34.6	Mass Gain	-669
Electron Energy	70.0	Mass Offset	-35
Filament	1	Amu Gain	1145
Repeller	30.91	Amu Offset	123.00
Ion Focus	90.3	Width219	-0.023
Entrance Lens	22.7	DC Polarity	Neg
Ent Lens Offset	14.11	HED Enable	On
Ion Body	0.00	EM Volts	1139.0
Post Extractor 1	0	Extractor Lens	0.00
Post Extractor 2	0	Scan Speed	3
JetClean Flow	0.00	Averages	3
Actual/[Setpoint]	[0.00]		

Ion Polarity	Pos	PFTBA	Open
Emission	34.6	Mass Gain	-669
Electron Energy	70.0	Mass Offset	-35
Filament	1	Amu Gain	1145
Repeller	30.91	Amu Offset	123.00
Ion Focus	90.3	Width219	-0.023
Entrance Lens	22.7	DC Polarity	Nea
Ent Lens Offset	14.11	HED Enable	On
Ion Body	0.00	EM Volts	1139.0
Post Extractor 1	0	Extractor Lens	0.00
Post Extractor 2	0	Scan Speed	3
JetClean Flow Actual/[Setpoint]	0.00 [0.00]	Averages	3

Reviewing Atune and Etune Profile Data How do additional lenses affect the tune data?

Atune.u

Autotune - 5977

C:\MASSHUNT	ER\GCMS\1\5977\	atuneH2_300.u	
- 68 70 Mass (m/z)	218 220 Mass (m/z)	500 502 504 Mass (m/z)	-2 0 2 Mass (m/z)

Tune timestamp: 3/4/2021 4:28 PM (UTC-05:00)

-				
	Actual m/z	Abund	Rel Abund	Pw50
	69.00	538,135	100.0%	0.60
	218.90	366,411	68.1%	0.59
	501.90	20,333	3.8%	0.62

Ion Polarity	Pos	PFTBA	Oper
Emission	34.6	Mass Gain	9
Electron Energy	70.0	Mass Offset	-25
Filament	1	Amu Gain	2404
Repeller	34.90	. mu Offset	136.06
Ion Focus	90.3	Width219	-0.034
Entrance Lens	10.1	DC Polarity	Pos
Ent Lens Offset	14 94	HED Enable	Or
Ion Body	0.00	EM Volts	918.9
Post Extractor 1	0	Extractor Lens	0.00
Post Extractor 2	0	Scan Speed	3
JetClean Flow Actual/[Setpoint]	0.00 [0.00]	Averages	3

Obi-Wan Kenobi

US1934M023

Ten	Temperatures and Pressures			
MS Source	300	Turbo Speed	100.0	
MS Quad	150	Hi Vac	N/C	

Actual m/z	Abund	Rel Abund	Pw50
69.00	538,135	100.0%	0.60
218.90	366,411	68.1%	0.59
501.90	20,333	3.8%	0.62

Etune.u

Extraction Source Autotune - 5977

Actual m/z	Abund	Rel Abund	Pw50
69.00	478,780	100.0%	0.61
219.00	447,048	93.4%	0.62
502.00	29,005	6.1%	0.62

Post Extractor 1	0	Extractor Lens	-2.60						
Post Extractor 2	0	Scan Speed	3						
JetClean Flow Actual/[Setpoint]	0.00 [0.00]	Averages	3						
Tem	Temperatures and Pressures								
MS Source	300	Turbo Speed	100.0						

150 Hi Vac

Actual m/z	Abund	Rel Abund	Pw50
69.00	478,780	100.0%	0.61
219.00	447,048	93.4%	0.62
502.00	29,005	6.1%	0.62

MS Quad

Obi-Wan Kenobi

US1934M023

Open

21

-26

2417

135.00

-0.031

Pos

On 863.6

N/C

Section 2: Scan Data and Isotope Ratios

Autotune - 5977

Ion Polarity

Obi-Wan Kenobi

Open

US1934M023

🔆 Agilent

343,938

467,811

100.0%

136.0%

16.8%

Tune timestamp: 1/28/2021 7:05 AM (UTC-05:00)

