

Agilent Sample Preparation The Pesticide Analysis Workflow

Insights into Preparing your Cannabis Sample and Triple Quad Mass Spec Analysis

Joan Stevens, Ph.D., and Tina Chambers Sample Preparation Application Specialists

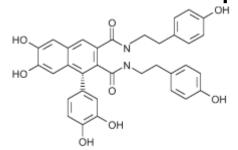
Outline

- Introduction to Plant Material and Edibles
- Existing Sample Prep Techniques
 - Extraction, QuEChERS
 - SPE, dispersive SPE
- Evaluation of Extraction
 - Data from Initial Studies
 - Insights and observations
- Optimization Sample Preparation Techniques
 - Custom dispersive SPE
 - EMR-Lipid dispersive SPE
- Future Investigations, Aspects and Considerations

Cannabis and Cannabis-Based Products: Pesticide

Analysis

No tolerances have been established for marijuana, because of its illegal federal status and because the pesticide companies have yet to embark on the lengthy and expensive process of testing their products on cannabis......Cannabis Now Issue 19


Pesticide Analytes and their action levels in Oregon

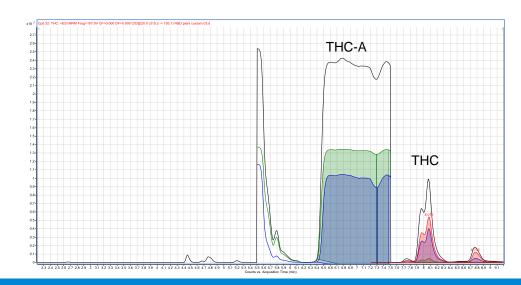
Analyte	Chemical Abstract Services (CAS) Registry Number	Action Level ppm
Abamectin	71751-41-2	0.5
Acephate	30560-19-1	0.4
Acequinocyl	57960-19-7	2
Acetamiprid	135410-20-7	0.2
Aldicarb	116-06-3	0.4
Azoxystrobin	131860-33-8	0.2
Bifenazate	149877-41-8	0.2
Bifenthrin	82657-04-3	0.2
Boscalid Boscalid	188425-85-6	0.4
Carbaryl	63-25-2	0.2
Carbofuran	1563-66-2	0.2
Chlorantraniliprole	500008-45-7	0.2
Chlorfenapyr	122453-73-0	1
Chlorpyrifos	2921-88-2	0.2
Clofentezine	74115-24-5	0.2
Cyfluthrin	68359-37-5	1
Cypermethrin	52315-07-8	1
Daminozide	1596-84-5	1
DDVP (Dichlorvos)	62-73-7	0.1
Diazinon	333-41-5	0.2
Dimethoate	60-51-5	0.2
Ethoprophos	13194-48-4	0.2
Etofenprox	80844-07-1	0.4
Etoxazole	153233-91-1	0.2
Fenoxycarb Fenoxycarb	72490-01-8	0.2
Fenpyroximate	134098-61-6	0.4
Fipronil	120068-37-3	0.4
Flonicamid	158062-67-0	1
Fludioxonil	131341-86-1	0.4
Hexythiazox	78587-05-0	1
Imazalil	35554-44-0	0.2
Imidacloprid	138261-41-3	0.4
Kresoxim-methyl	143390-89-0	0.4
Malathion	121-75-5	0.2
Metalaxyl	57837-19-1	0.2
Methiocarb	2032-65-7	0.2
Methomyl	16752-77-5	0.4
Methyl parathion	298-00-0	0.2

Analyte	Chemical Abstract Services (CAS) Registry Number	Action Level ppm
MGK-264	113-48-4	0.2
Myclobutanil	88671-89-0	0.2
Naled	300-76-5	0.5
Oxamyl	23135-22-0	1
Paclobutrazol	76738-62-0	0.4
Permethrins ¹⁶	52645-53-1	0.2
Phosmet	732-11-6	0.2
Piperonyl_butoxide	51-03-6	2
Prallethrin	23031-36-9	0.2
Propiconazole	60207-90-1	0.4
Propoxur	114-26-1	0.2
Pyrethrins ¹⁷	8003-34-7	1
Pyridaben	96489-71-3	0.2
Spinosad	168316-95-8	0.2
Spiromesifen	283594-90-1	0.2
Spirotetramat	203313-25-1	0.2
Spiroxamine	118134-30-8	0.4
Tebuconazole	80443-41-0	0.4
Thiacloprid	111988-49-9	0.2
Thiamethoxam	153719-23-4	0.2
Trifloxystrobin	141517-21-7	0.2

Constituents of Cannabis Plants: Complex

- Nitrogenous compounds (27 known)
- Amino acids (18),
- Proteins (3)
- Glycoproteins (6)
- Enzymes (2)
- Sugars and related compounds (34)
- Hydrocarbons (50)
- Simple alcohols (7)
- Aldehydes (13)
- Ketones (13)
- Simple acids (21)
- Fatty acids (22)
- Simple esters (12)
- Lactones (1)
- Steroids (11)
- Terpenes (120)
- Non-cannabinoid phenols (25)
- Cannabinoids (66)
- Flavonoids (21)
- Vitamins (1) [Vitamin A]
- Pigments (2)
- Elements (9).

Structure of Terpenes

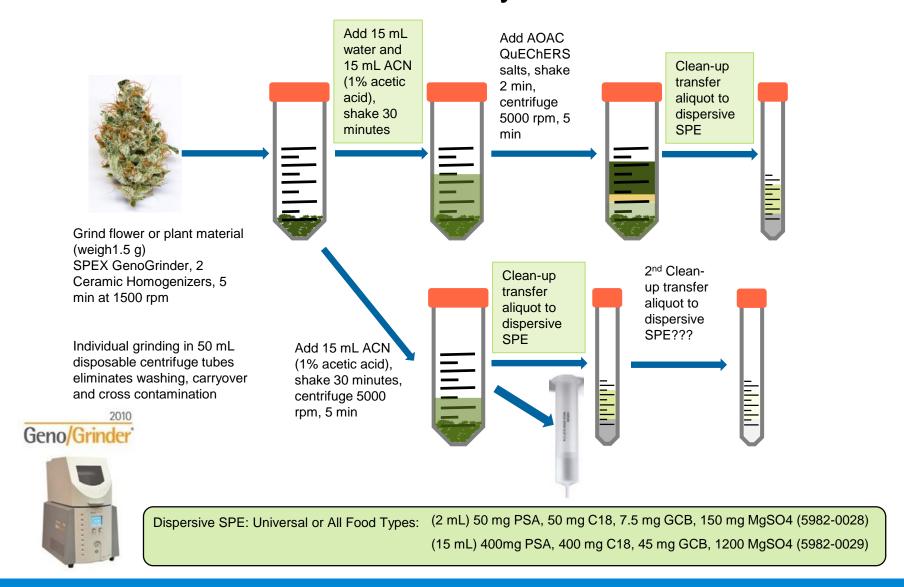

- an isoprene unit (may have double bonds)
- Terpenes are composed of two or more isoprene units.
- The isoprene units will maintain its isopentyl, usually with modification of the isoprene double bonds.

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

ОН

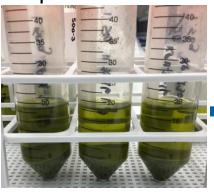
Sample Preparation: Pesticide Analysis

- Complex matrix associated with cannabis plant material and edibles needs to be addressed
 - CBDs are in large amounts (10-20%), THCA can interfere with analysis with broad interference (100,000-200,000 ppm)
 - Terpenes and other non-cannabinoid compounds are also in large ppm quantities (10-5000 ppm)
 - Pesticides in 500 ppb amounts (0.00005%)

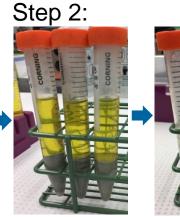


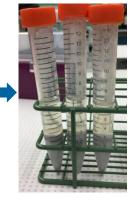
Sample Preparation Techniques: Pesticide Analysis

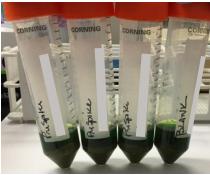
- Methanol extraction with C18 SPE
- Acetonitrile extraction with C18 SPE
- Acetonitrile extraction with both NH2 and C18 SPE
- QuEChERS extraction with SPE cleanup
- QuEChERS extraction with dispersive SPE cleanup
 - Plant material and edibles considered dry matrix; < 60% water
 - Addition of water required for QuEChERS extraction/partitioning: step 1
 - Use of Salts: Na Acetate, Citrates, NaCl with MgSO4
 - Super-saturates the water with the salts allowing separation of water from the ACN
 - Analytes of interest extract/transfer into the ACN layer
 - Clean-up of co-extractive matrix: step 2

