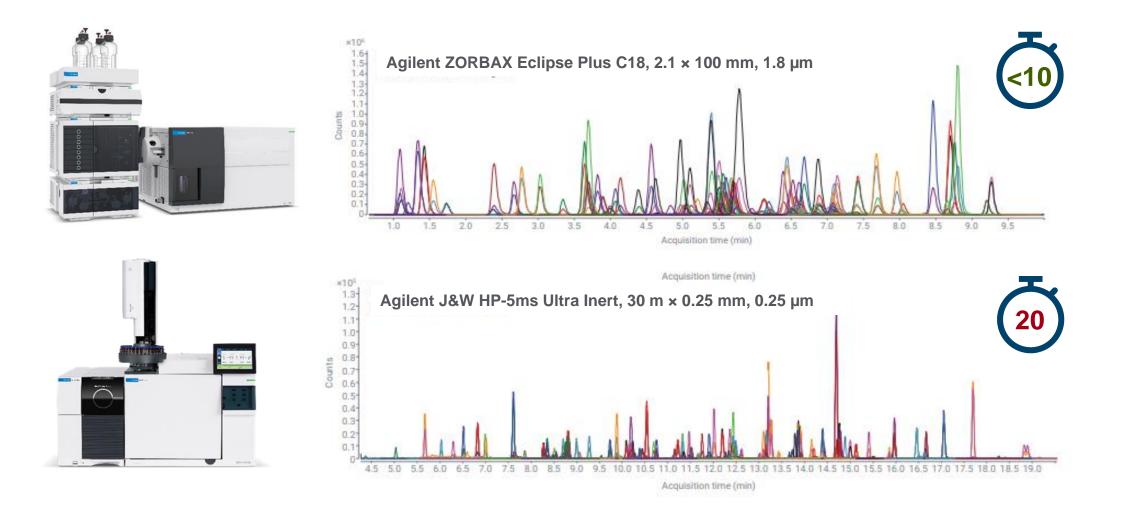
How to Go Fast and Make Your Carrier Gas Last

Scaling GC columns to improve speed and sustainability

Ashlee Gerardi GC Columns Product Manager November 16, 2023

Today's Presentation



- Review GC column parameters and choices for fast GC
- Scaling GC dimensions for speed
- Conversion to hydrogen carrier
- Five quick tips to conserve helium

Conventional GC/MS Analysis Can Be 2x Longer UHPLC Analysis

240 multiresidue pesticides in bell peppers using LC/MS/MS and GC/MS/MS

Comparing Fast LC Columns to Fast GC Columns

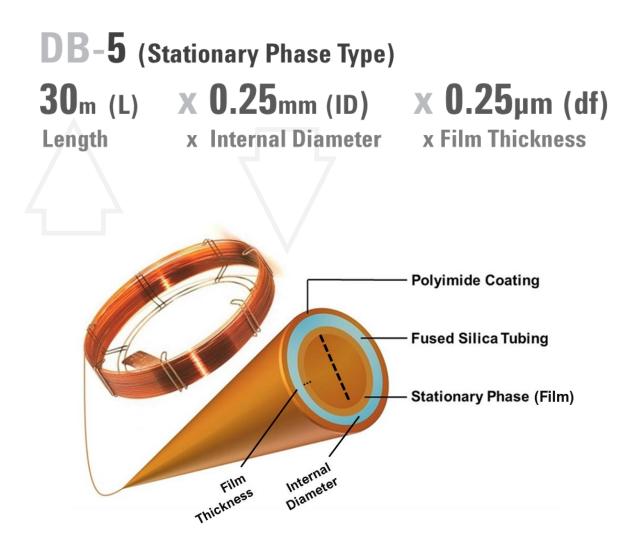
Fast GC can be configured on the 8890, 7890, 6890 GC Systems and Intuvo 9000 GC System

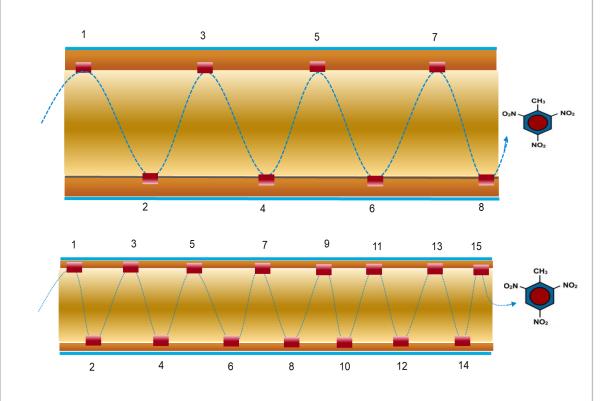
Technique	Particle Diameter (dp)	Internal Diameter (id)	Length (L)	Technique	Length (L)	Internal Diameter (id)	Film Thickness (df)
Conventional HPLC	5 µm	4.6 mm	150 mm	Conventional GC	30	0.53 mm	0.5 µm
Conventional LC(MS)	3 µm	2.1 mm	100 mm	Conventional GC(MS)	30	0.25 mm	0.25 μm
Ultra High-Performance LC	1.9 µm	2.1 mm	50 mm	Ultra High-Performance GC	20	0.18 mm	0.18 µm

- Lower particle diameter increases efficiency
- Lower particle diameter greatly increases backpressure (requires specific instrumentation)
- Internal diameter and length are scaled

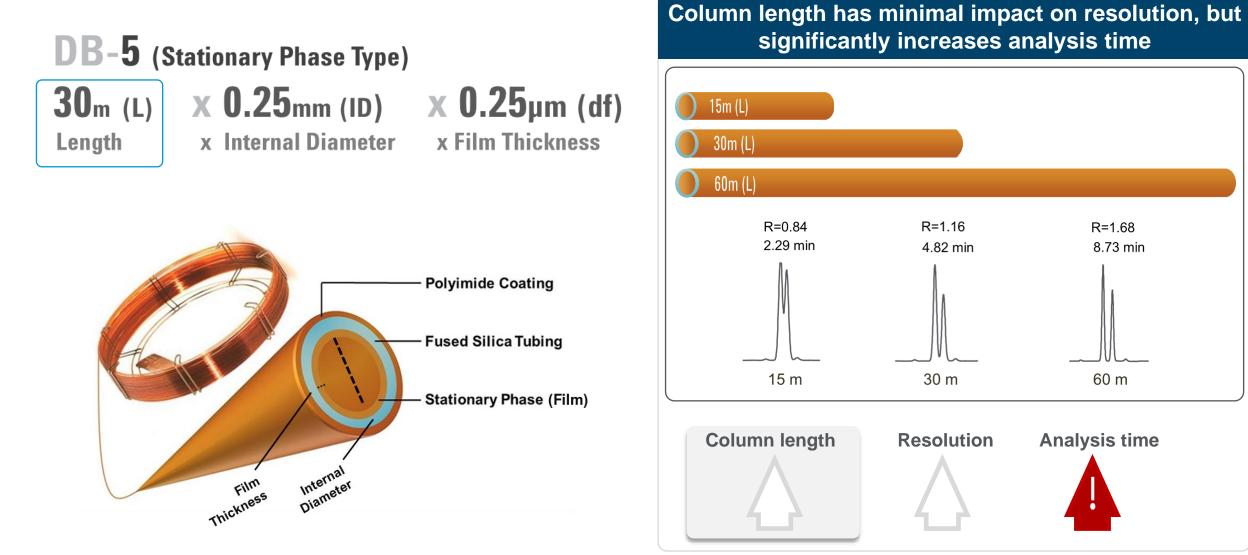
- Lower internal diameter increases efficiency
- Lower internal diameter increases backpressure
- Film thickness and length are scaled