69.00

218.90

C:\MASSHUNTER\GCMS\1\5977\atuneH2_3mm2021.u

Emission	34.6	Mass Gain	17
Electron Energy	70.0	Mass Offset	-25
Filament	1	Amu Gain	2415
Repeller	30.91	Amu Offset	135.69
Ion Focus	79.5	Width219	-0.033
Entrance Lens	20.2	DC Polarity	Pos
Ent Lens Offset	13.23	HED Enable	On
Ion Body	0.00	EM Volts	989.4
Post Extractor 1	0	Extractor Lens	0.00
Post Extractor 2	0	Scan Speed	3
JetClean Flow Actual/[Setpoint]	0.00 [0.00]	Averages	3

Pos PFTBA

0.60

0.62

0.62

Air/Water Check: H20 ~1.3% N2 ~1.4% O2 ~0.2% CO2 ~0.5% N2/H20 ~108.0%

Column(1) Flow: 1.20 Column(2): 0.00 ml/min Interface Temp: 250

Ramp Criteria:

Ion Focus maximum 90 volts using ion 502; Electron Multiplier Gain 100464.862 Repeller maximum 35 volts using ion 219; Gain Factor 1.0046

Mass Gain Values(Scan Speed): 23(3) 34(2) 41(1) 66(0) 118(FS1) 126(FS2)

TARGET MASS:	50	69	131	219	414	502	1050
Amu Offset	135.7	135.7	135.7	135.7	135.7	135.7	135.7
Entrance Lens Offset	13.2	13.2	13.2	13.2	13.2	13.2	13.2

DE44363.5399305556

Section 2: Scan Data and Isotope Ratios

Peaks: Between 100 to 250 when the system is clean and well equilibrated.

After maintenance, peaks may be elevated (300 to 400)

• As the system equilibrates, the number of peaks will decrease

High number of peaks (>600) = Detector noise or some form of contamination

Total ion: Summation of all ion fragment abundances. A high total ion current = leak or contamination.

Section 2: Scan Data and Isotope Ratios

Isotope ratios: Used to confirm instrument performance

Mass Comparison	Typical isotope ratio (±20%)
69/70	1.1%
219/220	4.4%
502/503	10.1%

Section 3: Atmospheric Gases and Instrument Performance Data

Air/Water Check: H20 ~1.3% N2 ~1.4% O2	~0.2% CO	2 ~0.5% N2	2/H20 ~108	.0%			
Column(1) Flow: 1.20 Column(2): 0.00 ml/	min Interf	ace Temp: 🛛	250				
Ramp Criteria:							
Ion Focus maximum 90 volts using ion 50	2; Electron	n Multiplier G	ain 100464.	862			
Repeller maximum 35 volts using ion 219;	Gain Factor	r 1.0046					
Mass Gain Values(Scan Speed): 23(3) 34(2	2) 41(1)	66(0) 118	(FS1) 126	(FS2)			
TARGET MASS:	50	69	131	219	414	502	
Amu Offset	135.7	135.7	135.7	135.7	135.7	135.7	

• Atmospheric gases (water, nitrogen, oxygen, and carbon dioxide) should be as low as possible.

13.2

13.2

13.2

13.2

13.2

13.2

- The ratio of nitrogen to oxygen in atmospheric air is 3.7:1.
- If the water is high, there will also be air present. Be patient and do not tune or acquire data until equilibrated.
- Why are two GC parameters included?

Entrance Lens Offset

- Tune parameters depend on flow rate and MS transfer line temperature
- For single quadrupole instruments, the gain factor is the detector gain needed to achieve the target PFTBA abundance.
 - Gain will be discussed in detail in a future webinar.

1050 135.7

13.2

What to Look For?

Autotune - 5977

Today

Tuning regularity

...and how do I determine the frequency of tuning?

