
EQUIPMENT QUALIFICATION PLAN

Agilent CrossLab Compliance Services

9EDBUaY.	O≛a^}d∪^&[{ { ^}a^a

GYfj]WY'HmdY. UÛ

7 ca dUbmiBUa Y.

7 i ghca Yf BUa Y#IJhY.

9 E D': **] YbUa Y**. ÙY È€ŒËŒÈ ¨]

9 E D'Di V']g\ '8 UHY. R' |^ÁG€GÍ

Df]bhi8 UhY. R' |^ ÁÐŽŒŒ ÁF€NÈ KFÎ ÁŒ

HUV`Y'cZ7 cbhYbhg

GYWijcb	D U Į Y
Ù&[]^Áæ}åÁÚˇ¦][•^	Н
Ô¦[••ŠæàÁÔ[{] ãæ}&^	FF
ŒÔÒÁÙ^••ã[}Áæ]åÁÙ^¦çã&^ÁÖ^ ãç^¦^ÁT^c@ å•Áæ]åÁÙd[¦æ≛^ÁŒ[]¦[çæ‡•	FÍ
ŒÔÒÁÖ^ ãç^¦^ÁT^œQ åÁ№^ÁÔæ^•	FΪ
ÙY ÁUÛ KÁV^• ơÁÖ^• ất } Ása) å ÁÜ æsā[} æţ^	FJ
ÙY ÁUÛ KÁU]^}ŠæàÁÙæ)åæåÁV^•ơÁÙ ão^	GH
Ü^][¦ơÁsa) åÁÖ^ ãç^¦^ÁU] cã[}•	ď
Ù^ ^&c^åÂÛã} æc '^ÁU] cã} •	ď
Ô~•([{ ^\AOE]} [çæ	Ĝ
Š^* a\$Áp[aã&^	Ğ

GWcdY'UbX'Di fdcgY

Cj Yfj]Yk

 $CF_A\hat{O}^* = \frac{1}{4} ^{\circ} \hat{A}^* = \frac{1}{4}$

 $\hat{O}\hat{U}\hat{A}\hat{U}\hat{O}\hat{Q}\hat{A}^c\hat{g}\hat{a}_{\hat{a}}\hat{A}_{\hat{a}}[&^{\hat{a}}_{\hat{a}}][\dot{a}_{\hat{a}}^{\hat{a}}^{\hat{a}}] + [\dot{a}_{\hat{a}}^{\hat{a}}\hat{A}_{\hat{a}}] + [\dot{a}_{\hat{a}}^{\hat{a}}\hat{A}] + [\dot{a}_{\hat{a}}^{\hat{a}}$

EEDUVÒEEÁ/@āÁ^&aã}}ÆáÁ•^åÁá^ÁæHÁŒÔÒÁv&@ã~^•ÉÁ°oÁ;}|^ÁŠÔÁv¢æ{]|^•ÁæAÁ;¦[çãã^åÁ[;Á¶]*•dæãç^Á;*;][•^•È

?Ym	Øa¢^åÆrÚŠÔÆr^d][ĝo-‡a[ão•	WPÚŠÔÁ^d[ãơ Ç¦ã æ'Á[å" ^D		Хæі а́ж) &^Áæ [¸^å
HYgh		Ù^d][ã, œ Áæ) åÁÚælæ(^e\ •		Šą̃a•	
ÔÖÙÆ[*[}Æx^¦æ	škaci į }	ÁÞ ÐŒ		Òçãa^}&^Á(. ~~a¢ãã&æaā[.}	Á(*[}Á.•^åÁ(iÁ&[^&c Áåæææ
Ú*{]ÁØ [,Á028&*¦ ÇÚ*{]D	æ&î Áæ;) å ÁÚ!^ &æï á[]}	Ø[, ÁÜæe^ÁFHÁEĒE €€Á, HÐ āj° c^ Ø[, ÁÜæe^ÁGHÁDÈE€€Á, HÐ āj° c^ Ø[, ÁÜæe^ÁGHÁGÈE€€Á, HÐ āj° c^Á Ø[, ÁÜæe^ÁGHÁFĒE€Á, HÐ āj° c^Á		OBS&* 28&^ Ám Ú!^&& đ[} ÁÜ	

R' I^ÁGÉÁG€GÍÁF€K€ÌKFÍÁDET

I bXYfgHUbX]b['h\ Y'HYgh'GdYW]Z]WUH]cb'GYW]cb']b'HUVi `Uf'FYj]Yk '8 cW a Ybhg

Væði |æÁ[|{ ææði ÁÖÛÚÁÖØÁ^çðì, Åå[&`{ ^} o ÁæðAÉ] ææði Á • ^åÁ[| & { ^} o Áæði ÁÉ] ææði Á • ^åÁ[| & æði Á° ` ^ o Óæði ÁE] ææði Á • ^åÁ[| & æði Á° ` o Óæði ÁE] ææði Á • ^åÁ[| & æði Á° ` o Óæði ÁE] ææði Á • ^åÁ[| & æði Á° · ô ÁE] ææði Á • ^åÉ] ææði Á • ô ÁE] ææði Á • ô ÁE] ææði Áæði | æð • ô ÁE] ææði Áæði | æð • ô ÁE] ææði Áæði | æð • ô ÁE] æði Áæði | æði Áæði | æði Áæði | æði ÁE] | æði Á

QuÁsaÁsanà`|ad-ÁÒÛÚÚÁsa}]¦[çad-Ási[&`{^}dĒAs@^Ás^•dĒA^d][ā]o•Ása}åÁ,adat(^o^¦•ĒAsa)åÁ[ā[ār-Ásd^Ás]ā8ad|^Ásiār]|ad^åÁsjÁs@^Á[||[¸ā]* |^]¦^•^}canaār^Á[¦{andÈ

Di a d': `ck '5 WW fUWn

Ø[, Æ

	OE; ant cascapiAOE at^} of sat) af A; [} EOE at^} of `{]							
	Ù^d[āœK	€Ě€€	{Š+B(ã)		ŠK	€ÌF€€	PK	ÍÈ€€€
K	Ù^d[ādK	€ÌÒ€€	{ŠEQāj					
	Šą̃ aiK	ŁM	ÍÈ€€ Ã	Ã	ŠK	ÍÈ€€	PK	F€È€€

