All About USP <467> & Residual Solvents

Regulatory and Application Updates

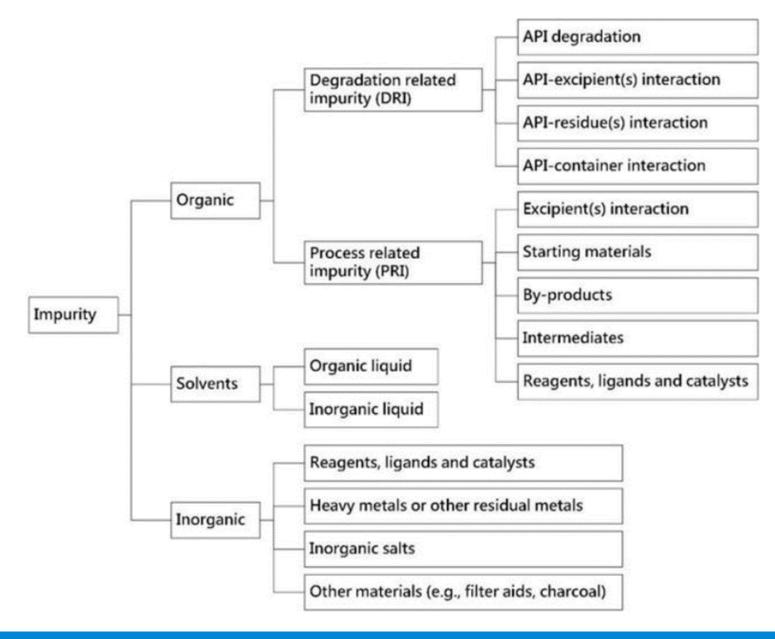
Manu Grover
Business Development Manager
Pharmaceutical Small Molecules Market
Santa Clara, US

Date: 21st Jan. 2025

Pharmaceutical Impurities

What

- Unwanted chemicals (either introduced directly using contaminated raw materials or are formed during the mfg. process) that remain with APIs or Drug Product formulations
- Three major categories of pharmaceutical impurities, viz. -
- Organic & Inorganic Compounds
- Elemental Impurities
- Residual Solvents


How

- May arise during synthesis or as a reaction by-product
- Formed as a result of the inherent instability of drug substances
- Added excipients, water
- Interactions with manufacturing equipment and packaging materials and container closure systems (CCSs)

Why

 The amount of impurity present in drug substance affects the quality and efficacy of the final pharmaceutical product and safety. Therefore, the identification. quantitation, qualification, and control of impurities are a critical part of the drug development process

Impurity Profiling (Pharmaceuticals)

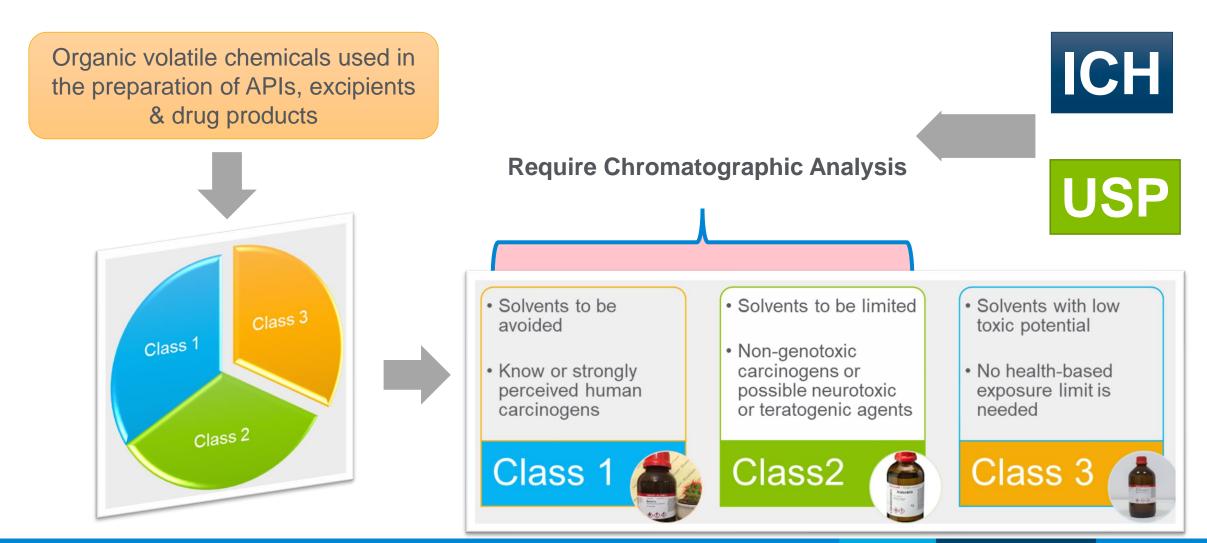
Ref: (7) (PDF) Determination of Impurities in Pharmaceuticals: Why and How? (researchgate.net)

What are Residual Solvents?

Residual solvents – Organic volatile chemicals used or produced in manufacturing of API's, excipients or formulations.

Residual solvents can arise from various sources:

- Synthesis or Reaction byproduct
- Inherent instability exhibited by some drug substances
- Excipients and water used in the manufacturing process
- Interactions with manufacturing equipment and packaging materials, including container closure systems.


The primary guiding regulations for residual solvents include USP <467>, which aligns closely with ICH Q3C(R8) guidelines. 'Since there is **no therapeutic benefit** from residual solvents, these should be removed to extent possible to meet Pdt Specs, GMP or other requirements.'

The document classifies residual solvents into 3 categories:

- Class 1: Solvents to be avoided, including known human carcinogens, strongly suspected human carcinogens, and solvents posing environmental hazards.
- Class 2: Solvents to be limited, comprising nongenotoxic animal carcinogens or agents causing other irreversible toxicities such as neurotoxicity or teratogenicity. This class also includes solvents suspected of causing significant but reversible toxicities.
- Class 3: Solvents with low toxic potential, having no health-based exposure limit.

Residual Solvent Analysis

USP <467> and ICH Q3C (R5 and R8) compliance for residual solvent analysis

Residual Solvents limits & Control Strategies

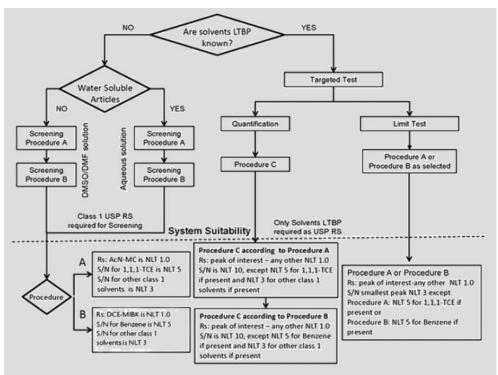
Permitted Limits – Method used to establish Permitted Daily Exposure (PDE) for residual solvents is derived from no-observed effect level (NOEL) or lowest-observed effect level (LOEL) in most relevant animal study (Toxicity Data).