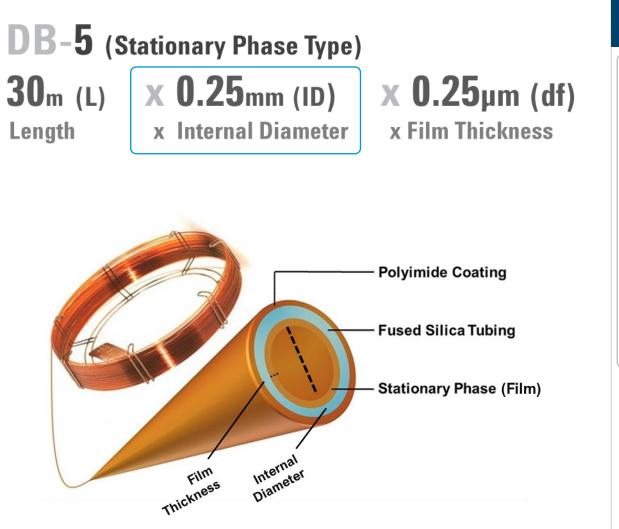
Scaling GC Columns


How to maintain your chromatography when increasing your speed

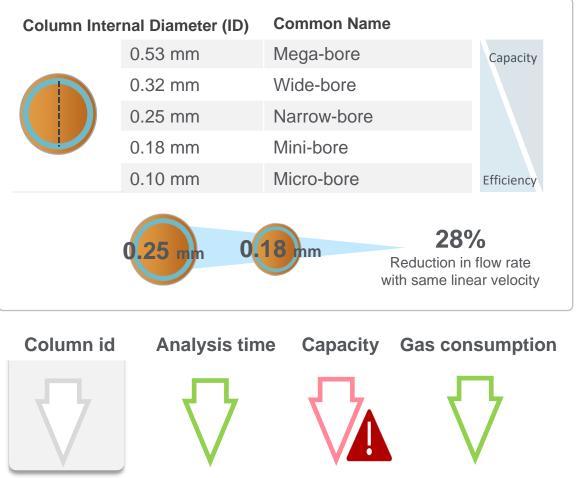


Reviewing the Parameters of a GC Column

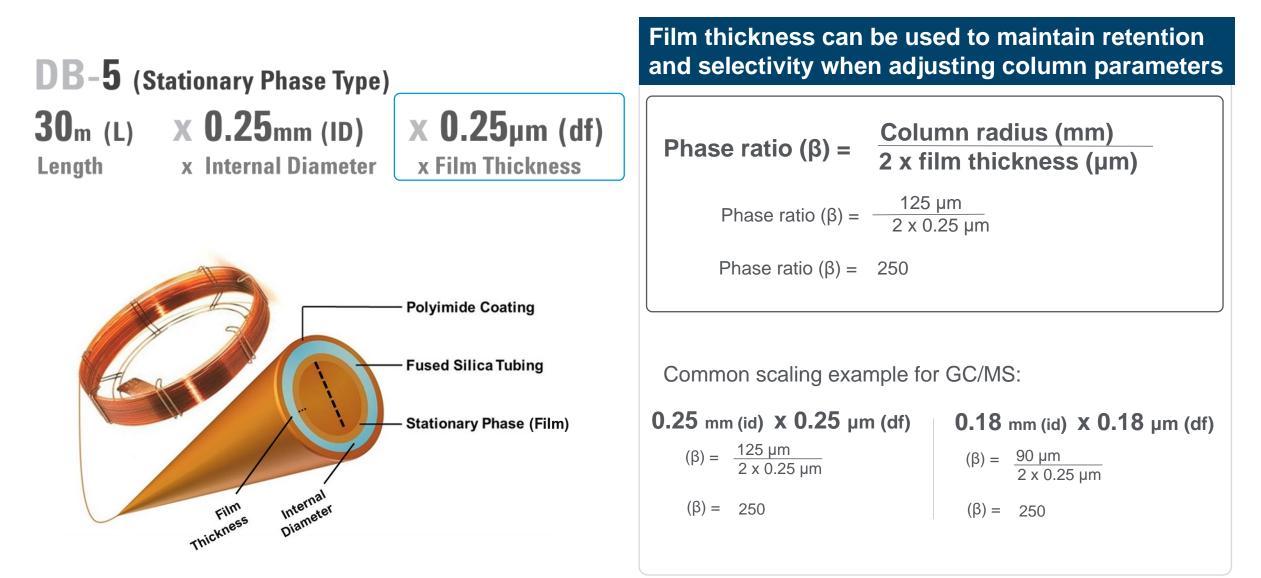

GC column interactions (efficiency) can be increased by increasing column length or by decreasing column id



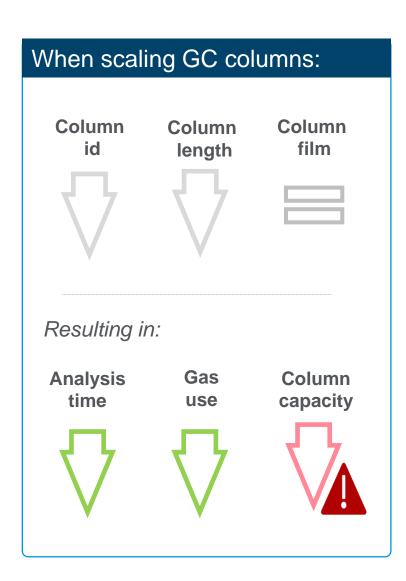
The Impact of GC Column Length

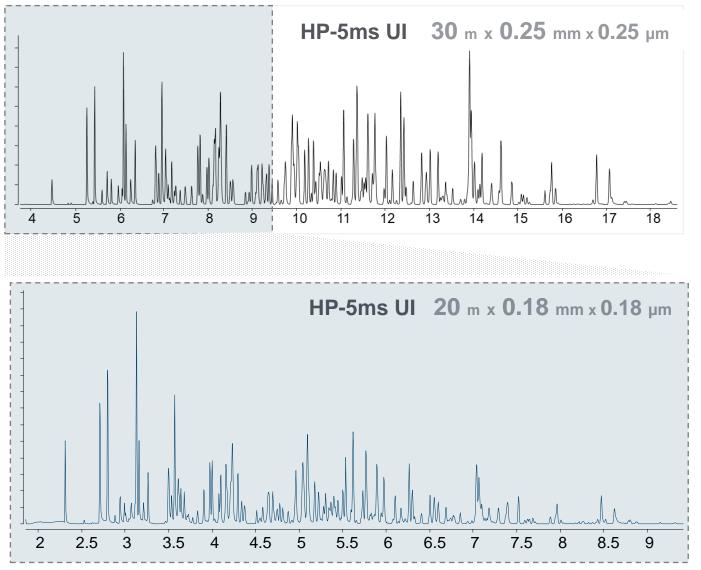


The Impact of GC Column Internal Diameter



Column internal diameter reduces analysis time, gas consumption




The Impact of GC Column Film Thickness

Column Scaling Example

Agilent publication 5994-4967EN

Scaling Your GC method

GC Method Translator Software can guide and simplify

Speed gain		La	st file imp	orted:				Q	BRE
 Translate 			Origin	al Method F	Parameters		Calculated M	ethod Paran	neters
Best Efficiency				Gas He	•		Gas	H2 -	
	Length	(m)			30 m	à	20 m		
Inner Diar	meter (j	ım) ,			250 µm	Ē	180 µm		
Film Thick	kness (j	ım)			0.25 μm	Ē	0.18 µm		
P	hase Ra	atio			249.25	Ē	249.25	• • • • • • •	· · · ·
Inlet Pressu	ure (gau	ge)			5.591 psi		5.7225 psi		
Outlet Flow	w (mL/n	nin)			0.64712 mL/min		0.5824 mL/min		
Average Velo	ocity (cn	n/s)			30 cm/sec		51.748 cm/sec	1 1 1 1 1 1 1	
Outlet Pres	ssure (a	bs)			0 psi 🔹	Ē	0 psi 🔹		
Ho	oldup Ti	me			1.6667 min		0.64415 min		
Outlet Velo	ocity (cn	n/s)	S		Infinity cm/sec		Infinity cm/sec		
) Isothermal	#	Ramp (°C/m		Final Temp (°C)	Final Time (min)	#	Ramp Rate (°C/min)	Final Temp (°C)	Final Time (min)
-	Init			100	1	Ini	t	100	0.39
Ramps	1	10		200	1	1	25.874	200	0.39
2	2	10		300	3	2	25.874	300	1.16
			Tota	I Run Time 25.0	00 min		Total	Run Time 9.67 r	nin
Pressure Units			Original	Column Capacit	y: 1.71		Translated Colur	nn Capacity:	0.61
PSI -							The column capa method is 36% of capacity. You may injection volume.	the original colu need to adjust y	ımn

