Care, Maintenance, and Troubleshooting of HPLC Columns

Columns and Consumables

Edward Kim
Applications Engineer
January 17, 2008
Goals for this presentation:

1. Introduce the most commonly observed column related problems in HPLC.
2. Explore the reasons for these column problems.
3. Propose preventative maintenance and method development/optimization approaches to minimize HPLC column problems and increase column lifetimes.
Troubleshooting in HPLC
Major Areas of Column Problems - Dramatic Changes in 3 Key Areas:

1. HPLC System Pressure
2. Chromatogram - Peak Shape
3. Chromatogram - Peak Retention/Selectivity
1. Pressure Issues

<table>
<thead>
<tr>
<th>Column Observations</th>
<th>Potential Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large pressure change</td>
<td>Plugged inlet frit</td>
</tr>
<tr>
<td></td>
<td>Column contamination</td>
</tr>
<tr>
<td></td>
<td>Plugged packing</td>
</tr>
</tbody>
</table>
Determining the Cause and Correcting High Back Pressure

• Check pressure with/without column - many pressure problems are due to blockages elsewhere in the system.

If Column pressure remains high:

• Rinse column *(remove detector from flow path!)*
 – Eliminate column contamination and plugged packing
 – high molecular weight/adsorbed compounds
 – precipitate from sample or buffer

• Back flush column – may clear plugged column inlet frit

• Change column inlet frit (… or discard column)

Eliminate pressure issues – add a disposable 0.5 or 2 um in-line filter to system.
Pressure Problem I

Pressure Too High

- Column inlet frit contaminated
- Frit in purge valve contaminated
- Column contaminated
- Blockage in a capillary, particularly needle seat capillary
- Rotor in injection valve plugged
- Injection needle or needle seat plugged

Use this valve to divide the system

Pressure Measurement
Pressure Problem II

Pressure Too Low

- Solvent inlet frit plugged
- Leak in a capillary connection or other part (pump seals)
- Wrong solvent or flow rate
- AIV (Active inlet valve) defective
- Multichannel Gradient valve incorrectly proportioning
- Ball valve defective
- Column defective (stationary phase)
1100 and 1200 Pumps
Exploded View

- Piston Support Rings
- Plunger Housing
- Pistons
- Seals
- Holding Screw
- Outlet Valve
- Purge Valve
- Pump Housing
- Active Inlet Valve

Agilent Technologies
Pump Check Valves

Active Inlet Valve (common to all)

New style
G1312-60010

Cartridge
5062-8562

Old style
5062-8568

Outlet Ball Valve
Iso/Quat Pump G1311-60012
Binary Pump G1312-60012

1. Gold Washer 5001-3707
2. Plastic cap 01018-21207
3. Gold Seal 5001-3707
4. Cap(4pk) 5062-2485

Purge Valve
G1312-60009

5. Gold Seal 5001-3707
6. Cap(4pk) 5062-2485
7. PTFE (5pk) 01018-22707
Column Cleaning

Flush with stronger solvents than your mobile phase. Make sure detector is taken out of flow path.

Reversed-Phase Solvent Choices in Order of Increasing Strength

Use at least 10 x V_m of each solvent for analytical columns

1. Mobile phase without buffer salts (water/organic)
2. 100% Organic (MeOH or ACN)
3. Is pressure back in normal range?
4. If not, discard column or consider more drastic conditions:
 75% Acetonitrile:25% Isopropanol, then
5. 100% Isopropanol
6. 100% Methylene Chloride*
7. 100% Hexane*

When using either Hexane or Methylene Chloride the column must be flushed with Isopropanol before returning to your reversed-phase mobile phase.
Column Cleaning

Normal Phase Solvent Choices
in Order of Increasing Strength

- Use at least 50 mL of each solvent
- 50% Methanol : 50% Chloroform
- 100% Ethyl Acetate
Preventing Back Pressure Problems: In-Line Devices

Filter and Guard Column Act on Sample
Pre-Column Acts on Mobile Phase

To Detector
Preventing Column Back Pressure Problems

1. Filter mobile phase:
 - filter non-HPLC grade solvents
 - filter buffer solutions
 - Install an in-line filter between auto-sampler and column (removes pump seal debris, ALS rotor debris, and sample particulates). Use 2 um frit for 3.5 um columns, use 0.5 um frit for 1.8 um columns.