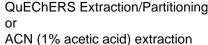


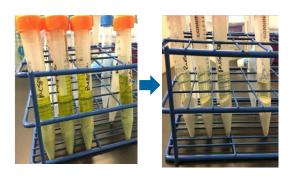
Basic Protocol: Pesticide Analysis



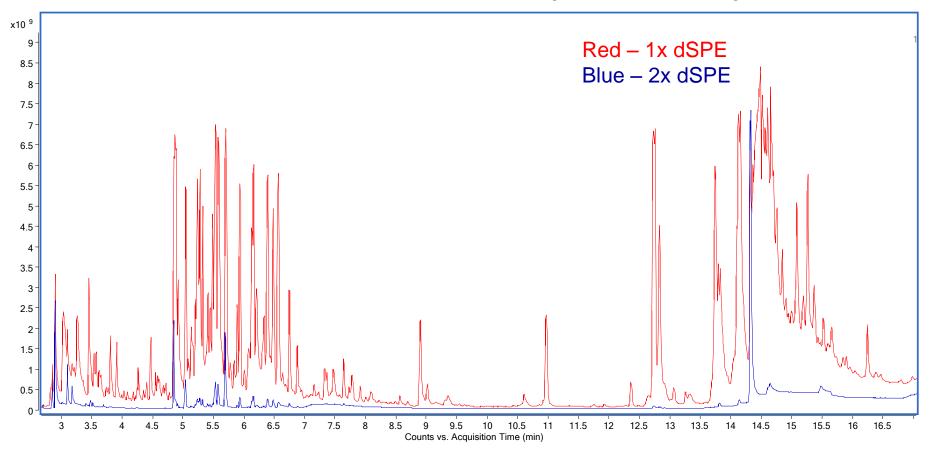

Optimization and Custom Dispersive SPE: Why is it **Important**


Step 1:





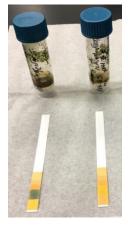
QuEChERS Extraction/Partitioning


- Advantages or Disadvantages
- Addition of water
- > Addition of 1% acetic acid

Clean-up: Dispersive SPE

- > Advantage over SPE, less steps, no manifold, vacuum
- > Enhanced (custom) clean-up or additional clean-up

Cannabis mixture cleanup – QuEChERS with 1x dSPE vs. 2 x dSPE custom dispersive steps

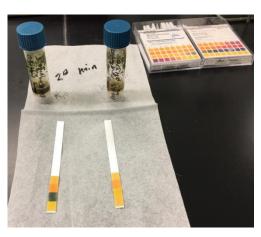


GC MS 7010 Triple Quad TIC Scan, 0.5 uL injection, Gain 10 Custom dispersive: Mixture of PSA, C18-EC, GCB, additional sorbent, and MgSO4

Sample Preparation: Insights and Observations

Step 1: QuEChERS or ACN Extraction

Addition of Water, vortex 15-30 minutes



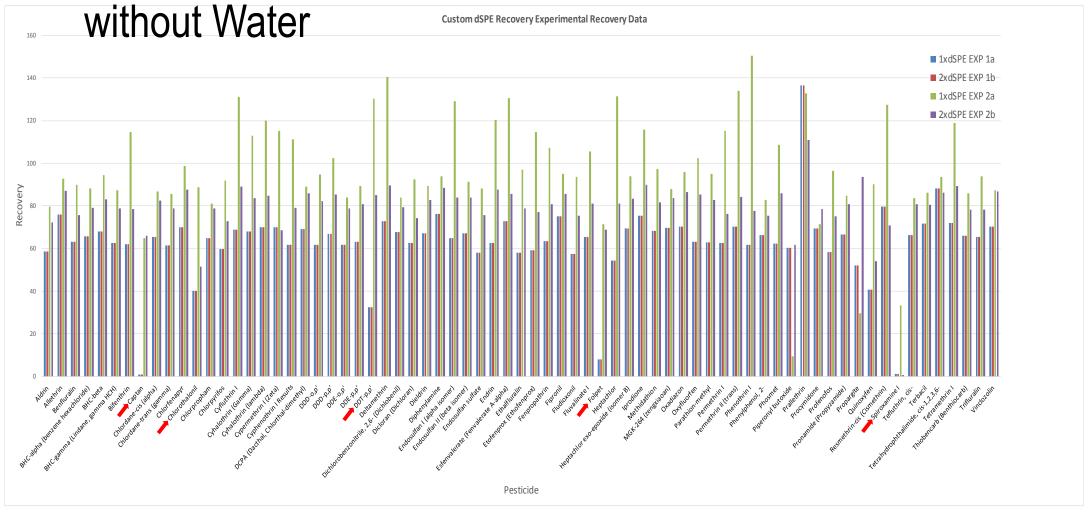
5 min


50 mM Na Acetate pH 3.5

Water

10 min

20 min with indicator pH range



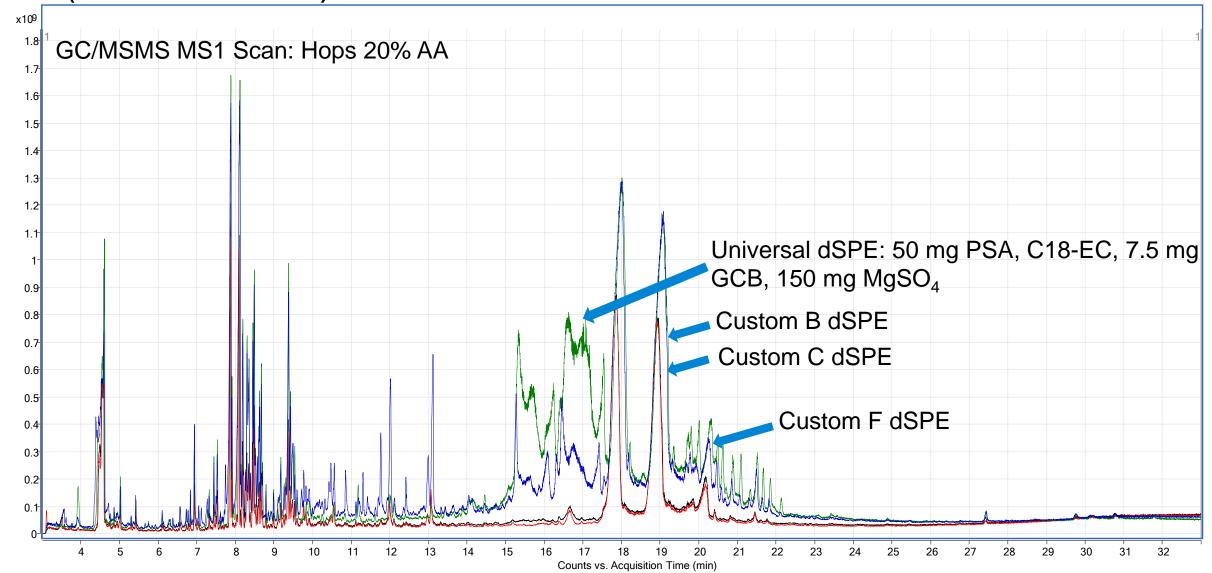
5 min with indicator pH range
Water/ACN (1:1 v/v)

Addition of water to cannabis flower/plant turns basic almost immediately

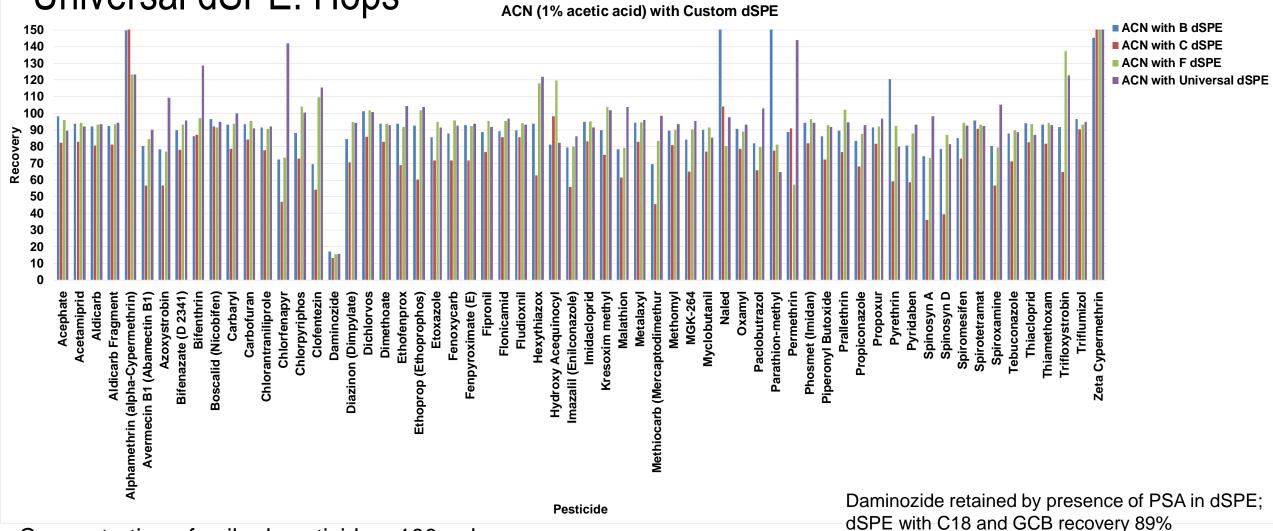
Why is this a concern.....degradation of base sensitive pesticides (fungicides) Captan, Folpet, Dichlofluanid, Chlorothalonil, Dicofol, Tolylfluanid

