Determination of Amino Acid Composition using Automated Pre-Column Derivitization and Superficially Porous Columns
Some Basics

Amino Acids are the building blocks of proteins

Amino Acids require derivatization to be detected by UV or FL
- OPA/FMOC, Ninhydrin, Dansyl chloride, and PITC are common reagents used

Derivatization can be done pre-column or post column
- OPA/FMOC, Dansyl chloride, and PITC are common reagents used for pre-column
- Ninhydrin is common for post column methods

Analysis of AA can be done by several methods:
- GC, CE, HPAE-PAD
- LC/UV/FL, LC/MS
Why is Amino acid analysis important?

• Important for protein and peptide identification and quantitation
• Part of reverse-phase characterization in biopharma
• Required by the FDA
• Important for monitoring cell culture media
• Used for the analysis of metabolic intermediates - “Bound vs. Free”
The Agilent Amino Acid Analysis solution

Ready to use AdvanceBio AAA kit (Standards and Reagents)

All Agilent LC systems including Infinity II systems

AdvanceBio AAA Columns
Fast and rugged

For Research Use Only. Not for use in diagnostic procedures
Agilent AdvanceBio AAA

**Previous Agilent AAA Method**

Agilent has a well established solution for Amino Acid Analysis

- based on automated pre-column derivatization capabilities of Agilent Autosamplers
- Uses ZORBAX Eclipse AAA column
- Well established method using reagents and standards from Agilent

**What’s New?**

- All reagents conveniently kitted together under a single part number
- Introduced an HpH chemistry on a Poroshell particle for improved column lifetime
  - Traditional silica columns dissolve above neutral pH, but HpH chemistry stabilizes column
    - AA derivatization and separation are most efficient at higher pH
  - Poroshell column with 2 µm frits is less susceptible to clogging
Pre- vs Post-Column Derivatization

**Post Column Derivatization - The historic Gold Standard of dedicated Amino Acid Analyzers**

- Pump
- Autosampler
- Derivatization
- Cation exchange
- Detector
- Ninhydrin or Fluorescamine or OPA
- UV/Vis FLD

**Pre Column Derivatization - Offline:**

- Pump
- Autosampler
- Derivatization
- Reversed Phase
- Detector
- UV or FLD

Derivatization done offline, either manually or with separate automation, and samples are transferred to autosampler.

**Pre Column Derivatization - Online:**

- Pump
- Autosampler
- Derivatization
- Reversed Phase
- Detector
- UV or FLD

Derivatization done online, in the autosampler – eliminates error associated with manual sample handling for highly consistent, reproducible results.

For Research Use Only. Not for use in diagnostic procedures.
## AdvanceBio AAA Reagent Kit

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>5061-3339</td>
<td>100mL Borate Buffer</td>
</tr>
<tr>
<td>5061-3337</td>
<td>FMOC reagent - 10 ampoules, 1 mL each</td>
</tr>
<tr>
<td>5061-3335</td>
<td>OPA reagent, 10 mg/mL, 6 ampoules</td>
</tr>
<tr>
<td>5062-2479</td>
<td>Dithiodipropionic acid (DTDPA)</td>
</tr>
<tr>
<td>5061-3330</td>
<td>AA, standard 1nmol 10/PK</td>
</tr>
<tr>
<td>5061-3331</td>
<td>AA standards, 250 pmol 10/PK</td>
</tr>
<tr>
<td>5061-3332</td>
<td>AA standards, 100 pmol 10/PK</td>
</tr>
<tr>
<td>5061-3333</td>
<td>AA standards, 25 pmol 10/PK</td>
</tr>
<tr>
<td>5061-3334</td>
<td>AA standards, 10 pmol 10/PK</td>
</tr>
<tr>
<td>5062-2478</td>
<td>AA supplements, 1g each</td>
</tr>
</tbody>
</table>

Order components individually, or together as part of a kit with a single part number (5190-9426)
Automated Derivatization in the Autosampler

Ortho Phthalaldehyde (OPA)

\[
\text{OPA} + \text{RHN}_2 \xrightarrow{\text{Room Temperature}} \text{SR'} \\
\text{Non-fluorescent}
\]

