Elementverunreinigungen in Pharmaprodukten – Neue Limits und Verfahren zur Bestimmung nach USP

Ludwig Huber, Ph.D
Chief Advisor, Global FDA Compliance
for

Ludwig Huber
Phone: +49 7902 980582
E-mail: Ludwig_Huber@Labcompliance.com

Overview

• FDA Requirements
• Issues with the USP chapter <231>
• Overview of USP chapters for elemental analysis
• Selection of elements and limits – USP/EMEA
• Analytical procedures and referee methods
• Quality control: equipment qualification, method validation, system suitability testing, data integrity
• Recommendations for implementation

Questions and Answers
Reference Material

- Master Plan: Elemental Impurity Analysis
- SOPs
 - Validation of Analytical Procedures for Elemental analysis
 - Analytical Instrument Qualification According to USP <1058>
- Checklist for Elemental Analysis

Reference:
http://www.labcompliance.com/seminars/audio/240

To request free reference material, please send an e-mail to Ludwig_huber@labcompliance.com (valid until February 28, 2011)

Why to Control Elemental Impurities

- Toxicity
- Can affect stability of formulation and drug substances
- Required by GMP regulations
 - GMPs should ensure that such drug meets the requirements to safety, and have the identity and strength and meet the quality and purity characteristics that it purports or is represented to possess (21 CFR 210.1)
 - Each lot of components, drug product … shall be withheld from use until the lot has been sampled, tested, or examined, as appropriate, and released for use by the quality control unit. (21 CFR 211.84)
 - Drug products failing to meet established standards or specifications and any other relevant quality control criteria shall be rejected. (21 CFR 211.165 (f))
Why USP Methodology

US Food, Drug & Cosmetic Act Sec 201 and 501:

- The term “official compendium” means the official United States Pharmacopeia (Sec 201)
- (b) Determinations as to strength, quality, or purity shall be made in accordance with the tests or methods of assay set forth in such compendium, except that whenever tests or methods of assay have not been prescribed in such compendium, (Sec 501)

FDA Requires Testing According to USP

FDA Warning Letter Example

- The computer software your firm uses to determine metals analysis is deficient. It has no security measures to prevent unauthorized access of the software, no audit trails, and data can be copied or changed at will, with no documentation of the copying or changes.

- You (specifically) are not documenting raw data when you perform inductively coupled plasma emission spectrograph analyses.

- Your firm does not have a quality assurance program in place to: a) qualify analytical equipment prior to their use, and b) calibrate and maintain analytical equipment.

Ref: www.Fdawarningletter.com (w-058)
History of USP Elemental Analysis

- General chapter <231> uses 100 year old unreliable test method
- 1995: First PF stimuli article identified issues with <231> (Blake)
- 2000: Second PF stimuli article proposed ICP-MS as instrumental alternative (Wang)
- 2004: Detailed article with comparison between <231> and ICP-MS (Lewen)
- 2005: USP General Expert Committee appointed heavy metals subcommittee
 - Two advisory panels formed for methodology and toxicology
 - Included FDA liaisons
- Independent stakeholder project team formed
- 2008: USP PF Stimuli article with detailed discussion
- April 2009: International workshop with international participation
- January 2010: Proposals for <232>, <233> and <2232> in PF

Problems with <231>

- “It was concluded that approximately 50% of the metals may be lost during the ash process...”
- “...Note that mercury, which is one of the more toxic heavy metals, was not recovered from either set of samples.
- “…Because of the loss of metals during ignition, the validity of test results obtained with the current USP, JP and EP general test procedures is questionable.”

Although still widely accepted and used in the pharmaceutical industry, these methods based on the intensity of the color of sulfide precipitation are non-specific, insensitive, time-consuming, labor intensive, and more often than hoped, yield low recoveries or no recoveries at all.

Comparison Between Modern Instrumentation and USP <231> Method

USP <Chapters> Overview

- Heavy Metals
- Elemental Impurities
- Elemental Impurities Procedures
- Elemental Contaminations in Dietary Supplements

Supported by

- Plasma Spectrochemistry
- Analytical Instrument Qualification
- Method Transfer Verification & Validation
USP General Notices

Revision proposed

- General chapters (232) and (233) will apply to all oral and parenteral articles in USP-NF methodology
 - Elemental Impurities according to 232/233
 - Compounds and detection limits according to 232/233

Where no specific language is given to the contrary, the requirements under the General Notices and General Chapters apply.

USP Implementation Plan

- Stage 1: Feedback to PF Stimuli Papers, April 2010
- Stage 2: Adoption of General Notice to be published in PF. Official release date should coincide with the official EMEA (Sept 2013)
- Stage 3: All references to <231> removed and can not be used any more. Timing coincides with Approval of General Notices

“New chapters are expected to be finalized sometime in 2011 and become official at a later date which has not yet been determined”

Reference: USP’s FAQ Document Related to Proposed Standards for Elemental Analysis

PF = Pharmacopeial Forum
EMEA = European Medicines Agency
Selection of Elements and Limits

- Elements and Limits based on published evaluations by regulatory bodies
- Element impurities classified by impurities by risk level
 - Class I: highly toxic, high safety concern (the “big four” As, Cd, Hg and Pb)
 - Class II: lower safety concern (12 elements)
- Limits defined according to risk level
- Provides three options for determination of compliance to limits (similar to <467>)
 http://www.labcompliance.com/seminars/audio/206