- Allows you to port a current GC method to another GC, while ensuring that relative retention order is maintained.
- This tool can used to:
 - Speed up an analysis
 - Change detectors (for example, from FID to MS)
 - Change carrier gas type
 - Adjust column dimensions

Download GC tools

Free download available

GC Calculators and Method Translator Software | Agilent

To begin:

- Choose translate option
- **2-3x** improvement in analysis time can be expected
- Input original method parameters

Method Translator

O Speed gain		Last file imp	orted:							Q I	₿₿₿
 Translate 		Origin	al Method	Pa	arameters		(Calculated M	ethod I	Param	eters
O Best Efficiency			Gas He		•			Gas	H2	•	
Le	ength (m)	_		1	30 m	ے ب	5 [20 m	-		
Inner Diame	eter (μm)			1	250 µm		5 [180 µm			
Film Thickn	ess (µm)				0.25 μm		5 [0.18 µm			
Pha	ase Ratio			2	249.25	ے ا	5 [249.25			
Inlet Pressure	e (gauge)			[5.591 psi		5 [5.7225 psi			
Outlet Flow ((mL/min)				0.64712 mL/min		5 [0.5824 mL/min			
Average Veloci	ity (cm/s)	1 1 1 1	• • • • • •	3	30 cm/sec		5 [51.748 cm/sec			
Outlet Press	ure (abs)				0 psi 🗸	ے ا	5	0 psi 🗸			
Hold	dup Time			1	1.6667 min	ے ا	5 [0.64415 min			
Outlet Veloci	ity (cm/s)	<i>₽</i>		h	nfinity cm/sec		I	Infinity cm/sec			
		mp Rate (/min)	Final Temp (°C)		Final Time (min)		#	Ramp Rate (°C/min)	Final Te	emp	Final Time (min)
O Isothermal	Init	,,	100		1		Init		100		0.39
 Ramps 	1 10		200		1		1	25.874	200		0.39
2	2 10		300		3		2	25.874	300		1.16
		Total	Run Time 25	.00) min			Total I	Run Time	9.67 m	in
Pressure Units PSI •		Original	Column Capaci	ty:	1.71		r	Translated Colun The column capac method is 36% of apacity. You may njection volume.	ity of the the origin	transla al colu	mn

Carrier gas and flows:

Original Met	hod Pa	arameters	Calculated Method Parameters						
Gas	He	•	Gas	H2	•				

• Alternate carrier gases can be selected

Inlet Pressure (gauge)	•	5.591 psi	Ē	5.7225 psi
Outlet Flow (mL/min)	• • • • • • • • • • • •	0.64712 mL/min		0.5824 mL/min
Average Velocity (cm/s)	• • • • • • • • • • • •	30 cm/sec	$\overline{}$	51.748 cm/sec
Outlet Pressure (abs)		0 psi 🗸	Ē	0 psi 🔹
Holdup Time		1.6667 min		0.64415 min

- Adjust linear velocity (reduction in gas consumption dependent on id and flow)
- Be sure to check for positive inlet pressure
- Match outlet pressure to detector
 - Atmospheric -14.696
 - Vacuum (MS) 0

Method Translator

O Speed gain	Last file imported:		
Translate Best Efficiency	Original Method P _{Gas He}	Parameters	Calculated Method Parameters Gas H2
Length (m	n)	30 m	20 m
Inner Diameter (µm	a)	250 μm	180 μm
Film Thickness (μm	n)	0.25 μm	0.18 μm
Phase Rati	•	249.25	249.25
Inlet Pressure (gauge	2) (5.591 psi	5.7225 psi
Outlet Flow (mL/mir	(n)	0.64712 mL/min	0.5824 mL/min
Average Velocity (cm/s	() (i + + + + + + + + + + + + + + + + + +	30 cm/sec	51.748 cm/sec
Outlet Pressure (abs	5)	0 psi 🔹	0 psi 🗸
Holdup Tim	e	1.6667 min	0.64415 min
Outlet Velocity (cm/s	5)	Infinity cm/sec	Infinity cm/sec
# (Ramp Rate Final Temp °C/min) (°C)	Final Time (min)	# Ramp Rate Final Temp Final Time (°C) (min)
O Isothermal	100	1	Init 100 0.39
Ramps 1 1	0 200	1	1 25.874 200 0.39
2 2 1	0 300	3	2 25.874 300 1.16
	Total Run Time 25.0	00 min	Total Run Time 9.67 min
Pressure Units PSI •	Original Column Capacity	r. <u>1.71</u>	Translated Column Capacity: 0.61 The column capacity of the translated method is 36% of the original column capacity. You may need to adjust your injection volume.

Column parameters:

Length (m)		30 m	Ē	20 m
Inner Diameter (µm)	•••••	250 µm	Ē	180 µm
Film Thickness (µm)		0.25 µm	Ē	0.18 μm
Phase Ratio		249.25	Ē	249.25

- Reduce column length (10 m, 20 m, 30 m, 60 m are the standard lengths)
- Reduce id

(530 μ m, 320 μ m, 250 μ m, 180 μ m are the standard ids)

Match phase ratios
 (to maintain retention/selectivity)

