ANALYSIS OF DIOXINS, FURANS AND POLYCHLORINATED BIPHENYLS IN SEDIMENTS AND FISH USING NOVEL 7250 HIGH-RESOLUTION GC/Q-TOF

OVERVIEW
• The aim was to demonstrate how high-resolution GC/Q-TOF instruments can be used for flexible analysis of dioxin-like compounds
• Full spectra EI data was collected using the novel Agilent 7250 GC/Q-TOF and was queried using target, suspect and non-target analysis workflows
• We demonstrate excellent accuracy in dioxin and dioxin-like PCB analyses
• We illustrate how GC/Q-TOF instruments allow screening for known dioxin-like compounds and identification of unknown dioxin-like compounds

Introduction
• Dioxin-like compounds bind to the Ah receptor and produces toxic effects at very low levels\(^1\)
• Strong Ah ligands are all planar aromatic compounds and most are halogenated
• The total dioxin-like toxicity can be expressed as dioxin toxic equivalents (TEQs)\(^2\)
• Modern GC time-of-flight MS instruments are very sensitive and provide full EI spectra
• GC/Q-TOF instruments can be used for target analysis of dioxins and dioxin-like PCBs, and for suspect and non-target screening of dioxin-like compounds

Methods

Samples and clean-up
• Baltic Sea sediment and fish: in-house reference materials (RM s)
• Sediment was Soxhlet extracted with toluene
• Fish was column extracted with acetone:hexane and hexane:ether
• Bulk matrix was removed by H\(_2\)SO\(_4\) treatment
• Planar compounds were isolated through carbon column clean-up

GC-QTOF MS
• GC high-resolution EI-MS analysis was performed on an Agilent 7250 GC/Q-TOF
• Target compounds were detected by MassHunter (MH) Find-by-Fragments workflow
• MH Quantitative Analysis was used for quantification
• MH Qualitative Analysis was used for suspect screening of dioxin-like compounds
• MH Unknown Analysis was used for non-target screening of dioxin-like compounds
Results – Target Analysis

Table 1: Comparison of GC/Q-TOF and GC-magnetic sector high-resolution MS data (pg/g)

<table>
<thead>
<tr>
<th>Congener</th>
<th>TEF*</th>
<th>QTOF HRMS</th>
<th>Sediment HRMS</th>
<th>RM Average</th>
<th>QTOF-HRMS</th>
<th>Salmon Sector-HRMS</th>
<th>RM Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-77</td>
<td>0.0001</td>
<td>32</td>
<td>37</td>
<td>36</td>
<td>1125</td>
<td>900</td>
<td>910</td>
</tr>
<tr>
<td>PCB-81</td>
<td>0.0003</td>
<td>3.5</td>
<td>1.8</td>
<td>1.8</td>
<td>23</td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td>PCB-126</td>
<td>0.1</td>
<td>8.8</td>
<td>8.0</td>
<td>7.3</td>
<td>464</td>
<td>410</td>
<td>430</td>
</tr>
<tr>
<td>PCB-169</td>
<td>0.03</td>
<td>3.9</td>
<td>1.8</td>
<td>1.6</td>
<td>53</td>
<td>53</td>
<td>58</td>
</tr>
<tr>
<td>2,3,7,8'-TCDD</td>
<td>1</td>
<td>1.8</td>
<td>1.5</td>
<td>1.5</td>
<td>2.3</td>
<td>2.6</td>
<td>2.7</td>
</tr>
<tr>
<td>12378-PeCDD</td>
<td>1</td>
<td>3.2</td>
<td>3.2</td>
<td>2.8</td>
<td>4.7</td>
<td>4.4</td>
<td>4.6</td>
</tr>
<tr>
<td>123478 -HxCDD</td>
<td>0.1</td>
<td>6.4</td>
<td>1.8</td>
<td>2.1</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>123678 -HxCDD</td>
<td>0.1</td>
<td>14</td>
<td>11</td>
<td>11</td>
<td>3.0</td>
<td>1.7</td>
<td>1.9</td>
</tr>
<tr>
<td>123789 -HxCDD</td>
<td>0.1</td>
<td>8.2</td>
<td>7.0</td>
<td>6.8</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>HpCDD</td>
<td>0.01</td>
<td>40</td>
<td>34</td>
<td>36</td>
<td>0.7</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>OCDD</td>
<td>0.0003</td>
<td>137</td>
<td>100</td>
<td>113</td>
<td>1.9</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>2378 -TCDF</td>
<td>0.1</td>
<td>13</td>
<td>14</td>
<td>17</td>
<td>26</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>12378 -PeCDF</td>
<td>0.03</td>
<td>4.7</td>
<td>4.1</td>
<td>4.2</td>
<td>4.2</td>
<td>5.4</td>
<td>5.0</td>
</tr>
<tr>
<td>23478 -PeCDF</td>
<td>0.3</td>
<td>11</td>
<td>10</td>
<td>9.4</td>
<td>29</td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>123478 -HxCDF</td>
<td>0.1</td>
<td>7.0</td>
<td>7.1</td>
<td>9.1</td>
<td>1.3</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>123678 -HxCDF</td>
<td>0.1</td>
<td>10</td>
<td>5.1</td>
<td>4.5</td>
<td>2.7</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>234678 -HxCDF</td>
<td>0.1</td>
<td>8.5</td>
<td>6.1</td>
<td>6.1</td>
<td>1.5</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td>123789 -HxCDF</td>
<td>0.1</td>
<td>3.7</td>
<td>1.9</td>
<td>2.3</td>
<td>ND</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>1234678 -HpCDF</td>
<td>0.01</td>
<td>95</td>
<td>76</td>
<td>77</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>1234789 -HpCDF</td>
<td>0.01</td>
<td>8.0</td>
<td>3.1</td>
<td>3.4</td>
<td>ND</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>OCDF</td>
<td>0.0003</td>
<td>130</td>
<td>94</td>
<td>105</td>
<td>1.6</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>TEQ</td>
<td></td>
<td>18</td>
<td>15</td>
<td>15</td>
<td>67</td>
<td>60</td>
<td>63</td>
</tr>
</tbody>
</table>