'Class 1 solvents should be avoided, Meanwhile limits for Class 2 solvents are based on the toxicological permitted daily exposure (PDE), whereas Class 3 solvents are considered less toxic, and control to 50 mg/day or less for each of these solvents is acceptable without justification.'

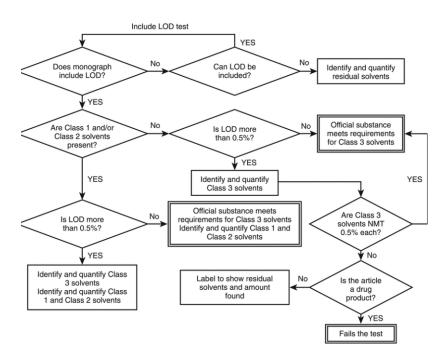
Options to describe limits of solvents:

Option-1: Concentration (ppm) = 1000 X PDE/ Dose

Option-2: Adding the amount of residual solvents present in each component of drug product. The SUM of amounts of solvent per Day should be less than PDE.


Guidelines for Residual Solvents (CPMP/ICH/283/95)

- When a Class 1 solvent might be present in another solvent (e.g. Acetone or Toluene containing Benzene), routine testing is not required when The limit applied to original solvent is such that class 1 solvent will be present in API at levels below guidelines limits.
- It is proved (with Validated method) that class 1 solvent is not more than 30% of spec limits, in intermediates or final pdt.
- Supporting data 6 consecutive pilot scale or 3 consecutive Industry scale batches.
- When a Class 2 is LTBP, they should be routinely controlled in intermediate or final pdt. e.g.
 - LTBP in last step of synthesis it should be routinely controlled in Final API/ Pdt.
 - LTBP prior to last step, then need not to be reported in Drug Specs if levels are NMT 10% of acceptable limits (e.g. Acetonitrile 41 ppm)


Residual Solvents limits & Control Strategies

<467> describes Analytical procedures (Procedures A, B, and C) for evaluating the levels of all Class 1 and the majority of Class 2 residual solvents. For each test matrix, verification is needed to demonstrate the reliability of the compendial procedure, as described in <1467>.

- When the solvents LTBP (likely to be present) are not known, use the screening tests of Procedure A and B, as required.
- When the information about solvents *LTBP in the material is known*, the system suitability requirements only need to be demonstrated for the solvents expected to be present.

USP<467> Figure 4. System suitability requirements based on the method of choice and previous knowledge about solvents LTBP.

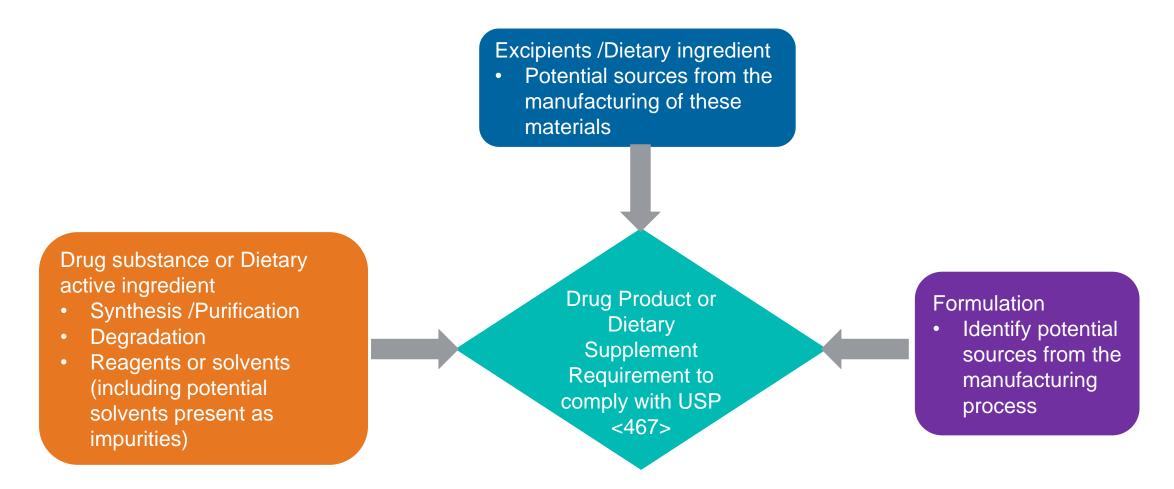
USP<467> Figure 5. Decision tree for the control of Class 3 residual solvents

Limits of Residual Solvents

RESIDUAL SOLVENT	CONCENTRATION LIMIT (PPM)	TOXICOLOGICAL CONCERN
Benzene	2	Carcinogen
Carbon Tetrachloride	4	Toxic and Environmental Hazard
1,2-Dichloroethane	5	Toxic
1,1-Dichloroethene	8	Toxic
1,1,1-Trichloroethane	1500	Environmental Hazard

TABLE 3: CLASS 3 RESIDUAL SOLVENTS

Acetic acid	Heptane
Acetone	Isobutyl acetate
Anisole	Isopropyl acetate
1-Butanol	Methyl acetate
2-Butanol	3-Methyl-1-Butanol
Butyl acetate	Methylethylketone
Tert-Butylmethyl ethe	
Cumene	Methylisobutylketone
Dimethyl sulfoxide	2-Methyl-1-propanol
Ethanol	Pentane
Ethyl acetate	1-Pentanol
Ethyl ether	1-Propanol
Ethyl formate	2-propanol
Formic acid	Propyl acetate
Formic acid	Fropyi acetate
Ethyl formate	


(ABLE 2: CLASS 2 RESIDUAL SOLVENTS, WHERE PDE IS THE PERMITTED DAILY EXPOSURE 2

RESIDUAL SOLVENT	PDE (MG/DAY)	CONCENTR	ATION LIMIT (PPM)		
Acetonitrile	4.1	410	Methanol	30.0	3000
Chlorobenzene	3.6	360	2-Methoxyethanol	0.5	50
Chloroform	0.6	60	Methylbutylketone	0.5	50
Cyclohexane	38.8	3880	Methylcyclohexane	11.8	1180
1,2-Dichloroethene	18.7	1870	Methylene chloride	6.0	600
1,2-Dimethoxyethane	1.0	100	N-Methylpyrrolidone	5.3	530
N,N-Dimethylacetamide	10.9	1090	1090 Nitromethane		50
N,N-Dimethylformamide	8.8	880	Pyridine	2.0	200
1,4-Dioxane	3.8	380	380 Sulfolane		160
2-Ethoxyethanol	1.6	160	160 Tetrahydrofuran		720
Ethylene glycol	6.2	620	Tetralin	1.0	100
Formamide	2.2	220	Toluene	8.9	890
Hexane	2.9	290 Trich	Tricholroethylene	0.8	80
Hexane	2.9	290	Xylene	21.7	2170
Formamide	2.2	220			1

