

MULTIPLE HEART-CUTTING 2D LC FOR CHALLENGING SEPARATION PROBLEMS

Grant Von Wald, Matthias Pursch¹, Binghe Gu

Analytical Sciences

The Dow Chemical Company, Midland, MI; Stade, Germany¹ gvwald@dow.com

®Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow

Introduction

- Chemical samples in certain areas are of high and increasing complexity or dimensionality
 - Polymers can have a chemical composition distribution (CCD), functional end-group distribution (FTD) and/or molecular weight distribution (MWD)
 - New chemicals are derived from natural compounds which contain a significant number of possible structures (isomers etc.)
 - Determination of additives in polymer matrices
- Very complex samples require analytical tools of more than one dimension
- 2D LC has gained increasing attention due to high separation power, but requires significant method development for each application
- Recent introduction of more dedicated 2D LC instrumentation by several vendors is facilitating a more widespread use of this technology

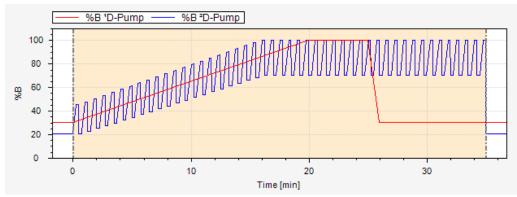
2D LC System

Agilent 1290 Infinity 2D LC Solution:

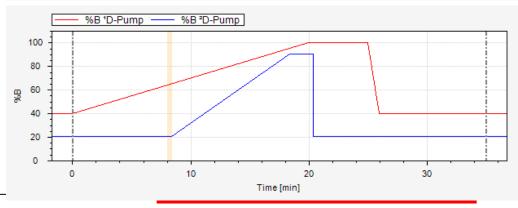
- Based on 1290 Infinity LC system (binary pump)
- 1290 Infinity quaternary pump, TCC and DAD used in 1D
- 1200 bar switching valve (8 port) for comprehensive and heart-cutting 2D analysis
- Multiple heart-cutting interface
- LCImage Software for comprehensive
 2D LC data analysis

2D LC Separation Modes

Comprehensive 2D (LCxLC):

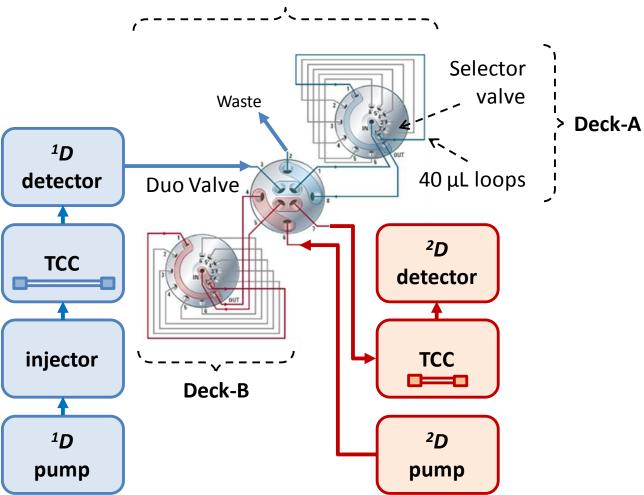

- •Complete 1st dimension effluent is sampled in discrete fractions (20-80 μ L) two loops
- •Modulation time (20s 1.5 min)

Selective Comprehensive 2D (sLCxLC):

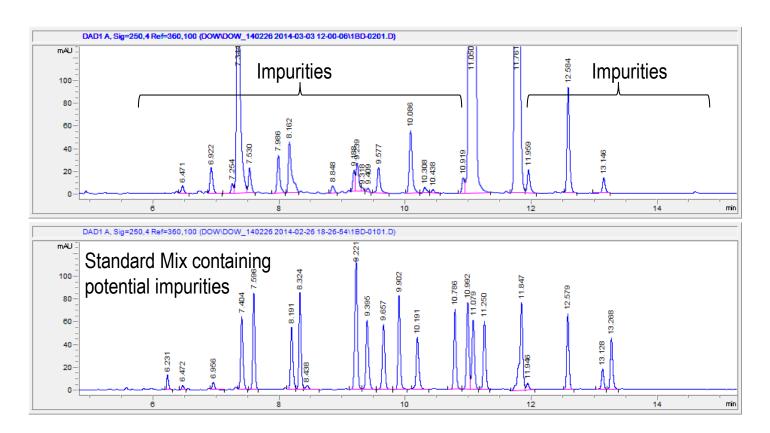

- •Defined region of interest in 1D is sampled in discrete fractions
- •Transferred continuously to a second column via loops