○ ⊙ **Oven program:**

Method Translator

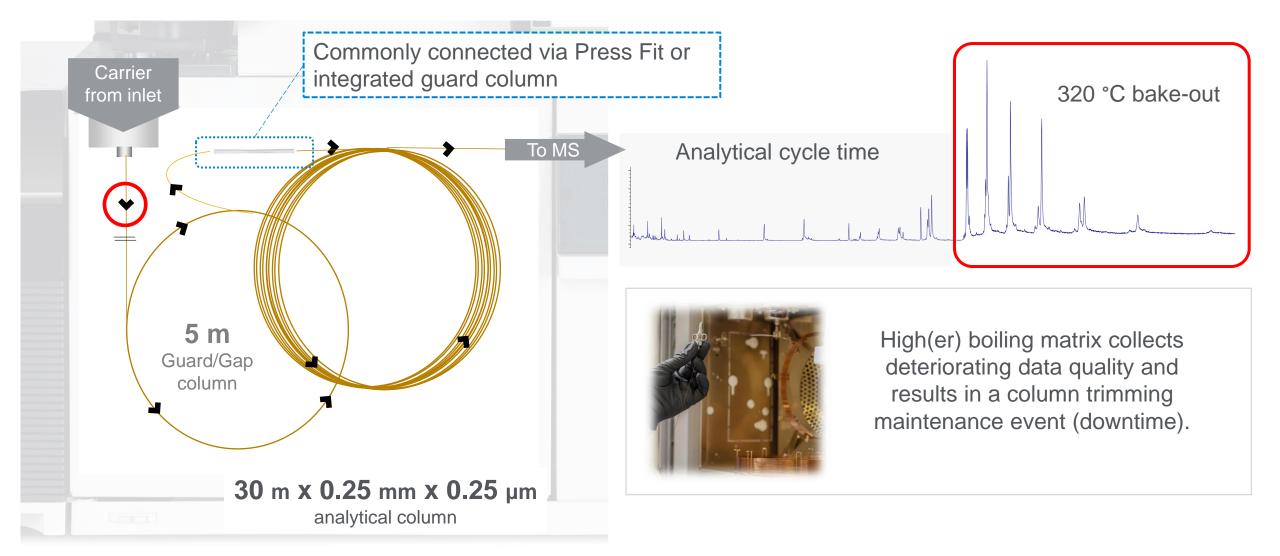
O Speed gain		Last file imp	orted:				Q	₿₿₽
⊙ Translate		Origir	al Method	Parameters		Calculated N	1ethod Param	neters
O Best Efficiency			Gas He	-		Gas	H2 -	
Le	ength (n	ı)		30 m	Ē	20 m	-	
Inner Diame	eter (µn	n)		250 µm	Ē	180 µm	••••	
Film Thickn	iess (µn	n)		0.25 μm	Ē	0.18 µm	• • • • • • •	1 1 1
Pha	ase Rati	•		249.25	Ē	249.25	· · · · · · · · · · · · ·	
Inlet Pressure	e (gauge	e)		5.591 psi		5.7225 psi		
Outlet Flow	(mL/mir	a)		0.64712 mL/min		0.5824 mL/min	•	
Average Veloci	ity (cm/	5)	• • • • • • •	30 cm/sec		51.748 cm/sec		
Outlet Press	ure (ab	5)		0 psi 🔹	Ē	0 psi 🔹		
Hold	dup Tim	e		1.6667 min	\Box	0.64415 min		
Outlet Veloci	ity (cm/s	5)		Infinity cm/sec		Infinity cm/sec		
O Isothermal		Ramp Rate °C/min)	Final Temp (°C)	Final Time (min)] [# Ramp Rate (°C/min)	Final Temp (°C)	Final Time (min)
č	Init		100	1		nit	100	0.39
Ramps	1 1	0	200	1	1	25.874	200	0.39
2	2 1	D	300	3	2	25.874	300	1.16
		Tota	I Run Time 25	00 min		Total	Run Time 9.67 n	nin
Pressure Units		Original	Column Capaci	ty: 1.71		Translated Colu	mn Capacity:	0.61
PSI •						method is 36% of	icity of the transla f the original colu y need to adjust y	mn

	#	Ramp Rate (°C/min)	Final Temp (°C)	Final Time (min)	#	Ramp Rate (°C/min)	Final Temp (°C)	Final Time (min)
ermal	Init		100	1	Init		100	0.39
s	1	10	200	1	1	25.874	200	0.39
÷	2	10	300	3	2	25.874	300	1.16
		Tota	I Run Time 25.0	00 min		Tota	Run Time 9.67 r	nin

- Adjustable and predictive
- Be sure to ramp within instrument specifications direct heating versus air-batch
- Consider cycle times (run-time + cool-down)
- Consider backflushing instead of "bake-out" steps

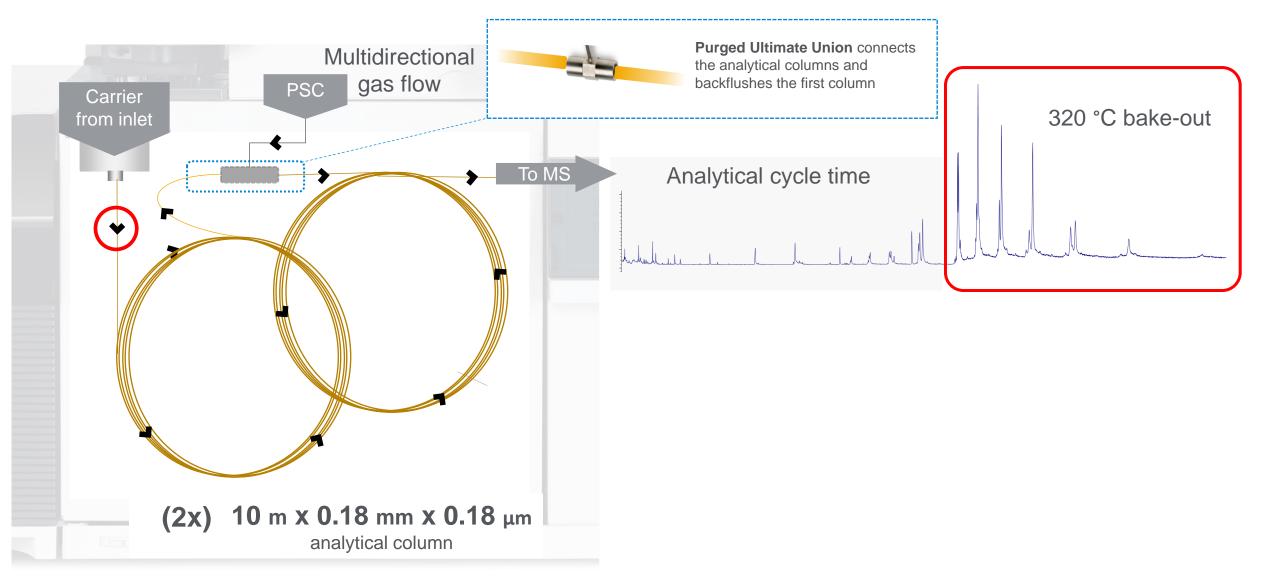
Method Translator

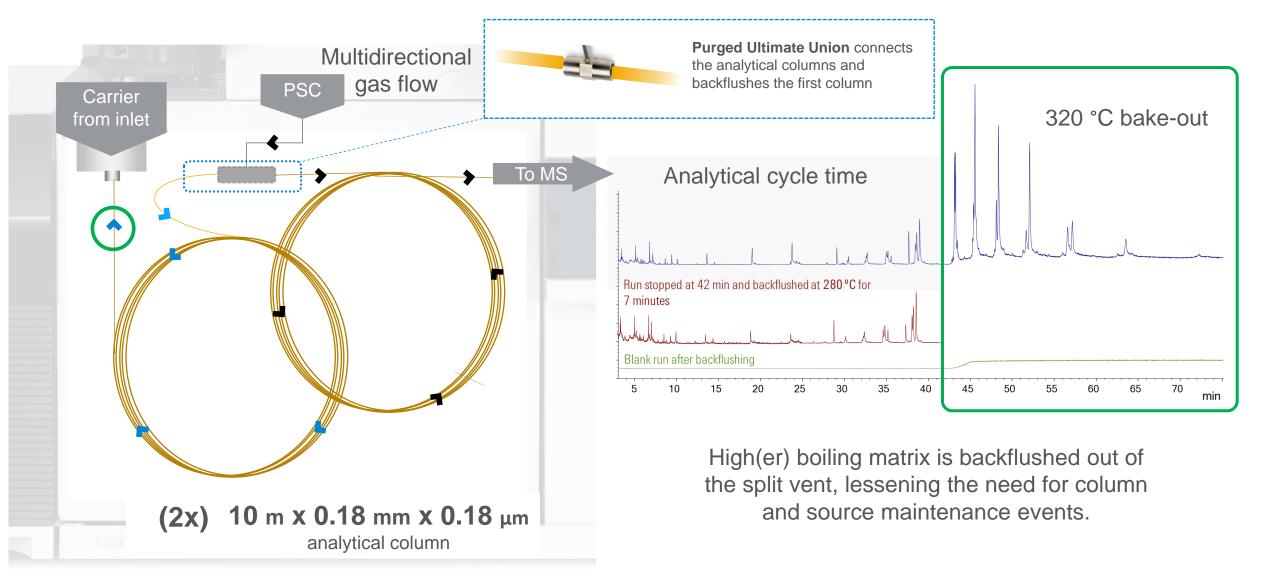
O Speed gain			Last file imp	orted:						Q (
Translate Best Efficiency			Origin	al Method F	Parameters		(Calculated N	lethod F	Parame	eters	
O best entered y				Gus ne	·			665	Π2	•		
L	ength	(m)			30 m		5	20 m				
Inner Diam	eter (j	μm)			250 µm		5	180 µm	-			
Film Thickr	ness (j	μm)			0.25 μm		5	0.18 µm				
Ph	ase Ra	atio	-		249.25		5	249.25	-			
Inlet Pressur	e (gau	ige)	•		5.591 psi		5 [5.7225 psi				
Outlet Flow	(mL/n	nin)			0.64712 mL/min		5 [0.5824 mL/min				
Average Veloc	ity (cn	n/s)	1 1 1 1 1		30 cm/sec		5 [51.748 cm/sec	1 1 1 1		<u></u>	
Outlet Press	ure (a	ibs)	•		0 psi 🗸		5	0 psi 🗸				
Hol	dup Ti	ime			1.6667 min		5 [0.64415 min	-			
Outlet Veloc	ity (cn	n/s)	L.		Infinity cm/sec			Infinity cm/sec				
O Isothermal	#		mp Rate (min)	Final Temp (°C)	Final Time (min)]	#	Ramp Rate (°C/min)	Final Te (°C)	emp	Final Time (min)	
	Init			100	1		Init	t -	100		0.39	
Ramps	1	10		200	1		1	25.874	200		0.39	
2	2	10		300	3		2	25.874	300		1.16	
			Total	Run Time 25.0	00 min			Total	Run Time	9.67 mi	n	
Pressure Units			Original	Column Capacit	y: 1.71]		Translated Colu	mn Capaci	ty:	0.61	
PSI -							1	The column capa method is 36% of capacity. You ma injection volume.	the origin need to a	nal colum	n	


