Seafood Authentication Testing System Using PCR-RFLP and Bioanalyser Technology

Scott Hapke1, Harini Ravì, Natalia Novoradovskaya1, Robert Kincaid2, Scott Basehoen2, Jeff Braman3, Rachel Formosa4, and Steve Garrett4

1Agilent Technologies, Agilent Labs, Santa Clara, CA 95051 2Agilent Technologies, Stratagene Products Division, Cedar Creek, TX 78612 3Agilent Technologies, Stratagene Products Division, La Jolla, CA 92037 4Camden BRI, Chipping Campden, Gloucestershire UK. G65 8LD

Introduction

BACKGROUND: As demand for seafood increases and regulations regarding product labeling become stricter, suppliers are under greater pressure to authenticate the species used in their products. While protein-based methods such as isoelectric focusing are in common use, DNA methods provide more objective, specific, and robust results, even in processed or mixed samples.

APPROACH: Agilent Technologies, in collaboration with Campden BRI, has developed a PCR-RFLP method to identify fish species in fresh and processed seafood:

STEP 1: DNA is rapidly isolated from small amounts of tissue using a spin column method, resulting in pure DNA ready for analysis.

STEP 2: A cytochrome b target fragment, common to most fish species, is PCR-amplified using a master mix format for ease of setup.

STEP 3: The PCR product is treated with 3 different restriction enzymes that differentially cut the DNA based on polymorphisms between species.

STEP 4: The digestion products are separated by size using the Agilent Bioanalyzer lab-on-a-chip system.

STEP 5: The digestion pattern is decoded using the RFLP Matcher software by comparison to validated profiles in an integrated database.

Results and Discussion

Experimental Methods

Column-Based Extraction PCR RFLP Agilent 2100 Bioanalyzer

RFLP Matcher Software

Time to Result: 6-8 hrs

Fish Identification

Figure 1. Agilent Seafood Authenticity Testing System Workflow.

Extraction: DNA was extracted from 40 mg – 1 µg of tissue by incubation with Proteinase K for 10 minutes at 65°C. The supernatant was applied to a silica-based spin column, washed, and the DNA eluted in TE. The concentration was measured by a Nanodrop spectrophotometer.

Polymerase Chain Reaction (PCR): Positive control salmon DNA or sample extract was added to a PCR reaction containing Agilent’s Stratagene-brand Taq DNA polymerase and PCR primers that anneal to conserved sequences of the fish mitochondrial cytochrome b (cytb) region. Reactions were cycled using a 72 min program.

Restriction Fragment Length Polymorphism (RFLP): PCR product was directly digested with Ddel, NaiII, or HaeIII restriction enzymes in the appropriate buffer for 2 hrs at 37°C followed by inactivation at 65°C for 15 min and addition of EDTA.

Capillary Electrophoresis on the 2100 Bioanalyzer: Each restriction digest product was loaded into wells of a DNA 1000 Bioanalyzer chip according to standard protocols.

RFLP Matcher Analysis: The .xad files generated from the Bioanalyzer run were imported into the RFLP Matcher software. Profiles were automatically compared to the fish database to generate rank scores that identify the fish species.

Table I. Common Names of over 50 Species for Which Validated Profiles Have Been Produced fromAuthenticated Fish Samples. In addition to validated samples, hundreds of theoretical profiles have been derived from publically-available cytb sequences.

Figure 2. Efficient Extraction of DNA from a Variety of Fish Species and Sample Types. Yields ranged from 2.43 µg with an average A260/Abits of 2.18. Only 0.5 – 500 ng gDNA is required for subsequent PCR. The Agilent DNA extraction routinely produced 2.5-8X greater DNA yield than traditional kits and significantly greater purity (not shown).

Figure 3. Similar PCR Products from Different Fish Species. Cytochrome b PCR products from positive control DNA sample extracts, or no-template controls were analyzed on a Bioanalyzer DNA 1000 chip, showing a product of 480 ± 20 bp. Polymorphisms between species produce slightly different apparent mobility.

Figure 4. RFLP Profiles Reveal Identity of Different Fish Species. A variety of fish species, including gadoids, salmonids, flatfish, and others, are distinguishable by the RFLP patterns generated with Ddel, HaeIII, and NaiII.

Figure 5. RFLP Matcher Software Automates Identification of Fish Species. Demonstration of RFLP Matcher Software features:

(1) Automatic import or manual input of digest product sizes;

(2) Rank score (1.0 = perfect match) identifies fish species;

(3) Selectable match algorithms including sample mixtures;

(4) User-defined threshold and match tolerance settings;

(5) Selection of source database (validated or theoretical).

Table II. Multi-site Validation Study of the Seafood Authenticity Testing System and RFLP Matcher Accuracy. 4 sites processed identical tissue samples in duplicate. The tissue sample was identified as trout at a local supermarket. The results demonstrate precision and reproducibility of the method. Of over 12 additional fish species tested (in triplicate) at Agilent to date, 100% produced the expected pattern with the RFLP matcher score >0.8.

Figure 6. Minor Fish Species Can Be Detected in DNA Admixtures. In this example, cod DNA extract was blended with tuna DNA in a 1:20 ratio, PCR amplified, and digested with Ddel. Cod peaks are circled in green, and can be identified by RFLP Matcher using a Mixture algorithm.

Summary

The Agilent Seafood Authenticity Testing System:

• Produces reproducible, precise results in 1 working day

• Generates objective data that is easy to interpret using RFLP Matcher software

• Can be implemented in commercial testing facilities due to streamlined protocols and simple set-up procedures

• Offers flexibility with the ability to expand the database with other authenticated species

• Is sensitive enough to detect as little as 5% of a minor fish species in a mixture