Troubleshoot problems using the mass spectrometer

Tune timestamp: 1/28/2021 7:05 AM (UTC-05:00) C:\MASSHUNTER\GCMS\1\5977\atuneH2 3mm2021.u

343,938

467,811

57,672

69.00

218.90

502.00

Obi-Wan Kenobi

US1934M023

Open

17

-25

2415

135.69

-0.033

Pos

On

989.4

0.00

3

100.0%

136.0%

16.8%

Temperatures and Pressures						
MS Source	230	Turbo Speed	100.0			
MS Quad	150	Hi Vac	N/C			

PFTBA

Mass Gain

Amu Gain

Mass Offset

Amu Offset

Width219

DC Polarity

HED Enable

Extractor Lens

Scan Speed

Averages

EM Volts

Low	High	Step	Speed	Threshold	Peaks	Base	Abundance	Total Ion
10.00	701.00	0.10	3	100	263	219.00	459,136	1,825,819

0.60

0.62

0.62

Iso Ratio	Iso Abund	Iso m/z	Rel Abund	Abund	Actual m/z	Target m/z
1.5%	4,839	70.00	100.0%	328,448	69.00	69.00
4.3%	19,640	220.00	139.8%	459,136	219.00	219.00
8.4%	4,669	503.00	16.9%	55,424	502.00	502.00

Air/Water Check: H20 ~1.3% N2 ~1.4% O2 ~0.2% CO2 ~0.5% N2/H20 ~108.0%

Column(1) Flow: 1.20 Column(2): 0.00 ml/min Interface Temp: 250

Ramp Criteria:

Ion Focus maximum 90 volts using ion 502; Electron Multiplier Gain 100464.862 Repeller maximum 35 volts using ion 219; Gain Factor 1.0046

Mass Gain Values(Scan Speed): 23(3) 34(2) 41(1) 66(0) 118(FS1) 126(FS2)

TARGET MASS:	50	69	131	219	414	502	1050
Amu Offset	135.7	135.7	135.7	135.7	135.7	135.7	135.7
Entrance Lens Offset	13.2	13.2	13.2	13.2	13.2	13.2	13.2

Tuning Frequency

Follow lab SOP

Follow (regulated) method criteria

1	Tuesday – 2	Wednesday – 3	Thursday – 4 QuickTune or Tune Eval	Fn
nday – 8 ckTune or ine Eval	Tuesday – 9	Wednesday – 10	Thursday – 11	Friday –
day – 15	Tuesday – 16	Wednesday – 17 QuickTune or Tune Eval	Thursday – 18	Friday –
Iday – 22	Tuesday – 23	Wednesday – 24	Thursday – 25 QuickTune or Tune Eval	Friday –
day – 29	Tuesday – 30	Wednesday – 1	Thursday – 2	Friday -

"It depends" (but not daily)

Major changes

What is a Major Change?

What Should I Do if I Fall into the "It Depends?" Category You don't have to tune every day

Example month of tuning

Monday – 1	Tuesday – 2	Wednesday – 3	Thursday – 4 QuickTune or Tune Eval	Friday – 5
Monday – 8 QuickTune or Tune Eval	Tuesday – 9	Wednesday – 10	Thursday – 11	Friday – 12
Monday – 15	Tuesday – 16	Wednesday – 17 QuickTune or Tune Eval	Thursday – 18	Friday – 19
Monday – 22	Tuesday – 23	Wednesday – 24	Thursday – 25 QuickTune or Tune Eval	Friday – 26
Monday – 29	Tuesday – 30	Wednesday – 1	Thursday – 2	Friday – 3

How often do I tune?

- Depends on usage
- Once a week or less

How can I tune less often?

- Run tune evaluation
 - Run Quicktune
- Update detector gain coefficients

1. Have a Baseline

System start-up

- Tune system
- Run Tune Evaluation
- Run QC and cal samples

System Verification - Tune (Detector Optimization) Portion

Instrument Name : Obi-Wan Kenobi DC Polarity : Positive Filament 1 Current Vacuum status :High Vacuum: <no gauge=""> Tr</no>	orr Turbo:100%	
BaseTeak should be 69 or 219 Position of mass 69 Position of mass 200 Position of isotope mass 70 Position of isotope mass 200 Position of isotope mass 220 Position of isotope mass 503 Ratio of mass 70 to mass 63(0.5 - 1.6%) Ratio of mass 503 to mass 216(3.2 - 5.4%) Ratio of 219 to 69 should be > 2.4% and is Ratio of 210 to 69 should be > 2.4% and is	69.00 219.00 502.00 70.00 220.00 503.00 1.19 4.38 10.08 56.89 2.83	20 20 20 20 20 20 20 20 20 20 20 20 20 2
Mass 69 Precursor (<= 3%) Mass 219 Precursor (<= 6%) Mass 502 Precursor (<= 12%) 597x Air and Water Check Tue Mar 23 18:23:39 2021 c:MassHunderJGGMS3(1597)AtuneH2 300 21Mar12.u	0.40 1.07 1.54 Instrument: US1934M023	OK OK OK Obi-Wan Kenob:
Testing for a leak in the system Ratio of 18 to 69 (<20%) Ratio of 28 to 69 (<20%) Electron Multiplier Voltage	0.25 0.31 914	ok ok

Tune portion of System Verification passed.