Recovery Comparison using Custom dSPE with and

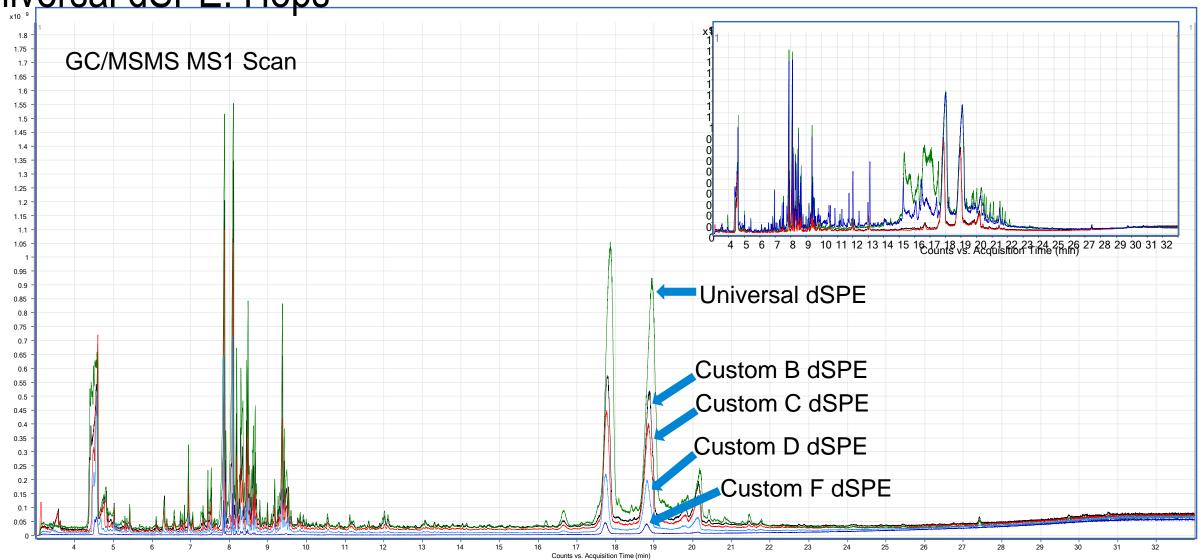
EXP 1a: AOAC QuEChERS: ACN (1%AA) 13.75 mL, dSPE custom, 1xdSPE

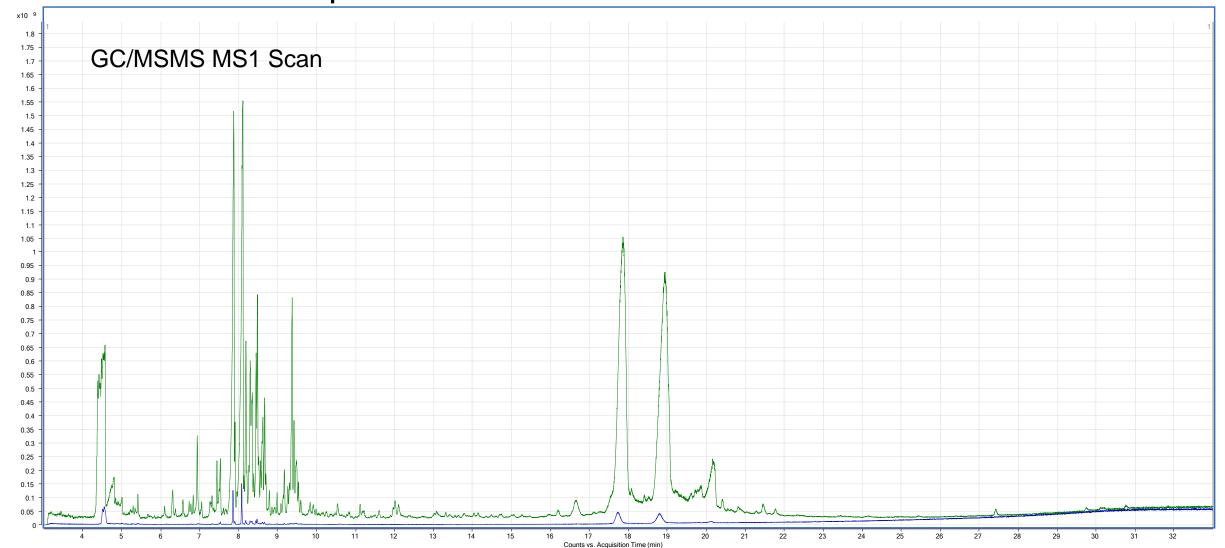

EXP 1b: AOAC QuEChERS: ACN (1%AA) 13.75 mL, dSPE custom, 2xdSPE

EXP 2a: ACN (1%AA) 13.75 mL only no QuEChERS salts and no H2O, dSPE custom, 1xdSPE

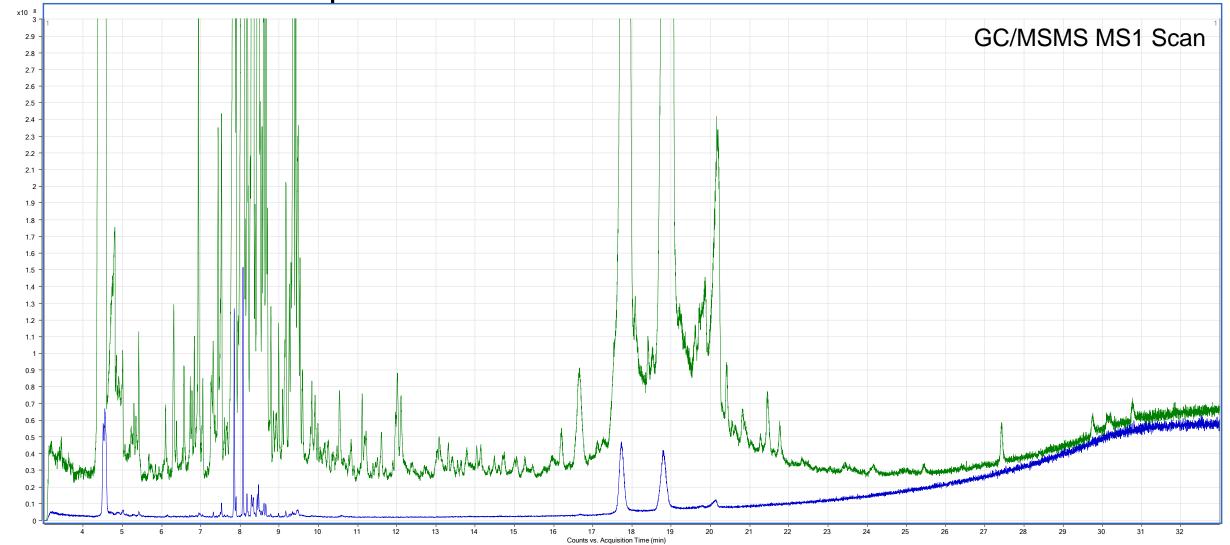

EXP 2b: ACN (1%AA) 13.75 mL only no QuEChERS salts and no H2O, dSPE custom, 2xdSPE

ACN (1% Acetic Acid) Extraction with Custom dSPE versus Universal dSPE

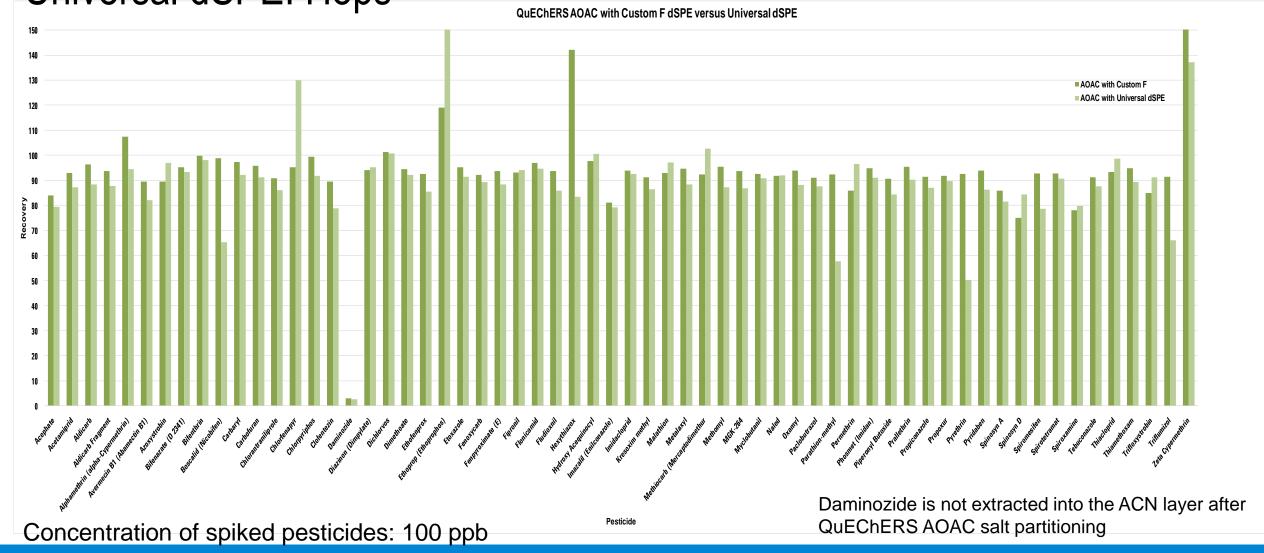

Pesticide Recovery after ACN (1% acetic acid) with Custom dSPE or Universal dSPE: Hops ACN (1% acetic acid) with Custom dSPE