Column capacity:

Original Column Capacity:	1.71	Translated Column Capacity:	0.61
		The column capacity of the transl method is 36% of the original col capacity. You may need to adjust injection volume.	umn
			V

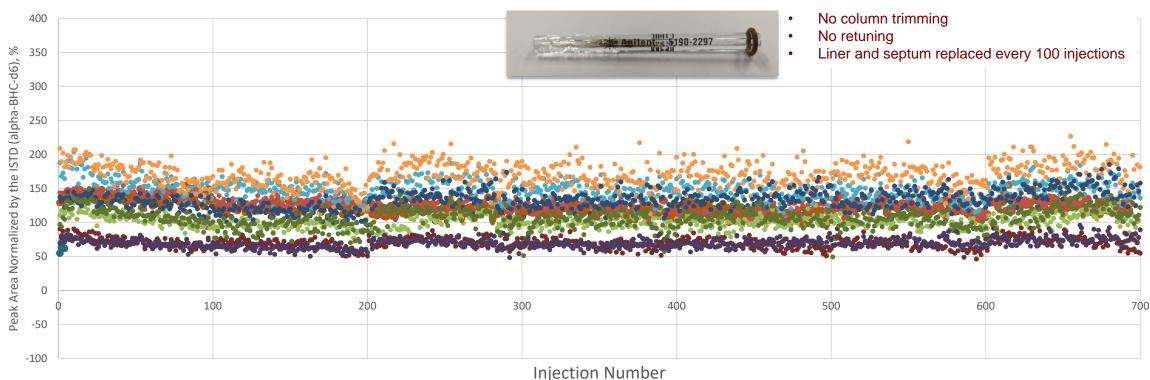
- Injection volume should be scaled proportionally
 - Trace analysis may be impacted
- Smaller column ids have been observed to increase
 maintenance intervals due to matrix accumulation
 - Loss of analyte response (sensitivity)
 - Loss of peak shape (integration accuracy)
 - Loss of resolution (analyte identity)


Conventional Single-Column Analysis



Midcolumn Backflushing Analysis

Midcolumn Backflushing Analysis



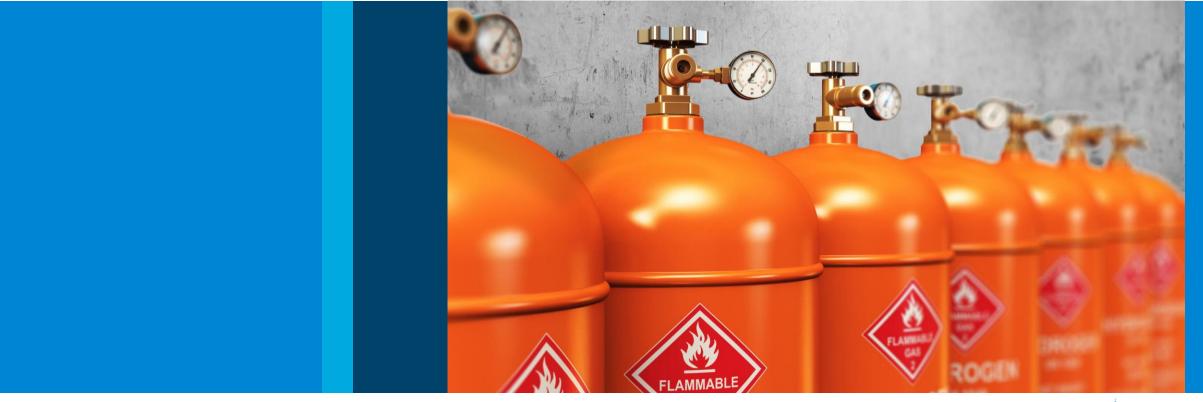
Normalized Response of Pesticides - 20 ppb Spiked QuEChERS EMR-HCF Spinach

Longevity: Area normalized by the ISTD, 20 ppb in Spinach with 7000E (10 min)

Area normalized by alpha-BHC-d6, %

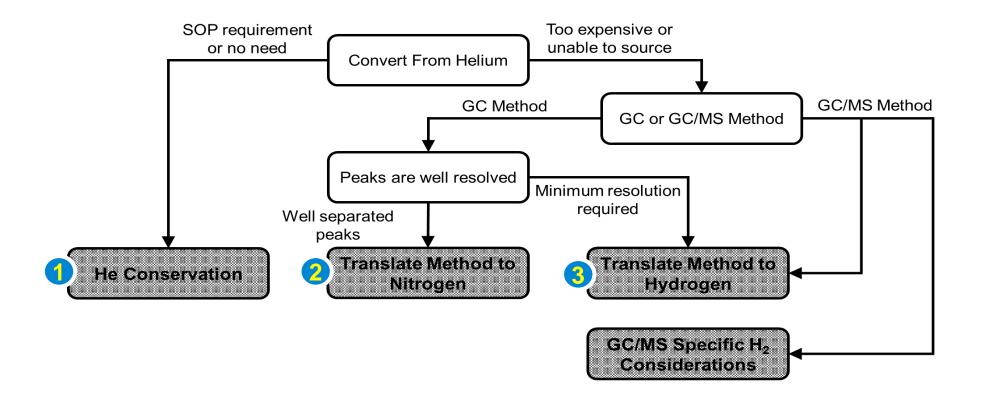
- BHC-alpha (benzene hexachloride), 8%
- Pirimiphos-methyl, 9%
- Bupirimate, 11%
- Metalaxyl, 10%