Fluorescence: Ex 340nm, Em 450nm
DAD: 338, 10nm; Ref. 390, 20nm

Fluorenylmethoxy chloroformate (FMOC)

\[
\text{RR'NH} + \text{RHN}_2 \xrightarrow{- \text{HCl}} \text{Fluorescent}
\]

Absorbs at 262nm and Fluoresces at 324nm

Fluorescence: Ex 260nm, Em 325nm
DAD: 262, 16nm; Ref. 324, 8nm

1. Allows visualization by UV or FL
2. Helps retain very polar compounds

Optimal pH for reaction with AA: ~10.0
Online derivatization/Injection program

- Draw 2.5 µL from borate vial (Agilent p/n 5061-3339)
- Draw 1.0 µL from sample vial
- Mix 3.5 µL in wash port 5 times
- Wait 0.2 min
- Draw 0.5 µL from OPA vial (Agilent p/n 5061-3335)
- Mix 4.0 µL in wash port 10 times default speed
- Draw 0.4 µL from FMOC vial (Agilent p/n 5061-3337)
- Mix 4.4 µL in wash port 10 times default speed
- Draw 32 µL from injection diluent vial
- Mix 20 µL in wash port 8 times
- Inject
- Wait 0.1 min
- Valve bypass

Method can be programmed into ANY Agilent autosampler –
- Eliminates manual labor and variability
- Enables highly precise data
Robust Columns for AAA

A robust, high efficiency Fast LC column with resistance to elevated pH and temperature offering users performance comparable to that of sub-2 µm alternatives but with up to 50% less back pressure.

- 2.7 µm particles, 110 Å pore size
- Two dimensions available: 3.0 x 100 mm, 4.6 x 100 mm
  - Guard columns also available in each i.d.
- Each individual column is tested for efficiency
- Each batch is tested with amino acid standards to ensure performance

Core → P120 Particle → Treated P120

For Research Use Only. Not for use in diagnostic procedures
Chromatographic Method

- Flow rate – 1.5 mL/min for 4.6 mm and 0.62 mL/min for 3 mm i.d.
- Injection volume – 1µL with needle wash at the wash port for 7s
- Column temperature – 40 ºC
- Detection wavelength – 338 and 262nm
- Samples - Agilent AAA standards, media samples and protein hydrolysate standards

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>%B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0.35</td>
<td>2</td>
</tr>
<tr>
<td>13.4</td>
<td>57</td>
</tr>
<tr>
<td>13.5</td>
<td>100</td>
</tr>
<tr>
<td>15.7</td>
<td>100</td>
</tr>
<tr>
<td>15.8</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>stop</td>
</tr>
</tbody>
</table>
Fast and Rugged Amino Acids Separation

DAD = 338 nm

DAD = 262 nm

For Research Use Only. Not for use in diagnostic procedures
# Order of Elution for OPA and FMOC derivatives

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Primary AA Name</th>
<th>Secondary AA Name</th>
<th>Derivative Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Asparic Acid</td>
<td>ASP</td>
<td>OPA</td>
</tr>
<tr>
<td>2</td>
<td>Glutamic Acid</td>
<td>GLU</td>
<td>OPA</td>
</tr>
<tr>
<td>3</td>
<td>Asparagine</td>
<td>ASN</td>
<td>OPA</td>
</tr>
<tr>
<td>4</td>
<td>Serine</td>
<td>SER</td>
<td>OPA</td>
</tr>
<tr>
<td>5</td>
<td>Glutamine</td>
<td>GLN</td>
<td>OPA</td>
</tr>
<tr>
<td>6</td>
<td>Histidine</td>
<td>HIS</td>
<td>OPA</td>
</tr>
<tr>
<td>7</td>
<td>Glycine</td>
<td>GLY</td>
<td>OPA</td>
</tr>
<tr>
<td>8</td>
<td>Threonine</td>
<td>THR</td>
<td>OPA</td>
</tr>
<tr>
<td>9</td>
<td>Arginine</td>
<td>ARG</td>
<td>OPA</td>
</tr>
<tr>
<td>10</td>
<td>Alanine</td>
<td>ALA</td>
<td>OPA</td>
</tr>
<tr>
<td>11</td>
<td>Tyrosine</td>
<td>TYR</td>
<td>OPA</td>
</tr>
<tr>
<td>12</td>
<td>Cysteine</td>
<td>CYS-CYS</td>
<td>OPA</td>
</tr>
<tr>
<td>13</td>
<td>Valine</td>
<td>VAL</td>
<td>OPA</td>
</tr>
<tr>
<td>14</td>
<td>Methionine</td>
<td>MET</td>
<td>OPA</td>
</tr>
<tr>
<td>15</td>
<td>Norvaline*</td>
<td>NVA</td>
<td>OPA</td>
</tr>
<tr>
<td>16</td>
<td>Tryptophan</td>
<td>TRP</td>
<td>OPA</td>
</tr>
<tr>
<td>17</td>
<td>Phenylalanine</td>
<td>PHE</td>
<td>OPA</td>
</tr>
<tr>
<td>18</td>
<td>Isoleucine</td>
<td>ILE</td>
<td>OPA</td>
</tr>
<tr>
<td>19</td>
<td>Leucine</td>
<td>LEU</td>
<td>OPA</td>
</tr>
<tr>
<td>20</td>
<td>Lysine</td>
<td>LYS</td>
<td>OPA</td>
</tr>
<tr>
<td>21</td>
<td>Hydroxyproline</td>
<td>HYP</td>
<td>FMOC</td>
</tr>
<tr>
<td>22</td>
<td>Sacrosine (IS)</td>
<td>SAR</td>
<td>FMOC</td>
</tr>
<tr>
<td>23</td>
<td>Proline</td>
<td>PRO</td>
<td>FMOC</td>
</tr>
</tbody>
</table>
Elution Profile with and without Sodium Azide

