The Good and the Bad Influence of Polyfunctional Thiols in Beer Hops; Is it Grapefruit or a Cat Box?

Application Scientist: Matthew Curtis
Quick History of Beer Hop Analysis:

Early life:
• In Europe there were about 20 varietals by 1900, which included Fruggle
 • 1904 was the start of cross breeding (Many current hops have Fruggle in their family tree)
• 1819 was first description of volatile hop aroma
• 1895 the identification of myrcene, linalool, and geraniol was published
• 1956 first data collected on hop aroma with a GC
• 1964 GC/MS used for aroma identification

More current research:
• 2006 discovery and identification of 4-mercapto-4-methylpentan-2-one
 • Low concentration gives black current and box tree; high conc. cat urine
• 2009 Hanke, et. al. hop aroma interactions
 • Synergistic of aroma compounds
Half-Flower, Half-Amazing; Humulus Lupulus:

- There are both a male and female plant
 - The female flower is used for beer
 - Over 250 varietals today
- Lupulin glands provide acids and aroma
 - Over 500 aroma compounds
- Grown on trellises about 12 feet tall
 - Only about 1 foot is left after harvest
- After harvest the cones are separated from the vines and dried.
- Whole cones and pellets are used in beer
 - Whole cone is preferred but difficult to keep fresh
 - Some aroma compounds decrease by 50% in aluminum vacuum bags after 6 months at 20 °C
- Extraction of the essential oils and aroma compounds have created products for final beer additions

Willamette Valley Oregon; Coleman Agriculture
Use of Hops in Brewing:

Bittering vs Aroma Hops

Bittering Hops:
- Added to wort during boil
- Heat extract alpha-acids
 - Tetrahydroiso (2x), Iso (1x), Dihydroiso(0.8)
- Counteracts sweetness from sugars
- Usually a mix of varietals
- Provide little to no aroma in the final beer

Aroma Hops/Dry-hopping:
- Added to fermenting or finished beer
 - Aroma without bitterness (might extract iso-acids)
- Usually a mix of varietals
- Extraction depends on hop form and hydrodynamics
- Total amount of hops varies with beer style
 - Lager 0.19 lbs/keg; Imperial IPA 3.8 lbs/keg

https://www.usahops.org/enthusiasts/brewing.html
If Only We All Had Room for Our Favorite Beer Kegs:

Beer Packaging:

• Best beer integrity is from a keg
• The classic glass bottle and a metal cap
• Brown provides best UV protection
 • Light reacts with α-acids and thiols
 – Skunky beer
 • UV film can be placed on green and clear
• Cap liners can extract aroma compounds
 • Always keep bottled beer upright
• Aluminum cans are the next best to kegs
 • Full UV protection
 • Lining can absorb aroma compounds
• Look for more craft beer in cans; it has already started

The Mixture Smells Better Than the Individual Compound:

Aroma profiles are produced from a trained panel

Complexity of Smell:
- Activated olfactory receptor cells send signal to the brain
- 400 different odorant receptors
- Aroma is comprised of a pattern from the receptor signals
- High conc. of individual components can signal multiple receptors changing the pattern

Synergistic effects:
- Differences in aroma perception based on composition
- Citrus enhanced with the addition of β-citronellol and geraniol to linalool.

http://www.thebruery.com/sensory-school-all-hail-aroma/
Polyfunctional Thiol Aroma Analysis:

Difficulties in the analysis:

• About 3% of hops are aroma
 • Altered by genetics, cultivation, storage
• Hydrolysis, esterification, isomerization occurs during brewing
• Largest error is sample prep ~30%
• Thiols are normally 100 pg/kg threshold level
• Hg agarose gel has been used to isolate thiols for purification
• A QC level method needs to be created to reduce variation and increase accuracy
• Using GC-PFPD about 41 polyfunctional thiols have been identified.
The Agilent 7250 GC/Q-TOF

- High Resolution and Mass Accuracy
- Simultaneous High Resolution and Wide Dynamic Range
- Sensitive Low Energy EI

Reproducible Spectral Performance

Backflush-ready Agilent 7890B GC
The Agilent 7250 GC/Q-TOF

Based on the High Efficiency Source Optimized for Low Energy EI:
- Stronger axial magnet
- Modified lens geometry
- Centered filament

Instrument Specification:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolving Power</td>
<td>>25,000 at m/z 271.9867</td>
</tr>
<tr>
<td>Mass Accuracy</td>
<td>< 2ppm RMS</td>
</tr>
<tr>
<td>EI IDL</td>
<td><60 fg OFN (8 injections)</td>
</tr>
<tr>
<td>Electron Energy</td>
<td>5 – 200 eV</td>
</tr>
<tr>
<td>ToF Flight Path Length</td>
<td>3 m</td>
</tr>
<tr>
<td>Acquisition Rate</td>
<td>1 – 50 Hz</td>
</tr>
</tbody>
</table>
How Did I Collect This Data?