±b^YWf]cb'DfYV[[g]cb'5XX]h]cbU': @8

V@ā Á[] cá[} æþÁc∿• cÁsē ÁN} æà|^å Á[¦Ás@ā ÁÖÛÛÈ

OE ā^} oḥ ḥ [} ECE ā^} oḥ &q ḥ &q ḥ a@\$ØŠÖÁs^ & &q								
Xão 4/5,^¦ãã 8ac āi}}Ái,^¦-{¦{ ^åÑ	Þ[
Qub/&qaa[}Áx[ˇ{^Áa[}ÁÔ[ˇ{}K	ĺ	řŠ			ŠK	F	PK Í	
Œ^æÁÜÙÖÆĞĄ ãK	ŁM	FÈ€€	Ã		ŠK	FÈ€€	PK ÍÈ€€	
P^at @ÁÜÙÖÆŠāĮ ãiK	ŁM	FÈ€€	Ã		ŠK	FÈ€€	PK ÍÈ € €	

7 c'i a b'HYa dYfUri fY'5 WW fUWn

V@ā Án cæð åæð åÁån^æĕ |oÁs^•oÁāā Áåãa æða|^åÁf¦Ás@ā ÁÖÛÚÈ

7 i glca Yf F Ygdcbg]V]]l-jYg

V[Á,^\-{\{ ÁDEÔÒÁS,•d`{ ^} cÁ` æqāæ8ææā{} Á^\;cæ8^•ÊÁ^``ā^{ ^} or Ásæ•[&ææe^åÁ,ão@ÁS,•d`{ ^} orÁs{} d[|Ásæ)åÁ.•^Á;-ÁDEÔÒÁ[-c; æd^Á;}Áíã^\ }^^åÁq[Ás^Á;}å^\•d[[åÁsæ)åÁ;ææā-æ³åÈ

ËÁQ•dˇ{^}ơÁ&[}d[|ÁgfÁj^¦-f|{Ás@∂Áˇæþãã&ææáj}Ás^•o•È

EXOTÊÒÁ [-ç zet^Ándes& & • - Án † ça & Án * à An * à An

 $\begin{array}{l} \text{CEO}\hat{\Delta} & \hat{\Delta} & \hat{$

CE #^} oÁ^8[{ { ^} å•ÁsææÁs@Á[~ç æ^Á[~c],^[Á•^åÆ] Ás@ÁææÁsææí]}

&*• OÉV@;^-[;^Éæi];|[]; ãææ^Áæ&&^• Ás Ás@Ás• oč { ^} oÁs[} d[|Ás@Æ]• oč { ^} oÆ; &@ÆæÆsææí]}

&*• OÉV@;^-[;^Éæi];|[]; ãææ^Áæ&&^• Ás Ás@Æ]• oč { ^} oÁs[} d[|Ás[-ç æb^ÉA`&@ÆæÆsæé As@Æ* oc { ÁşÔÖÙŒÄ;^^å•Ásææí]} ^

-[;Ás@ÁCE #^} oÁ^];^• ^} cææí; Áæ^-[;^Ás@^Áæ; áç^Á;} Áæ¢ÉæZ]; ÁQEÔÓÁ[-ç æb^Áæ&&^••Á;} Áæ¢ÉQE #^} oÁ^&[{ { ^} å•Ás}•cækæí]} Á; -ÁÞ^ç [;\

OEÔÓÁ[Á[æåÁs@Á|^&&]; å•Ás[} &æÁs@Á|^&&]; ÁgæÁš æáí]} Á; [;\-[, Éæè; åÁ; à]æ@Ás@ÁOÛÜÈ

Ô • d { ^ | • Á ^ ^ å Á [Á æ å å | ^ • • Á @ Á [|| [, ã * Á ^ •] [} • ã ã ã ã æ • È

ËÄÒÛÚÁ^çã\

ËÄÜ^çã^, Ás@ ÁÔÛÚÁ^`]]|a^åÁÇicæ)åæbåÁ;¦Á&[}~ā*`¦^åDÈ

ÊÜU^``^•ơ&@æ)*^•Áq Áx@ ÁÒÛÚÆAÁ^``ā^åÁqq Á; ^^ơÁ•^¦Á^``ā^{ ^}œÁ`&@ææÁx••æ]*Áæ)*^Á;Æ;•^DÆ;¦Ææ]¦[ç^Áx@Á`]]|æ\åÁÒÛÚ Ç@ææÁææã~æ•Á•^¦Á^``ā^{ ^}œĒ

ËÄÜ^č¦}ÁsejÁ^|^&d;[} &&ÁsejÁ^|^&d;]^Á;~Ás@ÁÒÛÚÁqÁOE*ã^\}oÁ;¦ã;¦ÁqÁ*æã&æãā;}Ás^|ãç^¦^È

ÉÁOE*; ^^ Áse) å Án ^ OÁ] ÁS, • O* { ^ } OÁS[} d[|Áse&& • • Ág Á, ^ ; - ; { Án@ Á, [; | ÁG ;] çãn ^ ÁseÁÔÖÙÁ[* [} Á; ; Án@ ÁÐÙÒDÈ
ÉÁOE*; ^^ Áse) å Áse}]; [ç^ ÁOEÔÒÁ • æ* ^ Á; } Án ão ÁD ^ c, [; | ÁOEÔÒDÈ
ÉÁO[; ÁSE] } - ð* ; | ^ å ÁÔÛÚ • ÉÁ; ææj œæj Áse@ej * ^ ÁSE] } d[|Áse) å Án ^ çãn ấţ } Á@en († ; ^ Á; - Án@ Án] ^ & ã æð Áse∮]; [ç^ å ÁÔÛÚÈ
ÉÁÜæ~ | ^ Án († ; ^ Áse) å Áseò & Øæj ^ Áse) } Áse] ; [ç ^ å ÁSE]] ^ (j ~ Án Øæj ÁÖÛÚÈ
ÉÁÜ~ çãn , Áse) å Án ât } Án Øc ÁÖÛÜ, Øc } Án Øc Á* æj æð & ææð & ææj } Á; [; | Áse ÁSE[{] | ^ co Áse) å Án åt } É

5 [] YbhF Ygdcbg]V]]h]Yg

 $\begin{array}{l} CE \ a^{\ } \ o^{\ } \ A^{\ } \ |^{\ } \ e^{\ } \ A^{\ } \ |^{\ } \ e^{\ } \ A^{\ } \ |^{\ } \ e^{\ } \ A^{\ } \ |^{\ } \ e^{\ } \$