* TEF: World Health Organization (WHO) Toxic Equivalency Factor.

- Good agreement of planar PCB and polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) concentrations from GC-QTOF-MS and GC-magnetic sector-MS (Table 1)
- The important tetra/penta-CDD/Fs, PCB-126, and TEQ are within ±25% of the reference values
- The deviation between QTOF-MS and Sector-MS data depends on the signal quality (S/N ratio) and is less than ±40% for all compounds with a S/N greater than 10
Results: Suspect screening

Suspects

- Chlorinated naphthalene (PCN)
- Chlorinated dibenzothiophene (PCDT)
- Chlorinated Thianthrene (PCTA)

- PCTAs were not detected
- PCDT were found in sediment at 10% of the PCDD/F levels
- PCNs were most abundant (Figure 1)
- PCN and PCDF levels were similar in sediment
- PCN levels were 100-fold higher than PCDD/F levels in salmon
- Metabolically stable PeCNs and HxCNs (wo. vicinal hydrogens) biomagnify in fish

Figure 1. PCN composition

Sediment: Non-target screening

- Polycyclic aromatic compounds (PACs), incl. PAHs, dominated the dioxin fraction
- Halogenated PAHs was also found (Figure 2)
- Halo-PAHs were dominated by lower halogenated congeners (Figure 3)

Figure 2. Tentative identification of chloropyrene

Figure 3. PAHs and halo-PAHs in sediment

References

1. http://www.euro.who.int/__data/assets/pdf_file/0017/123065/AQG2ndEd_5_11PCDDPCDF.pdf?ua=1

2. https://www.epa.gov/toxics-release-inventory-tri-program/dioxin-and-dioxin-compounds-toxic-equivalency-information
Sediment: Non-target screening

- An abundant brominated unknown with formula C$_{13}$H$_7$NBr$_4$ was found in sediment (Figure 4)
- A Chemspider search returned on candidate: 1,3,6,8-Tetrabromo-9-methyl-carbazole
- C$_{13}$H$_7$NBr$_4$, unknown can be a metabolite of the natural product 1,3,6,8-Tetrabromocarbazole [1], which was also detected (Figure 5)
- The isotope clustering and fragmentation is supporting the proposed structure

Figure 4. EI spectrum of C$_{13}$H$_7$NBr$_4$

Summary: Sediment contaminants

- PAHs dominated the dioxin fraction (Figure 6)
- Halo-PAHs and brominated carbazoles and methyl carbazoles (BR-CZ/MCZ) were present at ca 100-fold lower levels
- PCNs, PCDFa and PCDDs were at comparable levels, whilst PCDTs were 10-fold lower
- Tetrahalogenated congeners dominated the bicyclic planar compound groups (Figure 7)

Figure 6. Concentrations in sediment

Figure 7. Congener distribution in sediment

Conclusion

The new GC-QTOF system generates PCDD/F and planar-PCB concentrations comparable to those of the Golden Standard: Magnetic sector HRMS

Full spectrum data is obtained in the same run, which can be used for suspect and non-target screening of other dioxin-like compounds