EMEA: European Medical Agency

<table>
<thead>
<tr>
<th>Component</th>
<th>Limit (µg/g)</th>
<th>Oral daily PDE (µg/day)</th>
<th>Parenteral Limit (µg/g)</th>
<th>Parenteral daily Dose PDE (µg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>1.5</td>
<td>15</td>
<td>0.15</td>
<td>1.5</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.5</td>
<td>5</td>
<td>0.05</td>
<td>0.5</td>
</tr>
<tr>
<td>Lead</td>
<td>1</td>
<td>10</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>Mercury</td>
<td>1.5</td>
<td>15</td>
<td>0.15</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Parenteral limits 10x lower

PDE = Permissible Daily Exposure
Elements and Limits for Class II Impurities

<table>
<thead>
<tr>
<th>Component</th>
<th>Component limit (µg/g)</th>
<th>Oral daily dose PDE (µg/day)</th>
<th>Parenteral Component Limit (µg/g)</th>
<th>Parenteral daily Dose PDE (µg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium</td>
<td>25</td>
<td>250</td>
<td>2.5</td>
<td>25</td>
</tr>
<tr>
<td>Copper</td>
<td>250</td>
<td>2500</td>
<td>2.5</td>
<td>250</td>
</tr>
<tr>
<td>Manganese</td>
<td>250</td>
<td>2500</td>
<td>2.5</td>
<td>250</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>25</td>
<td>250</td>
<td>2.5</td>
<td>25</td>
</tr>
<tr>
<td>Nickel</td>
<td>25</td>
<td>250</td>
<td>2.5</td>
<td>25</td>
</tr>
<tr>
<td>Palladium</td>
<td>10</td>
<td>100</td>
<td>1.0</td>
<td>10</td>
</tr>
<tr>
<td>Platinum</td>
<td>10</td>
<td>100</td>
<td>1.0</td>
<td>10</td>
</tr>
<tr>
<td>Vanadium</td>
<td>25</td>
<td>250</td>
<td>2.5</td>
<td>25</td>
</tr>
<tr>
<td>Osmium</td>
<td>10 (combination not exceeded)</td>
<td>250 (combination not exceeded)</td>
<td>1.0 (combination not exceeded)</td>
<td>10 (combination not exceeded)</td>
</tr>
<tr>
<td>Rhodium</td>
<td>250</td>
<td>2500</td>
<td>2.5</td>
<td>250</td>
</tr>
<tr>
<td>Ruthenium</td>
<td>100</td>
<td>2500</td>
<td>2.5</td>
<td>250</td>
</tr>
<tr>
<td>Iridium</td>
<td>250</td>
<td>2500</td>
<td>2.5</td>
<td>250</td>
</tr>
</tbody>
</table>

From the EMA “Guideline on the Specification Limits for Metal Catalysts or Metal Reagents

EMA Guideline

- Specification Limits for Residues of Metal Catalysts or Metal Reagents
- Contains detailed rationale for limits of 14 metals
- Defines Three Safety Classes, similar concept as ICH Q3C
 - Class I (A, B and C): Metals of Significant Safety Concern known to be carcinogenic
 - Class II: Metals of low safety concern levels tolerated up to exposures in medicines
 - Class III: Metals of minimal safety concern levels well tolerated (e.g., Fe, Zn)
<233> Test & Validation Procedures

• Statement: Procedures in <231> inadequate to meet requirements of <232>
• Provides analytical validation procedures for limit and quantitative tests
• Provides details of two reference procedures (ICP-MS, ICP OES)
• Choice of procedure including sample preparation is responsibility of the user
• Provides performance criteria for alternative methods

Referee Procedures 1 and 2

Techniques
• Procedure 1: ICP-OES (Details in proposed chapter <233>) Inductively coupled atomic (optical) emission spectroscopy
• Procedure 2: ICP-MS (Details in proposed chapter <233>) Inductively coupled plasma – Mass spectrometry

Verification
• Ensure that the procedure is appropriate for use (USP <1226>)

Sample preparation
• The same for procedure 1 and 2
• Closed vessel microwave digestion (if compound not soluble)
• Detailed procedure in proposed chapter <233>

Reagents
• Free of elemental impurities (reference to USP <730>)
• Traceable to NIST (National Institute for Standards and Technology)
Criteria for Alternative Procedures

- Requires complete validation for each element of interest
- Requires system suitability tests runs with USP reference standards or equivalent at the day of use
- Procedures that meet criteria are equivalent to procedures 1 and 2
- Requirement for testing specified in the individual monograph or in General Notices

Recommendations for Implementation

1. Study USP 232, 233, and 467
2. Develop a master plan and project plan template for implementation
 - Approach
 - Tasks, responsibilities, deliverables
 - Time schedule
3. Budget for, select and purchase equipment
 - Part 11 and EU Annex 11 compliance
4. Qualify and/or validate equipment and computer systems
5. Develop and validate or verify test methodology for elemental impurities
Compliance & Quality Control for Elemental Analysis

- Data integrity, availability and traceability
- System suitability test/quality control checks
 - Verifies that the system performs according to analysts expectations
- Analytical methods validation/verification
 - Proof that analytical procedure does what it purports to do
- Analytical instrument qualification
 - Computer system validation
 - Forms the base for generating quality data
 - Proof suitability of the instrument for intended use

Thank You

I would like to thank
- All attendees for your attention
- Agilent Technologies for organization and invitation

Ludwig Huber