- Historically NaN₃ has been added to aqueous mobile phase to reduce bacterial growth.
- NaN₃ is highly toxic.
- No effect on the separation.
- Highly recommend filtering mobile phases (0.45 or 0.2 µm) to reduce bacterial growth.
### Reproducible Separations

1 nmol amino acid standards
4.6 x 100 mm column

<table>
<thead>
<tr>
<th>Amino Acids</th>
<th>RT RSD (%)</th>
<th>Area RSD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Aspartic acid</td>
<td>1.270</td>
<td>1.066</td>
</tr>
<tr>
<td>2. Glutamic acid</td>
<td>0.973</td>
<td>1.85</td>
</tr>
<tr>
<td>3. Asparagine</td>
<td>0.605</td>
<td>1.79</td>
</tr>
<tr>
<td>4. Serine</td>
<td>0.629</td>
<td>1.82</td>
</tr>
<tr>
<td>5. Glutamine</td>
<td>0.470</td>
<td>1.56</td>
</tr>
<tr>
<td>6. Histidine</td>
<td>0.430</td>
<td>1.22</td>
</tr>
<tr>
<td>7. Glycine</td>
<td>0.477</td>
<td>1.92</td>
</tr>
<tr>
<td>8. Threonine</td>
<td>0.440</td>
<td>1.95</td>
</tr>
<tr>
<td>9. Arginine</td>
<td>0.251</td>
<td>2.15</td>
</tr>
<tr>
<td>10. Alanine</td>
<td>0.280</td>
<td>3.06</td>
</tr>
<tr>
<td>11. Tyrosine</td>
<td>0.128</td>
<td>1.65</td>
</tr>
<tr>
<td>12. Cystine</td>
<td>0.067</td>
<td>1.9</td>
</tr>
<tr>
<td>13. Valine</td>
<td>0.084</td>
<td>2.47</td>
</tr>
<tr>
<td>14. Methionine</td>
<td>0.073</td>
<td>1.82</td>
</tr>
<tr>
<td>15. Norvaline</td>
<td>0.073</td>
<td>1.72</td>
</tr>
<tr>
<td>16. Tryptophan</td>
<td>0.054</td>
<td>1.57</td>
</tr>
<tr>
<td>17. Phenylalanine</td>
<td>0.051</td>
<td>1.66</td>
</tr>
<tr>
<td>18. Isoleucine</td>
<td>0.047</td>
<td>1.72</td>
</tr>
<tr>
<td>19. Leucine</td>
<td>0.03</td>
<td>1.7</td>
</tr>
<tr>
<td>20. Lysine</td>
<td>0.028</td>
<td>1.66</td>
</tr>
<tr>
<td>21. Hydroxyproline</td>
<td>0.021</td>
<td>4.13</td>
</tr>
<tr>
<td>22. Sarcosine</td>
<td>0.026</td>
<td>1.15</td>
</tr>
<tr>
<td>23. Proline</td>
<td>0.021</td>
<td>4.36</td>
</tr>
</tbody>
</table>