ËÄÖ^|ãç^¦Ás@Ásē}]¦[ç^åÁs^\;çæ&^•Áq||[¸ãj*Ás@Ás^•ơÁ;¦[*¦æq•Ás^•&¦æa^åÁsjÁs@Ásē}]¦[ç^åÁÖÛÚL ËÄÚ¦[çæã^ÁseÁn[&\^åÁsē}åÁs'Ē∄}^åÁÖÛÜÁ][}Ás[{]|^œã}Ás[4]|^æá&A^\;çæ&^L ËÄGÁ^~``^•ơåÉÄ;¦[çæã^Áse}Ás]æá}æák[\Ē∄}}^åÁÖÛÜÁÕÖÁgÁsŏ∮&ŏ°d;{^¦È

GHUHYa YbhcZ±bhYbh

 $\hat{O} \cdot \text{of} \left\{ \tilde{a} \text{ accept} \right\} \cdot \hat{A} + \hat{A}$

 $V@\acute{A}^{|c|} = A_{c} + A_{c}$

; YbYfU`GHUHYa Ybhg`cb`h\ Y`HYgh]b[`Dfc[fUa

 $V@A@dd_{add} \Rightarrow AUUAe^{A} \otimes Au_{ad} \Rightarrow AUUAe^{A} \otimes Au_{ad} \Rightarrow Au_{a$

 CE 春/} ơీÔ![•• Šæà ÂÔ[{] | ãæ} &^Á•^• Áæá æææ} &^å Á•^• Áæá ææ} ÅrÁ•/^ &æi] / Ár - Áæã æææ} &^å Ár • ○ Ág áæ@ { ãææ‡ãæ• ^å Ár • ○ Ág áæ@ * áÁr • ○ Æg f | ææi] } Éæi æ²!] [| ææi] } Éæi æ²!! ^ å Ág f | ææi] } Éæi æ²!! ^ å Ág f | ææi] } Éæi æ²!! ^ å Ág f | ææi] } Éæi æ² & Óg f æægæ ææi] } Ág f æægæ ææi] / Ág f ægæ ææi] / Ág

9EDFYj]g]cb'<]glcfm

 $\begin{array}{l} \text{OEOOÁ} \stackrel{`}{\sim} \text{afastaceta}_{\dot{A}}^{\dagger}, & \text{i}_{\dot{A}}^{\dagger}, & \text{i}_{\dot{A}}^{\dagger},$

78 G'GcZtk UfY'DfY!fYei]g]hYg'Zcf'<UfXk UfY'Ei U']Z[WUt]cbg

 $V@\dot{A}[-c, ab^{\dot{A}} \bullet ^a\dot{A}[\dot{A}S[] d[]\dot{A}S \bullet d^{\dot{A}} \bullet ^a\dot{A}[\dot{A}S[] d[]\dot{A}S \bullet d^{\dot{A}} \bullet ^a\dot{A}S \bullet \dot{A}S \bullet \dot$

; `cggUfm

5[] Ybh9ED

ŒÔÒK

OE ā^} oÁOE d[{ æe^åÁÔ[{] |ãæ} &^ÁÒ} *ā,^Á;!ÁOE ā/^} oÁ[-c, æ\$^Á •^åÁq[Á;![çãå^Á *æĕã&ææā]}Á^^!çã&^•

OĒ ā^}dÜ^&[{ { ^}å^å Ù. ÈEŒË ŒŽ~] Úæt*^ÁLÁFÁGÏ

R'I^ÁQÐÃG€GÍÁF€H€ÌKFĨÁQET

ÒÛÚK

 $\grave{O}^* = \{ \land \} \circ \hat{A} = \hat{A}$

ÒÛÜK

 \mathring{O}^{*} \mathring{a} { $^{\wedge}$ } \mathring{A} \mathring{U}^{\wedge}] [\mathring{A} \mathring{A} \mathring{U}^{\wedge}] [\mathring{A} $\mathring{$

ÔÖÙK

Ô • d { ^ | ÁsaææÁ ^ • e^{

Þ^c [¦\ÁŒÔK

OĐÔÒÁN ÁN • cœ|\^åÁ\} Á ĐÁ,^c; [¦\Á,[å^Á, ã OŒ] Á OŒ Á œà[¦æq[¦^ ÁŠOĐ ÁN, +æ d* &c' |^

Š[&#ÁŒÔÒK

OEÔÒÁ^•ãå^•Á;}Áṣà Áṣã å^]^}å^}oÁv¢c^!}æþÁslãç^Á&[}}^&c^åA[}à^@AŠOEÞÁṣ +æ•d°&c°!^

O‡c^¦}æmaç^ÁT^co@|åK

Ùæ) åæ\åÁÖÛÚK

ÒÛÚÁ,¦^Ëå^-ã,^åÁà^ÁOË ã^} oÁs@ædÁs, &|`å^•Áå^-æĕ|oÁs^•œÆ^d, [ã,œÆæ) åÁã, ãœ

Ô[}-at~¦^åAÒÛÚK

ÒÛÚÁs@æÁ@æÁs^^}Á&@æ)*^åÁsæ^åÁj}Á•^¦Á^~~¦Á^~~ã^{ ^} @

Xæláæn) & ^£ÄÜæn) * ^ K

 $V@Aa)*^{A_{-}}^{A_{-$

Xælåæn) & ^ÉAY K

Ô@e) * ^ Át ÁseÁc^• oÁ, ædæ (^ c^ \ Ás@eseÁs Á, ãs@ã, Ás@ ÁCE ã^) oÁsædãe) & ^ Áæ) * ^

Xælåæn) & MÉÄUK

Ô@a) *^Áq ÁæÁr^•oÁ, æbæq ^c\hÁc@ædÆn Á; o ãn ^Ác@ ÁCE ār\}oÁçæbãa; &^Áæ) *^

Xælæel & ÉÄÖYK

Xælæn) & ÉÄÖUK

 \ddot{O}^* $a\phi \dot{A}^*$][$c\ddot{a}$ * $\dot{A}\ddot{a}$ $\ddot{a}\sigma \dot{A}$ * $\sigma \ddot{a}\sigma \ddot{A}$ * $\sigma \ddot{a}\sigma \ddot{A}$

U] a[{} a A/^• dK

 $CF_{A}[]$ $CF_{A}[]$

Ofååããã{}æ∮ÁÛ^d][ãjdK

Ofāåããã} a aḥÁ; ^æe ˇ ¦^{ ^} oÁṣæ ţ ˇ ^Á[¦ÁæÁs^• oÁ;æææ { ^c^¦Áç-|[Ébē^{] ^ læc ĕ l^Ébæ} å Á• [Á; } D