Concentration of spiked pesticides: 100 ppb

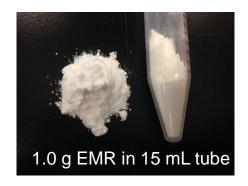
QuEChERS AOAC Extraction/Partitioning with Custom dSPE versus

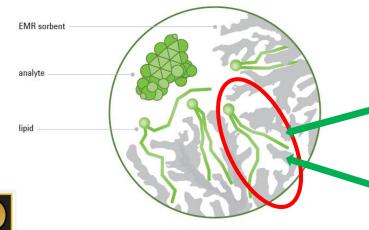


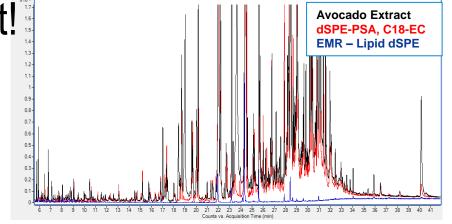
QuEChERS AOAC Extraction/Partitioning with Custom F dSPE versus Universal dSPE: Hops



QuEChERS AOAC Extraction/Partitioning with Custom F dSPE versus




Pesticide Recovery after QuEChERS AOAC with Custom F dSPE or Universal dSPE: Hops



Cannabis-Based Products: Unique Dispersive SPE

EMR-Lipid Innovative Sorbent!

When "activated" by water EMR-Lipid Sorbent Selectively traps lipids.

Size Exclusion: Unbranched hydrocarbon chains (lipids) enter the sorbent; bulky analytes do not.

Sorbent Chemistry: Lipid chains that enter the sorbent are trapped by hydrophobic interactions.

EMR-Lipid Mechanism – Size exclusion and hydrophobic interaction

... and what does it do?

EMR sorbent removes LIPIDS it interacts with the long aliphatic chain NOT the functional groups

What are Lipids?

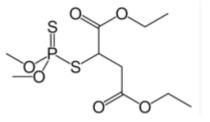
A class of naturally occurring hydrocarbon containing compounds

commonly known as fats and oils

What Does EMR *NOT* Interact With?

EMR does NOT remove analytes of interest

Insecticides and anthelmintics

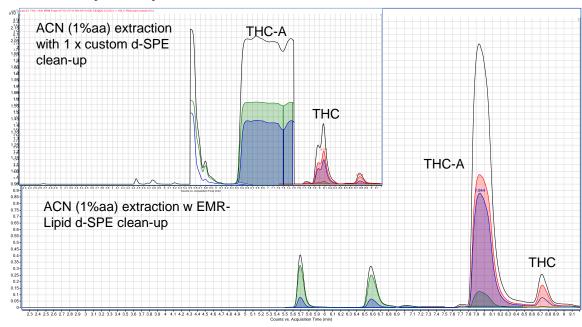

Organochlorine Pesticides

$$CI$$
 O
 CH_2
 CI
 N
 N

Imidazole pesticides

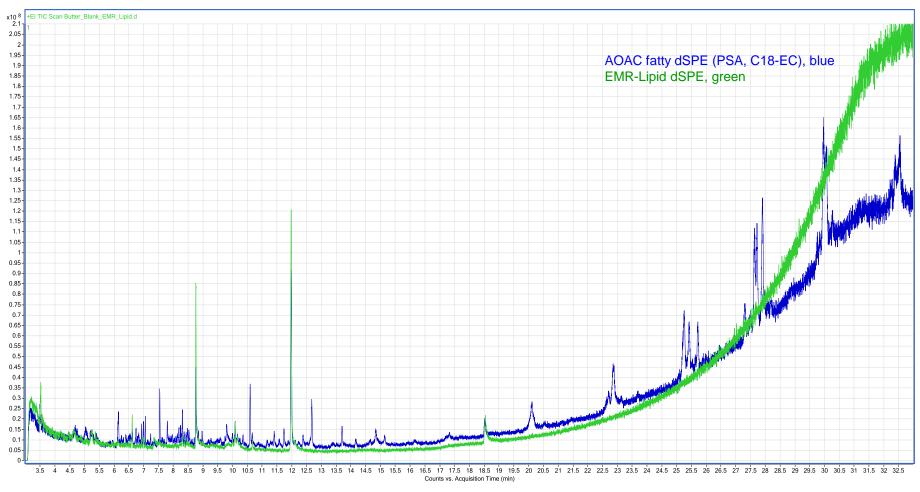
Fumonisin B2

Aflatoxins and Mycotoxins



Organophosphate Pesticides

Cannabis-Based Product: THC-Butter


- 1.5 g of THC-butter was added to a 50 mL centrifuge tube
- Add 15 mL of ACN (1%acetic acid)
- Vortex 30 minutes, centrifuge 5000 rpm, 5 min
- Add 5 mL water to EMR-Lipid, vortex immediately 1 min
- Add 5 mL of ACN (1% acetic acid) extract, vortex immediately 2 min
- Centrifuge 5000 rpm, 5 min
- Analyze by LCMSMS

Pesticide Screened:

Abamectin B1-a
Abamectin B1-b
Azoxystrobin
Bifenazate
Etoxazole
Imazalil
Imidacloprid
Malathion
Myclobutanil
Permethrin-1
Permethrin-2
Spinosyn A
Spinosyn D
Spiromesifen
Spirotetramat
Tebuconazole

QuEChERS extraction of Butter: MS1 Scan

Blue Chromatogram: 1.5 g melted butter, AOAC salts, AOAC fatty dSPE (PSA and C18EC) Green Chromatogram: 1.5 g melted butter, AOAC salts, EMR-Lipid dispersive SPE

Insights and Observations:

- If QuEChERS AOAC method is being used you should add the ACN (1% acetic acid immediately after the addition of water, before vortexing for 20-30 minutes
- Do not use QuEChERS EN method, water and ACN mix will be too basic for basic labile compounds
- Promising results with ACN (1% acetic acid) extraction, no QuEChERS salts
- Dispersive SPE or SPE is required to remove some of the matrix coextractives
- The active ingredients can cause interference issue: cannabinoids
- Is the existing clean-up techniques enough for long term analysis, issues with analysis and instrument maintenance

Future Investigations and Considerations

- Continue to investigate the extraction approach: QuEChERS versus Acetonitrile extraction
- Method Development with custom d-SPE
 - Focus on improving matrix removal
 - One approach for both LC and GC MSMS
 - Simplicity and ease of use
 - Advance work with EMR-Lipid with cannabinoid products with high lipid content: food, butter and oils
- Reducing sample size
 - Miniaturization of extraction
 - Experience with approach, several application notes and presentations
 - Availability of material, cannabis and cannabis-based products
 - Substantial cost saving ~45% per sample

Agilent GC-MS/MS Cannabis Testing

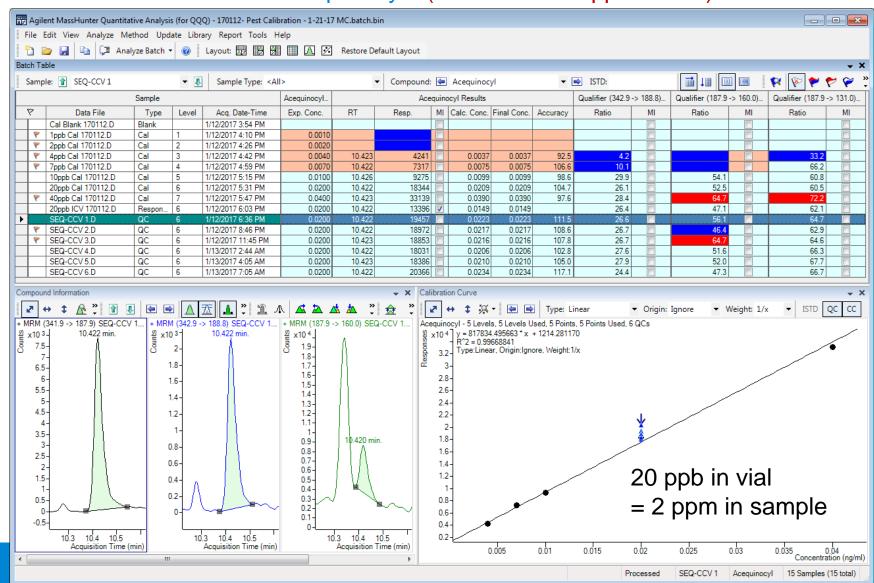
Pesticide Analysis in Cannabis by GC - QQQ

Ronald Honnold and Melissa Churley GC-MS Application Scientists

Summary:

"The Oregon limits in Table 1 (next slide) are not thresholds; they are a best guess at the analytical LOQ for that analyte.

