Measurement of Antibiotics in Environmental Waters using LC-QQQ and fully automated Online Enrichment
Trace Level Measurement – LC-QQQ
Measurement of Antibiotics in Environmental Waters using LC-QQQ and Online Enrichment

Antibiotics are widely used for the treatment of bacterial infections in humans. After excretion they ultimately enter waste water treatment plants (WwTP) with subsequent discharge into surface water and the aquatic environment.

Their potential impact on the environment and human health (e.g. antibiotic resistance) is of interest and therefore their presence needs to be closely monitored.

This flyer outlines a method to measure 23 antibiotics from nine different drug classes in environmental waters using an Agilent 1200/6400 LC-QQQ system incorporating 'front end' automated online solid phase enrichment.

Linearity
was observed within 0.005 - 50 ng (on column), except for amoxicillin (0.050 - 50 ng) and ornidazole as well as for chlortetracycline (0.005 to 30 ng).

Accuracy and Precision were within ± 20% of the nominal value and < 8.5%.

Recovery and Precision were > 65% (for most analytes) and < 15%.

The method was successfully applied to measure the antibiotics in two different waste water treatment plant inflows (hospital and domestic water), the WwTP influent and the WwTP effluent.

Compounds

23 compounds 9 drug families
wide mass and chemical properties range

<table>
<thead>
<tr>
<th>Fluoroquinolones</th>
<th>Quinolones</th>
<th>Tetracyclines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciprofloxacin</td>
<td>Nalidixic acid</td>
<td>Tetracycline</td>
</tr>
<tr>
<td>Enoxacin</td>
<td>Oxolinic acid</td>
<td>Chlorotetracycline</td>
</tr>
<tr>
<td>Enrofloxacin</td>
<td>Sulfoxide</td>
<td>ß-lactams</td>
</tr>
<tr>
<td>Flumequine</td>
<td>Sulfamethoxazole</td>
<td>Amoxicillin</td>
</tr>
<tr>
<td>Lomefloxacin</td>
<td></td>
<td>Cefotaxim</td>
</tr>
<tr>
<td>Norfloxacin</td>
<td></td>
<td>Diaminopyrimidines</td>
</tr>
<tr>
<td>Ofloxacin</td>
<td></td>
<td>Ormetoprim</td>
</tr>
<tr>
<td>Pipemidic Acid</td>
<td></td>
<td>Trimethoprim</td>
</tr>
<tr>
<td>Sarafloxacin</td>
<td></td>
<td>Glycopeptides</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vancomycin</td>
</tr>
</tbody>
</table>
Materials and Methods

Analytical Column: ZORBAX Eclipse Plus C18
(3.5 µm, 2.1 mm I.D. x 150 mm)

Mobile Phase:
H₂O/ACN + 0.1% formic acid

Flow rate:
0.5 mL/min (step gradient)

Deuterated internal standards: Norfloxacine-d₄, amoxicilline-d₄, sulfamethoxazole-d₄

Optimization of the online enrichment for:
- Cartridge Sorbent (C18)
- pH-value (fluorochino-lones pH 4, other compounds pH 7)
- Sample volume (1800 µL, 2 x 900 µL)
- Sample loading flow rate (1 mL/min)
- Sample elution (Backflush with LC gradient)

Performance Examples
• Qualifying and Quantifying 23 antibiotics in river water
• Fully automated SPE
• Easy to use and suited for routine analysis

Acknowledgements
Pierre Labadie, Université Pierre et Marie Curie, Paris, France

Information, descriptions, and specifications in this publication are subject to change without notice.
© Agilent Technologies, Inc., 2012
Published April 1, 2012
Publication Number 5990-6373EN

Drug class	Analyte	IDL (pg on column)	MDL (ng/L)
Macrolides	Tylosin 0.8	6.0	
Erythromycin 0.9	7.5		
Tetracyclines	Chlorotetracycline 1.1	9.8	
Tetracycline 1.5	1.8		
Beta-lactams	Amoxicillin 16	15	
Cefotaxime 3.5	3.6		
Diaminopyrimidines	Trimethoprim 2.4	1.4	
Ormetoprim 1.6	1.9		
Sulfonamides	Sulfadimidine 0.5	1.4	
Sulfamethoxazole 2.8	3.1		
Quinolones	Oxolinic acid 2.2	1.7	
Nalidixic acid 2.1	3.3		
Fluoroquinolones	Flumequine 2.3	2.1	
Pipemidic acid 4.6	15		
Enrofloxacin 2.6	3.3		
Enoxacin 3.3	4.6		
Lomefloxacin 2.6	3.3		
Sarafloxacin 0.6	1.1		
Norfloxacin 5.5	5.0		
Ciprofloxacin 2.6	4.3		
Ofloxacin 1.3	2.5		
Imidazoles | Ornidazole 3.6 | 4.3
Glycopeptides | Vancomycin 2.2 | 5.0

Instrument (pg) and method detection limit (ng/L).

Drug Class	Analyte	Hospital Wastewater	Domestic Wastewater	WwTP influent	WwTP effluent
Macrolides	Tylosin 0.8	< LOD	< LOD	< LOD	< LOD
Erythromycin 0.9	1671 ± 45	5.2 ± 1.1	1440 ± 302	498 ± 35	
Tetracyclines	Chlorotetracycline < LOD	< LOD	< LOD	< LOD	
Tetracycline < LOD	< LOD	< LOD	< LOD		
Beta-lactams	Amoxicillin 151 ± 47	< LOD	20.2 ± 4.8	17.3 ± 2.1	
Cefotaxime < LOD	< LOD	< LOD	< LOD		
Diaminopyrimidines	Trimethoprim 649 ± 33	1.9 ± 0.2	296 ± 72	401 ± 31	
Ormetoprin 14 ± 5	4.5 ± 0.3	15.0 ± 1.1	32.0 ± 1.9		
Sulfonamides	Sulfadimidine < LOD	< LOD	< LOD	< LOD	
Sulfamethoxazole 1298 ± 150	< LOD	1015 ± 95	4084 ± 93		
Quinolones	Oxolinic acid < LOD	< LOD	< LOD	< LOD	
Nalidixic acid < LOD	< LOD	< LOD	< LOD		
Fluoroquinolones	Flumequine < LOD	< LOD	< LOD	< LOD	
Pipemidic acid < LOD	< LOD	< LOD	< LOD		
Enrofloxacin < LOD	< LOD	< LOD	< LOD		
Enoxacin 1425 ± 13	606 ± 36	842 ± 90	32 ± 9		
Lomefloxacin 1120 ± 90	< LOD	59 ± 4	8.8 ± 0.5		
Sarafloxacin < LOD	< LOD	< LOD	< LOD		
Norfloxacin 10898 ± 52	43 ± 8	6658 ± 146	217 ± 8		
Ciprofloxacin 11105 ± 37	< LOD	6730 ± 328	1101 ± 96		
Ofloxacin 13002 ± 527	79 ± 8	8115 ± 180	17086 ± 79		
Imidazoles | Ornidazole < LOD | < LOD | < LOD | < LOD
Glycopeptides | Vancomycin 2204 ± 150 | < LOD | 1784 ± 116 | 1297 ± 29

Measured concentrations (ng/L) in hospital wastewater, domestic wastewater, WwTP influent and WwTP effluent.