Ei U]Z[WUt]cb @ZY7 mWY GtU[Yg

WÜÙK

ÖÛK

ŴΚ

UÛK

 $U] ^{\pm}$ agá $\hat{U} ^{\pm}$ agá $\hat{U} ^{\pm}$ agá $\hat{u} ^{\pm}$ agá $\hat{u} ^{\pm}$ aga $\hat{u} ^{\pm}$ $\hat{u} ^{\pm}$ aga $\hat{u} ^{\pm}$ $\hat{u} ^{\pm}$

ÚÛK

ÜÛK

 $\ddot{U}^{\ } = \frac{1}{2} \frac{1}{4} \frac{1}{4}$

ÚT K

U(a) \ ^\a\delta \, \a\delta \, \a\delt

FYZYfYbWY'GcifWYg

OT)VT K

OE, ^¦a8æ) ÁÙ[8æî°c Á[¦Á/^•cā] *Áæ) åÁTæe^¦ãæd•

ØÖŒK

W}ãc^åÁÛcæc^•ÁØ[[åÁse)åÁÖ¦*ÁŒå{ãjãrdæeã[}

Ռ Úî K

 $\tilde{O}[[\mathring{a}AOE ({æe^\mathring{a}ATæ})^*-æ&c^\mathring{a}*AÚ|æ&c@k^)$

ФUК

Q(c') and A(c') are A(c') and A(c') and A(c') and A(c') and A(c') and A(c') are A(c') and A(c') and A(c') are A(c') are A(c') and A(c') are A(c') are A(c') and A(c') are A(c') are A(c') are A(c') and A(c') are A(c') are A(c') are A(c') and A(c') are A(c') are A(c') and A(c') are A(c') are A(c') are A(c') and A(c') are A(c'

ÒÙUJ€€FK

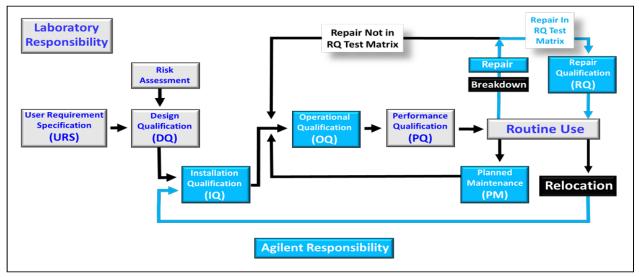
ÚÔĐÙK

 $\dot{U}@ed{ \ ask^* \ asked} \dot{Q} \bullet] ^8 call{} \ \dot{AO}[\ [\] ^l \ assall{} \ \dot{AU} \& @ \{ \ ^ \] ^8 call{} \ \dot{AO}[\ [\] ^l \ assall{} \ \dot{AU} \& @ \{ \ ^ \] ^8 call{} \ \dot{AO}[\ [\] ^l \ assall{} \ \dot{AU} \& @ \{ \ ^ \] ^8 call{} \ \dot{AO}[\ [\] ^l \ assall{} \ \dot{AU} \& @ \{ \ ^ \] ^8 call{} \ \dot{AU} \& @ \{ \ ^ \$

WÙÚK

W}ãr^åÁÙæær^•ÁÚ@æd{æ&[]^ãæ

HOW AGILENT CROSSLAB COMPLIANCE SERVICES INTEGRATE WITH QUALITY SYSTEMS AND REGULATIONS



Agilent CrossLab Compliance Services

Agilent CrossLab Compliance Services

Agilent CrossLab Compliance Services are designed to seamlessly integrate with traditional quality systems used by firms and recognized by regulatory agencies worldwide. Analytical instruments must be suitable for their intended use. This requirement is good science in all laboratories and a regulatory requirement in pharma and biopharma laboratories. A life-cycle process for documenting and testing the suitability of laboratory instruments should be followed and Agilent recommends the life cycle framework defined in USP General Chapter <1058> on Analytical Instrument Qualification (AIQ). USP <1058> defines the governing framework and requirements that need to be satisfied, but the laboratory is responsible for how they satisfy these requirements.

- The United States Pharmacopoeia (USP) is the only major pharmacopeia with a general chapter dedicated to analytical
 instrument qualification, making <1058> an important global regulatory reference. The information is provided in a
 scientific, risk-based approach to analytical instrument qualification (AIQ). However, the life-cycle framework contained
 within USP <1058> is not prescriptive in its implementation, making the embedded scientific and risk-based principles
 flexible and universally applicable.
- The scientific process followed by CrossLab uses the Agilent's Automated Compliance Engine (ACE) to deliver paperless
 electronic qualification. The life-cycle stages Agilent perform are highlighted in the life-cycle diagram below. As part of
 this life-cycle, Agilent can configure the qualification tests performed to align with user requirements.

USP <1058> AIQ Framework

NOTE: RQ services, described later in this document, can be added to standard qualification services.

ACE Workflow and Equipment Qualification Plans (EQPs)

Overview

Within the ACE workflow, the qualification tests, setpoints, and limits are defined in an EQP that can be configured to ensure that testing satisfies user requirements. When the qualification work is complete, an Equipment Qualification Report (EQR) is issued. The electronic workflow used within ACE has significant data integrity advantages over traditional paper or Excel-based qualification protocols, as validated calculations can be performed directly using electronic data such as chromatograms and metrology test values. Several of the instrument life-cycle stages are the responsibility of the laboratory, Agilent can provide compliance consultancy services and documentation which can help customers satisfy these requirements. These additional services are not included in our typical qualification offering.

High-level ACE Qualification Workflow

Standard and User-defined Limits

(Hardware qualifications only)

EQPs are available for download and approval as standard documents with Agilent recommended tests, setpoints, and limits, or they can be electronically configured by approved personnel to align with user requirements and intended range of use requirements. The degree of configuration depends on the analytical technology, but most EQPs can be configured to some degree, and one feature that can typically be changed is test limits.

EQPs are designed to be configurable (dependent on the analytical technology and standard requirements), but including additional tests or setpoints can impact the qualification time and associated cost. If a test limit is changed, ACE includes the capability to report results against the Agilent approved limit and any customer required limits (that is, both can be reported simultaneously).

If a user-defined test limit is more stringent than an Agilent recommended limit, Agilent makes no guarantee or obligation regarding the instrument passing the tighter test specification requirements. It is important to appreciate that tests performed under conditions of use (that is, to satisfy pharmaceutical monograph and application requirements) can have different limits than those defined in the OQ. It is the continuum of the combined OQ, PQ, and any point of use testing performed each time the instrument is used that together satisfy regulatory requirements.

User Requirements Specification (URS)

The purpose of user requirements is to document the intended use of the instrument within the life-cycle process and quality management system (QMS) being followed. Therefore, the URS is a customer / laboratory responsibility. Defining user requirements is often used to guide the customer in instrument selection and is stated as the first activity that should be followed in <1058>. The URS is important for two main reasons.