Heart-cutting 2D LC:

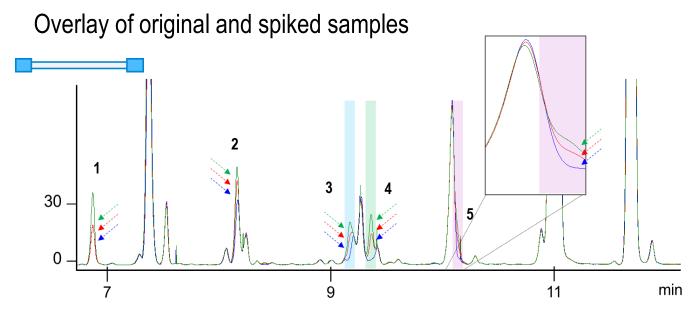
- •Areas of interest are transferred from D1 to a second column via one loop (e.g., 40 μ L)
- •D2 analysis time is independent of D1 run time ("decoupled"), can be on order of 1.5 10 min



Multiple heart-cutting / selective comprehensive 2D



Insecticide analysis



- Dow AgroSciences insecticide contains 2 main components and 30-40 impurities
- D1: C₁₈ high resolution separation (150 mm, sub 2 μm particle column)
- Separation is good, but might be improved in certain areas

Multiple heart-cutting

 Sample spiked w/ impurity standards.

Original sample.

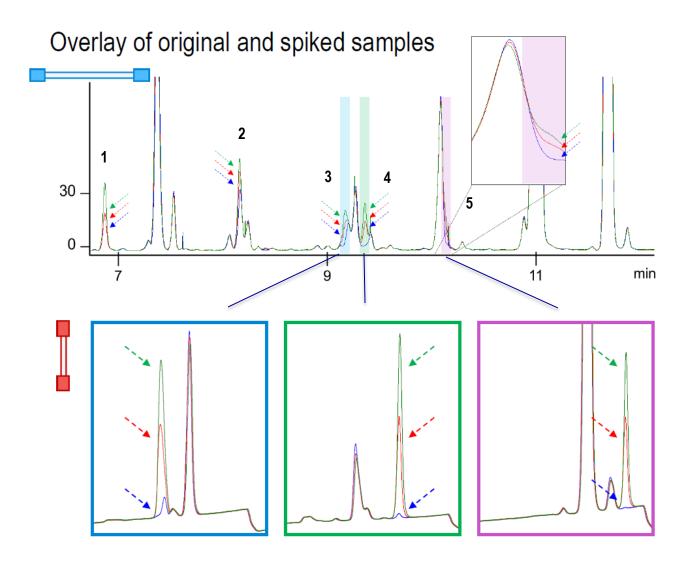
Spike-1.

Spike-2.

Integration hardly possible.

1D separation:

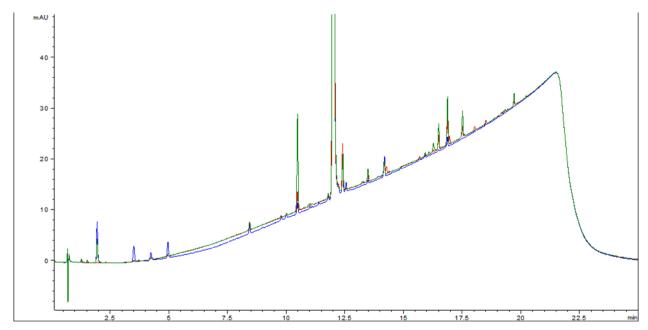
Zorbax SB-C18 150x2.1 mm 1.8 μm 40°C, 0.5 mL/min