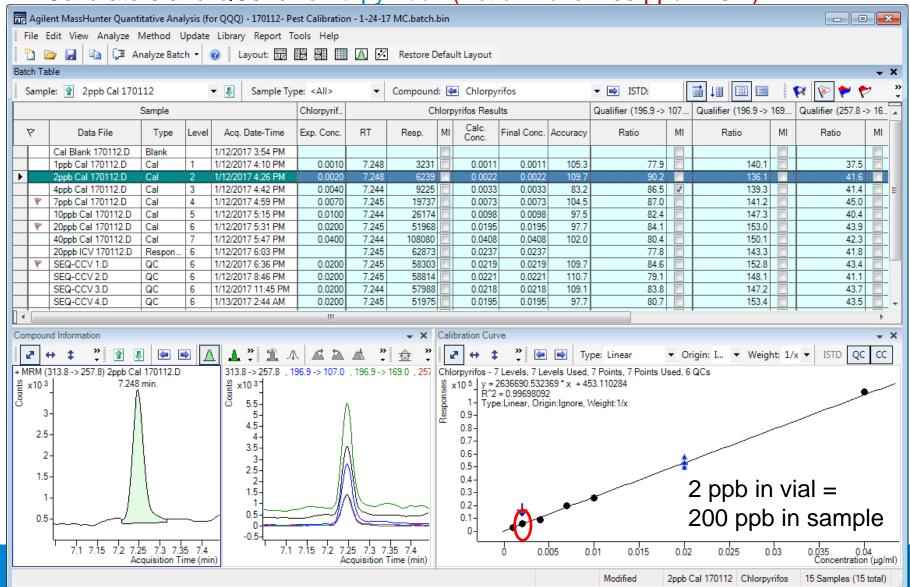
These limits are analytical in nature only and will probably be revised when Oregon has enough data to be sure the labs can achieve lower limits".


Pesticides included in the analysis are highlighted.

Guidance for State Medical Cannabis Testing Programs, Association of Public Health Laboratories (APHL), Silver Spring, MS; www.aphl.org, May 2016


Table 1: Pesticide analytes and their action levels in OR (excerpt)

Analyte	Chemical Abstract Services (CAS) Registry Number	Action Leve ppm
Abamectin	71751-41-2	0.5
Acephate	30560-19-1	0.4
Acequinocyl	57960-19-7	2 ← Highest
Acetamiprid	135410-20-7	0.2
Aldicarb	116-06-3	0.4
Azoxystrobin	131860-33-8	0.2
Bifenazate	149877-41-8	0.2
Bifenthrin	82657-04-3	0.2
Boscalid	188425-85-6	0.4
Carbaryl	63-25-2	0.2
Carbofuran	1563-66-2	0.2
Chlorantraniliprole	500008-45-7	0.2
Chlorfenapyr	122453-73-0	1
Chlorpyrifos	2921-88-2	0.2
Clofentezine	74115-24-5	0.2
Cyfluthrin	68359-37-5	1
Cypermethrin	52315-07-8	1
Daminozide	1596-84-5	1
DDVP (Dichlorvos)	62-73-7	0.1 ← Lowest


Calibrators and QCs for Acequinocyl (Action Level 2 ppm in OR)

Calibrators and QCs for Dichlorvos (Action Level 100 ppb in OR)

Calibrators and QCs for Chlorpyrifos (Action Level 200 ppb in OR)

%RSD (n=6) for 14 GCMS-amenable pesticides

Pesticide	%RSD	Action Level (ppb)	
(GCMS)	(20 ppb in vial)	Oregon	
Dichlorvos	8.0	100	← Lowest AL
Naled	12.5	500	
Parathion-methyl	6.2	200	
Chlorpyrifos	6.7	200	
MGK-264	4.9	200	
Fipronil	4.9	400	
Fludioxonil	6.6	400	
Kresoxim-methyl	4.5	400	
Chlorfenapyr	6.2	1000	
Propiconazole	3.9	400	
Bifenthrin	2.9	200	
Acequinocyl	4.6	2000	← Highest AL
Cyfluthrin	5.2	1000	
Cypermethrin	4.0	1000	

Pesticides & Environmental Pollutants v4.0

Pesticides Monitoring in Food and Environmental

Complete Analytical System to run Application

- 7890B GC and 7000D/7010B MS
- Acquisition method, comprehensive user guide, and Instrument consumables


P&EP 4.0 Enhanced MRM database with 3-yr Subscription

- >1,100 compounds with over 7,500 matrix-optimized MRM Transitions
- Works seamlessly with dMRM method builder in MassHunter

Added Value Items

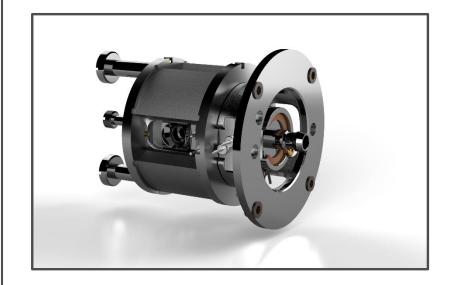
- Optional 4-Day On-site Method and Application Services (R3997A)
- Bond Elut QuEChERS: e.g., Enhanced Matrix Removal-Lipid Kit (for high lipid content)
- 20% discount for customized standard from ULTRA SCIENTIFIC

Reference Guide for GC/MS/MS Pesticide Residue Analysis

Reference Guide Table of Contents

1	Introduction
2	Pesticide multi-residue analysis
3	Sample preparation using the QuEChERS approach7
	3.1 QuEChERS history and major modifications7
	3.2 Cleanup options in the QuEChERS method10
4	Use of internal and quality/process control standards14
5	GC analysis of pesticides21
5	GC analysis of pesticides
5	
5	5.1 Matrix effects21
5	5.1 Matrix effects
5	5.1 Matrix effects 21 5.2 GC injection techniques 23 5.3 Calibration approaches 26

7	GC/MS/MS method development and optimization example	40
	7.1 Optimization of MS conditions	40
	7.1.1 MS source temperature	40
	7.1.2 Gain factor	40
	7.1.3 MS/MS optimization	40
	7.1.4 Time segment program	46
	7.2 Multi-Mode Inlet – PTV solvent vent optimization	49
	7.3 Column backflushing optimization	52
8	GC/MS/MS method modification for a different list of analytes	58
9	GC/MS/MS routine analysis	64
	9.1 Routine GC/MS/MS system maintenance	64
	9.2 Routine update of the GC/MS/MS method	64
	9.3 Quality control requirements	71
	9.4 Calibration and sample injection sequence considerations	72
10	Acknowledgements	76
11	References	77

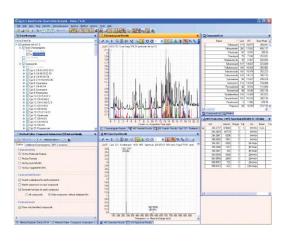


Annex I: Major chemical classes of insecticides, fungicides and herbicides and preferred determinative technique (GC/MS or LC/MS) for their analysis	8
Annex II: Example of a QuEChERS sample preparation protocol for GC/MS/MS analysis of pesticides in fruits and vegetables	8
Annex III: Examples of pesticides that require special consideration when using QuEChERS	9
Annex IV: Example of a GC/MS/MS method for pesticide multi-residue analysis	9

7010B Triple Quadrupole GC/MS System

- Also available: 7010B Triple Quadrupole GC/MS System
- Features the Agilent High Efficiency El Source (HES) - the greatest advance in electron ionization in decades
- Produces up to 20X more ions so you can...
 - Reach lower detection limits, or
 - Increase your lab's efficiency by:
 - Injecting less to extend the life of your liners and columns
 - Eliminating preconcentration steps
 - Scaling down all of your sampling and sample prep procedures to save money on transportation, reagents, and waste