- BHC-beta , 9%
- Bromophos-ethyl, 10%
- Chlorthiophos , 11%

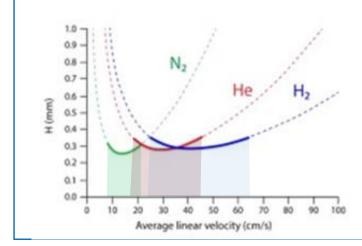

- Atrazine, 11%
- Prothiofos, 10%
- Fluquinconazole, 13%

```
Agilent publication 5994-4967EN
```


Converting to Hydrogen Carrier


How to maintain your chromatography and reduce speed

Alternate Carrier Decision Tree


- Helium is the best carrier gas option
- Hydrogen and nitrogen are viable alternatives to Helium, but require special considerations
- Changes in chromatographic results and methods should be expected when converting not "Plug & Play"

Review of Alternate Carrier Gases

	Helium Carrier	Nitrogen Carrier	Hydrogen
Pros	 Inert Excellent MS performance Reference spectra libraries available Fits common consumable dimensions 	 Inexpensive and widely available No additional safety concerns Generator available 	FastGenerator available
Cons	Unplanned supply disruptionsCost fluctuations	Long run timesNot recommended for MS (sensitivity)	 Requires additional safety precautions Analyte activity
		 Recommended use: Nonselective detectors Low-sample throughput Small panels, well-separated 	 Recommended use: Mass selective detectors High-sample throughput Large, multicompound methods

The practical linear velocity ranges of common carrier gases

Hydrogen is capable of high linear velocity, shortening run times Additional considerations are needed for safety and analyte activity

Nitrogen can be used with low linear velocity, extending run times

-

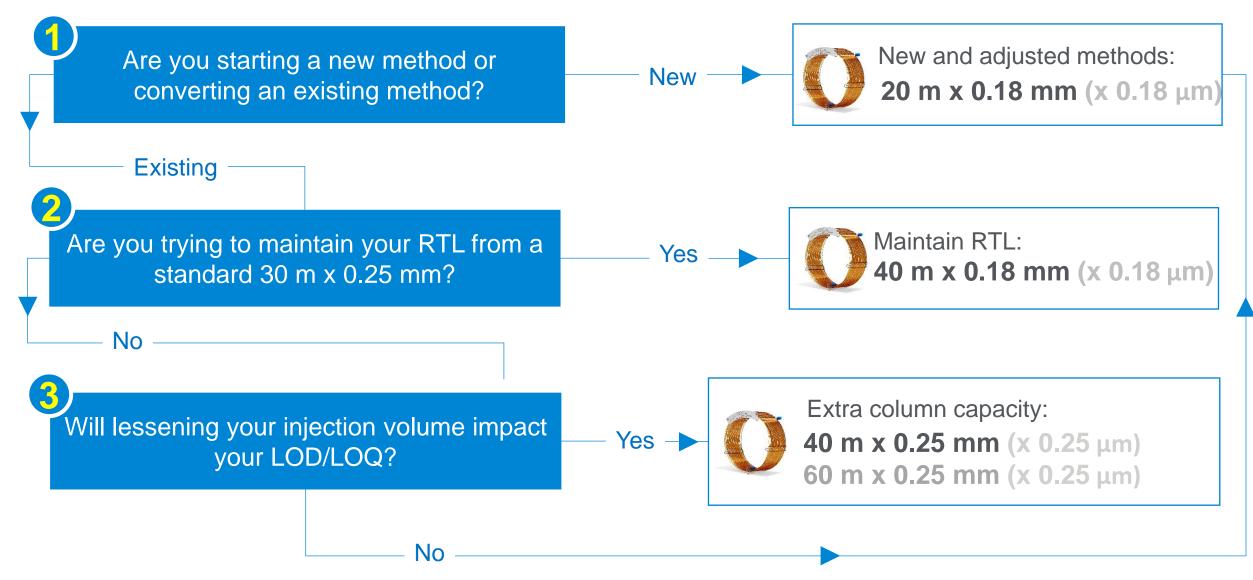
Review of Alternate Carrier Market Position

	Helium Carrier	Nitrogen Carrier	Hydrogen Carrier
Pros	 Inert Excellent MS performance Reference spectra libraries available Fits common consumable dimensions 	 Inexpensive and widely available No additional safety concerns Generator available 	FastGenerator available
Cons	Unplanned supply disruptionsCost fluctuations	Long run timesNot recommended for MS (sensitivity)	 Requires additional safety precautions Reactive
		 Recommended use: Nonselective detectors Low-sample throughput Small panels, well-separated 	 Recommended use: Mass selective detectors High sample throughput Large, multicompound methods
	Be sure to the line line line line line line line lin	use a hydrogen sensor and an Ultr	a Inert carrier gas flow path
	Ultra	Inert liners and columns Hydrogen s	ensor module HydroInert MS source

Carrier Gas Choice Impacts Column Internal Diameter

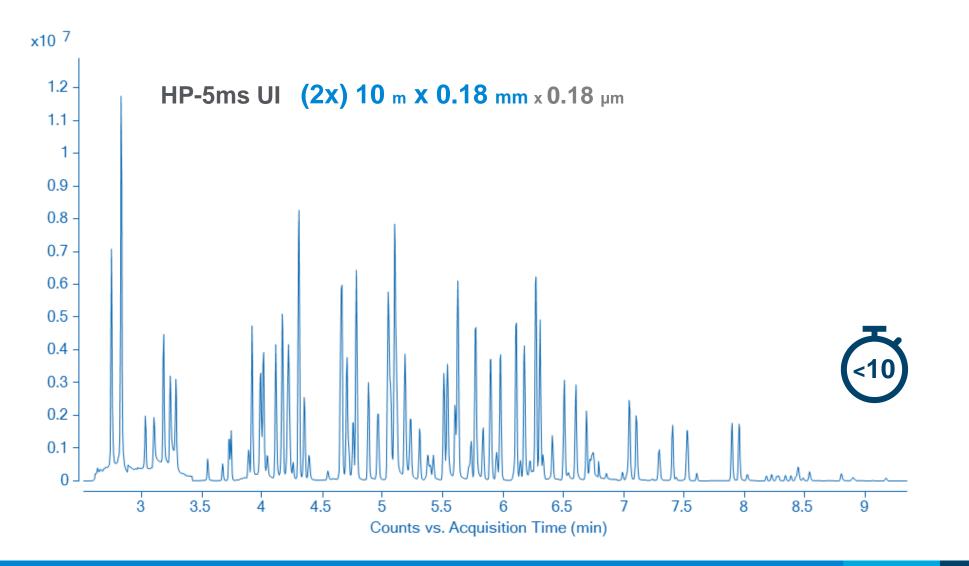
	Column ID Con	npatibility b	y Carrier G	as	
Column Internal Diameter (mm)	Common Name		Helium	Nitrogen	Hydrogen
0.53 mm	Mega-bore	Capacity	\checkmark	\checkmark	\mathbf{X}
0.32 mm	Wide-bore		\checkmark	\checkmark	$\overline{\times}$
0.25 mm	Narrow-bore			\checkmark	> 40 m
0.18 mm	Mini-bore		\checkmark	\checkmark	\checkmark
0.10 mm	Micro-bore	Efficiency	\checkmark	\checkmark	\checkmark

GC Conditions	Hydroger	Carrier
GC Column Length (m)	30	40
GC Column ID (mm)	0.25	0.25
Inlet Pressure (psi)	-0.161	2.088
Column Flow	1.00	1.00


40 m of column length is needed to maintain positive inlet pressure for 0.25 mm id columns