Residual solvents should be limited in drug substances, excipients, dietary ingredients, and official products because of the inherent toxicities of these residual solvents. - 467 RESIDUAL SOLVENTS (uspnf.com)

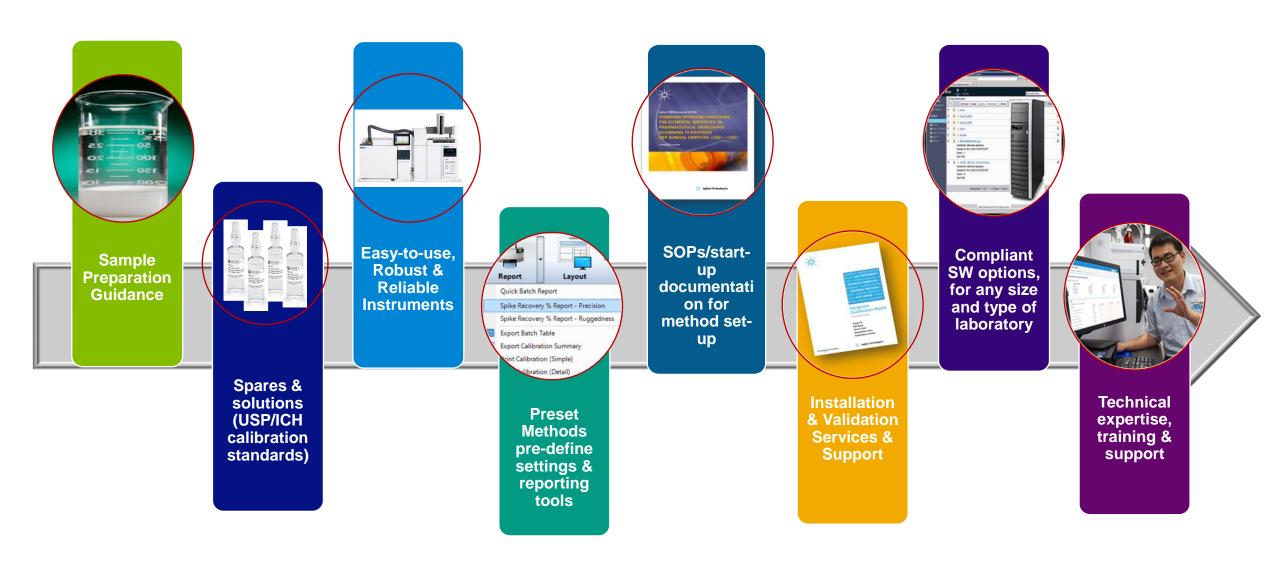
Potential Sources of Residual Solvents to be Considered

In pharmaceutical drug products and dietary supplements

For more details: refer to 467 RESIDUAL SOLVENTS (uspnf.com)

Changes to Residual Solvents

USP <467> – Official December 2020

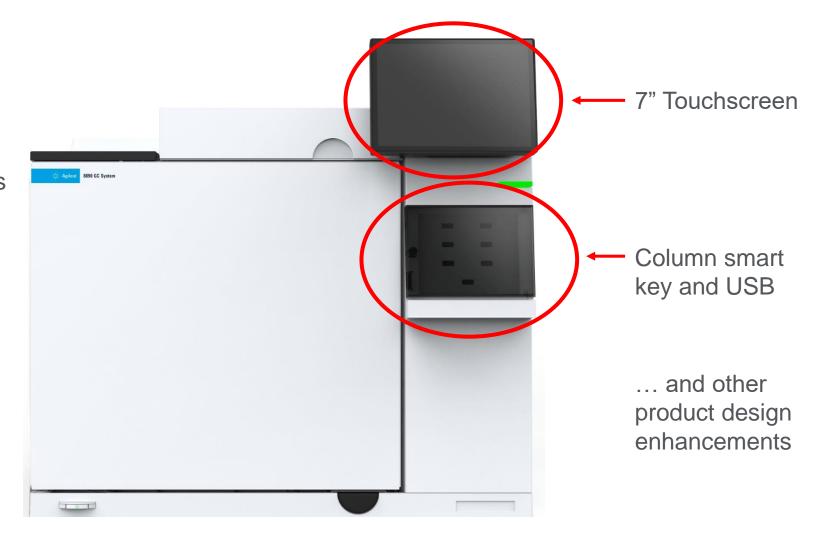

- Methylisobutylketone added to Class 2 list
- Methylisobutylketone used for system suitability resolution

Three new solvents to be added in next draft

- 2-Methyltetrahydrofuran Class 3
- Cyclopentyl methyl ether Class 2
- Tert-butyl alcohol Class 2

Agilent Innovative Solutions for Residual Solvent Analysis

A Flexible Portfolio of Products Something for everyone! Ultimate productivity & usability, especially for MS Intuvo Quality Smart Connected 8890 8860 Advanced Core routine flexibility & applicability expandability


8890 Enhancements

GUI/Display/Touchscreen

- "At-GC"
 Enhanced Diagnostics
 Chromatographic Attributes
 Maintenance
 Instrument Status
 Extensive User Info
- Capacitive touch screen

On-Board CPU → Browser UI

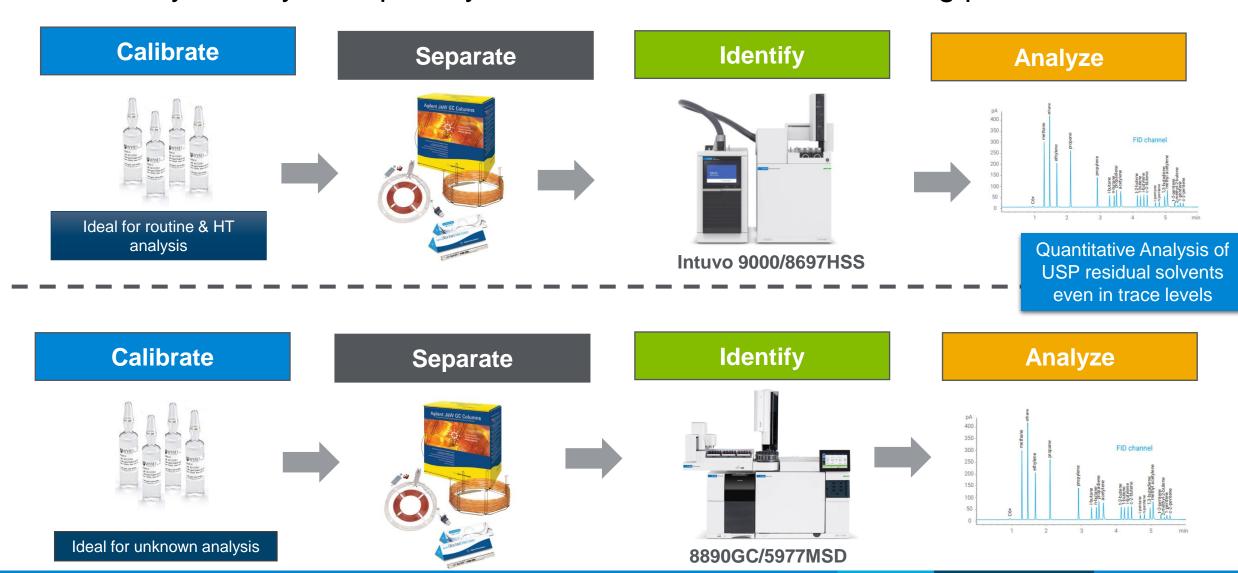
 GC info available via PC, Tablet, Mobile

Agilent's GC & GC/MSD for Residual Solvent Analysis

All systems are equally capable of delivering all USP/ICH compliance requirements

Agilent's Residual Solvents Workflow

Which GC is right for my analysis?