- It is a regulatory requirement for FDA and EU GMP that the intended use of the instrument and any software must be specified.
- Investment protection perspective means getting the right instrument for the right job.

Qualification protocols should test the instrument against any limits or specifications listed in the URS, which should document the intended range of use. Depending on the instrument complexity and how it is classified, a separate URS document may not be needed, but the URS requirements of the <1058> framework must be satisfied. A separate URS is almost always recommended for computerized systems.

An instrument performance specification is a product of the instrument development process by the supplier. It typically documents the performance the instrument can achieve. The URS should be based on intended use of the instrument and not the instrument specification. Additionally, if the intended use of a system changes, this may trigger a need to review the URS and associated qualification testing (for example, to ensure range of use is tested if used with a new analytical procedure).

Agilent offers compliance consultation services and documentation that can help customers address URS requirements.

Design Qualification (DQ)

The main function of the DQ stage of the laboratory instrument life-cycle process is to document why the selected instrument is suitable. Typically, this includes consideration of the instrument specification, how the instrument will be qualified, and the QMS followed by the instrument manufacturer. All together, these confirm that instrument performance is capable of satisfying user requirements. Depending on laboratory instrument life-cycle policy or SOPs being followed, instrument requirements and the relationship between the URS and DQ stages may vary – but as long as the <1058> framework principles are satisfied, this is not a problem, as it is left to each laboratory to justify and document its specific approaches.

The responsibility for satisfying DQ requirements primarily lies with the laboratory, with support from the supplier.

Agilent's approach to satisfying DQ requirements of USP <1058> includes the following.

- All Agilent hardware and software laboratory products, including the ACE software used to deliver qualification services, are designed, manufactured, and tested according to Agilent internal quality life-cycle development procedures.
- Certificates of Agilent testing, validation, and conformance to standards are provided with new Agilent instruments and similar certification can be provided for ACE software.
- Agilent is capable of installation, support, preventive maintenance, on-going qualification, and re-qualification after repair and user training worldwide.

Agilent offers a compliance consultation service that can help customers with DQ documentation.

Installation Qualification (IQ)

The main functions of the IQ stage are to document that laboratory is suitable (for example, critical systems typically include a site inspection / checklist), that the instrument is installed correctly in the environment, and IQ checks such as module start up are completed. IQ is provided and automated by ACE, which collects, checks, and tests Agilent hardware and software products for the following.

- 1. Purchase Order Details: Allows the customer to verify that the instrument being qualified matches their design requirements (if available) and purchase order.
- 2. Preparation and Installation Details: Gathers and records information about preparation and installation documents.
- 3. Documentation: Gathers and records information about reference and user manuals for initial installations.
- Product Quality Assurance Details: Collects and records certificates and other forms that verify that the vendor has developed and built the product according to internal standards.
- 5. Startup: Verifies that all modules/components start up properly.
- 6. Installation Verification (software only): Verifies the correctness of all installation-related files.

Operational Qualification (00)

The main function of the OQ stage is to evaluate and document instrument performance at the intended operational range of use. OQ protocols should include a mix of metrology, functional, and operational tests. ACE qualification protocols include information about the test description and rational, setpoints, and the limits (acceptance criteria) for each technique, category, and instrument configuration.

OQ is provided and automated by ACE. ACE checks and tests for Agilent hardware and software products include the following.

- Metrological tests such as flow, temperature, pressure, and so on that ensure that the system is performing within Agilent (or user) specifications.
- Qualification results are reported in the EQR, which can include details of all test certificates, standards, and training
 information for the engineer performing the work. (Note that the EQR can be configured to customer requirements.)
- · System or "holistic" tests verify the combined functions of the various system components
- The qualification testing can be configured to ensure URS requirements, such as range of use are tested.

For software qualification, the OQ consists of automated diagnostics regression testing and verification of the software installation. This supports continued use of the software in regulated environments (at install and as part of supporting periodic review).

In line with regulatory requirements, the EQPs should be approved before work is performed and the EQR should be reviewed and approved when the work is complete (as illustrated in Figure 2). The EQR contains all the raw data, results, and relevant information and attachments for complete compliance and traceability.

Mechanical Qualification (MQ)

(Dissolution systems only)

The main function of the MQ stage is to document that the mechanical performance of the instrument meets specifications and is functioning properly.

Performance Qualification (PQ)

The main function of the PQ stage is to document that the instrument is fit for purpose under conditions of intended use and to create an approved framework that ensures the instrument continues to perform as required. Because instrument range of use is tested within the 0Q stage, it is usually not necessary to test this during PQ. It should be noted that requirements for instrument maintenance and repair fall within the PQ life cycle stage within the

The customer is responsible for satisfying PQ requirements. (NOTE: Agilent can provide a PQ for Dissolution systems only.)

It is important to note that PQ is a lifecycle activity and not a one-time event. PQ tests may include activities such as method validation or system suitability tests (SST), but in Agilent's opinion, SSTs contribute towards ensuring continued performance of the instrument (that is, PQ testing), but do may not fully satisfy <1058>PQ requirements.

Repair Qualification (RQ)

After an instrument is repaired, tests should be performed to evaluate the effectiveness of the repair and document that repaired instrument satisfies performance requirements. Agilent offers a service called Repair Qualification (RQ), which refers to the requalification of laboratory instrument hardware after a repair. For some laboratory systems, to document the performance after repair may require a full OQ. However, for some modular or component-based systems, such as HPLC and GC for example, partial qualification testing can be justified. This is accomplished by performing the qualification tests that are applicable to only the module or system component related to the repair, reducing the time the instrument is out of service. Requalifying the instrument after repair is a regulatory requirement defined in USP <1058>.

Agilent offers service contracts to repair and requalify an instrument during the period between scheduled annual OQs.

The level of retesting is prescribed in the RQ section of ACE: a form is displayed for the operator showing all types of repairs possible and the retesting required. Part of an example form for an LC system is shown below.

Re-Qualification After Repair		
Pump Strategies		
Repair/Replace Strategy	Modules	00 Testing
Internal pump head parts, active inlet valve (or AIV cartridge), (parts of) check valves, reference valves, inlet manifold or pump drive, or taking pump head apart to clean (versus repair)	Any pump	Flow Accuracy & Precision
Pulse damper, pressure transducer	Any pump	Flow Accuracy & Precision
Multi-channel gradient valve	Quaternary	Flow Accuracy & Precision Gradient Composition

The full list of RQ repair and retest guidance is available for customer review.

www.agilent.com/chem/qualification

Information, descriptions and specifications in this publication are subject to change without notice.

