In vitro evaluation of a sirolimus-eluting stent using different release test methods

A. Seidlitz1, K. Burnashov2, T. Reske2, V. Senz2, N. Grabow2, and W. Weitschies1
1Center of Drug Absorption and Transport, Institute of Pharmacy, University of Greifswald, Germany
2Institute for Biomedical Engineering, University of Rostock, Germany

anne.seidlitz@uni-greifswald.de

Purpose

Drug-eluting stents
- Dosage form for local drug delivery (extended release) to stenosed portions of the vessel wall

In vitro release testing
- No stent-specific method established
- Implementation of flow-conditions and stent embedding in a gel compartment have been shown to impact on in vitro release behavior (1)
- Drug loss may also occur prior to expansion during passage towards site of application

Concept
- Estimation of potential drug loss during the passage to the site of implantation using an in vitro model
- In vitro drug release testing from a commercially available drug-eluting stent using different test methods and evaluation whether the used method influences the obtained test results

Commercial Coroflex® ISAR stent
- Coated with Sirolimus (SIR, also known as Rapamycin)
- Release controlling agent Protuec (biodegradable)
- Abluminal coating location

Stent examination
- Environmental scanning electron microscopy (ESEM)
- Drug elution with MeOH and SIR content determination via HPLC
- Microscopic determination of coating thickness distribution via spectral reflectometry

In vitro estimation of potential drug losses
- Model coronary artery pathway adapted from ASTM F-2394-07
- Includes a guiding catheter (a) and a tube (b) perfused with dissolution media, flow-rate 35 mL/min
- Rapid advancement of balloon-mounted stent through perfused system
- Resting at the marked position (*) until completion of perfusion time (5 min including advancement)

In vitro release testing
- Use of different test apparatuses: incubation in shaken vial, incubation in stirred beaker, flow-through cell (FTC), reciprocating holder (USP 7), vial-simulating flow-through cell (vFTC) including gelled acceptor compartment and central perfusion through stent lumen
- Dissolution media 0.9 % saline solution containing 0.05 % polyoxyethylene (23) lauryl ether (Brij 35) and 0.0003 % 4,5-di-tert-4-butylhydroxytoluene (BHT)
- Sink conditions in all setups

Stent examination
- 147 ± 12 µg drug load on the stent and 154 ± 7 µg on the balloon surface
- Mean coating thickness of abluminal surface 6.1 ± 3.6 µm and 1.3 ± 1.5 µm on luminal side

Drug loss during simulated passage to site of application
- Mean drug loss of 9.4 ± 7.9 % during simulated passage incl. 5 min perfusion

In vitro drug release testing
- Very different results in dependency of applied test method (range of 61-108 µg released into media within 30 h)
- Fastest release upon incubation in stirred beaker
- Slowest release upon incubation in shaken vial in spite of higher volume and same sampling times as USP 7
- Distinct differences between USP 7 at 5 dpm and 40 dpm

Conclusion
- Microscopic examination and drug load distribution indicate coating of the balloon-mounted stent
- Potential drug loss during passage to site of application variable with higher loss during the advancement (abrasion forces) as opposed to the resting time (dissolution)
- In vitro drug release dependent on used test method and most likely also on media (not examined here)
- Difference in release in the USP 7 in dependency of the dip rate in combination with the highest release in the stirred beaker with harsh stirring conditions may indicate a strong influence of hydrodynamics in the test system on the release profile of the tested stent system

Results

Method

<table>
<thead>
<tr>
<th>Method</th>
<th>Medium condition</th>
<th>Dissolution media</th>
<th>Sink condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>USP 7</td>
<td>45 dpm 10 mL</td>
<td>35 mL/min</td>
<td>no</td>
</tr>
<tr>
<td>USP 7</td>
<td>72 dpm 10 mL</td>
<td>35 mL/min</td>
<td>no</td>
</tr>
<tr>
<td>Reciprobat 50</td>
<td>150 mL 100 mL</td>
<td>35 mL/min</td>
<td>no</td>
</tr>
<tr>
<td>FTC</td>
<td>35 mL/min</td>
<td>35 mL/min</td>
<td>no</td>
</tr>
<tr>
<td>vFTC</td>
<td>35 mL/min</td>
<td>35 mL/min</td>
<td>no</td>
</tr>
</tbody>
</table>

Conclusions

References

Acknowledgement

The authors thank Aptil Technologies for generously providing the USP 7 apparatus. Financial support by the European Regional Development Fund (ERDF), the European Social Fund (ESF), and the Federal Ministry of Education and Research (BMBF) within REMEDIS is gratefully acknowledged. Anne Seidlitz thanks Galenus Privatstiftung for a personal grant.

In vitro release profiles of drug eluting stents are the dependent on in vitro test method

2015 AAPS Annual Meeting and Exposition, October 25 - 29, 2015, Orlando, Florida, USA