A: 10 mM ammonium acetate pH=6,

B: 20/80 methanol/acetonitrile

30-95% B/12 min

Multiple heart-cutting

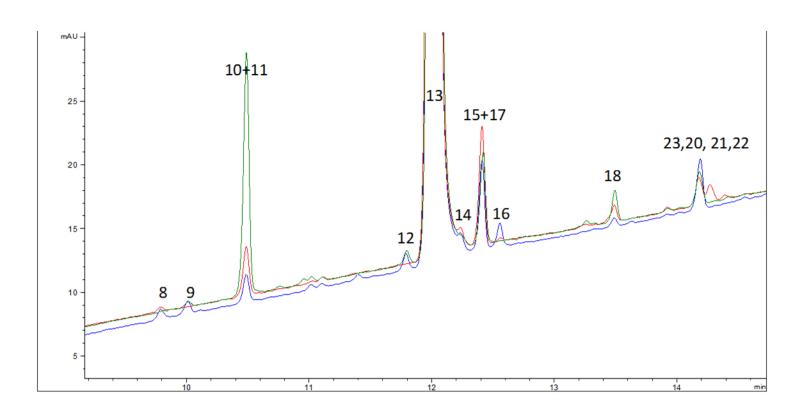


- Multiple heart-cutting approach
- Much better separation in D2
- more accurate quantitation can be obtained with a suitable second dimension analysis

D2: Poroshell HPH-C18 50x3 mm 1.8 µm 40°C 2 mL/min A: 10 mM ammonium hydroxide pH=11 B: acetonitrile 55-85% B/1.3 min (1.5 min cycle time)

Crop Protection Chemical Application

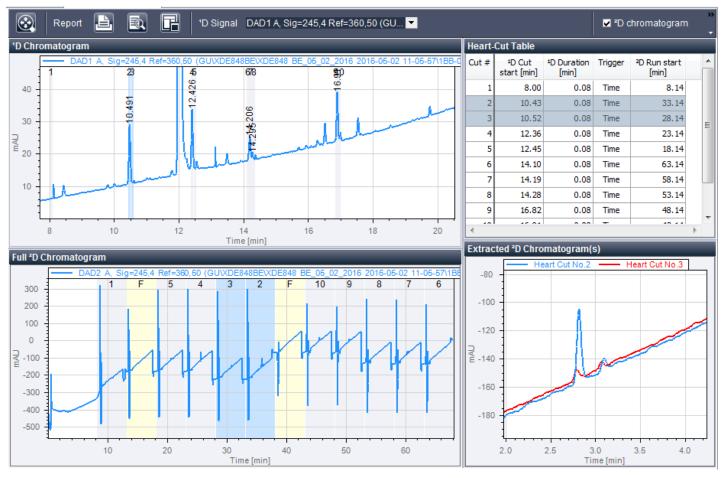
Poroshell 120 PhenylHexyl, 2.7 µm, 2.1x150mm


0.5 mL/min; 1 μ L injection ; 35 °C column temp.; 245 nm;

Gradient: A: 0.1% formic acid/water B: 0.1% formic acid/acetonitrile

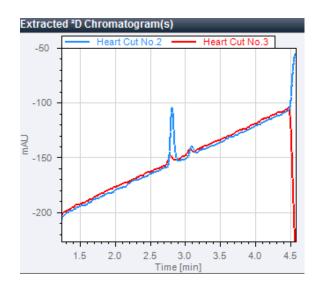
0-1 min 30% B, 1-20 min 30-100% B, 20.1-25 min 30% B

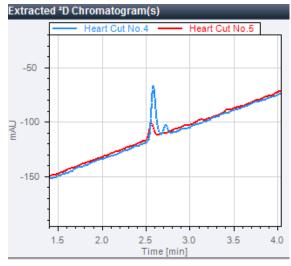
Expanded View

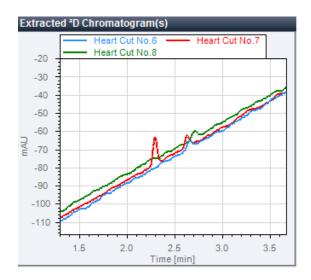


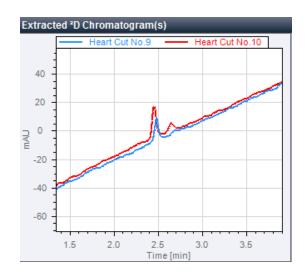
Co-elutions: 10/11; 15/17; 23/20;

2-D MHC with Shifted Gradient


2D gradient: 0 min 20% B (start % to 60% over 20 min) 4 min 30% B (final % to 70% over 20 min)


1st dimension: Agilent Poroshell 120 Phenylhexyl, 2.7 µm, 2.1x150 mm; 0.5 mL/min; 20 min from 30-100% ACN containing 0.1% FA;


 2^{nd} dimension: Agilent Poroshell 120 EC-C18, 2.7 μ m, 4.6x50 mm; 0.5 mL/min; 4 min 20-30% THF containing 0.1% FA; cycle time, 5min.