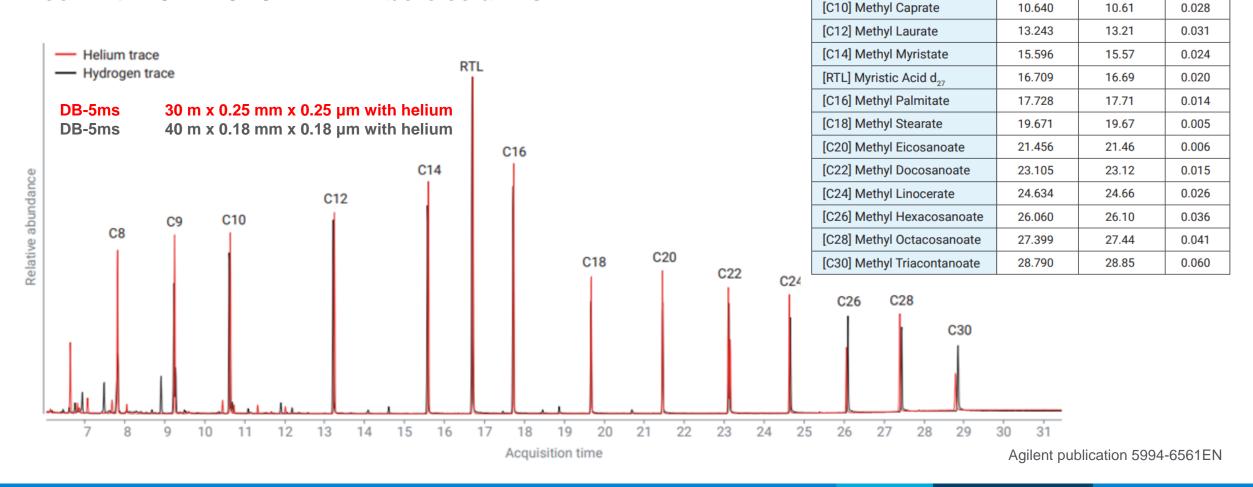
- Nitrogen carrier gas can be used with all common Helium dimensions
- Hydrogen carrier gas use limited to smaller ids complicating conversion

Column Selection for Hydrogen Conversion



- Agilent

New Hydrogen Carrier Method


238 pesticides analyzed with midcolumn backflushing and H₂ carrier

Maintaining Retention Time Locking When Converting to Hydrogen Comparison of FAMEs using helium and hydrogen carrier

A standard 30 m x 0.25 mm column will retention time lock with 40 m x 0.18 mm mini-bore columns

Hydrogen RT

(min)

7.82

9.23

Helium RT

(min)

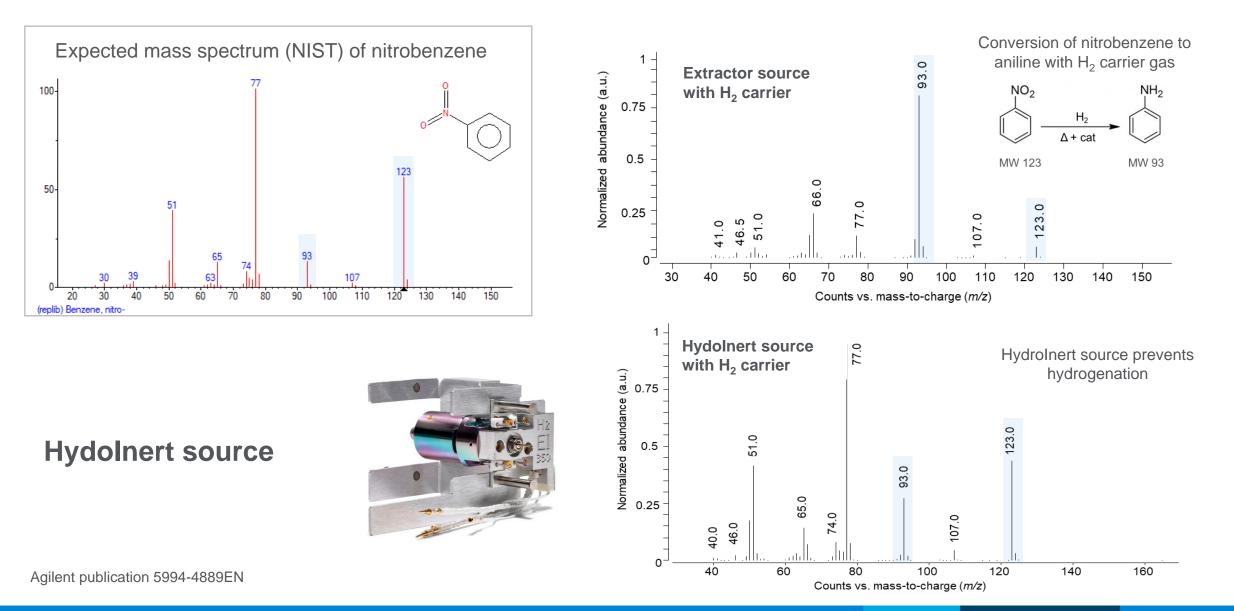
7.818

9.245

Compound Name

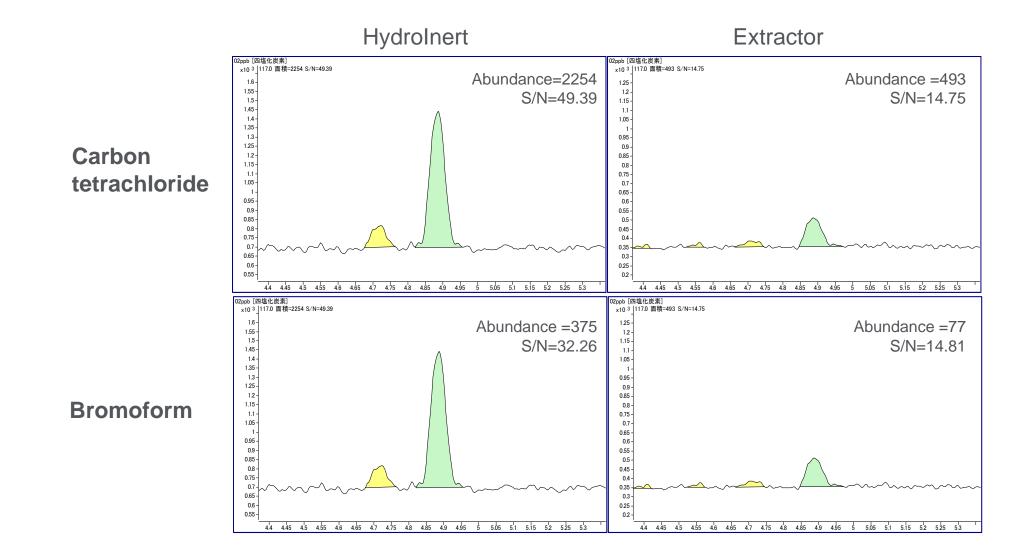
[C8] Methyl Caprylate

[C9] Methyl Pelargonate


RT Delta

(min)

0.006


0.016

Hydrogen Carrier Activity Can Impact Spectral Fidelity in MS

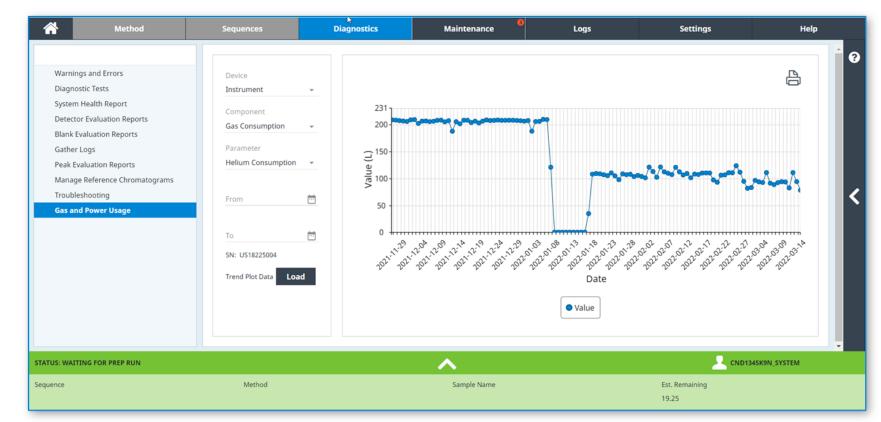
Hydrogen Carrier Can Impact Analyte Sensitivity

Agilent publication 5994-4889EN

Conserving Carrier Gas

Five tips to conserve helium

1. Implement a leak check strategy


- Inlet and column connections
- Valves for applicated GCs
- MS transfer lines and seals
- All gas connections to the GC
- Do not forget the rest of the lab

- Implement a leak check strategy 1.
- 2. Chart gas usage trends

Plot gas (and power) use from touchscreen or browser interface to find anomalies and to visualize the impacts of gas usage during idle periods, sleep/wake methods, and shutdown of the system.

