Untargeted Lipidomics ASMS 2019

Dr. Sheher Banu Mohsin Agilent Technologies

The Lipidome

Non-Polar Lipids **Polar Lipids**

Reference: A comparative analysis of two sample preparation methods for the multi-omic analysis of proteins, lipids, and metabolites

ASMS 2019 WP-519

Melissa R. Pergande^{1,2}, Sheher Banu Mohsin², Limian Zhao³, and Stephanie M. Cologna¹ University of Illinois at Chicago, Department of Chemistry, Chicago, IL, USA

²Agilent Technologies Inc, Wood Dale, IL, USA

³Agilent Technologies Inc, Wilmington, DE, USA

Experimental Design

Goals: To separate proteins, lipids and metabolites reproducibly for multi-omic profiling of complex samples via mass spectrometry

Method development using Avanti Splash Mix, HeLa cell and murine cerebellar tissue lysates cerebellar tissue

- Modified MPLEx
- Captiva EMR—Lipid

Experimental workflow

Captiva EMR—Lipid Plasma Protocol Used in Experiments

Developed by Limian Zhao and Alex Apffel

900 μ L of 1% methanol in acetonitrile was added to the extract (100 μ L), vortexed for 10 seconds, and sonicated for 10 min

The mixture was added to the EMR—Lipid cartridge and loaded at 4-5 drops per min

Washed x2 with 1 mL of 1:9 water:acetonitrile

Flow through/wash dried at 30oC under nitrogen and stored at -80oC

Eluted with 1mL of 1:1 chloroform:methanol twice.

Dried at 30oC under nitrogen and resuspended in 100 µL 9:1 methanol:chloroform prior to analysis via SFC-MS on an Agilent 6545 QTOF mass spectrometer

Lipid Analysis of HeLa Samples: Chromatography

MPLEx

Captiva EMR—Lipid

Lipid Analysis of HeLa Samples: Lipid Annotation

EMR—Lipid

MPLEx

Lipid Analysis of HeLa Samples: Statistical Analysis

Captiva EMR—Lipid is more reproducible

Lipid Analysis of Cerebella Samples: Chromatography

MPLEx

EMR—Lipid

Lipid Analysis of Cerebella Samples: Lipid Annotation

EMR—Lipid

Lipid Analysis of Cerebella Samples: Statistical Analysis

Captiva EMR—Lipid is more reproducible

Proteomics via AJS-ESI (10 µg on-column)

Protein pellets were resuspended in 5% SDS and processed using the S-trap method

MPLEx Approach

5384 + 176 peptides and 1866 + 93 proteins HeLa cells

5111 + 146 peptides and 1798 + 51 proteins cerebellar tissue

Captiva EMR—Lipid Approach

5322 + 110 peptides and 1922 + 22 proteins HeLa cells

5378 + 138 peptides and 1978 + 54 proteins cerebellar tissue

Representative BPCs

Cerebella EMR—Lipid

Cerebella MPLEx

HeLa EMR—Lipid

HeLa MPLEx

Agilent Instrumentation For Lipidomics

SFC Fundamentals

Substance	Density (g/cm³)	Viscosity (cP)	Diffusivity (cm ⁻² -s ⁻¹)
Gas	10 ⁻³	10-2	0.2
Supercritical Fluid	0.5	5x10-2	5x10 ⁻⁴
Liquid	1	1	10-5

- Supercritical CO₂ is the mobile phase
- Viscosity is similar to a gas
- Density and solubilizing power of liquids
- Intermediate diffusivity between gases and liquids.

SFC operation requires the mobile phase (CO₂) be maintained in a supercritical state above a critical temperature (T_c: 31°C) and critical pressure (P_c: 74bar)

Where Does SFC Fit Relative to HPLC?

Solute Families

Agilent SFC/Q-TOF System

New generation SFC/MS: a robust, routine, automated analytical tool

Splitter kit

Global Lipid Separation

- Column selection is a key variable for SFC separations
- For the SPLASH Lipidomix® used for optimization, no single column offered both adequate selectivity and resolution across all classes of lipids

 Instead a combination of a "normal phase" (silica) and a reversed phase (C18) column yielded the best results

Global Lipid Separation: Normal Phase/HILIC

Global Lipid Separation: Fluorophenyl and Reversed Phase

Global Lipid Separation: Combined Columns

Rapid, efficient intra/inter class lipid separation based on SFC-MS

Sheher Mohsin¹, Alex Apffel¹, Kevin Williams²

¹Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, CA, USA ²UCLA, Los Angeles, CA, USA

Poster Presented at the 7th International Singapore Lipid Symposium (iSLS7), Singapore.