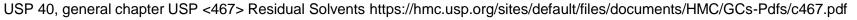

Enhanced detection and identification analysis options of analytes in a single mix -

- Splitting to two columns for dual detector analysis
- Agilent GC coupled to GC/MS System

GC System / Attributes	Intuvo 9000	8890
Performance	//	\checkmark
Detector (FID and MS)	//	//
Footprint	//	✓
Compliant SW	//	//
Non-Agilent CDS	//	//
Direct Replacement	✓	//
Revalidate SOP	√	//

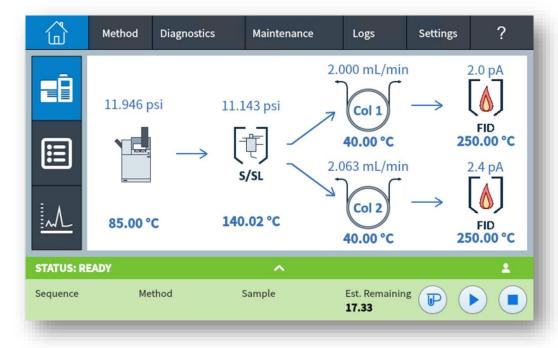
Agilent GC/FID and GC/MS Workflow for Residual Solvent Analysis

Confidently identify and quantify residual solvent in APIs and drug products


USP <467> Residual Solvent Requirements

USP <467> specifies a single-column analysis

- A secondary analysis is performed if the solvent is found above limit detection.
- An Intuvo 9000 GC configured with an inlet split to two columns and two FIDs can perform both analyses in a single run.

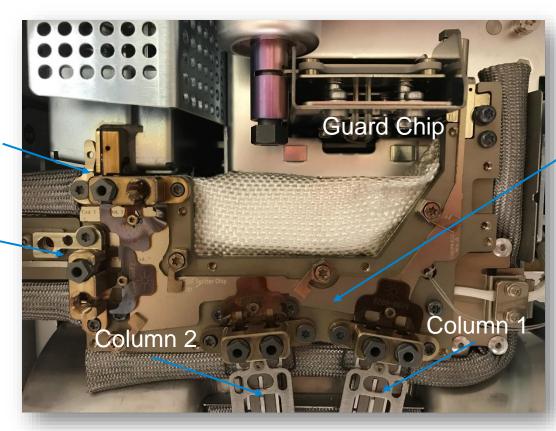

USP <467> Columns and Performance Requirements

Procedure A – Initial identification and limit test

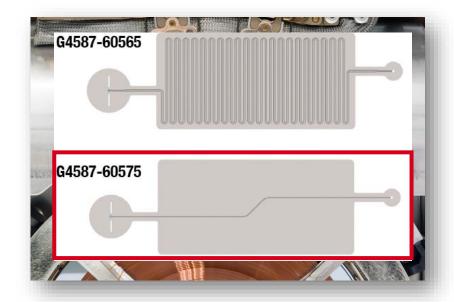
- DB-Select 624 UI
- s/n of 1,1,1-trichloroethane > 5
- s/n of all Class 1 solvents > 3
- Resolution of acetonitrile and methylene chloride > 1

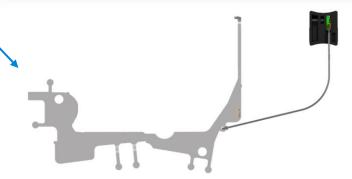
Procedure B – Secondary analysis for confirmation

- DB-Wax Ultra Inert
- s/n of benzene > 5
- s/n of all Class 1 solvents > 3
- Resolution of methylisobutylketone and cisdichloroethene > 1


Configuration

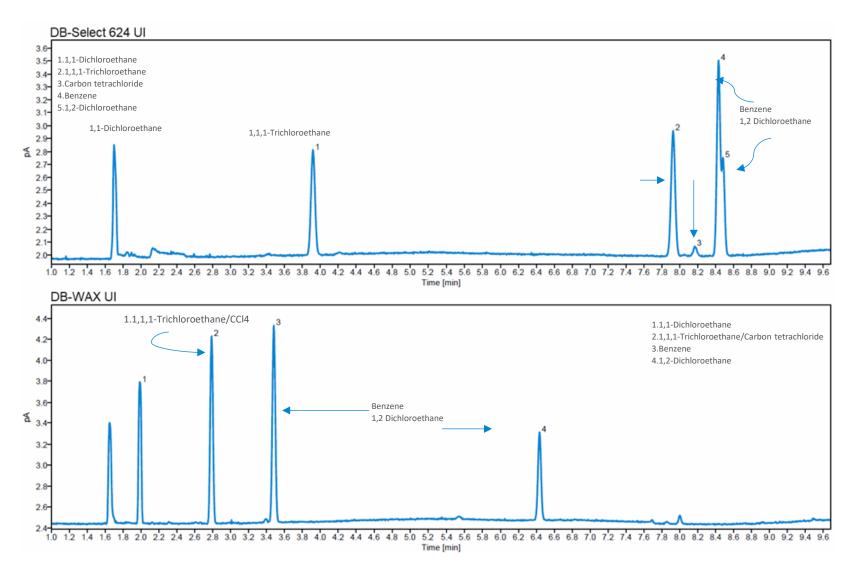
FID 1


FID 2


- Headspace to SSL
- Inlet splitter flow chip equally splits to two columns
- Two columns to two FID detectors