© Agilent Technologies, Inc. 2025 Published in USA

SERVICE DELIVERY METHODS

CUSTOMER APPROVAL OF ALTERNATIVE METHOD AND EQR STORAGE

Agilent CrossLab Compliance Services

Overview

Agilent recommends use of **Network ACE** for CrossLab qualification services that are enabled using the Agilent Automated Compliance Engine (ACE) software. Network ACE and Local ACE both access data directly (default methods) and are considered equivalent from a data integrity and data traceability perspective (see below). To provide additional flexibility in qualification service delivery, an alternative method is also available that accesses data indirectly. Use of the alternative method requires customer pre-approval using this form.

Available Methods

Method	Definition
Network ACE (Agilent recommended)	ACE software is installed on a network node within the laboratory LAN infrastructure. Raw data locations are always captured in the equipment qualification report (EQR), which provides end to end traceability and a fully characterized data workflow in the delivery. This method requires collaboration with the customer to load ACE behind the customer firewall.
Local ACE	ACE software resides on an independent external drive that can be driven from the system controller, where the customer data system (CDS) resides. Because the external drive is connected to the CDS, the data integrity of this method is equivalent to that of the Network ACE delivery method. Raw data is imported directly into ACE by the Data Manager tool, with the data paths always captured in the report, which provides data traceability assurance.
Alternative (Requires pre-approval)	 This method requires customer pre-approval due to data integrity implications. Only choose this option in scenarios like the following: ACE software is not run from a PC directly connected to the customer CDS, such as the FSE's laptop. System data files are transferred indirectly from the CDS to the FSE laptop instead of directly as done with Network and Local ACE methods. Data is acquired using a CDS on the FSE's laptop and transferred directly to ACE. The CDS used in this method is qualified for data collection purposes.

EQR Storage

Select the checkbox below to authorize Agilent to store copies of the EQRs generated by ACE for Agilent internal assessments. The intention of the assessment is to evaluate the delivery of the qualification service, with a focus to improve delivery and assess the appropriateness of data integrity measures. The storage is exclusively for the internal assessment by Agilent and is not shared with other organizations. It is not to be considered a backup for the EQR provided at qualification delivery.

roval of Alternative Method and EQR Storage
use the alternative method (check for approval):
store EQRs for their internal assessment (check for approval):

www.agilent.com/chem/qualification

Information, descriptions and specifications in this publication are subject to change without notice.

© Agilent Technologies, Inc. 2025
Published in USA

AGILENT CROSSLAB QUALIFICATION SERVICES

USE CASES FOR SERVICE DELIVERY

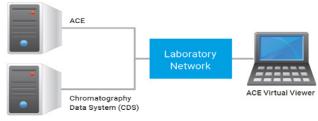
Agilent CrossLab Compliance Services

Introduction

With heightened scrutiny of data integrity, the Agilent Automated Compliance Engine (ACE) software must be able to access instrument-generated raw data files one of two ways: directly, using the connection between network nodes or with the server; and indirectly, through storage in a secure transfer location. (In this document, data integrity refers to the who, what, and where of data used in generating an ACE equipment qualification report, or EQR.)

ACE includes three main service delivery methods that address data integrity requirements; the rest of this document provides details to determine which one best fits a customer's needs.

Regardless of the delivery method, ACE features and delivery procedures are compatible.


Network ACE (Agilent Recommended)

Overview

ACE software is installed on a network node within the laboratory LAN infrastructure, which requires collaboration with the customer to load ACE behind their firewall. Raw data locations are always captured in the EQR, which provides end-to-end traceability and a fully characterized data workflow in the delivery.

Details

Typical Network ACE installation diagram

Installing ACE in a separate node (a.k.a. the host PC) on the same network as the system controller offers data traceability that is equivalent to an installation on the system controller itself. The system controller (where the CDS resides) and the ACE host PC are identified and seen by the server and subject to the customer's data access controls and general IT policies. The CDS's audit trail records data movements between nodes or between the client and server, and ACE's data traceability features identify the original data directory and therefore ensures end-to-end data traceability

The ACE host PC has a separate/partitioned drive for ACE

software. During ACE's installation, two services are setup on the operating system (OS): one for security and the other as a watchdog. Because the ACE host PC sits on the network as a shared drive, engineers access ACE through the networked drive: ACE is not installed on ACE Virtual Viewer PCs.

Requirements

Installation

- Install on a host PC with a separate drive (different from that of the OS)
- Attach to a network that clients can access
- 500 GB
- NTFS format
- User has local administration rights
- Customer installation instruction document is available

Operational

- User has an ACE node logon with a minimum of power user rights permissions; user also has a personal ACE account and password added through the ACE licensing tool
- Up to 5 users with 3 open sessions each can access the NDA simultaneously
- Exception to ports 11121-11141 on ACE node, clients, and switch's/Smart Hubs to be open on the network

Local ACE

Overview

ACE software resides on an independent drive that can be driven from the system controller, where the CDS resides. Because the drive is connected to the CDS, this method's data integrity is equivalent to preferred 1 method's. Raw data is imported directly into ACE by ACE's Data Manager tool, and data paths are captured in reports to provide data traceability.

ACE software resides on an independent drive that can be driven from the system controller, where the CDS resides. Because the drive is connected to the CDS, this method's data integrity is equivalent to the Network ACE method. Raw data is imported directly into ACE by ACE's Data Manager tool, and data paths are captured in reports to provide data traceability.

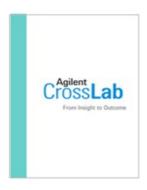
Details

ACE is designed to run from a dedicated drive, without leaving a footprint on the host PC. Therefore, it can be connected directly to the system controller (where the CDS resides) without altering the system's qualification status. For additional protection, the drive can be driven by another host PC on the same network; also, the drive can remain on site with the customer for use by the Agilent Field Service Engineer (FSE) during service deliveries only.

Alternative Method

This method requires customer pre-approval due to data integrity implications and only applies in scenarios like the following:

- ACE software is not run from a PC directly connected to the customer CDS, such as the FSE's laptop. System data files are
 transferred indirectly from the CDS to the FSE laptop instead of directly as done with Network and Local ACE methods.
- Data is acquired using a CDS on the FSE's laptop and transferred directly to ACE. The CDS used in this method is qualified for data collection purposes.


www.agilent.com/chem/qualification

Information, descriptions and specifications in this publication are subject to change without notice.