Agilent LC-MS/MS Cannabis Testing


Pesticide Analysis in Cannabis by HPLC - QQQ

Sue D'Antonio

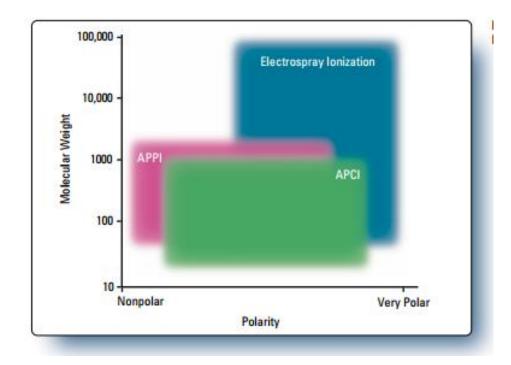
LCMS Application Chemist

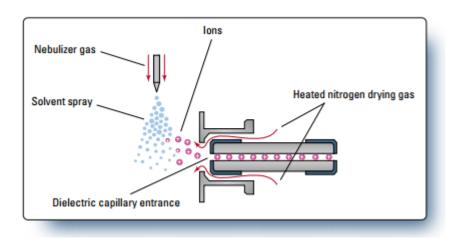
Agilent LC-QQQ for Every State, Every Detection Level

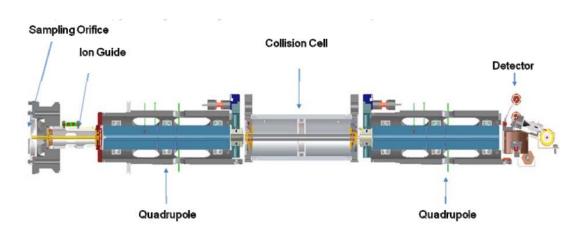
6495B LC - QQQ

Infinity LC Series & MassHunter Software

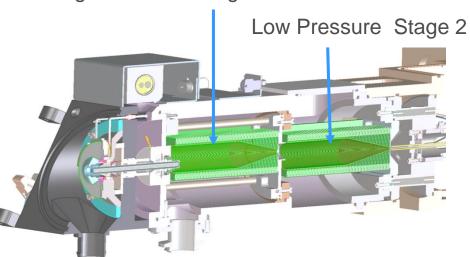
6420 LC-QQQ

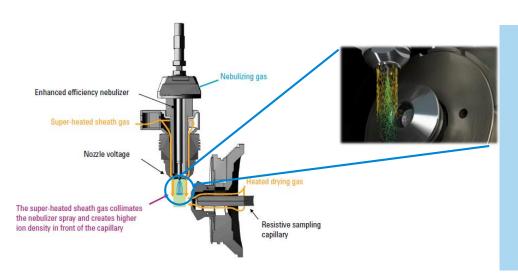



6470 LC-QQQ


Triple Quadrupole Instruments

Ion Sources

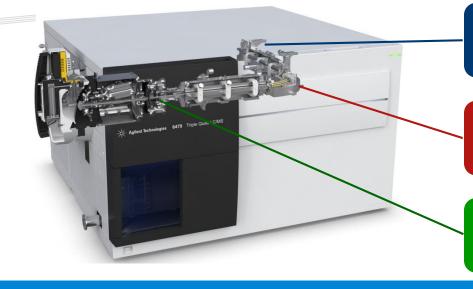

Electrospray Ionization



Schematic View of Triple Quadrupole

Agilent Innovations

High Pressure Stage 1



Agilent Jet Stream Technology

- Thermal gradient focusing
- Efficient desolvation
- Creates an ion rich zone
- Up to 10x gains in sensitivity

Agilent iFunnel Technology

- Hexabore Capillary
- Dual Ion Funnel
- Increased ion generation
- Enhanced ion sampling

- An Ion Detector with High Energy Conversion Dynode and Low Noise
- Improved ion detection
- A Curved and Tapered Hexapole Collision Cell
- Effective ion collection
- Enhanced Q1 Ion Optics
 - Improved ion transmission

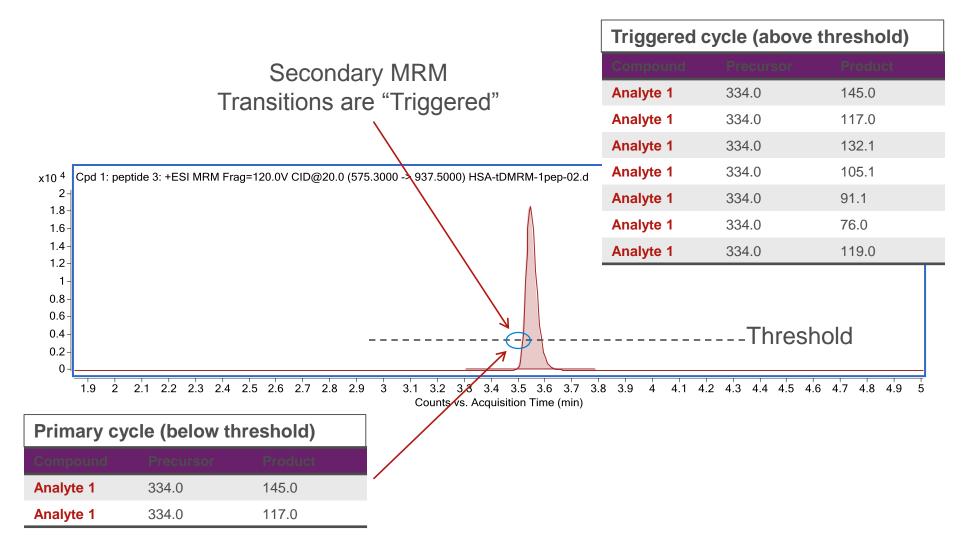
Triggered MRM

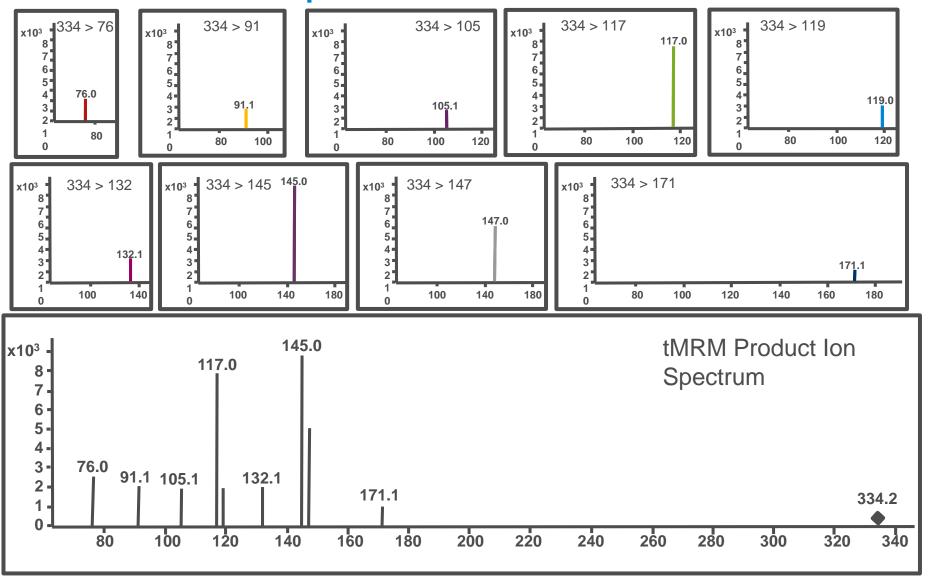
Quantitation with Confirmation: Fingerprinting

Full Scan Approach:

Scan the entire fingerprint

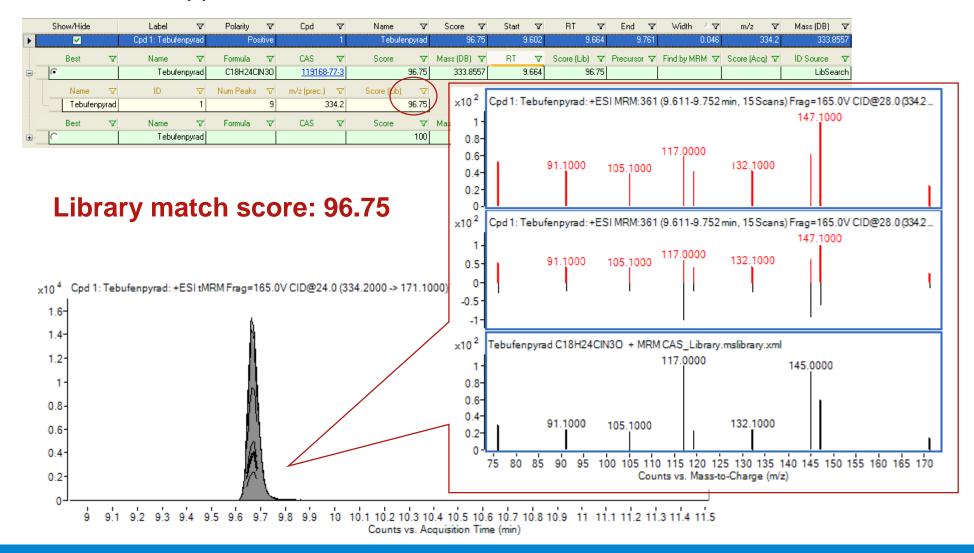
tMRM Approach:


Focus on known fingerprint features

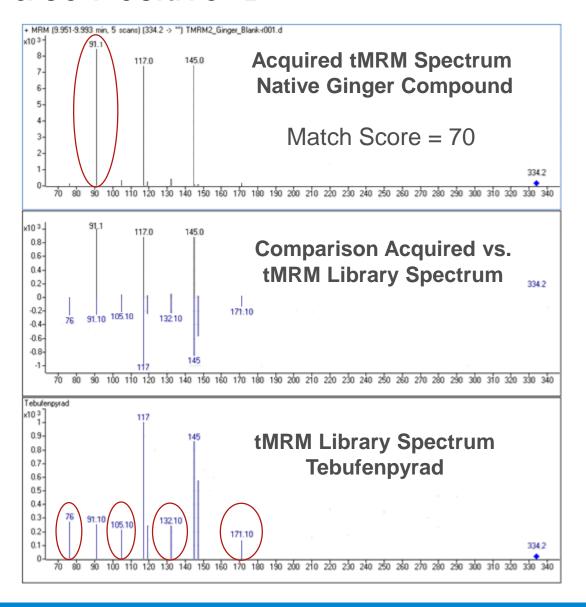

Two possible scenarios:

- Confirmation of positive findings with additional information (spectral matching)
- Elimination of potential false detects caused by matrix interferences

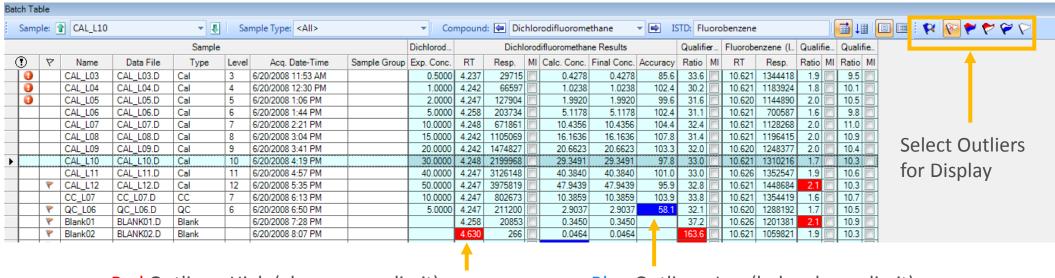
Triggered MRM (tMRM) Analysis



tMRM Product Ion Spectrum



tMRM Library Searching


Tebufenpyrad Standard 50 ppb

tMRM Prevents False Positive ID

Batch Table - Messages and Outliers

Red Outlier - High (above upper limit)

Blue Outlier - Low(below lower limit)

Messages

Quantitation Message(s)

Dibromomethane: Qualifier M/Z = 93.0: Qualifier peak not found or does not match quantitation criteria Hexachlorobutadiene: Qualifier M/Z = 223.0: Qualifier peak not found or does not match quantitation criteria Hexachlorobutadiene: Qualifier M/Z = 227.0: Qualifier peak not found or does not match quantitation criteria Tetrahydrofuran: Qualifier M/Z = 72.0: Qualifier peak not found or does not match quantitation criteria Vinyl Acetate: Qualifier M/Z = 86.1: Qualifier peak not found or does not match quantitation criteria

Outliers

Outlier(s)
Dichlorodifluoromethane: Retention time = 4.630 is outside the allowed range [4.037, 4.462]

Hover cursor over the outlier or message to display details

tMRM Application Kits For LC/MS

Targeted Screening & Confirmation with QQQ

Pesticides

Test Mix: 254 compounds

DB: 700+ compounds

Library: 200+ compounds

Veterinary Drugs

Test Mix: 146 compounds

DB: 500+ compounds

Library: 100+ compounds

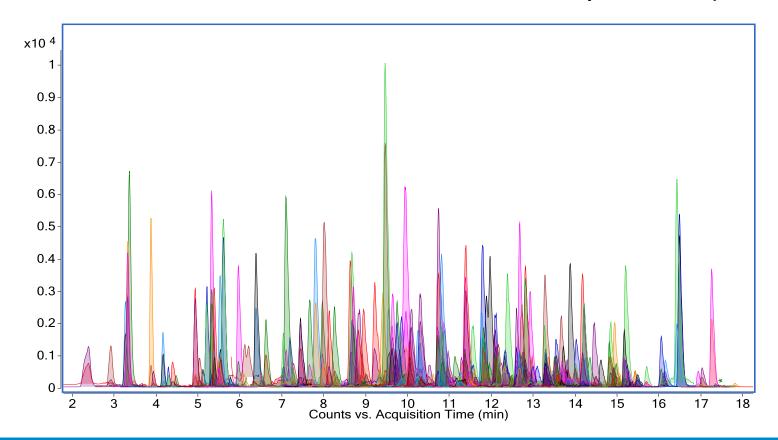
Forensic Toxicology

Test Mix: 139 compounds

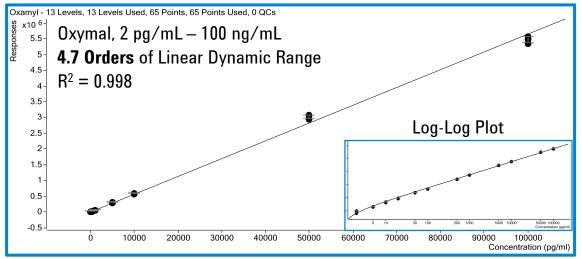
DB: 2500+ compounds

Library: 100+ compounds

Agilent unique data dependent acquisition for fast and sensitive compound screening, quantitation and confirmation.


Multi-Residue Pesticide Analysis in Food 6470 QQQ

1:20 dilution of > 250 pesticides spiked into black tea at 10 ng/mL (ppb)


Injection volume = $2 \mu L$

- Multi-residue pesticide analysis in food products – most demanding food safety applications
- Improved sensitivity and precision of the 6470 allows accurate quantitation of pesticides <Maximum Residue Limits (MRLs) imposed by EU, with higher degrees of sample dilution
- <u>Sample dilution</u> reduces matrix effects, improves method **robustness**, allows more efficient ionization and enables the use of solvent calibration with better accuracy

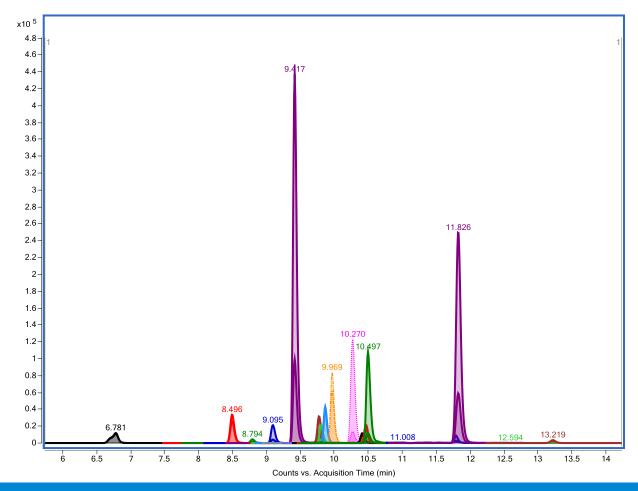
Confident Quantitation Over ~5 Orders of Dynamic Range

-0.5 -	Ó	10000	20000	30000	40000	50000	60000	70000	80000	90000 Co	100000 ncentration (pg/n
rimicarb -	13 Levels, 13 L	evels Used,	65 Points,	65 Points U	sed, 0 QCs						
x10 ⁷ -	D:::.	L 2	a. /.a.l	100		.1					
x10 ⁷ - 1.2- 1.1-	Pirimica	rb, z p	g/mL	- 100	ng/ m	IL					•
	4.7 Orde	ers of I	linear	Dvna	mic Ra	ande					
'1			Liiioai	D y ma		ang c					
	$R^2 = 0.9$	98									
0.8-											
0.7-						•				DI .4	
0.6-								L	.og-Lo	g Piot	• •
0.5-							1-				
0.4-							[]				
0.3-											
0.2-		_					5-	-20	_		
0.1-	. 1						f				
0-							7	5 0.01 0.05	5 0.1 0.5	1 5	10 50 100
-0.1-							0.00.		0.0		Concentration (s

Levels	%RSD (n = 5)	%Accuracy		
2 pg/mL	18.3	114.0		
5 pg/mL	5.4	86.8		
10 pg/mL	7.4	87.1		
20 pg/mL	5.5	83.1		
50 pg/mL	1.9	86.6		
100 pg/mL	1.1	82.4		
500 pg/mL	1.7	89.6		
1 ng/mL	1.2	93.8		
5 ng/mL	1.0	104.4		
10 ng/mL	2.1	103.3		
50 ng/mL	2.3	106.2		
100 ng/mL	1.8	96.5		