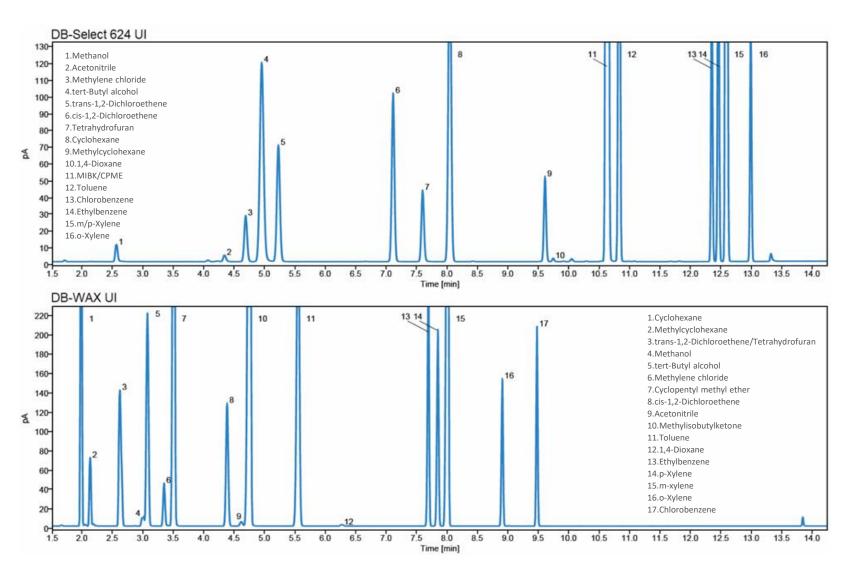
Inlet

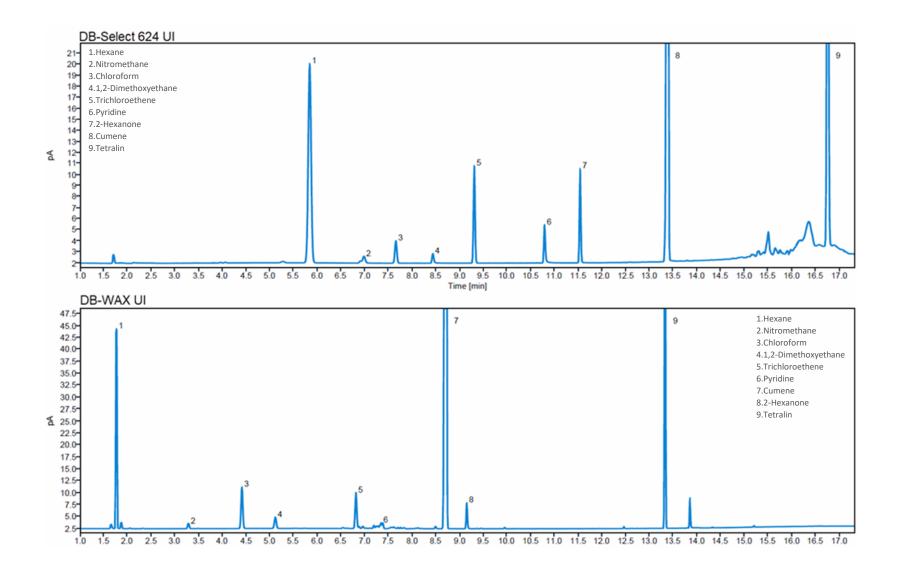
Inlet splitter flow chip



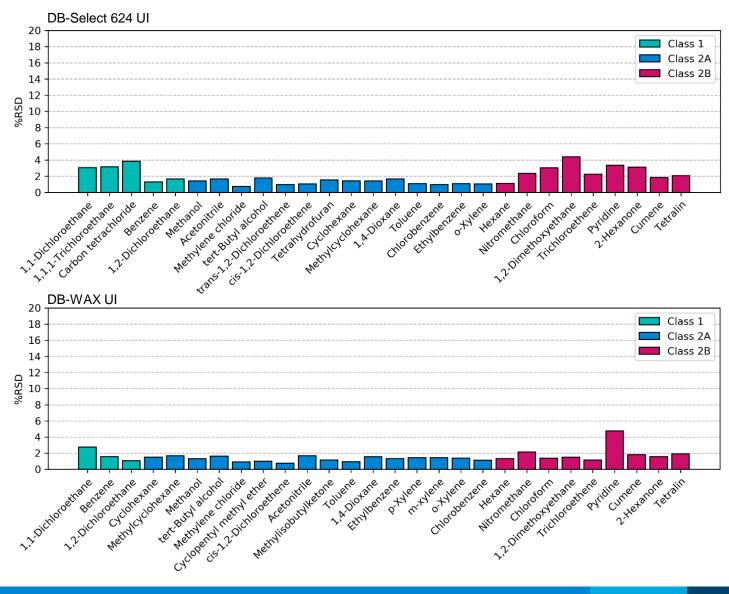
Class 1, DB-Select 624 UI & DB-WAX Ultra Inert

Signal to Noise requirements are met


Signal to Noise requirements are met


Class 2A, DB-Select 624 UI & DB-WAX Ultra Inert

Resolution > 1


Resolution > 1

Class 2B, DB-Select 624 UI & DB-WAX Ultra Inert

Repeatability (n=10)

USP Method Parameter Comparison for the Agilent 8697 and 7697A Headspace Samplers

Conceptually, both 8897 and 7697A HSSs are very similar, the 8697 HSS can operate with the same method parameters as the 7697A.

Headspace parameters for the USP residual solvents method are shown as an example.

	GC/HS						
HS Parameter	7890/7697A	9000/7697A	8890/7697A	9000/8697			
Sample Loop Volume	1 mL	1 mL	1 mL	1 mL			
Oven Temperature	85 °C	85 °C	85 °C	85 °C			
Loop Temperature	85 °C	85 °C	85 °C	85 °C			
Transfer Line Temperature	100 °C	100 °C	100 °C	100 °C			
Vial Equilibration Time	40 min	40 min	40 min	40 min			
Injection Duration	0.5 min	0.5 min	0.5 min	0.5 min			
Vial Size	10 mL	10 mL	10 mL	20 mL*			
Vial Shaking	On, Level 2	On, Level 2	On, Level 2	On, Level 2			
Vial Fill Mode	Flow to pressure	Flow to pressure	Flow to pressure	Flow to pressure			
Vial Fill Flow	50 mL/min	50 mL/min	50 mL/min	50 mL/min			
Vial Fill Pressure	15 psi	15 psi	15 psi	15 psi			
Loop Ramp Rate	20 psi/min	20 psi/min	20 psi/min	20 psi/min			
Final Loop Pressure	0 psi	0 psi	0 psi	4 psi*			
Loop Equilibration Time	0.05 min	0.05 min	0.05 min	0.05 min			

^{*} The most recent application note used 20 mL vials to better accommodate a 6 mL sample volume. Also, the final loop pressure was increased to 4 psi to reduce the potential impact of atmospheric pressure variations, but 0 psi can be used without issue.

Analysis of Three Classes of Residual Solvents in USP <467> and Chinese Pharmacopoeia by using GC/FID/MSD System

Configuration Highlights

- This application covers three classes of solvents with a total of up to 62 compounds.
- A purged two-way CFT device was used to split the column effluent 1:1 to the MSD and FID.
- When unknown peaks or unknown solvents appear, this system is the best solution for solvent identification and quantification

 Both MSD and FID signals can be used for quantitative analysis, MSD is a good quantitative supplement for compounds with poor resolution, while FID can expand the linear range.