Sample Prep:

- Hop cone and pellets were purchase from More Beer (Los Altos, CA)
 - Centennial, Mosaic, Willamette, and Magnum
- 3g of hops were added to 300mL of 5 v/v% ethanol solution
 - The hop tea was left overnight
- The filtered tea was added to a headspace vial with 3g NaCl
- The Gerstel MPS Sampler was used for SPME automation
- Extraction was 50 min at 40 °C with a Supelco DVB/CAR/PDMS fiber
 - Desorption was 10 min

GC and MS Conditions:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td>DB-35ms UI, 30 m, 0.25 mm ID, 0.25 μm film</td>
</tr>
<tr>
<td>Injection</td>
<td>Gerstel MPS SPME</td>
</tr>
<tr>
<td>Split</td>
<td>5:1 split</td>
</tr>
<tr>
<td>Inlet temperature</td>
<td>270 °C</td>
</tr>
<tr>
<td>Oven temperature program</td>
<td>40 °C for 1 min, 20 °C/min to 50 °C, 5 °C/min to 220 °C, 220 °C hold for 5 min</td>
</tr>
<tr>
<td>Carrier gas</td>
<td>Helium at 1.4 mL/min constant flow</td>
</tr>
<tr>
<td>Transfer line temperature</td>
<td>250 °C</td>
</tr>
<tr>
<td>Source temperature</td>
<td>250°C</td>
</tr>
<tr>
<td>Quadrupole temperature</td>
<td>150°C</td>
</tr>
<tr>
<td>Scan range</td>
<td>35 to 500 m/z</td>
</tr>
<tr>
<td>Spectral acquisition rate</td>
<td>5 Hz, both centroid and profile</td>
</tr>
<tr>
<td>Emission</td>
<td>0.8μA</td>
</tr>
<tr>
<td>Ionization parameters used in the method</td>
<td>12.5 eV low energy ionization</td>
</tr>
</tbody>
</table>
Does Low eV Ion Source Work:

Polyfunctional thiol mix used for eV survey

4-mercapto-4-methyl-2-pentanone was selected for optimization
Does Low eV Ion Source Work:

- 70eV RTIC has a significant number of peaks, even with SPME sample prep
- Analysis of the 70eV data produced too much fragmentation to identify this thiol
- Even extraction of the exact mass did not easily locate the compound
- Low eV reduced the background and increased the molecular ion
 - Most of the 70eV spectrum was produced from the fragments of a terpene
 - At \(m/z \) 129.0019 in the low eV spectrum
- Isotope fidelity was preserved to aid in confirmation
- Aroma of roast beef and coffee
Does Low eV Ion Source Work:

- 70eV RTIC has a significant number of peaks, even with SPME sample prep
- Top image is produced from SureMass peak detection
- This component co-eluted around a significant number of compounds
- Low eV reduced the background and increased the molecular ion
- Viewing the same RT window shows only a few compounds compared to the 70eV
- Almost all the ion current is produced by the molecular ion
- Dimethyl disulfide can enhance the fruity notes of beer, and additional truffle and black olive characteristics
Does Low eV Ion Source Work:

- ProFinder Data Analysis for alignment and feature finding
- Molecular Feature Extraction followed by a recursive workflow reduced false negatives
- Samples were grouped by hop form for this image
- Trithiahexane was identified in larger concentrations for mosaic hops independent of hop form
 - The pellets had a higher concentration than the whole cones
 - This compound produces an onion aroma
Does Low eV Ion Source Work:

- ProFinder Data Analysis for alignment and feature finding
- Quickly scan through data to find components of interest
- Samples were grouped by hop form for this image
- S-methyl pentane thioate was identified in larger concentrations for mosaic cone and magnum pellet
 - The extracted peak to the right is a structural isomer
 - This compound produces a cheesy, mushroom, dairy aroma
Does Low eV Ion Source Work:

- ProFinder Data Analysis for alignment and feature finding
- Two di-sulfur containing compounds were observed in low eV ionization
- Mass accuracy and accurate isotopes were used for the confirmation of the elemental composition
- The highest concentrations were found in the mosaic cone and pellet
- Methylthiomethyl 2-methylbutanethiolate has been isolated from hop oil
- Cabbage aroma
What to do With All of the Data:

Mass Profiler Professional:

- Too many components to spend time on the non-significant
- Send all of the Profinder found components to MPP for statistical analysis
- The data can be grouped and visualized to identify the components of interest
- All samples were normalized with an ISTD (2-bromo-3-methylthiophene)
- The Venn diagram was produced using all components with a >2 fold change between the samples
 - This included more than just sulfur compounds
 - Cone and pellet data were combined so only the hop varietal differences were observed
- Additional sensory data could be added to help identify the aroma changes with the instrumental data

- About 65 components were shared by all four hops
- Mosaic, Willamette and Centennial share 48 components the most of any three
Mass Profiler Professional:

- Clustering heat maps provide a quick visual of intensity differences
- The three technical replicates were averaged
- The comparison of components was set to observe the differences between the whole cone and pellets
- The bars with more “red” color show a higher response in the whole cone compared to the pellet
- The whole cones show more intensity for the early eluting, high volatility components
 - This makes sense since there was minimal processing of the hop
Future “Work” (Analyze Beer to Compare with Hops):
2 for Me; 1 for SPME

Analysis of beer with low eV:

- During the brewing process additional aroma compounds are released that are not observed in hops
- Some aroma compounds are produced from enzymatic reactions when hops and yeast are together
- S-cysteinylated and S-glutathionylated thiol precursors can enhance the polyfunctional hop aroma
- This process also produces new polyfunctional thiols not observe in just hops
- Additional sample prep optimization and GC configuration will also be explored
 - Possible use the dynamic headspace from Gerstel to perform FRET

(Takoi et. al. 2009)
Conclusion:
One Step Closer to Tasting

- The work is not done, with new varietals and new brewing techniques
- Low eV ionization is promising in the selective ionization of polyfunctional thiols
- Reduction of the background matrix provided enhanced signal for some of the polyfunctional thiols
- High mass accuracy and accurate isotope ration provided confidence in identifications
- Mono-, di-, and tri- thiol compounds were identified in the hop cones and pellets
- Statistical significance software allowed for focused data analysis of important components
- For the tasting, try to identify any fruity, earthy, citrus notes before and after you take your sip. An empty glass can provide better aroma profile