Quantitative Analysis of 1,25-Dihydroxyvitamin D₂ and D₃ by LC-MS/MS Utilizing Ion Funnel Technology

Peter Christensen¹, Vicky Starkie¹, Kevin McCann², Agilent Technologies Inc. Cheadle, UK, Agilent Technologies Inc. Santa Clara, CA, USA

Introduction

A highly sensitive, and selective LC-MS/MS method for determination of 1,25-dihydroxyvitamin D₂ and D₃ is a powerful tool for clinical researchers. While 25 hydroxyvitamin D is found in the ng/ml concentration range, 1,25-dihydroxyvitamin D₂ and D₃ are typically found in the low pg/ml range, making quantitative analysis challenging except when employing highly sensitive analytical techniques. Additionally, extraction is a critical step for this analysis as removal of interfering analytes is required to quantify at the low pg/ml concentration range. Where previously published work (Casetta et al., 2010) demonstrates good sensitivity, such approaches require a complex 2D LC set-up, with post column infusion. The work presented in this poster illustrates the quantitative analysis of 1,25-dihydroxyvitamin D₂ and D₃ using the Agilent 1260 UHPLC & 6490 QQQ with Ion Funnel technology coupled with ImmunoTube LC-MS/MS Kit (an extraction kit from ImmunoDagnostik) for the extraction of 1,25-dihydroxyvitamin D₂ and D₃ from plasma samples.

Sample Preparation

Immuno Tubes were spun down to ensure all the suspension was forced to the bottom of the tube. 500 µL of calibrator / sample / control was added followed by 10 µL of IS and mixed gently. Immuno Tubes were then mixed in a spiral rotator for 1hr at RT. The closed Immuno Tubes were then placed in a micro tube and centrifuged for 1min at 550 x g. Subsequently, the cover and the outlet of the Immuno Tubes were removed. The Immuno Tubes were then placed back into the micro tubes for centrifugation a further 2min at 550 x g. The waste collected in the micro tubes was discarded.

Results and Discussion

Continued...

500 µL of WASHSOL was added to the Immuno Tubes and centrifuged for 2 min at 550 x g. This step was repeated twice. Each micro tube was replaced by a glass vial and 250 µL of ELUREAG were added to each Immuno Tube which was centrifuged for 2 min at 550 x g. The recovered eluent was evaporated under N2 at 37° C. Samples were reconstituted with 165 µL of activated Solution A prior to analysis.

WASHSOL and ELUREA are solutions from the ImmunoDagnostik extraction kit.

LC Method

An Agilent 1260 HPLC series binary pump with 56 vial sample tray, sampler with thermostat, temperature-controlled column compartment, 2 position/6 ports switching valve, was used.

Column: Zorbax Eclipse Plus 2.1x100 mm 1.8µm
Column temperature: 50 °C
Injection volume: 100 µL
Autosampler temperature: 4 °C
Needle wash: 3.1 MeOH:H2O, 10 seconds

Mobile Phase

A: ImmunoDagnostik Mobile Phase A
B: ImmunoDagnostik Mobile Phase B

<table>
<thead>
<tr>
<th>Gradient</th>
<th>Flow</th>
<th>% Solvent B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>0.50</td>
<td>0.3</td>
<td>100</td>
</tr>
<tr>
<td>0.51</td>
<td>0.3</td>
<td>100</td>
</tr>
<tr>
<td>0.80</td>
<td>0.3</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1. LC conditions

<table>
<thead>
<tr>
<th>Compound</th>
<th>Prec Ion</th>
<th>Prod Ion</th>
<th>CE (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,25(OH)<sub>2</sub>Vitamin D<sub>2</sub></td>
<td>411.1</td>
<td>150.7</td>
<td>20</td>
</tr>
<tr>
<td>1,25(OH)<sub>2</sub>Vitamin D<sub>3</sub></td>
<td>411.1</td>
<td>132.9</td>
<td>18</td>
</tr>
<tr>
<td>1,25(OH)<sub>2</sub>Vitamin D<sub>2</sub></td>
<td>399.1</td>
<td>150.9</td>
<td>12</td>
</tr>
<tr>
<td>1,25(OH)<sub>2</sub>Vitamin D<sub>3</sub></td>
<td>399.1</td>
<td>134.9</td>
<td>12</td>
</tr>
<tr>
<td>1,25(OH)<sub>2</sub>Vitamin D<sub>2</sub></td>
<td>405.1</td>
<td>150.6</td>
<td>12</td>
</tr>
<tr>
<td>1,25(OH)<sub>2</sub>Vitamin D<sub>3</sub></td>
<td>405.1</td>
<td>134.6</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 2. MRM Parameters

Figure 3. Chromatograms of extracted calibrators from ImmunoDagnostik

Figure 4. Calibration curve for 1,25-dihydroxyvitamin D₂

Figure 5. Calibration curve for 1,25-dihydroxyvitamin D₃

Conclusion

A highly sensitive and selective method for quantifying 1,25-dihydroxyvitamin D₂ and D₃ from human plasma has been optimized. By combining the sensitivity of the 6490 QQQ with funnel Technology and the ImmunoDagnostik extraction method, quantification at low pg/ml levels has been achieved.

Agilent MS systems are for research use only. Not to be used in diagnostic procedures.