Overview Agilent Micro fluidics

Cathy Cutler Field Application Scientist Agilent-Genomics

The Agilent 2100 Bioanalyzer

First commercially available Lab-ona-Chip product

Introduced 1999

Analysis of biomolecules:

DNA, RNA, Proteins and cells

More than 7000 of instruments sold WW

Industry-Standard for the analysis of RNA

Standard for sample QC in Next-Generation Sequencing workflows

March 2010: >15,000 citations !

Agilent 2100 Bioanalyzer

Exchangeable cartridge for different assays

16 pin electrodes connected to HV-sources

Chip holder with heater plate

Optics for detection

The Lab-on-a-Chip Approach

Increasing quality and speed of gel electrophoresis

Sample volumes 1 - 5 µl 10 -12 samples depending on Assay Separation, staining, detection of samples Results in 5-30 minutes available No extra waste removal needed Disposable Chip, no crosscontamination

Chip Architecture

Gel loading device

tion channel and point of detection

- Chip accommodates sample wells, gel and conditioning/destaining wells, and a well for a standard (ladder)
 - Sieving gel/dye matrix is forced into capillaries
 - 16 pin electrodes apply voltage
 - Capillary fluidics become "lanes"

Principle of Electrodriven Flow

Lab-on-a-Chip - General Features and Benefits

Miniaturization (Scale)

- small sample volumes
- reduced reagent usage
- reduced bench space

Miniaturization (Speed)

fast analysis

Automation

- improved accuracy
- improved precision
- improved productivity

Smaller - Faster - Smarter

2100 Expert Software Version B.02.08

- Easy to use for Instrument control, Data Analysis, Data comparison and Reporting
- Patended RIN (RNA Integrity Number)
- Color coded Result Flagging
- Easy comparison context (multi samples from various files)
- Customizable result tables for printing and reports
- Optional security pack software for 21 CFR part 11 compliance requirements

High Sensitivity DNA Assay
Plant RIN Application
Windows 7 Compatibility

Analyze and compare

ŵr te.

Setup and start

11.12

Data Format - Gel-Like Image c/w Agarose Gel

Current Assays (including anything required for analysis)

DNA1000

DNA7500

DNA12000 High Sensitivity

DNA

DNA Assays:

- Sizing
- Quantitation
- PCR products, digests, larger DNA fragments
- 12 samples in 30 min.

Protein Assays:

- Sizing
- Quantitation
- cell lysates, column fractions,
 - purified proteins, antibodies etc.
- 10 samples in 40 min.

RNA Assays:

- Quantitation (Sizing in Small RNA)
- total RNA, mRNA
- purity & integrity determination
- 10 samples in 30 min.

Flow Cytometry

Cell Assays:

- Analysis of 6 samples
- Two color detection
- Analysis of protein expression in cells

RNA and Small RNA Assays

RNA QC in Routine Gene Expression Workflow

Continue with downstream Experiment (Microarray, real-time PCR, etc.)

Experimental workflow

Successful QPCR with the Agilent 2100 bioanalyzer

RNA quality - Effects of degraded RNA

Not knowing the extend of possible degradation might lead to false negative results or misinterpretation of the data if the amplicon falls into a degraded region

Knowing RNA quality allows to accommodate the design and set expectations avoiding wrong interpretation of results

Assay validation - Limitations of SYBR Green melt curves

Restricted resolution, which can make it difficult to determine specificity

- T_m depends on dye/template ratio
- SYBR Green is a non-saturating dye with non-uniform distribution along the doublestrand

Melt curve provides no info on the size of the generated amplicon

QPCR assay validation

- amplification plots, melt curve and bioanalyzer analysis

GAPDH 5' assay: Expected size 118 bp

GAPDH 3' assay: Expected size 126 bp

QPCR assay validation – No-template controls (NTC)

Features of the RNA 6000 Assays

total RNA

determine integrity and quality of total RNA

determination of RNA concentration

identify ribosomal peaks

calculate the ratio of ribosomal peaks (18S/28S or 16S/23S)

RNA integrity number (RIN)

mRNA

determine integrity and quality of mRNA samples Determination of mRNA concentration calculate % ribosomal RNA in mRNA samples

Assesment of RNA Integrity RNA 6000 Nano LabChip kit

DNA Applications

Application Areas for the DNA Assays

- PCR product purity
- **Multiplex PCR Applications**
- Gene expression analysis via RT-PCR (target validation)
- **GMO** testing
- Pathogen detection (homeland defense, hospitals, environmental)

Genotyping applications

- Duplications/ deletions
- Allele frequency
- Bacterial sub-typing
- Forensics
- **Cancer diagnostics**

DNA QC in Next-Gen Sequencing - Situation

Next Generation Sequencing is an emerging technology.