2. Filter all samples and standards

3. Perform sample clean-up (i.e. SPE, LLE) on dirty samples.

4. Appropriate column flushing – flush buffers from entire system at end of day with water/organic mobile phase.
2. Peak Shape Issues in HPLC

- Split peaks
- Peak tailing
- Broad peaks
- Poor efficiency (low N)
- Inconsistent response

- Many peak shape issues are also combinations - i.e. broad and tailing or tailing with increased retention
Split Peaks

Can be caused by:

- Column contamination
- Partially plugged frit
- Column void (gap in packing bed)
- Injection solvent effects
Split Peaks
Column Contamination

Column: StableBond SB-C8, 4.6 x 150 mm, 5 μm
Mobile Phase: 60% 25 mM Na₂HPO₄, pH 3.0 : 40% MeOH
Flow Rate: 1.0 mL/min
Temperature: 35°C
Detection: UV 254 nm

Injection 1
Injection 30
Injection 1 After Column Wash with 100% ACN

- Column washing eliminates the peak splitting, which resulted from a contaminant on the column.
Split Peaks

Injection Solvent Effects

Column: StableBond SB-C8, 4.6 x 150 mm, 5 μm Mobile Phase: 82% H₂O : 18% ACN
Injection Volume: 30 μL Sample: 1. Caffeine 2. Salicylamide

A. Injection Solvent
100% Acetonitrile

B. Injection Solvent
Mobile Phase

- Injecting in a solvent stronger than the mobile phase can cause peak shape problems, such as peak splitting or broadening.
- Note: earlier peaks (low k) most affected
Peak Shape Problems - Doublets

- Void Volume in Column
- Partially Blocked Frit
- Only One-Peak a Doublet- Coeluting Components
- Early (low k) peaks most affected
Determining the Cause of Split Peaks

1. Complex sample matrix or many samples analyzed - likely column contamination or partially plugged column frit.

2. Mobile phase pH > 7 - likely column void due to silica dissolution (unless specialty column used, Zorbax Extend-C18 stable to pH 11)

3. Injection solvent stronger than mobile phase - likely split and broad peaks, shape dependent on injection volume and k value.
Peak Tailing, Broadening and Loss of Efficiency (N, plates)

May be caused by:

1. Column “secondary interactions”
2. Column packing voids
3. Column contamination
4. Column aging
5. Column loading
6. Extra-column effects
Peak Tailing

Column “Secondary Interactions”

Column: Alkyl-C8, 4.6 x 150 mm, 5μm
Mobile Phase: 85% 25 mM Na₂HPO₄ pH 7.0 : 15% ACN
Flow Rate: 1.0 mL/min
Temperature: 35°C

- Peak tailing of amine analytes eliminated with mobile phase modifier (TEA, triethylamine) at pH 7
Peak Tailing
Column “Secondary Interactions”

Column: Alkyl-C8, 4.6 x 150 mm, 5 μm Mobile Phase: 85% 25 mM Na₂HPO₄ : 15% ACN Flow Rate: 1.0 mL/min Temperature: 35°C Sample: 1. Phenylpropanolamine 2. Ephedrine 3. Amphetamine 4. Methamphetamine 5. Phenteramine

- Reducing the mobile phase pH reduces interactions with silanols that cause peak tailing. No TEA modifier required.
Peak Tailing
Column Contamination

Column: StableBond SB-C8, 4.6 x 250 mm, 5μm
Mobile Phase: 20% H₂O : 80% MeOH
Flow Rate: 1.0 mL/min
Temperature: R.T.
Detection: UV 254 nm
Sample: 1. Uracil 2. Phenol 3. 4-Chloronitrobenzene 4. Toluene

<table>
<thead>
<tr>
<th>Plates</th>
<th>TF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>7629</td>
</tr>
<tr>
<td>2.</td>
<td>12043</td>
</tr>
<tr>
<td>3.</td>
<td>13727</td>
</tr>
<tr>
<td>4.</td>
<td>13355</td>
</tr>
</tbody>
</table>

QC test forward direction

<table>
<thead>
<tr>
<th>Plates</th>
<th>TF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>7906</td>
</tr>
<tr>
<td>2.</td>
<td>12443</td>
</tr>
<tr>
<td>3.</td>
<td>17999</td>
</tr>
<tr>
<td>4.</td>
<td>17098</td>
</tr>
</tbody>
</table>

QC test reverse direction

<table>
<thead>
<tr>
<th>Plates</th>
<th>TF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>7448</td>
</tr>
<tr>
<td>2.</td>
<td>12237</td>
</tr>
<tr>
<td>3.</td>
<td>15366</td>
</tr>
<tr>
<td>4.</td>
<td>19067</td>
</tr>
</tbody>
</table>

QC test after cleaning 100% IPA, 35°C
Analytical vs. Preparative Scale HPLC. Non-linear Adsorption Isotherms, or Overload Conditions:
Peak Tailing/Broadening
Sample Load Effects

Columns: 4.6 x 150 mm, 5μm
Mobile Phase: 40% 25 mM Na₂HPO₄ pH 7.0 : 60% ACN
Flow Rate: 1.5 mL/min
Temperature: 40°C