🔆 Agilent

- 1. Implement a leak check strategy
- 2. Chart gas usage trends
- 3. Use Gas Saver

Simple selection on the GC inlet method will decrease the split vent flow after the sample is loaded on the column.

Signals - GC Performance Blank Evaluation Detector Evaluation	Split		Split Ratio: 200
Configuration Miscellaneous Columns Modules ALS Backflush Readiness	d Gas Saver (Off □ On	0 20 mL/min	After
GC Calculators			
	+ GC Performance Blank Evaluation Deak Evaluation Peak Evaluation Peak Evaluation Miscellaneous Columns Modules ALS Backflish	Signals Split Signals Split Split GC Performance Blank Evaluation Detector Evaluation Peak Evaluation Configuration Miscellaneous Columns Modules ALS Backflush Readiness	Signals GC Performance Blank Evaluation Detector Evaluation Peak Evaluation Peak Evaluation Miscellaneous Columns Modules ALS Backflush Readiness

File Copy Activity Log Online Signals П 聞 B Release Sequence 😆 🗂 Reset 🗸 Status Single Sample Single Sample Analysis Acquisition Method - GCxGC_DieselEMRE_db1_200x10x40_db17_50x25x15_70C_3ramp_3mod_05inj_1 日日日日日日 日 二山 田・ ▲ General Properties 300 ▲ Instrument Setup Agilent 8890 Front Inlet Flow Path 250 -0 Front SS Inlet PSD 1 Front Detector FID Column #1 Column #2 200 70 °C [70 °C] 14.3 psi [14.3 psi] 70 °C [70 °C] 320 *C [320 *C] 32 psi [32 psi] 320 °C [320 °C 0.2 mL/min 15 mL/mir 150 Column #3 70 *C [70 *C] 0.2 mL/min Back Detector FID 320 °C [320 °C] Option 8890 GC Links Split-Splitless Inlet Liner: Agilent 5190-2295: 870 µL (Split, taper, wool, low pressure drop) SelectLiner... Help & Information Browser Interface - ALS Actual Setpoint Front Injector 320 °C 320 °C G Heater Tray / Other Valves 31.976 psi Pressure: 31.978 psi Inlets SSL - Front 43.21 mL/min 43.216 mL/min Total Flow MMI - Back 3 mL/min Columns Septum Purge Flow 3.003 mL/min Oven Pre-Run FlowTest Detectors Front Detector FID Action on Failure: Continue SplitFlow 40.016 mL/min 1 r. 3 min

- 1. Implement a leak check strategy
- 2. Chart gas usage trends
- 3. Use Gas Saver
- 4. Use a Helium Conservation Module

- Extends the life of helium tanks by up to 30 times
- Works with any GC inlet, backflush, and dual simultaneous injection
- Carrier gas id and setpoints are part of your analytical method for easy compliance and transfer
- GC alerts you if system setpoints are not reached
- Switch from nitrogen standby to helium carrier in 15 to 30 minutes (depending on the GC detector)

- 1. Implement a leak check strategy
- 2. Chart gas usage trends
- 3. Use Gas Saver
- 4. Use a Helium Conservation Module
- 5. Use a Scheduler

< Settings	Ir	nstrument Sch	nedule	Close Apply	?
Day	Set Wake Method	Wake Time	Set Sleep Method	Sleep Time	
Sunday		:		:	
Monday	\checkmark	08:00	\checkmark	17:30	\sim
Tuesday	\checkmark	08:00	\checkmark	17:30	
Wednesday	\checkmark	08:00	\checkmark	17:30	
Thursday	\checkmark	08:00	\checkmark	17:30	
Friday	\checkmark	08:00	 Image: A start of the start of	17:30	\sim
Saturday		:		:	
STATUS: RUN	— READY	^		(2) SCD	SYSTEM
Sequence	Method _Du··· Agilent_SCD	Sample		ining (P)	

ck			Scheduler		
ep/Wake ock Table	Instrument Schedule				
neduler Options	Day	Set Wake Method	Wake Time	Set Sleep Method	Sleep Time
	Sunday				
	Monday				
	Tuesday				
	Wednesday				
	Thursday				
	Friday				
	Saturday	n		n	
	E	lit Wake Method	Edit Conditioning	Method	Edit Sleep Method

Maintain Good Gas Hygiene

- High-quality carrier gas (four 9s or greater)
- Leak-free injector and carrier lines
 - Change septa
 - Maintain gas regulator fittings
- Appropriate impurity traps
- Check for leaks
 - Leak detector

Additional Resources Available

Home > Products > Gas Chromatography > GC Systems > Handle the Helium Shortage - Convert to Alternative Carrier Gas

Switch to hydrogen or nitrogen as alternate carrier gas | Agilent

Calculating the savings

Conserve your GC carrier gas to help control costs

This calculator will determine the cost savings that could be realized by implementing Gas Saver with and without nitrogen standby. Simply complete the required fields at the top and the results will display below.

Agilent Gas Saver works with split/splitless and multimode inlets by reducing the GC split flow rate at a specified time after the injection while maintaining constant septum purge and column flow rates throughout the analytical run.

Combining Gas Saver with nitrogen standby can save even more if your system is not in continuous operation. This approach requires the helium conservation module for Agilent 8890, 8860, and 7890 GCs. Using the OpenLab CDS "SLEEP.M" and "WAKE.M" methods, the module automatically switches the carrier gas supply from helium to nitrogen during idle time, further conserving helium.

See how much you can save


Replace the default values in the fields below with information for your specific method and click the calculate button to see the results. All costs are assumed to be in your local currency and the calculator assumes the helium and nitrogen cylinders are the same size.

	567	877
1068	502	192
n/a	n/a	34
1068	502	157
n/a	n/a	318
n/a	n/a	25
103	218	697
78	37	11
Normal use (constant He flow)	Gas Saver	Gas Saver with N2 standby
Gas Saver start time	(min)	
Gas Saver flow rate	(mL/min)	
He septum purge rat	te (mL/min)	
He split flow rate (m	L/min)	
He carrier gas flow r	ate (mL/min)	

*Actual savings will depend on the accuracy of the information provided, integrity of the carrier gas flow path, and other factors.

Annual He cost

Annual total gas cost Annual savinos vs. normal usi

Contact Agilent Chemistries and Supplies Technical Support

1-800-227-9770 option 3, option 3:

Option 1 for GC and GC/MS columns and supplies Option 2 for LC and LC/MS columns and supplies Option 3 for sample preparation, filtration, and QuEChERS Option 4 for spectroscopy supplies Option 5 for chemical standards Available in the U.S. and Canada, 8–5, all time zones

39

gc-column-support@agilent.com lc-column-support@agilent.com spp-support@agilent.com spectro-supplies-support@agilent.com chem-standards-support@agilent.com