Tune eval report

Agilent

1. Have a Baseline

Monday – 1 Tuesday – 2 Wednesday – 3 Thursday – 4 Friday – 5 New System start-up GC system maintenance Tune system start-up **Run Tune Evaluation** • Thursday - 11 Monday - 8 Tuesday – 9 Wednesday – 10 Friday – 12 Run QC and cal samples Tune Eval + GC Tune Eval + update gain maintenance QuickTune 2. Review QC and CCV coeff. Monday - 15 Tuesday – 16 Wednesday – 17 Thursday – 18 Friday – 19 **GC** maintenance What are peak responses New tune + Tune Eval + doing? QuickTune Friday – 26 Thursday – 25 Monday – 22 Tuesday – 23 Wednesday – 24 Tune Eval + GC 3. Keep records update gain maintenance coeff. Monday – 29 Tuesday – 30 Wednesday – 1 Thursday – 2 Friday – 3 Build a profile of tuning Failed ISTD Clean areas = clean source = occurrence source new tune

Autotune - 5977

Today

...and how do I determine the frequency of tuning?

Troubleshoot problems using the mass spectrometer

Tune timestamp: 1/28/2021 7:05 AM (UTC-05:00) C:\MASSHUNTER\GCMS\1\5977\atuneH2 3mm2021.u Obi-Wan Kenobi

Open

US1934M023

I	Emission	34.6	Mass Gain	17
I	Electron Energy	70.0	Mass Offset	-25
I	Filament	1	Amu Gain	2415
I	Repeller	30.91	Amu Offset	135.69
I	Ion Focus	79.5	Width219	-0.033
I	Entrance Lens	20.2	DC Polarity	Pos
I	Ent Lens Offset	13.23	HED Enable	On
I	Ion Body	0.00	EM Volts	989.4
I	Post Extractor 1	0	Extractor Lens	0.00
I	Post Extractor 2	0	Scan Speed	3
	JetClean Flow Actual/[Setpoint]	0.00 [0.00]	Averages	3

Pos PFTBA

Pw5	Rel Abund	Abund	Actual m/z
0.6	100.0%	343,938	69.00
0.6	136.0%	467,811	218.90
0.6	16.8%	57,672	502.00

Temperatures and Pressures						
MS Source	230	Turbo Speed	100.0			
MS Quad	150	Hi Vac	N/C			

Low	High	Step	Speed	Threshold	Peaks	Base	Abundance	Total Ion
10.00	701.00	0.10	3	100	263	219.00	459,136	1,825,819

Iso Ratio	Iso Abund	Iso m/z	Rel Abund	Abund	Actual m/z	Target m/z
1.5%	4,839	70.00	100.0%	328,448	69.00	69.00
4.3%	19,640	220.00	139.8%	459,136	219.00	219.00
8.4%	4,669	503.00	16.9%	55,424	502.00	502.00

Air/Water Check: H20 ~1.3% N2 ~1.4% O2 ~0.2% CO2 ~0.5% N2/H20 ~108.0%

Column(1) Flow: 1.20 Column(2): 0.00 ml/min Interface Temp: 250

Ramp Criteria:

Ion Focus maximum 90 volts using ion 502; Electron Multiplier Gain 100464.862

Repeller maximum 35 volts using ion 219; Gain Factor 1.0046

Mass Gain Values(Scan Speed): 23(3) 34(2) 41(1) 66(0) 118(FS1) 126(FS2)

TARGET MASS:	50	69	131	219	414	502	1050
Amu Offset	135.7	135.7	135.7	135.7	135.7	135.7	135.7
Entrance Lens Offset	13.2	13.2	13.2	13.2	13.2	13.2	13.2

Can a Tune Really Tell us About Problems with Our Mass Spectrometer?