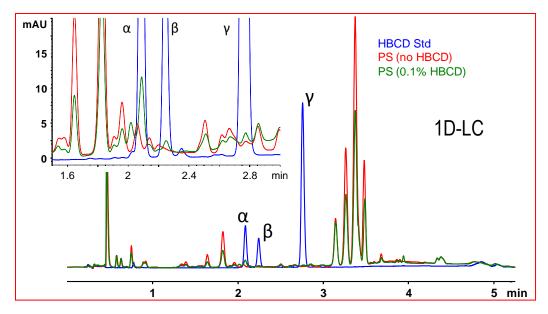

Views of Each Cut

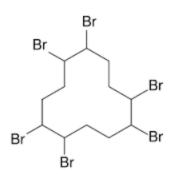
Reproducibility of Peak Areas

Component	Average Area	R.S.D. (%)
A (cut 5 only)	66.3	24
A (cut 4 only)	184	13
A (sum)	250	4.5
B*	39.0	11
С	216	2.1
D	56.9	7.4
E	134	2.8
F*	26.6	19

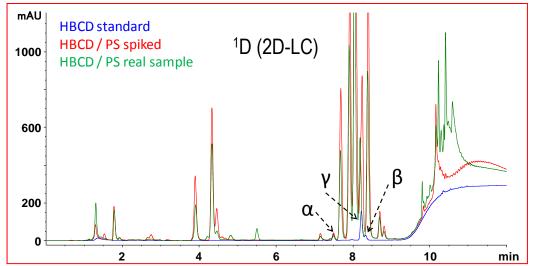
^{*}S/N for peaks B and F are <10. S/N of >10 for the remainder of the peaks.

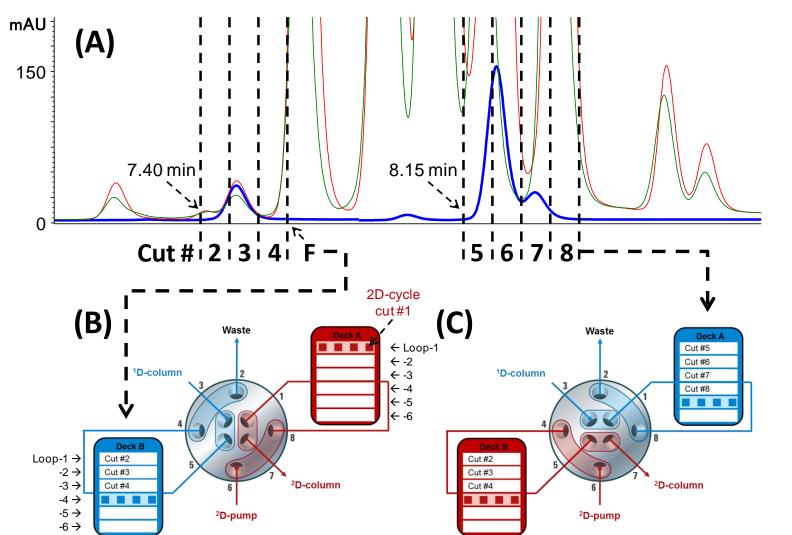
HBCD analysis in Polystyrene




- Many polymers contain additives for improved UV-stability, flexibility and/or flame retardant properties
- In Polystyrene (PS) foam brominated compounds such as hexabromocyclododecane (HBCD) are used as flame retardant
- Need to measure HBCD flame retardant levels in PS foam at low level (0.1% and lower)
- Sensitive and selective method is needed

