

Poster Reprint

ASMS 2024 Poster number TP 556

A Novel and Highly Effective LC/MS Method for Phosphorodiamidate Morpholino Oligomer (PMO) Impurity and Sequencing Analysis

Guannan Li¹, Peter Rye¹ and Vincent Guerlavais²

¹Agilent Technologies, Inc., Santa Clara, CA

²Sarepta Therapeutics, Inc., Cambridge, MA

Introduction

Phosphorodiamidate morpholino oligomers (PMOs) are a type of Antisense Oligonucleotides (ASOs), a rapidly growing class of RNA modalities. Currently, four ASOs based on PMO chemistry are approved by the FDA.^{1,2} These PMOs possess a non-ionic backbone in which the ribose is replaced by a morpholine moiety and the phosphorodiester intersubunit bonds are replaced with phosphorodiamidate linkages (Figure 1). The PMO structure confers distinctive properties compared to other antisense strategies.3,4 These structural differences also make PMO characterization by LC/MS unique to other oligonucleotides. In this work, we describe the characterization of PMOs by LC/MS using a unique method. Purity analysis, impurity identification and PMO sequence confirmation are described.

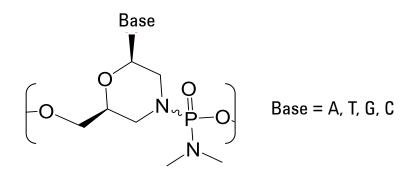


Figure 1. Chemical Structure of Phosphorodiamidate morpholino oligomers (PMOs)

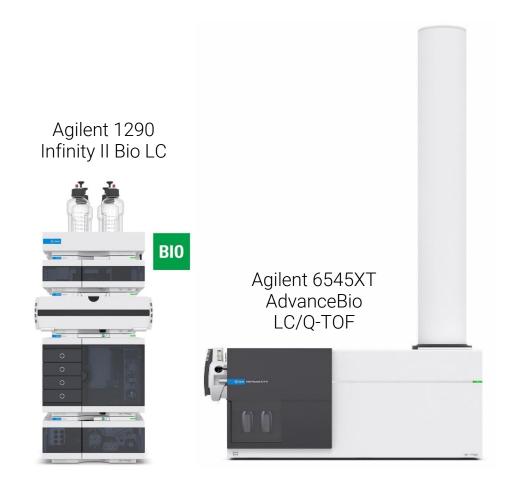


Figure 2. LC/MS Configuration

Experimental

Oligonucleotide Samples Analysis

LC/MS analyses were conducted on a 1290 Infinity II Bio LC system coupled with a 6545XT AdvanceBio LC/Q-TOF equipped with an Agilent Dual Jet Stream ESI source (Figure 2). LC separation was obtained with a ZORBAX RRHD 300Å StableBond C3 column, 1.8 µm, 2.1 x 50mm at 40 °C. For characterization and impurity analysis, data was acquired with a negative MS spectrum acquisition from 400 to 3200 *m/z*. For sequence confirmation analysis, data was acquired with targeted MS/MS mode on -3 charged ion. (Table 1). The resulting data were processed in Agilent MassHunter BioConfirm software 12.1 using both targeted and untargeted methods.

Table 1. LC/MS method used in the study

Agilent 1290 Infinity II Bio LC Conditions			
Column	ZORBAX RRHD 300Å StableBond C3 column, 1.8 µm, 2.1 x 50 mm (pn: 857750-909)		
Injection volume	1 or 2 μL		
Mobile phase	A = Water + 5 mM Ammonium Acetate B = Acetonitrile		
Flow rate	0.4 mL/min		
Gradient program	Time (min) 0.00 4.00	B (%) 5 90	
Stop time	4.00 min		
Post time	1.50 min		

6545XT AdvanceBio LC/Q-TOF Source Conditions		
Ion Polarity	Dual AJS Negative	
Gas temperature	325 °C	
Drying gas flow	12 L/min	
Nebulizer gas	35 psi	
Sheath gas temperature	350 °C	
Sheath gas flow	12 L/min	
Capillary voltage	3500	
Nozzle voltage	2000V	
Fragmentor	175 V	

Experimental

Table 1. LC/MS method used in the study (continued)

6545XT AdvanceBio LC/Q-TOF Acquisition Conditions			
Characterization and Impurity Analysis			
Mass Range	400 – 3200 m/z		
Acquisition Rate	1 spectra/sec		
Sequence Confirmation			
MS Mass Range	400 – 3200 m/z		
MS Acquisition Rate	4 spectra/sec		
MS/MS Mass Range	100 - 3200 m/z		
MS/MS Acquisition Rate	1 spectra/sec		
Isotope Width	Medium (~ 4 <i>m/z</i>)		
Collision Energies	55 V, 60 V, 65 V or 70 V		
Targeted Mass	2068.7238 m/z		
Retention Time	2.16 min		
Delta Retention Time	1 min		

Results and Discussion

Characterization and Impurity Analysis

Figure 3 shows the raw spectrum of PMO (200 ng on column), and the -3 charged ion dominated.

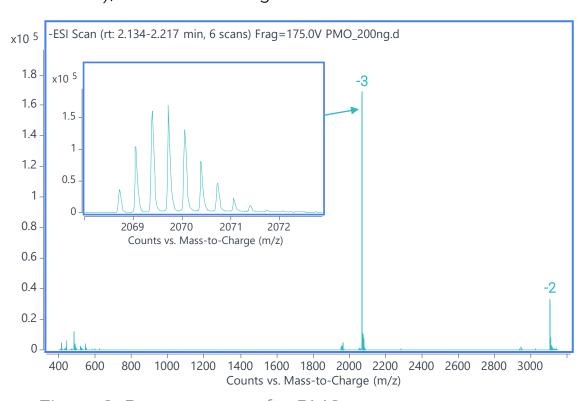


Figure 3. Raw spectrum for PMO.