What can we learn from a successful tune?

- Are there any leaks?
- Source health
- Filament health/age
- Electron multiplier health/age

Autotune Report (SQ)

• The single quadrupole autotune process optimizes the source and EMV to achieve between ~350,000 and ~600,000 for m/z 69 (or the base peak out of the three target ions).

• Gain is **not** taken into consideration when it **sets** the autotune EMV.

• However, the gain and gain factor is **calculated** for the EMV at the end of the autotune.

What Can We Learn from Autotune Report (SQ)

- Increasing Gain Factor... and EMV creeping up...
- Generally indicates that the **source is** getting dirty
- Usually happens over a shorter period (depends on the application)

What Can We Learn from Autotune Report (SQ)

•Cleaning the source causes the tune algorithm to check and reset tune values including the Gain.

DE44363.5399305556

What Can We Learn from Autotune Report (SQ)

- EMV increasing but Gain Factor remains relatively unchanged
- Indicates our EM is aging, which happens over several months
- It is able to achieve the ~500,000 without needing to increase the gain; however, an increase of EMV is required to maintain gain factor.
- EM is aging and needs to be replaced

Can a Tune Really Tell us About Problems with Our Mass Spectrometer?

What can we learn from a failed tune?

- Problems with source installation or parts
- Column installation depth
- Are there any leaks?
- Attempting to tune too soon

Does Column Installation Length Really Matter?

Installation length: 1-2mm beyond end of transfer line (flush with the ceramic tip)

Column installed too far into MS

- Compromised sensitivity
- Problems with tuning

135.7 135.7

> 13.2 13.2

5977 InertPlus or
older MSD

Column installed (very) short in transfer line Peaks begin to tail and lose response

= Normal column insertion distance Blue = 50.8 mm pulled back into the transfer line

Amu Offset

Entrance Lens Offs

Other Upcoming Mass Spec Webinars

Eliminate the Fear of Mass Spec | Agilent

Webinar Series

Eliminate the Fear of Mass Spec

Title	Date	Time	Presenter
How to clean an Agilent GCMS Ion Source: A	June 22, 2021	11 AM PT /	Paul Salverda, GCMS Regional System Specialist,
comprehensive guide		2 PM ET	Agilent Technologies, Inc.
Optimizing the GC to Get the Analytes to the MS	June 24, 2021	11 AM PT /	Matt Curtis, GC/MS Applications Scientist. Agilent
Efficiently		2 PM ET	Technologies, Inc.
The Power of MS and MassHunter Software for	June 29, 2021	11 AM PT /	Kirk Lokits, PhD, GC/MS Applications Scientist,
GCMS		2 PM ET	Agilent Technologies, Inc.

Agilent University

Why training? What can we help with?

Agilent University:

- Trained over 38K students: 2019
- 98% customer recommended ٠
- 4.6 out of 5 customer satisfaction •
- 94% excellent & very good •

Labs who want faster and more efficient learning options to help overcome training challenges

Overtasked staff

Staff turnover

Pressure to improve quality and productivity

Daily consistency with output and results

Reduce costs associated with lab operations

Flexible and convenient training options when and where you need it:

eLearning self-paced

In-person Training

Classroom

On-site or Virtual On-site

Trust Agilent for answers leveraging up-to-date knowledge and generally accepted practices for all your training needs

Virtual

Instructor Led

Contact Agilent Chemistries and Supplies Technical Support

•1-800-227-9770 Option 3, Option 3:

- Option 1 for GC and GC/MS columns and supplies
- Option 2 for LC and LC/MS columns and supplies
- Option 3 for sample preparation, filtration, and QuEChERS
- Option 4 for spectroscopy supplies
- Option 5 for chemical standards
- Available in the USA and Canada 8–5, all time zones
- gc-column-support@agilent.com
- Ic-column-support@agilent.com
- <u>spp-support@agilent.com</u>
- <u>spectro-supplies-support@agilent.com</u>
- <u>chem-standards-support@agilent.com</u>

Help Diagnose the Issue with this Tune Report

- What do you see as possible issues?
- What could be the possible causes?