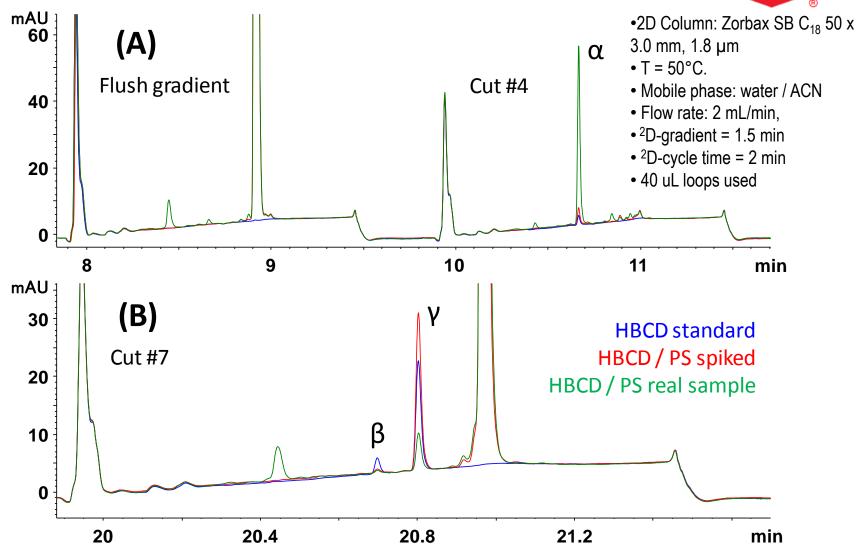
Hexabromocyclododecane (HBCD) – exists in several isomeric forms


Multiple heart-cutting 2D LC


Hexabromocyclododecane (HBCD)

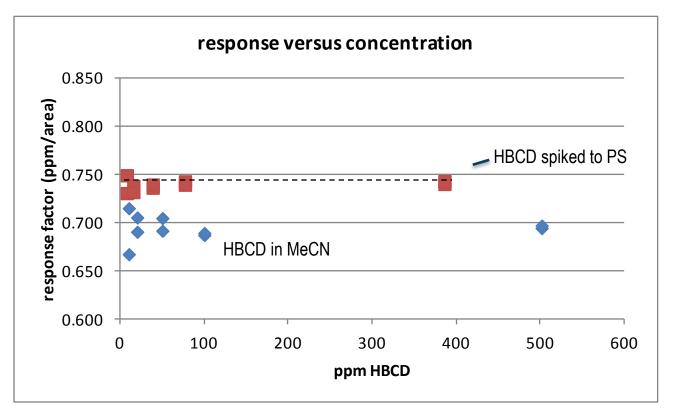
Changing from C18 (top) to phenyl (bottom) column in 1D provides a significant change in separation selectivity

Workflow



Anal. Chem. **2015**, 87, 5310-5317

2D MHC chromatograms



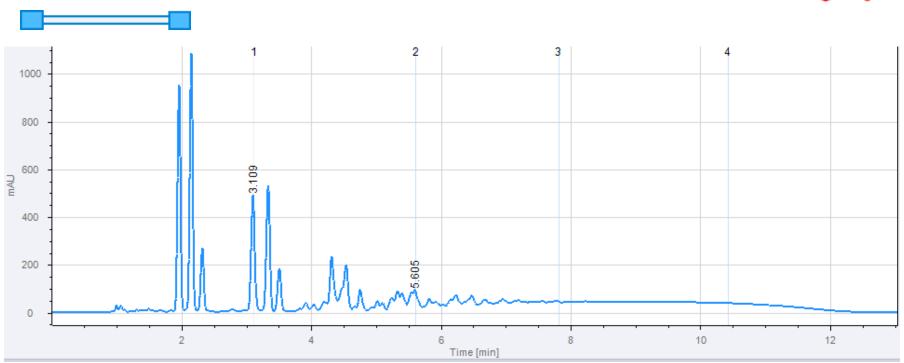
Target analytes are fully separated from polymer components

Quantitation via 2D LC

- very good linearity for additive in MeCN and additive spiked to PS (response factors) plotted against concentration)
- difference between standard and spiked polymer due to loss of additive in polymer upon precipitation