Tailing
Eclipse XDB-C8
USP TF (5%)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.60</td>
<td>1.70</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
<td>1.90</td>
</tr>
<tr>
<td>3</td>
<td>1.56</td>
<td>1.56</td>
</tr>
<tr>
<td>4</td>
<td>2.13</td>
<td>1.70</td>
</tr>
<tr>
<td>5</td>
<td>2.15</td>
<td>1.86</td>
</tr>
<tr>
<td>6</td>
<td>1.25</td>
<td>1.25</td>
</tr>
</tbody>
</table>

High Load x10

B. Low Load

C. Broadening
Competitive C8 Plates

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>850</td>
<td>5941</td>
</tr>
<tr>
<td>2</td>
<td>815</td>
<td>7842</td>
</tr>
<tr>
<td>3</td>
<td>2776</td>
<td>6231</td>
</tr>
<tr>
<td>4</td>
<td>2539</td>
<td>8359</td>
</tr>
<tr>
<td>5</td>
<td>2735</td>
<td>10022</td>
</tr>
<tr>
<td>6</td>
<td>5189</td>
<td>10725</td>
</tr>
</tbody>
</table>
Peak Broadening, Splitting
Column Void

- Multiple peak shape changes can be caused by the same column problem. In this case a void resulted from silica dissolved at high pH.

Mobile Phase: 50% ACN: 50% Water : 0.2% TEA (~ pH 11)

Initial

After 30 injections
Peak Tailing
Injector Seal Failure

Column: Bonus-RP, 4.6 x 75 mm, 3.5 μm
Mobile Phase: 30% H₂O : 70% MeOH
Flow Rate: 1.0 mL/min
Temperature: R.T.
Detection: UV 254 nm

Before

<table>
<thead>
<tr>
<th>Plates</th>
<th>USP TF (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2235</td>
<td>1.72</td>
</tr>
<tr>
<td>2. 3491</td>
<td>1.48</td>
</tr>
<tr>
<td>3. 5432</td>
<td>1.15</td>
</tr>
</tbody>
</table>

After replacing rotor seal and isolation seal

<table>
<thead>
<tr>
<th>Plates</th>
<th>USP TF (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 3670</td>
<td>1.45</td>
</tr>
<tr>
<td>2. 10457</td>
<td>1.09</td>
</tr>
<tr>
<td>3. 10085</td>
<td>1.00</td>
</tr>
</tbody>
</table>

• Overdue instrument maintenance can sometimes cause peak shape problems.
Peak Tailing
Extra-Column Volume

Column: StableBond SB-C18, 4.6 x 30 mm, 3.5 μm
Mobile Phase: 85% H₂O with 0.1% TFA : 15% ACN
Flow Rate: 1.0 mL/min
Temperature: 35°C
Sample: 1. Phenylalanine 2. 5-benzyl-3,6-dioxo-2-piperazine acetic acid 3. Asp-phe 4. Aspartame

10 μL extra-column volume

50 μL extra-column volume (tubing)
Determining the Cause of Peak Tailing

- Evaluate mobile phase effects - alter mobile phase pH and additives to eliminate secondary interactions
- Evaluate column choice - try column with high purity silica or different bonding technology
- Reduce sample load – volume injection and concentration
- Eliminate extra-column effects – tubing, fittings, Uv cell
- Flush column and check for aging/void
Reproducibility

Typically,

• Area and Peak Height problems together point to the autosampler system

• Area and Retention Time problems together point to the pump

Peak retention time precision:
⇒ with oven: _________ < 0.3%
⇒ without oven: ________ < 0.7%
Peak area precision: ≤ 1.5%
Problems with Reproducibility – Peak Areas

Peak Areas not Reproducible

With peak height
- Rotor seal cross-port leak or injection valve not tight
- Piston seal of metering unit leaking
- Needle partially blocked

With retention time
- Variable pump flow rate

Other
- Capillary from injector to detector not tight
- Detector equilibration problems
3. Retention Issues

- Retention time changes (t_r)
- Retention factor changes (k')
- Selectivity changes (a)
Retention time t_R, Retention factor k', and Selectivity factor α

The Chromatogram

t_0 - elution time of unretained peak
t_R - retention time - determines sample identity

Retention factor $k' = (t_R - t_0)/t_0$

Selectivity factor $\alpha = k_2/k_1$
Changes in Retention (k) - Same Column, Over Time

May be caused by:

1. Column aging
2. Column contamination
3. Insufficient column equilibration
4. Poor column/mobile phase combination
5. Change in mobile phase
6. Change in flow rate
7. Change in column temperature
8. Other instrument issues
Mobile Phase Change Causes Change in Retention

- Volatile TFA evaporated/degassed from mobile phase. Replacing it solved problem.
- Chromatography is from a protein binding study and peak shape as expected.
Separation Conditions That Cause Changes in Retention*