Results and Discussion

Characterization and Impurity Analysis

Figure 4 shows the deconvolution result of PMO, and mass accuracy of PMO was 0.86 ppm. Multiple low-abundance impurities were identified: A deletion, C deletion and T deletion.

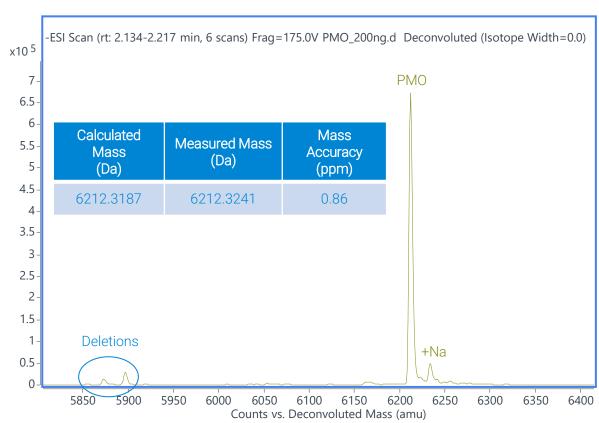


Figure 4. The deconvoluted spectrum for PMO.

Sequence Confirmation Analysis

For sequence confirmation analysis, targeted MS/MS was conducted on -3 charge state precursor (Figure 3) using 4 different collision energies.

Table 2. MassHunter BioConfirm method parameters used for PMO sequence confirmation analysis

Agilent MassHunter BioConfirm 12.1 Parameters		
Workflow	Oligonucleotides	
Experiment	Sequence confirmation	
Match Tolerance	Tolerance: 5 ppm Theoretical profile relative abundance ≥ 12%	
Absolute Height Threshold	350	
Matching Criteria	Warn if score is < 90 Do not match if score is <85	
Extraction MS/MS	Group by collision energy 2 scans averaged	

Sequence Confirmation Analysis

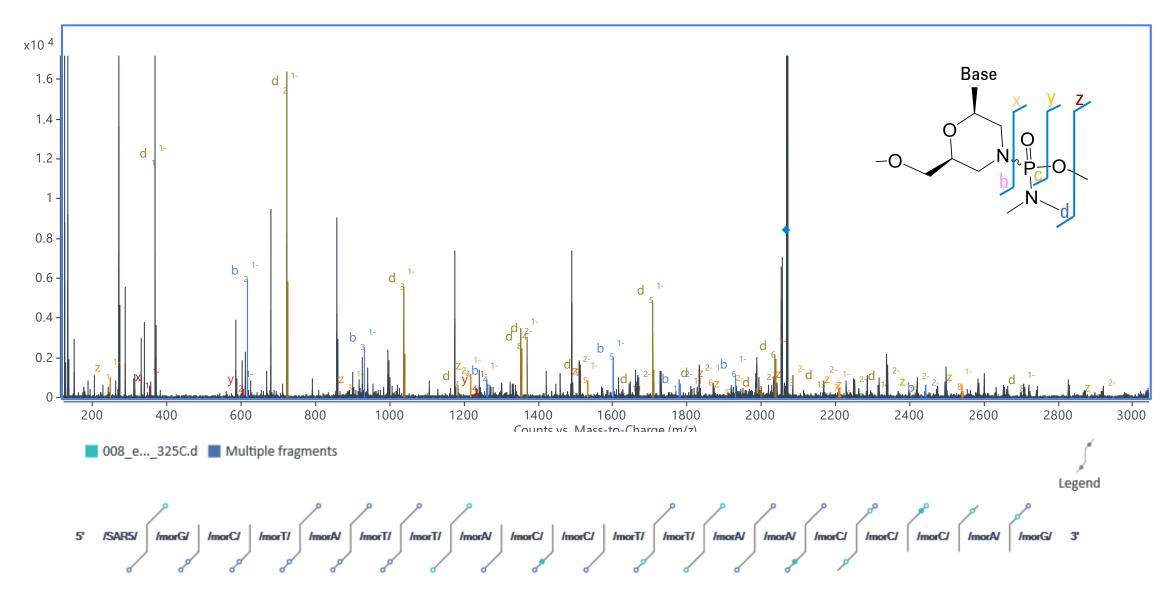


Figure 6. PMO sequence confirmation data. 100% sequence coverage achieved.

Complete sequence coverage was achieved in Agilent MassHunter BioConfirm software (Table 2) using the data from $2 \mu L$ injection of 0.2 mg/mL PMO sample (Figure 6). From the fragment confirmation ladder in Figure 6, b, d and z ions dominated. Based on PMO structure, a and w ions should not be seen.

Conclusions

- This work describes an original LC/MS method for PMO impurity and sequencing analysis.
- Excellent mass accuracy for PMO was achieved.
- Multiple low-abundance impurities were identified.
- 100% sequence coverage was obtained with a single injection.

References

¹Oligonucleotide Therapeutics: From Discovery and Development to Patentability; Pharmaceutics. 2022, 14 (2), 260,

²Next steps for the optimization of exon therapy for Duchenne muscular dystrophy, Expert Opin Biol Ther. 2023, 1-11,

³Pharmacokinetics and biodistribution of phosphorodiamidate morpholino antisense oligomers; Curr Opin Pharmacol. 2005, 5(5), 550-5.

⁴Invention and Early History of Morpholinos: From Pipe Dream to Practical Products, Methods Mol Biol. 2017, 1565, 1-15.

https://www.agilent.com/en/promotions/asms

This information is subject to change without notice. DE15655762