Levels	%RSD (n = 5)	%Accuracy
2 pg/mL	15.0	117.2
5 pg/mL	10.7	97.1
10 pg/mL	4.4	82.2
20 pg/mL	1.7	80.6
50 pg/mL	2.8	85.5
100 pg/mL	2.3	80.2
500 pg/mL	1.2	88.3
1 ng/mL	1.1	93.3
5 ng/mL	0.7	103.1
10 ng/mL	2.0	101.6
50 ng/mL	1.7	105.6
100 ng/mL	1.3	97.0

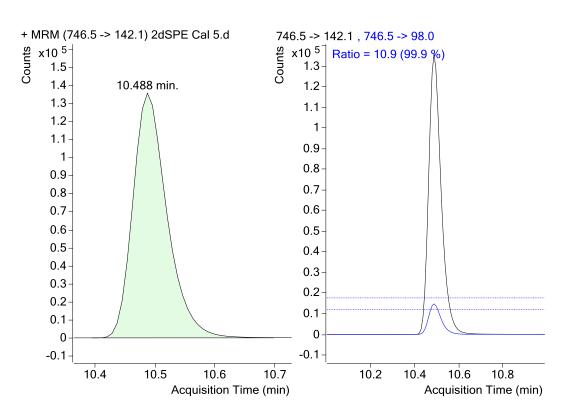
Concentration (ppb)

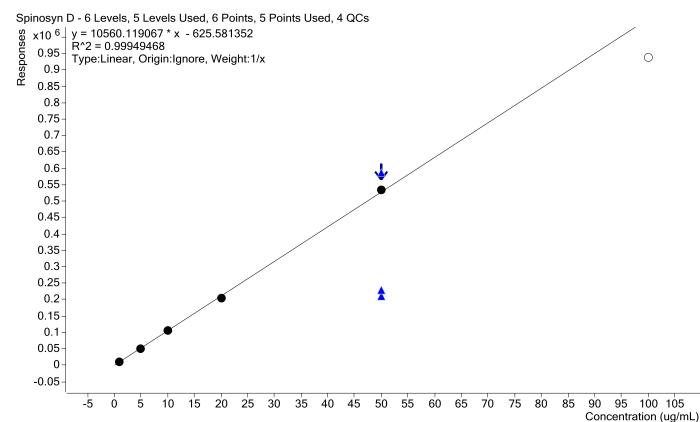

15 Pesticides Screened in Marijuana

Colorado Department of Agriculture Marijuana Testing Metadata

FY 2016	(Sample Results Reported	d 7/1/15 Thr	u 06/30/16)	
	Samples Tested:	599		
	Samples with Detects:	391	65%	
	Non-detect Samples:	208	35%	
	Azadirachtins Only:	97	16%	
	Compounds Detected	# of Detects		
	Myclobutanil			190
	Azadirachtins			165
	Imidacloprid			77
	Spiromesifen			72
	Bifenazate			43
	Avermectins			44
	Etoxazole			27
	Piperonyl Butoxide	15		
	Azoxystrobin			13
	Spinosyn A			15
	Spinosyn D			6
	Pyrethrins			3
	Propiconazole			3
	Spirotetramat	1		
	Chlorfenapyr			2

Overlay MRM of 15 Pesticide Screen in Marijuana




Pesticides Screened in Marijuana

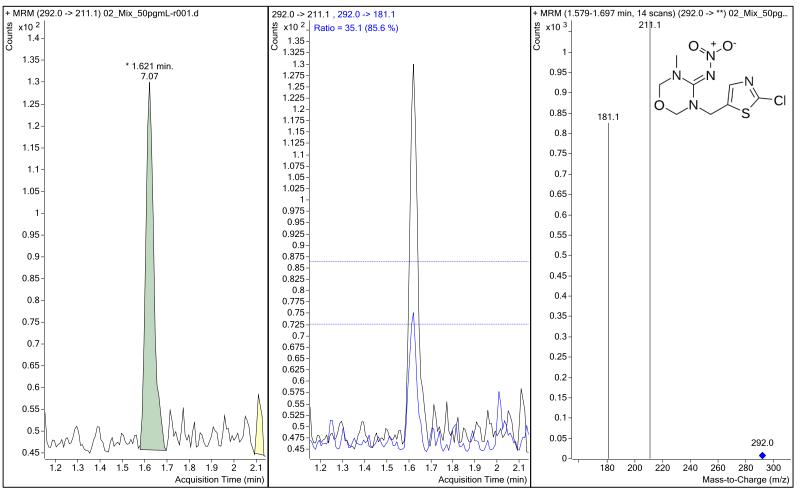
Spinosyn D MRM and Qualifier in Marijuana

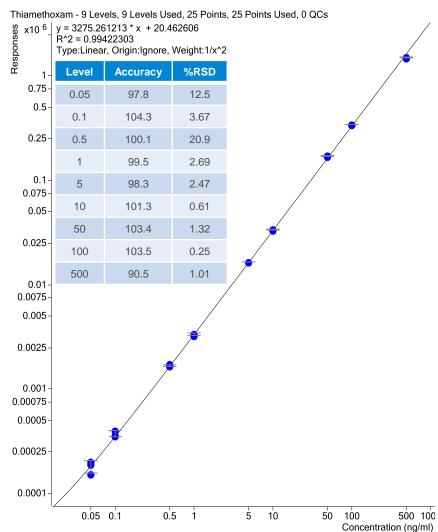
Calibration Curve of Spinosyn D in Marijuana

62 Common Pesticides in Marijuana

State of Oregon Pesticide List

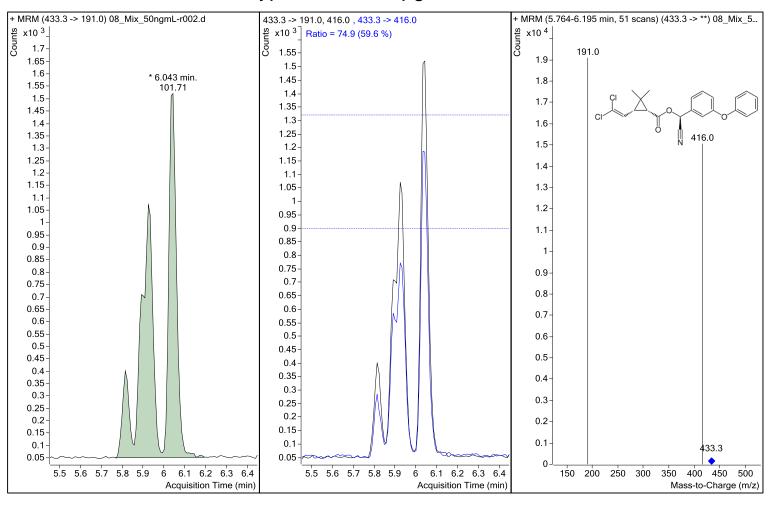
Acephate Clofentezine Hexythiazox Piperonyl butoxide Acequinocyl Cyfluthrin Imazalil Prallethrin Acetamiprid Cypermethrin **Imidacloprid** Propiconazole Aldicarb **Daminozid** Jasmolin I **Pyrethrin** Avermectin B1a Diazinon Kresoxim methyl Pyridaben Avermectin B1b **Dibrom Naled** Malathion Spinosyn A Spinosyn D Azoxystrobin **Dichlorvos** Metalaxyl Bifenazate Dimethoate Methiocarb Spiromesifen Bifenthrin Methomyl Spirotetramat **Ethoprophos Boscalid** Etofenprox MGK-264 Spiroxamine Tebuconazole Carbaryl Etoxazole Myclobutanil Carbofuran Fenoxycarb Oxamyl Thiacloprid Chlorantraniliprole Fenpyroximate Paclobutrazol Thiamethoxam Chlorfenapyr Fipronil* Parathion-methyl Trifloxystrobin Chlorpyrifos Flonicamid Permethrin Cinerin I Fludioxonil* Phosmet


Overlaid MRM Transitions of 62 Pesticides in 10 min

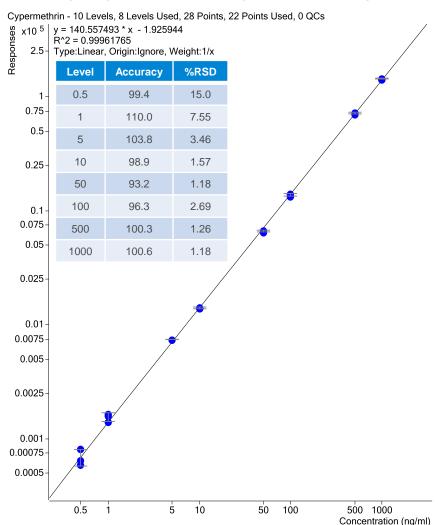

^{*} Negative mode

Excellent Sensitivity and Linearity

Thiamethoxam, 100 fg on column



Log-Log Plot from 0.05 ng/mL to 500 ng/mL



Excellent Sensitivity and Linearity

Cypermethrin: 1 pg on column

Log-Log Plot from 0.5 ng/mL to 1000 ng/mL

Thank You Very Much! Questions?