- Quality of sequences is one of the chief technical concerns about next gen sequencing platforms in a recent customer survey by Insight pharma reports
- Leading next generation sequencing vendors (Illumina, Roche, Life Technologies) recommend existing Bioanalyzer DNA assays in their workflows

References

• Manuals of all Next Gen Sequencing Vendors: Illumina, Roche, Life Technologies

Bioanalyzer in Roche/454 GS FLX Workflow

454 recommends the use of Agilent Bioanalyzer in their manuals

http://www.454.com/downloads/protocols/Guide_To_Amplicon_Sequencing.pdf http://cage.unl.edu/3.%20GS%20FLX%20Shotgun%20DNA%20Library%20Preparation%20QuickGuide.pdf

Bioanalyzer in ABI SoliD Small RNA Sequencing Workflow

".....we recommend evaluating the small RNA content of samples to determine whether to use total RNA or size-selected RNA in your reactions. This can be done using an Agilent bioanalyzer with the Small RNA Chip (#5067-1548)."

Sneak Preview – High Sensitivity DNA Kit

Simplified Illumina GAII Workflow

Quantification, Sizing and QC of NGS Libraries

High Quality DNA library

Identification and quantification of primer dimers and PCR artifacts

SureSelect Overall Sequencing Sample Prep Workflow

Group/Presentation Title Agilent Restricted Month ##, 200X

Improving the next-gen sequencing Sample Prep Workflow

Sizing and quantification of a Illumina GAII library. The library was enriched with Agilent's SureSelect Target Enrichment platform and amplified with varying PCR cycles.

Sample ID	No. Cycles	Qubit BR ng/ul	Bioanalyzer ng/µl
4A	4	Too Low	0.090 0.015
4B	4	Too Low	0.083 0.007
6A	6	Too Low	0.304 0.017
6B	6	Too Low	0.301 0.010
8A	8	Too Low	1.13 0.07
8B	8	Too Low	1.34 0.07
10A	10	3.4	4.49 0.16
10B	10	3.4	4.54 0.17
A12	12	13.4	14.5 0.5
C12	12	12.5	13.9 0.6

High Sensitivity DNA kit Applications – Reduction of Library Amplification Cycles

Sizing and quantification of a Illumina GAII library. The library was enriched with Agilent's SureSelect Target Enrichment platform and amplified with varying PCR cycles.

>Amplification cycles above a certain threshold can result in amplification artifacts.

>High Sensitivity DNA kit enables to reduce library amplification cycles

Protein Kit Portfolio

Coomassie Range (5 ng/µl BSA)

HSP-250

Range:	10 - 250 kDa
Sensitivity:	1 pg/µl BSA
Samples #:	10 per Chip
Chips #:	10 per Kit
Labeling Conc	: 1 ng – 1 µg /µl

Requirements:

Software: Expert B.02.06 (+) Instrument: all except G2938A

Silver stain Range (200 pg/µL BSA)

Protein Chip Layout

Principles (I) -- P80/P230 Assay

Principles (II) -- High Sensitivity Protein Assay

Protein LabChip Applications

Cell Lysates

- identification of over-expressed proteins
- comparison of different expression patterns

Column Fractions

- monitoring of protein isolation and purification process
- check fractions for impurities

Purified Proteins

- monitoring of impurities in protein preps
- integrity check for monoclonal or polyclonal antibodies (antibody QC)

Immunoprecipitation: IP/HSP-250

His-tagged protein in *E. coli* background Anti-His + Protein A magnetic beads

C. Wenz & A. Rüfer, *Electrophoresis* 2009, 30, 4264–4269

2100 Bioanalyzer HSP-250 Assay

High Sensitivity Protein 250 Kit (HSP-250)

Highest sensitivity:

Labeled proteins can be measured down to pg/µL concentrations loaded on Chip

Extra wide linear dynamic range:

4 orders of magnitude linear dynamic range assuring excellent determination of impurities

Time correted area relative to Ladder 1.0000 0.1000 0.0100 0.0010 0.0001 0.01 0.1 10 100 c(lgG) [ng/ul]

Direct comparison of samples run on SDS-PAGE with Silver staining and on 2100 Bioanalyzer.

10.0000

 $R^2 = 0.9983$

High Sensitivity Protein 250 Applications Combination with IEF

Combination with OFFGEL Fractionation

Wheat Analysis

Isoelectric point (pl)

Protein extraction Alkylation with IAA Acetone precipitated Labeling at 10 ug/ul total protein (Bradford) 100 ug labeled protein fractionated pH3-10 Fractions undiluted analyzed with 250HSP-Assay

Molecular weight

BioAnalyzer Support: Bioanalyzer@agilent.com Send .xad file not .pdf file

Q & A