Iterative MS/MS for Improved Coverage

Lipidomics Workflow

Annotate lipid based on MS/MS level information

Align annotated lipids with MS1 data based on *m/z* and RT

Normalize and statistically evaluate annotated data and

Informatics and Annotation with SimLipid

Case Study 1 – McGill University MP-551 Study conducted in collaboration with Dr. Peter Siegel and Dr. Daina Avizonis

Reference:

Supercritical Fluid Chromatography Separation and Shotgun Lipidomics with High Resolution Mass Spectrometry for the Study of Breast Cancer Metastasis

Sheher Mohsin¹; Sanjib Meitei², Peter Siegel³; Daina Avizonis³; Gaelle Bridon¹

¹Agilent Technologies Inc, Wood Dale, IL; ²PREMIER Biosoft, Indore, Madhya Pradesh, India; ³Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada

Studying lipids in breast cancer metastasis

Breast Cancer Metastasis Research Group

Peter Siegel Ph.D., Principal Investigator

Breast Cancer Res. 2015; 17(1): 45.

Published online 2015 Mar 27. doi: [10.1186/s13058-015-0558-3]

PMCID: PMC4413545

PMID: 25882816

Granulocytic immune infiltrates are essential for the efficient formation of breast cancer liver metastases

<u>Sébastien Tabariès</u>, <u>Véronique Ouellet</u>, <u>Brian E Hsu</u>, <u>Matthew G Annis</u>, <u>April AN Rose</u>, <u>Liliane Meunier</u>, <u>Euridice Carmona</u>, <u>Christine E Tam</u>, <u>Anne-Marie Mes-Masson</u>, <u>and Peter M Siegel</u>

Dr. Daina Avizonis - Facility Manager / Sr. Research associate

Centre de recherche sur le cancer Rosalind et Morris Goodman

Lipids in Liver Metastasized 2776 Cells Separated by SFC

Internal Standard Response Across Samples with SFC

Lipid Features

Feature Table 1004 Features

Lipid Matrix Plot in Mass Profiler Professional: PC-Ether in 2776 and 4T1 Cells

Case Study 2 – UIC Melissa Pergande (Ph.D Thesis) and Stephanie Cologna

Studying lysosomal storage disorder

Comparing the liver extract of mutant and wildtype mice

Reversed-phase LC Method

UHPLC: Agilent 1290 Infinity II System: HiSpeed pump, VialSampler, Multicolumn thermostat

		LC Conditions		
Column	Guard : Agilent InfinityLab Porc Note: System passivation foli	nityLab Poroshell 120 EC-C18, 3.0x100mm, 2.7µm, P/N 695975-302 shell 120 EC-C18, 3.0x5mm, 2.7µm, P/N 823750-911 owed by column/guard/nebulizer phosphation can improve PA/PS p nation guidelines can be found in the current G6412-60004 Analysis C		
Column temperature	50 °C			
Injection volume	No more than 5ul, can be depe			
Autosampler temp	4 °C			
Needle wash	15 seconds in wash port (50:50	methanol/isopropanol)		
Mobile phase	A = 10mM ammonium acetate, B = 10mM ammonium acetate,	ol		
Flow rate	0.6 mL/min			
Gradient program	Time 0.00 1.00 3.50 10.00 11.00 17.00 17.10 19.00	B (%) 70 70 86 86 100 100 70	Full LC and details to be upcoming Ap (2019)	included in
Stop time	19 min			
Post time	none			
Observed column pressure	170-330 bar			

Results with MassHunter Lipid Annotator

Increased Level of BMP in Mutant

BMP and PG

Phosphatidylglycerol and Bis(monoacylglycerol)phosphate (BMP)

Kendrick Mass Defect Plot

Summary

We have discussed the Lipidomics Workflow from separation to differential analysis using the latest Agilent tools for lipidomics

Two case studies were presented

- Breast cancer metastasis and lipid changes
- Lysosomal lipid storage disorder