© Agilent Technologies, Inc. 2025
Published in USA

Complete 00 Test Suite

This document describes the test program for qualifying software systems. All tests for all software types are listed in the following table; all tests are described in the Test Design and Rationale section; applicable tests by software type are included in separate type-specific documents.

Security		General					
Security Basic Access Security Advanced Access Security User Interface Locking User Traceability Data Traceability Data Integrity Client Connectivity Server Connectivity Workflow, Workflow (Additional)		Reporting at Communica Archive and Acquisition Load Test	Reporting and Calculation Algorithm Test Reporting and Calculation Report Communication Archive and Restore Acquisition Data Buffer				
ECM Base			ECIV	Optional (Clients/Workstations)			
OpenLAB ECM File Operation OpenLAB ECM Check-in Check-out OpenLAB ECM Mail Notification OpenLAB ECM Content Basic Functions OpenLAB ECM Content Filter Functions OpenLAB ECM Business Process Manager Analog to Digital Converter (ADC)	OpenLAB ECM Web OpenLAB ECM Asso OpenLAB ECM Arch OpenLAB ECM Que	ociate Files nive ry	Oper Oper Oper Oper Oper	ALAB ECM Generic Print Services ALAB ECM Distiller Print Services ALAB ECM Adobe E-Signature ALAB ECM Adobe Template ALAB ECM Desktop Integration ALAB ECM Scheduled Services Limits			
Height Accuracy Area, Height, and Retention Time Precision	62.50 mV 25	25.00 mV 50.00 mV	500.00 mV 1000.00 mV	$\label{eq:accuracy} \begin{tabular}{ll} Accuracy & \le 1.5\% \\ Area RSD, Height RSD & < 1.00000\% \\ Retention Time RSD & < 0.50000\% \\ \end{tabular}$			
Height Linearity	N/A			Linearity ≥ 0.99900			

Test Design and Rationale

Overview

Many GMP/GLP enforcement agency inspectors now ask firms to provide a risk assessment of their equipment and computer systems plus a science-based rationale for subsequent validation and qualification testing.

GENERAL RISK STATEMENT: Any chromatography or spectroscopy data system used for raw material testing or final drug product / medical device testing in GMP or used in formal GLP studies will likely fall into a HIGH RISK category. This risk assessment will imply the need for IQ & OQ & on-going qualification. ANY USER SPECIFIC RISK ANALYSIS SUPERCEDES THIS GENERAL RISK STATEMENT.

The rest of this section outlines the science-based rationale for each test in the Agilent OQ test design plus a brief test design and procedure description.

The recommended set of 00 tests described in this EQP derives from Agilent's interpretation of FDA, USP, and GAMP guidelines and other authoritative expert literature.

If calibrated equipment is used, calibration records will be provided.

Considering the number of setpoints, parameters, and conditions for some 00 tests, the proven concepts of worst case, range, and representative have been applied. If a property or characteristic is known to have its worst performance at one end of a range of use, this is the setpoint that should be tested and other setpoints are not required. If a property or characteristic has no known worst case, testing at the high and low points of the range of use is required. If there are too many possible use cases and conditions to realistically test (and none is a worst case), a representative sample for test is the best approach.

Preparation, Cleanup

These tests do not measure system performance. Preparation captures required user accounts, verifies software integrity, and (as applicable) performs other preparation required between tests; Cleanup restores the system to its pre-qualification state.

Security Tests

Security Basic Access

This test verifies that administration utilities and the software can only be accessed by valid user/password combinations.

Security Advanced Access

This test verifies that the password policy capabilities function properly.

Security User Interface Locking

This test uses interactive and/or time-based lockout of the application or session to verify that the software can prevent unauthorized access/impersonation by another user.

User Traceability

This test verifies that the software records the proper log information (electronic signature, dates and time stamp, and account information).

Data Traceability

This test checks that changes to the methods associated with data are properly maintained.

Data Integrity

This test verifies data integrity as files are stored, retrieved, and transferred. It also verifies that data can only be altered by authorized users.

Client Connectivity

This test verifies that the client used for the server qualification passed the Installation Qualification successfully and can connect to the server.

Server Connectivity

This test verifies the connection between the client and server using a workflow operation test.

Workflow, Workflow (Additional)

These tests verify software workflow that includes some or all of the following tasks depending on software configuration: creating and submitting a sequence; changing a method parameter; opening a result set; reprocessing data; printing reports; and verifying applicable audit trails for sequences, methods, and the system. (NOTE: The Workflow (Additional) test is optional and includes additional paper-based tests that can be attached to the EQR.)

General Tests

Reporting and Calculation Algorithm Test

This automated test verifies the software's calculations.

Reporting and Calculation Report

This automated test verifies the software's calculations.

Communication

This test verifies that the software can communicate with all modules installed on the instrument.

Archive and Restore

This test verifies the server archive and restore capabilities.

Acquisition Data Buffer

This test verifies that data is buffered during network failure and sent to the system as soon as the network is recovered.

Load Test

This test stresses the client/server system with a predefined load of simultaneous data transfers from multiple clients.

Spectral Evaluation

This test verifies that you can search the installed spectral library and identify a compound.

r'i^áq£ó€gíáF€k€ìkFîáQET

ECM

OpenLAB ECM File Operation

This test verifies that an authorized user can log on, create a folder structure, and send and move files to and from the content management repository. The audit trail is used to verify performed steps.

OpenLAB ECM Check-in Check-out

This test verifies that an authorized user can check out a file and that the software forbids another user to check in the file when it is already checked out.

OpenLAB ECM Mail Notification

This test verifies that a notification e-mail is sent after deleting a file.

OpenLAB ECM Generic Print Services, Distiller Print Services

This test verifies that the print services send data to the content management repository.

OpenLAB ECM Adobe E-Signature

This test verifies that you can sign a document.

OpenLAB ECM Adobe Template

This test verifies that the system can extract information from Adobe documents to create keys in database.

OpenLAB ECM Associate Files

This test verifies that files can be associated and associations can be broken.

OpenLAB ECM Content Basic Functions

This test verifies that an authorized user can create, manipulate, and delete a content management structure.

OpenLAB ECM Content Filter Functions

This test verifies the system filter capabilities by running an automated test.

OpenLAB ECM Archive

This test verifies that repository data can be archived.

OpenLAB ECM Query

This test verifies that queries can find files and user-defined keys.

OpenLAB ECM Scheduled Services

This test verifies that data is uploaded to the repository as scheduled and that the uploaded and original data match.