- Retention time %RSD mostly under 1%
- Peak area %RSD mostly under 3%
System suitability as per European Pharmacopoeia (Ph.Eur)

The European Pharmacopoeia (Ph. Eur.) defines requirements for the qualitative and quantitative composition of amino acids and mixtures of amino acids. The requirements for allowed impurities are also defined. Manufacturers of amino acids are legally bound to prove that their amino acids meet these specifications before they can distribute their products in Europe.

Leucine (Leu) is a branched-chain α-amino acid and is produced by the fermentation process. During this process, isoleucine can be produced as a by-product. The European Pharmacopoeia states that leucine and isoleucine should have a resolution of not less than 1.5

![Isoleucine and Leucine Structures](image)

Ref: Ph.Eur.9.0 (2.2.56) Amino Acid Analysis
Ample Resolution of Leucine & Isoleucine

Baseline resolution of isoleucine and leucine (Rs = 4.35) meeting the regulatory requirements for these components.

Protein hydrolysate sample

<table>
<thead>
<tr>
<th>Column</th>
<th>Leu/Ile Rs (≥ 1.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agilent AdvanceBio AAA 4.6 × 100 mm</td>
<td>4.5</td>
</tr>
<tr>
<td>Agilent AdvanceBio AAA 3 × 100 mm</td>
<td>4.6</td>
</tr>
</tbody>
</table>

For Research Use Only. Not for use in diagnostic procedures.
Linearity and Limits of Detection & Quantitation

Asparagine
Glutamine
Tryptophan

For Research Use Only. Not for use in diagnostic procedures.
Linearity and Limits of Detection & Quantitation

- **Asparagine**
  - Concentration (pmol): 0.9 (LOD), 1.9 (LOQ)
  - S/N ratio: 5.3, 10.8

- **Glutamine**
  - Concentration (pmol): 0.9 (LOD), 3.8 (LOQ)
  - S/N ratio: 3.0, 13.8

- **Tryptophan**
  - Concentration (pmol): 0.9 (LOD), 3.8 (LOQ)
  - S/N ratio: 4.5, 20.5

S/N > 3.0 = LOD
S/N > 10 = LOQ
AAA of Cell Culture Media – MEM

L-Arginine, L-Cystine, L-Glutamine, L-Histidine, L-Isoleucine, L-Leucine, L-Lysine, L-Methionine, L-Phenylalanine, L-Threonine, L-Tryptophan, L-Tyrosine and L-Valine, L-Glutamic acid
AAA of Cell Culture Media – NEAA cell culture supplement

L-Alanine, L-Asparagine, L-Aspartic acid, L-Glutamic acid, Glycine, L-Proline and L-Serine
AAA of Cell Culture Media – RPMI 1640

L-Arginine, L-Glutamic acid, L-Asparagine, L-Cystine, Glycine, L-Histidine, Hydroxy-L-Proline, L-Isoleucine, L-Leucine, L-Lysine, L-Methionine, L-Phenylalanine, L-Proline, L-Serine, L-Threonine, L-Tryptophan, L-Tyrosine and L-Valine
Lifetime of SPP columns in phosphate buffer, pH 8, at elevated temperature. Mobile phase: Premixed 60% 30 mM sodium phosphate buffer at pH 8 and 40% acetonitrile; Flow rate 0.4 mL/min; UV absorbance 254 nm; 65 °C; Columns: 2.1 x 50 mm, 2.7 µm; Analyte: Naphthalene.
Traditional Lifetime Testing

Using conventional column testing Eclipse Plus C18 column test looks great and will perform well for most customers. However it is not a realistic test for most lab workflow.
Improvements in Lifetime Testing for AA Analysis

Past lifetime testing consisted of 500 injections without stopping

- This test, while it could differentiate long life columns, was not indicative of a customer workflow.

Customers will typically run ~20 to 50 or 100 samples, then stop, and resume a day or more later.

- This is much more stressful on the column, and will cause columns to fail sooner versus running 500 injections straight through.