Compounds List

The list of compounds in USP <467> and Chinese pharmacopoeia is almost the same.

Class 2

Class 1

Table 1. Class 1 Residual Solvents

(Solvents that should be avoided)

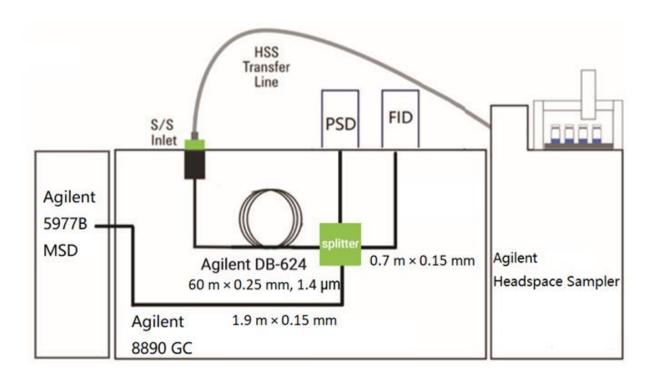
	(
Solvent	Concentration Limit (ppm)
Benzene	2
Carbon tetrachloride	4
1,2-Dichloroethane	5
1,1-Dichloroethene	8
1,1,1-Trichloroethane	1500

Class 3

Table 3. Class 3 Residual Solvents

(limited by GMP or other quality-based requirements in drug substances, excipients, and drug products)

Acetic acid	Heptane
Acetone	Isobutyl acetate
Anisole	Isopropyl acetate
1-Butanol	Methyl acetate
2-Butanol	3-Methyl-1-butanol
Butyl acetate	Methylethylketone
tert-Butylmethyl ether	Methylisobutylketone
Cumene	2-Methyl-l-propanol
Dimethyl sulfoxide	Pentane
Ethanol	1-Pentanol
Ethyl acetate	1-Propanol
Ethyl ether	2-Propanol
Ethyl formate	Propyl acetate
Formic acid	

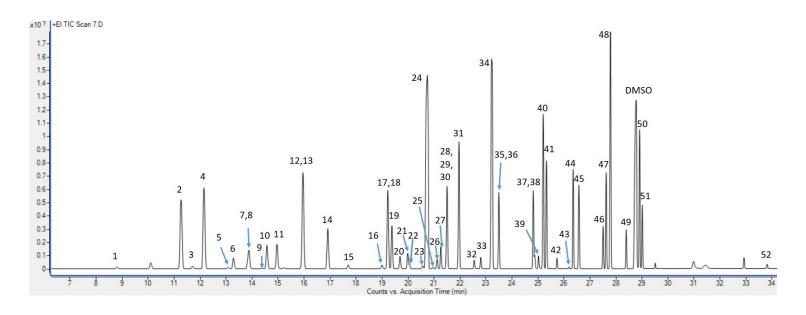

Red: liquid injection

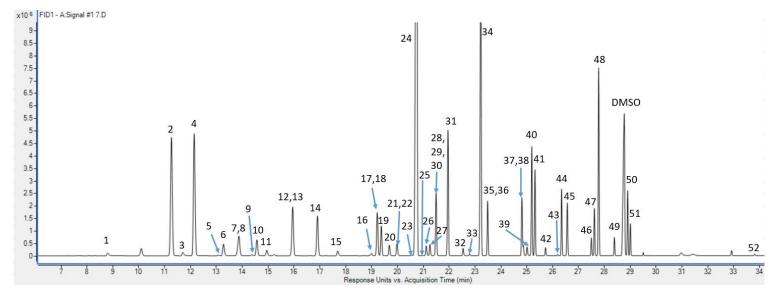
Others: headspace injection

-	Table 2. Class 2 Residual Solvents				
Solvent	PDE (mg/day)				
Acetonitrile	4.1				
Chlorobenzene	3.6				
Chloroform	0.6				
Cumene	0.7				
Cyclohexane	38.8				
1,2-Dichloroethene	18.7				
1,2-Dimethoxyethane	1.0				
<i>N,N</i> -Dimethylacetamide	10.9				
<i>N,N</i> -Dimethylformamide	8.8				
1,4-Dioxane	3.8				
2-Ethoxyethanol	1.6				
Ethylene glycol	6.2				
Formamide	2.2				
Hexane	2.9				
Methanol	30.0				
2-Methoxyethanol	0.5				
Methylbutylketone	0.5				
Methylcyclohexane	11.8				
Methylene chloride	6.0				
<i>N</i> -Methylpyrrolidone	5.3				
Nitromethane	0.5				
Pyridine	2.0				
Sulfolane	1.6				
Tetrahydrofuran	7.2				
Tetralin	1.0				
Toluene	8.9				
Trichloroethylene	0.8				
Xylene*	21.7				

Headspace Injection

Instrument conditions





Agilent 8890 GC						
Parameter	Value					
Inlet	SSL, 250 °C, split 10:1					
Liner	Straight, deactivated, 2 mm ID (part number 5181-8818)					
CFT Device	Purged 2-way splitter Split Ratio 1:1 MSD:FID					
PSD	3.8 psi constant pressure					
Column	Agilent DB-624 60 m × 0.25 mm, 1.4 μm (part number 122-1364)					
Carrier	Helium, 1 mL/min, constant flow					
FID Restrictor	0.7 m × 0.15 mm id deactivated fused silica tubing					
MSD Restrictor	1.9 m × 0.15 mm id deactivated fused silica tubing					
Oven	40 °C (10 min), then 5 °C/min to 80 °C, then 12 °C/min to 220 °C (10 min)					
FID	Temperature: 250 °C Hydrogen: 30 mL/min Air: 300 mL/min Make -up gas (N2):25 mL/min i					
Transfer line	250 °C					
temperature						
Agilent 5977B GC/MSD						
Parameter	Value					
Ionization type	El					
Source temperature	230 °C					
Quad temperature	150 °C					
Drawout plate	3 mm					
Tune file	Atune.u					
Acquisition type	Scan					
Solvent delay	6 min					
Relative Voltage	0					