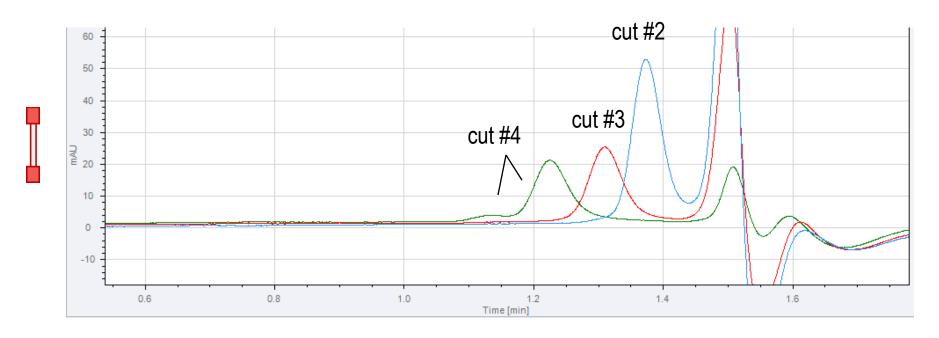
Repeatability

	Peak Area											
	HBCD isomer α				HBCD isomer ß			HBCD isomer γ				Total HBCD
Run#	Cut#2	Cut#3	Cut#4	Total	Cut #7	Cut#8	Total	Cut#5	Cut#6	Cut#7	Total	
1	21.90	46.30	1.20	69.40	0.75	10.00	10.75	1.20	1.60	5.90	8.70	88.85
2	20.00	48.10	1.40	69.50	0.78	10.20	10.98	1.20	1.70	6.10	9.00	89.48
3	16.90	51.00	1.60	69.50	0.53	10.10	10.63	1.10	1.30	6.40	8.80	88.93
4	16.60	51.30	1.60	69.50	0.46	10.00	10.46	1.20	1.00	6.40	8.60	88.56
5	16.30	51.60	1.60	69.50	0.34	10.10	10.44	1.40	1.20	6.20	8.80	88.74
6	12.60	54.90	1.80	69.30	0.37	10.00	10.37	1.40	1.10	6.50	9.00	88.3
7	18.10	49.90	1.50	69.50	0.48	10.10	10.58	1.20	1.40	6.10	8.70	88.78
8	11.20	56.10	2.10	69.40	0.33	9.80	10.13	1.50	0.74	6.60	8.84	88.04
9	21.50	46.90	1.40	69.80	0.70	10.20	10.90	1.20	1.60	6.10	8.90	89.6
10	28.20	40.70	1.10	70.00	1.30	9.90	11.20	1.10	2.30	5.50	8.90	90.1
Average	18.33	49.68	1.53	69.54	0.60	10.04	10.64	1.25	1.39	6.18	8.82	88.94
StdDev	4.90	4.46	0.29	0.21	0.30	0.13	0.32	0.14	0.44	0.32	0.13	0.62
RSD	26.72	8.97	18.75	0.30	48.96	1.26	3.00	10.83	31.32	5.22	1.49	0.70


MHC 2D LC of oligomers/polymers

- Correlation of polarity with molecular weight (hydrodynamic volume)
- Epoxy resin used as example
- D1: Reversed phase separation Core-shell C18 (MeCN/water) gradient
- D2: Size Exclusion Chromatography THF

MHC 2D LC of oligomers/polymers



- D1: Oligomer and isomer separation according to differences in polarity & molecular weight
- Initial peaks are well resolved
- Resolution deteriorates toward the end of the separation
- Cuts are made at several areas of the 1D separation

MHC 2D LC of oligomers/polymers

- D2: SEC analysis
- Information on molecular weight can be obtained (calibration with standards or sample of known composition)
- Two species of different molecular weight are seen in cut #4 (two components of similar polarity but different chemical structure)
- MHC 2D LC provides additional structure information

Summary

- •2D LC is a valuable technique for challenging separation problems, including qualitative and quantitative target analysis
- •Allows to differentiate complex samples in a way which would not be possible with 1D methods
- •Depending on the problem either full comprehensive mode or heart-cutting/selective comprehensive modes can be applied
- •Heart-cutting methods reduce dependence of 2D on 1D and simplify method development. Crucial parameters include:
 - To reduce peak broadening in the 2D:
 - 1D column should be smaller I.D., less retentive
 - 2D column should be larger I.D., more retentive
 - Transfer volume, measured to be 19 µL
 - Cuts from the same peak need to be sent to the same deck
 - Shifted gradient is an asset, but the appearance of the shift is misleading in the method editor
- •Using accurate mass MS detection, thorough structural analysis can be performed

Acknowledgment

Marian Rinken, Paul Lewer, Andreas Schweizer-Theobaldt, Antje Wegener

Agilent Technologies (Stephan Buckenmaier, Edgar Naegele, Jens Trafkowski)

HBCD results were previously reported in *Anal. Chem.* **2015**, *87*, 5310-5317 and C&EN Webinar September 30, 2015 "Applications of 2D-LC and 2D-LC/MS for Polymer and Crop Protection Chemical Analysis"