OpenLAB ECM Desktop Integration

This test verifies that Microsoft applications can send files directly to ECM content.

OpenLAB ECM Business Process Manager

This test verifies the business process management operation.

OpenLAB ECM Web Interface Add-on

This test verifies the web interface add-on operation.

ADC (Analog to Digital Converter) Tests

Height Accuracy

This test uses a traceable peak output simulator to determine the height accuracy of the analog to digital convertor.

Area, Height, and Retention Time Precision

This test uses a traceable peak output simulator to determine the area, height, and retention time precision of the analog to digital conversion.

Height Linearity

This test uses a traceable peak output simulator to determine linearity of the analog to digital conversion.

www.agilent.com/chem/qualification

Information, descriptions and specifications in this publication are subject to change without notice.

© Agilent Technologies, Inc. 2025 Published in USA

SOFTWARE: OPENLAB, Standard OQ Test Suite OPERATIONAL QUALIFICATION Agilent CrossLab Compliance Services

Included if a related package is installed

Not applicable

Note: The following tables list all available tests for each configuration. For all ECM configurations except Instrument Controllers, see the SWOQ OpenLab ECM 3.x document for optional ECM tests.

OpenLab ChemStation

Core test

Note: Workflow only applies to A.02.02 and higher.

Prior to SW.02.59, OpenLab ChemStation was referred to as OpenLab CDS ChemStation Edition.

DS:	DataStore
Delta:	Delta qualification
ECM:	Enterprise content management
Full:	Full qualification
IA:	Internal (vs. Windows domain) authentication security type
IR:	Intelligent Reporter
LA:	Lab Applications
LCD:	LC Dissolution
SFIO:	Secure File IO

Test	Work	station		ecure Workstation Networked Works (w/ DS)		estation	
	Base	w/ ECM	Full	Delta	Base	w/ECM	w/DS
Security Basic Access	✓	✓	✓			✓	
Security Advanced Access	IA		IA				
Security User Interface Locking	✓	✓	✓		✓		
User Traceability	✓		✓				
Data Traceability			✓				
Data Integrity	SFI0	SFI0	✓		SFI0	SFI0	SFIO
Server Connectivity		✓			✓	✓	✓
Workflow		✓	✓	✓		✓	✓
Workflow (Add-on)			LA				LA
Reporting and Calc. Alg. Test	✓	✓	✓		✓	✓	✓
Reporting and Calc. Alg. Test (Add-on)		LCD	LCD	LCD		LCD	LCD
Reporting and Calculation Report	✓	✓	✓		✓	✓	✓
Communication	✓	✓	✓	✓	✓	✓	✓

Test	Client Instrum			trument Contro	oller
	w/ECM	w/DS	Base	w/ECM	w/DS
Security Basic Access	✓				
Security User Interface Locking					
Data Integrity			SFI0	SFIO	SFI0
Server Connectivity	✓	✓	✓	✓	✓
Workflow				✓	✓
Workflow (Add-ons)		LA			
Reporting and Calc. Algorithm Test			✓	✓	✓
Reporting and Calculation Report	IR		✓	✓	✓
Communication			√	✓	✓

OpenLab EZChrom

Note: Workflow only applies to A.02.02 (A.04.07) and higher.

Prior to SW.02.52, OpenLab EZChrom was referred to as OpenLab CDS EZChrom Edition.

AFS:	Advanced file security
DS:	DataStore
ECM:	Enterprise content management
IA:	Internal (vs. Windows domain) authentication security type
LA:	Lab Applications

Test	Work	station	Networked Workstation			
	Base	w/ ECM	Base	w/ECM	w/DS	
Security Basic Access	✓	✓		✓		
Security Advanced Access	IA					
Security User Interface Locking	✓	✓	✓			
User Traceability	✓					
Data Traceability	✓		✓			
Server Connectivity		✓	✓	✓	✓	
Workflow (Add-ons)	AFS		AFS		LA	
Reporting and Calc. Algorithm Test	✓	✓	✓	✓	✓	
Reporting and Calculation Report	✓	✓	✓	✓	✓	
Communication	✓	✓	✓	✓	✓	

Test	Client			Instrument Controller		
	File Server	w/ECM	w/DS	Base	w/ECM	w/DS
Security Basic Access		✓				
Security User Interface Locking	✓					
Server Connectivity	✓	✓	✓	✓	✓	✓
User Traceability	✓			✓		
Data Traceability	✓			✓		
Workflow (Add-on)	AFS		LA			
Reporting and Calc. Algorithm Test	✓	✓	✓	✓	✓	✓
Reporting and Calculation Report	✓	✓	✓			
Communication				✓	✓	✓

www.agilent.com/chem/qualification

Information, descriptions and specifications in this publication are subject to change without notice.

> © Agilent Technologies, Inc. 2025 Published in USA

> > R" |^ÁQÊĞG€Ğİ ÁF€KEÌ KFÎ ÁQET

FYdcfhUbX'8 Y]j YfmCdh]cbg

V@# Á## of&^|[, Á#, &| a^•Á#] a#, |
ËÄÙ@(,Á@)æå^¦Áæ)åÁ{[d^¦Á;}Á&[ç^¦ ËÄQ)&(`å^Á^]^æe^åÁ`}Á[*• ËÄQ)&(`å^Á/!æ)•æ&dā[}Á[*•

GY YWYX G][bUti fY Cdt]cbg

Ùcaeč • KÁÒÛÚÁŠE Á, [cÁ[&\ ^å

ËÄÜ^][¦cā]*Áçælãæ)&^Ás Ásæl[, ^åÁs Ás@à ÁÖÛÚ

7 i ghca Yf 5 ddfcj U

Þæ{ ^K

Vã¢^K

Öæe^K

Ùāt}æcč¦^K

Þæ{ ^K

Vã¢^K

Öæe^K

Ùāt}æcč¦^K

Þæ{ ^K

Vã¢^K

Öæe^K

Ùãt}æc*¦^K

Þæ{ ^K

Vãd^K

Öæe^K

Ùat}æci'^K

@[U'Bch]W/

Éܦ[å* & oÁÖ^•& lā]cā[}ÁDÁÜ]^& & aæā[ææā[} ÉŠã^ÁÔ^&|^ÁÚ@æ•^•ÁDÁV|æ;•ãā[}ÁŒ]]¦[çæ; ÉÜ * æ†aã ÁŒ••'|æ;& ^ÁDÁV^•cā]* ÉÖ[&~{^}cææā[}Ás;åÁÔ@æ;*^ÁTæ;æ*^{^}c ÉÜ[~¦&^ÁÔ[å^