Headspace Injection

MSD scan

FID

Headspace Injection

Results of the 52 compounds

							٨	14DL (140D)
					MSD		Area RSD%	MDL (MSD)
				Linearity	INIOD	LID	K3D%	μg/mL
No.	Name	RT	m/z	range(µg/mL)	R2	R2	L4 (n=8)	I 2 (n=8)
1	Methanol		31	0.75-150	0.9998	0.9994	, ,	0.194
2	Pentane	11.251	-	0.5-100	0.9944	0.9997		0.1428
3	Ethanol	11.73		2-100	0.9999	0.9998		0.5137
3 4	Ethyl ether	12.142	-	0.5-100	0.9999	0.9998		0.1469
5	1,1-Dichloroethene	13.083		0.004-0.8	0.9997	0.9986		0.0028
6	Acetone	13.283		0.5-100	0.9999	0.9996		0.0026
7	Isopropanol	13.854		0.5-100	0.9997	0.9979		0.2446
8	Ethyl formate	13.873		0.5-100	0.5551		4.3	0.2449
9	Acetonitrile	14.39		0.1-20	0.9996	0.9984		0.0319
10	Methyl acetate	14.564		0.1-20	0.9998	0.9998		0.4236
11	Methylene chloride	14.947		0.15-30	0.9997	0.9997		0.0326
	2-Methoxy-2-	14.541	04	0.15-50	0.3331	0.3331	۷.۱	
12	methylpropane	15.938	73	0.1-20	0.9988	0.9998	2.1	0.0352
13	trans-1,2-Dichloroethene			0.235-47	0.9969	0.9998		0.065
14	Hexane	16.899		0.1-20	0.9995	0.9998		0.0739
15	1-Propanol	17.712	31	0.5-100	0.9995	0.9996	2	0.1799
16	Nitromethane	19	46	0.5-100	0.9999	0.9991		0.2521
17	cis-1,2-Dichloroethene	19.21	96	0.235-47	0.9988	0.9999	2.5	0.0447
18	2-Butanone	19.225	43	0.5-100	0.998	0.9999	2.3	0.1471
19	Ethyl acetate	19.375	43	0.5-100	0.9986	0.9997	1.4	0.3054
20	2-Butanol	19.688	45	0.5-100	0.9998	0.9999	2.4	0.2371
21	Tetrahydrofuran	19.985	42	0.18-36	0.9998	0.9998	2.1	0.0532
22	Chloroform	20.054	83	0.015-3	0.9997		1.6	0.0058
23	1,1,1-Trichloroethane	20.546	97	0.005-1	0.9999	0.9998	1.3	0.0025
24	Cyclohexane	20.707	84	1.0-49 (195)*	0.9908	0.9997	1.8	0.188
25	Carbon tetrachloride	20.962	117	0.002-0.4	0.9998	0.9992	2.8	0.002

								MOI
								MDL
							Area	(MSD)
					MSD	FID	RSD%	μg/mL
				Linearity				
No.	Name	RT	m/z	range(µg/mL)	R2	R2	L4 (n=8)	L2 (n=8)
27	1,2-Dimethoxyethane	21.2	65 45	0.5-100	0.9999	0.9995	1	0.2561
28	Benzene	21.4	42 78	0.001-0.2	0.9995	0.9998	5.8	0.0008
29	1,2-Dichloroethane	21.4	42 62	0.01-0.5	0.9989		1.5	0.0016
30	Isopropyl acetate	21.4	96 61	0.5-100	0.9985	0.9998	0.8	0.1636
31	Heptane	21.9	56 71	0.1-20	0.9974	0.9996	2.4	0.0343
32	1-Butanol	22.5	47 56	0.5-100	0.9994	0.9998	2.4	0.1717
33	Trichloroethylene	22.7	91 130	0.015-3	0.9999	0.9999	1.8	0.0065
34	Methyl cyclohexane	23.2	08 83	0.3-15 (59)*	0.9989	0.9997	2.3	0.0722
35	1,4-Dioxane	23.4	89 88	0.095-19	0.9999	0.9999	3.3	0.0549
36	Propyl acetate	23.4	91 43	0.5-100	0.9966		3	0.2675
37	4-Methyl-2-pentanone	24.8	15 43	0.5-100	0.9985	0.9999	2.2	0.1429
38	Isoamyl alcohol	24.8	79 55.1	0.5-100	0.9991	0.9996	2.4	0.2562
39	Pyridine	25.0	24 79	2-100	0.9992	0.9997	2.1	0.5016
40	Toluene	25.1	96 91	0.225-22 (44)*	0.9964	0.9998	2.1	0.0651
41	Isobutyl acetate	25.3	22 56	0.5-100	0.9958	0.9999	2.1	0.1784
42	1-Pentanol	25.7	35 42	0.5-100	0.9996	0.9998	2.1	0.3319
43	2-Hexanone	26.2	01 58	0.06-3	0.9995	0.9998	2.1	0.0107
44	Butyl acetate	26.3	51 43	0.5-100	0.9957	0.9999	2.3	0.2502
45	Tetrahydrothiophene	26.5	71 88	0.5-100	0.9996	0.9999	1.4	0.18
46	Chlorobenzene	27.5	03 112	0.09-18	0.9999	0.9997	2.5	0.0215
47	Ethylbenzene	27.6	18 91	0.09-18	0.9986	0.9997	4.1	0.0288
48	m,p-xylene	27.7	82 106	0.4-40 (80)*	0.9963	0.9997	3.3	0.1074
49	o-xylene	28.3	93 91	0.05-10	0.9999	0.9996	2.6	0.0173
50	Isopropylbenzene	28.9	04 105	0.1-20	0.9983	0.9996	2.4	0.0391
51	Anisole	29.0	11 108	0.5-100	0.9999	0.9997	2.8	0.1892
F 0	1,2,3,4-	22.0	11101	0.015.3	0.0000	0.0000	0	0.0045
52	Tetrahydronaphthalene	JJ.8	14 104	0.015-3	0.9998	0.9993	_	