The lifetime testing for the Poroshell HPH-C18 was adapted to more customer focused workflow, with breaks between series of injections to give a true indicator of the lifetime in the customers’ hands.
Test like a customer runs: 100 injections (3 days), Store (4 days)

Most labs run a batch of samples (25-100) and then shut off for a few days so we did too

Injection 25
Stop @ 100 and 200

Injection 225
Stops @ 300 and 400

Injection 400

Injection 500
Stop @ 525

Looks great after 500 injections run 100 injections shut down 4 days repeat
Amino Acid Analysis in Fermentation Applications

Many other foods (such as soy sauce) and pharmaceuticals that are produced using fermentation processes are monitored by AAA.
Amino Acids Analysis for Batch Comparison

Quantity and diversity of amino acids is evident, can be used to monitor reactions and compare batches.
Tips & Tricks - Maintenance

- Replace derivatization reagent, borate buffer, amino acid standard daily
- Recalibrate for retention times and response factors daily
- Check column and guard column performance by following specs (Rs for 2 pairs of AA)
- Replace mobile phase A and B with fresh ones every other day
- Exchange guard column if high back pressure develops
- Avoid using MAX mixing speed during sample derivatization
  - The max speed on newer LCs is much faster than older LCs (1100s, 1200s), and can cause excessive wear on the autosampler.
Tips & Tricks - Troubleshooting

Poor chromatographic resolution?

- Cell culture media does not require any sample preparation, however appropriate dilutions have to be made to suit detector response
- In all cases, use the low-volume heat exchanger with short red tubing to minimize extra column volume
- Ensure proper connections
- Damaged guard or analytical column

Low intensity chromatogram?

- OPA/FMOC reagent deteriorated
- Air bubble in vial insert

Column storage?

- Never leave the column in mobile phase A even if it’s just overnight
- For short term always store the column in mobile phase B
- For long term, store column in 50/50 acetonitrile/H₂O
Damaged Column

After three days in mobile phase A
Tips & Tricks – Saving Time

• After Injection 1, during the sample derivatization for Injection 2, the initial mobile phase condition is flowing through the LC and the column.

• Save time by shortening the length of the re-equilibration time at the end of the method by the amount of time consumed by sample derivatization.

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>%B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0.35</td>
<td>2</td>
</tr>
<tr>
<td>13.4</td>
<td>57</td>
</tr>
<tr>
<td>13.5</td>
<td>100</td>
</tr>
<tr>
<td>15.7</td>
<td>100</td>
</tr>
<tr>
<td>15.8</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>stop</td>
</tr>
</tbody>
</table>

Initial mobile phase conditions are running through the column!
Tips & Tricks – Saving Time

- After Injection 1, during the sample derivatization for Injection 2, the initial mobile phase condition is flowing through the LC and the column
- Save time by shortening the length of the re-equilibration time at the end of the method by the amount of time consumed by sample derivatization

23 + 23 = 46 minutes for 2 samples
Tips & Tricks – Saving Time

- After Injection 1, during the sample derivatization for Injection 2, the initial mobile phase condition is flowing through the LC and the column.

- Save time by shortening the length of the re-equilibration time at the end of the method by the amount of time consumed by sample derivatization.

20.8 + 20.8 = 41.6 minutes for 2 samples

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>%B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0.35</td>
<td>2</td>
</tr>
<tr>
<td>13.4</td>
<td>57</td>
</tr>
<tr>
<td>13.5</td>
<td>100</td>
</tr>
<tr>
<td>15.7</td>
<td>100</td>
</tr>
<tr>
<td>15.8</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>stop</td>
</tr>
</tbody>
</table>
How-To Guide – Step by Step Instructions & Method Details

All the information you need

Document number 5991-7694EN
Summary

- We used the Agilent AdvanceBio AAA solution for the automated online derivatization and separation of amino acids.
- Area and RT precision of the method were excellent, and Leu/Ile resolution met the system suitability requirement.
- Linearity curves with ten standard concentrations of three amino acids, ranging from 0.9pmol to 1nmol, had excellent coefficient of linearity values, indicating that the method was quantitative and accurate.
- The LOD and LOQ for the amino acids were 0.9pmol and 3.8 pmol respectively, indicating that the method was sensitive.
- This method was able to separate and detect, amino acids from a variety of samples, including cell culture media, protein hydrolysate, and fermentation reactions.