Flow Rate ± 1% ± 1% t_r
Temp ± 1° C ± 1 to 2% t_r
%Organic ± 1% ± 5 to 10% t_r
pH ± 0.01% ± 0 to 1% t_r

Determining the Cause of Retention Changes

Same Column

1. Determine k', a, and t_r for suspect peaks
2. Wash column
3. Test new column - note lot number
4. Review column equilibration procedures
5. Make up fresh mobile phase and test
6. Check instrument performance
Change in Retention/Selectivity
Column-to-Column

1. Different column histories (aging)
2. Insufficient/inconsistent equilibration
3. Poor column/mobile phase combination
4. Change in mobile phase
5. Change in flow rate
6. Other instrument issues
7. Slight changes in column bed volume (t_r only)
Example Change in Retention/Selectivity

Column-to-Column

Mobile Phase Variation

“I have experimented with our mobile phase, opening new bottles of all mobile phase components. When I use all fresh ingredients, the problem ceases to exist, and I have narrowed the problem to either a bad bottle of TEA or phosphoric acid. Our problem has been solved.”
Minimize Change in Retention/Selectivity
Lot-to-Lot

Evaluate:

1. All causes of column-to-column change*
2. Method ruggedness (buffers/ionic strength)
3. pH sensitivity (sample/column interactions)

*All causes of column-to-column change should be considered first, especially when only one column from a lot has been tested.
Lot-to-Lot Selectivity Change - pH

- pH 4.5 shows selectivity change from lot-to-lot for basic compounds
- pH 3.0 shows no selectivity change from lot-to-lot, indicating silanol sensitivity at pH 4.5
- Evaluate several pH levels to establish most robust choice of pH
Problems with Reproducibility – Peak Areas

Peak Areas not Reproducible

With peak height
- Rotor seal cross-port leak or injection valve not tight
- Piston seal of metering unit leaking
- Needle partially blocked

With retention time
- Variable pump flow rate

Other
- Capillary from injector to detector not tight
- Detector equilibration problems
Problems with Reproducibility – Retention Time

Retention Times not Reproducible

• Pump Problems
 – Mobile phase composition problems
 – Valves AIV, ball valve defective
 – Flow rate problems

• Column Oven Problems
 – Temperature fluctuations

• Other
 – Column equilibration
 – Column deterioration
Autosampler

Principle of Operation

- **Standard loop volume**: 300µl
- **Total delay volume**: 300µl + Vinj
- **Minimal (bypass) delay volume**: 6.2µl

Diagram

- **Vial gripper**
- **Sampling unit**
- **Metering device**
- **Rheodyne 7750**
- **4-port rotor seal**
- **To waste**
- **From pump**
- **To column**

Widest dynamic injection range:
0.1 µl-1.5 ml (w/add'l hardware)
Evaluate Retention Changes
Lot-to-Lot

1. Eliminate causes of column-to-column selectivity change
2. Re-evaluate method ruggedness - modify method
3. Determine pH sensitivity - modify method
4. Classify selectivity changes
5. Contact manufacturer for assistance*

Agilent Column Support: 800-227-9770, option 4, option 2 (LC columns)
Conclusions

HPLC column problems are evident as:

1. High pressure
2. Undesirable peak shape
3. Changes in retention/selectivity

These problems are not always associated with the column and may be caused by instrument and experimental condition issues.
The End – Thank You!

Agilent LC Column Tech Support: 800-227-9770 #4, #2 Email: Edward_kim@agilent.com
Agilent LC Columns and Agilent J&W GC Columns Scientific Technical Support

800-227-9770 (phone: US & Canada)*

302-993-5304 (phone)
For LC columns

Select option 4, then option 2
For GC Columns

* Select option 4, then option 1.

www.agilent.com/chem
Looking for More Information on Agilent’s LC Systems and Software?

Agilent offers a full range of LC training courses including hands-on courses with the latest 1200 series equipment including Rapid Resolution, and additional 1100 series courses. Each course includes a course manual for future reference and a certificate of completion. All courses are taught by industry experts.

Call 800.227.9770, Option 5 or visit www.agilent.com/chem/education to register today!
New On Demand Webinar:
Utilizing Sub-Two Micron Particles to Optimize HPLC Methods

A Four Part Workshop on Managing Chemistry and Pressure for Faster and More Efficient HPLC Separations

www.SeparationsNOW.com/agilentwebinar

Be sure to register after today’s event.
Upcoming LC e-Seminars

New Technology for HPLC Environmental Assay
January 22, 2008 – 1:00 pm EST

A Look at Column Choices- Series 3
February 13, 2008 – 1:00 pm EST

Method Development – Series 4
March 18, 2008 – 2:00 pm EST