Liquid Injection

Compounds list in liquid injection

2-Methoxyethanol

2-Ethoxyethanol

N,N-dimethylformamide

N,N-dimethylacetamide

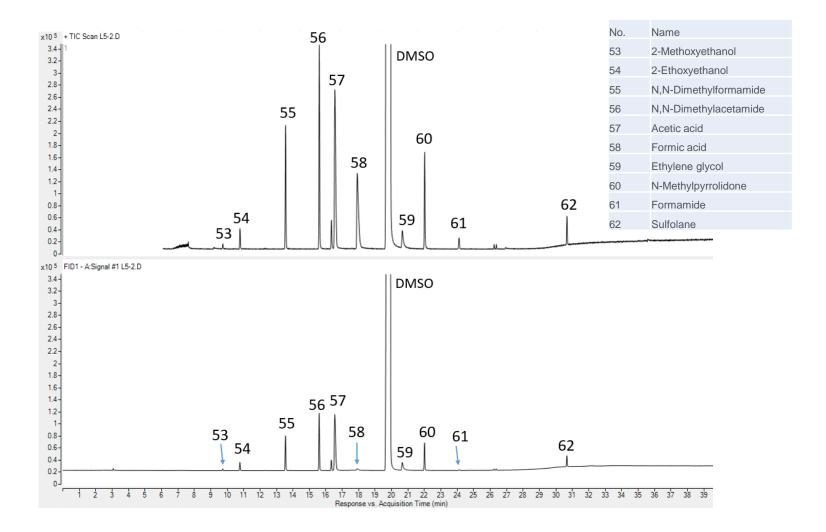
Acetic acid

Formic acid

Ethylene glycol

N-methylpyrrolidone

Formamide


Sulfolane

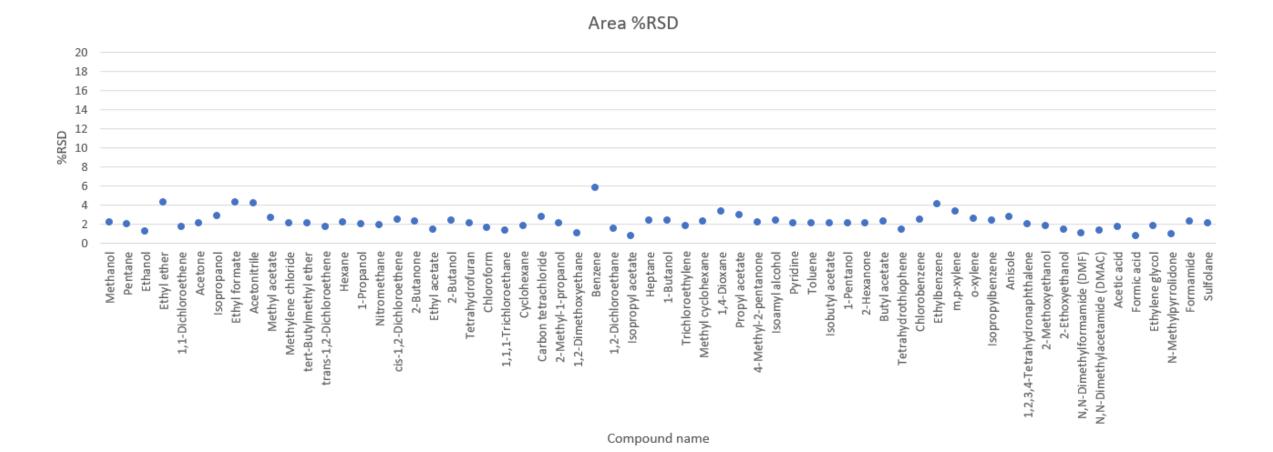
ALS FID **PSD** S/S Agilent 5977B **MSD** $0.7 \, \text{m} \times 0.15 \, \text{mm}$ Agilent DB-WAX UI $30 \text{ m} \times 0.25 \text{ mm}, 0.25 \text{ } \mu\text{m}$ $1.9 \text{ m} \times 0.15 \text{ mm}$ Agilent 8890 GC

Instrument configuration

Standards: USP 467 Class 2C (Agilent p/n: 5190-0493) acetic acid (99.8%, purity), formic acid (98%, purity)

Liquid Injection

Agilent 8890 GC	
Parameter	Value
Inlet	SSL, 250 °C, split 30:1
Liner	Ultra Inert, split, low pressure drop, glass wool (p/n: 5190-2295)
Injection volume	0.5 uL
CFT Device	Purged 2-way splitter Split Ratio 1:1 MSD:FID
PSD	3.8 psi constant pressure
Column	Agilent DB-wax UI 30 m × 0.25 mm, 0.25 μm (part number 122-7032UI)
Carrier	Helium, 1 mL/min, constant flow
FID Restrictor	$0.7~\text{m} \times 0.15~\text{mm}$ id deactivated fused silica tubing
MSD Restrictor	1.9 m \times 0.15 mm id deactivated fused silica tubing
Oven	40 °C, then 5 °C/min to 160 °C, then 10 °C/min to 220 °C (10 min)
FID	Temperature: 250 °C Hydrogen: 30 mL/min Air: 300 mL/min Make -up gas (N2):25 mL/min
Transfer line temperature	250 °C
Agilent 5977B GC/MSD	
Parameter	Value
Ionization type	EI
Source temperature	230 °C
Quad temperature	150 °C
Drawout plate	3 mm
Tune file	Atune.u
Acquisition type	Scan
Solvent delay	6 min
Relative Voltage	0



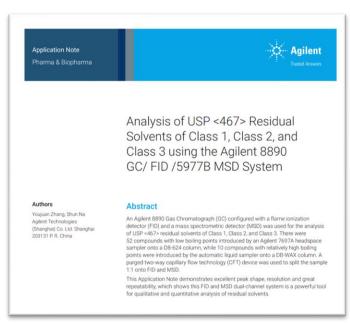
Liquid Injection

Results of the 10 compounds

					F	(2		MDL
				Linearity range			Area RSD%	(MSD)
No.	Name	RT	m/z	μg/mL	MSD	FID	L4 (n=8)	μg/mL
53	2-Methoxyethanol	9.783	45	5-50	0.9984	0.9995	1.8	0.68
54	2-Ethoxyethanol	10.816	59	16-161	0.9973	0.9987	1.4	1.93
55	N,N-Dimethylformamide (DMF)	13.607	73	88.3-883	0.9997	0.9999	1	2.19
56	N,N-Dimethylacetamide (DMAC)	15.667	87	109.4-1094	0.9997	0.9996	1.3	2.58
57	Acetic acid	16.493	60	400-3000	0.9984	0.9997	1.7	90.12
58	Formic acid	17.774	46	400-3000	0.9995	0.9939	0.8	120
59	Ethylene glycol	20.652	31	62.2-622	0.9983	0.9982	1.8	4.44
60	N-Methylpyrrolidone	22.074	98	53-530	0.9995	0.9997	0.9	3.02
61	Formamide	24.157	45	22-221	0.9992	0.9986	2.3	2.11
62	Sulfolane	30.706	120	16-160	0.9994	0.9997	2.1	1.33

Repeatability (n=8) for 62 Compounds

Summary


- Residual solvents of Class 1, 2, and 3 were tested using the Agilent 8890 GC/FID/MSD system.
- For new drug development and quality control, FID and MSD dual-channel configurations can be powerful tools for solvent residue analysis.
- MSD analysis can avoid the uncertainty of more than 60 solvents involved in drug production.
- When unknown peaks or unknown solvents appear, this system is the best solution for solvent identification and quantification

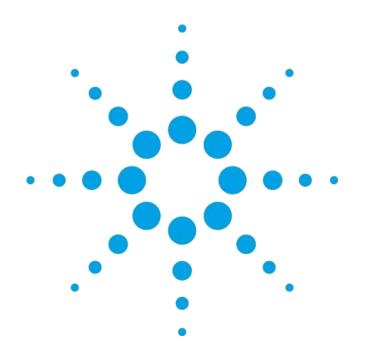
Learn More – @Agilent.com

Application Notes

Residual Solvents Analysis
Using an Agilent Intuvo 9000 GC
with 8697 Headspace Sampler

Analysis of USP <467> Residual
Solvents of Class 1, Class 2, and Class
3 using the Agilent 8890 GC/ FID
/5977B MSD System

Application Brief


These parameters are used in application notes for both the 7697

USP <467> Method
Parameter Comparison
for the Agilent 8697 and
7697A Headspace
Samplers

https://www.agilent.co m/cs/library/application s/5991-8032EN.pdf

Thank you for your attention!