From Instrument to Column

Tracking Down the Problem

Mark Powell
Applications Engineer
Columns and Supplies Technical Support

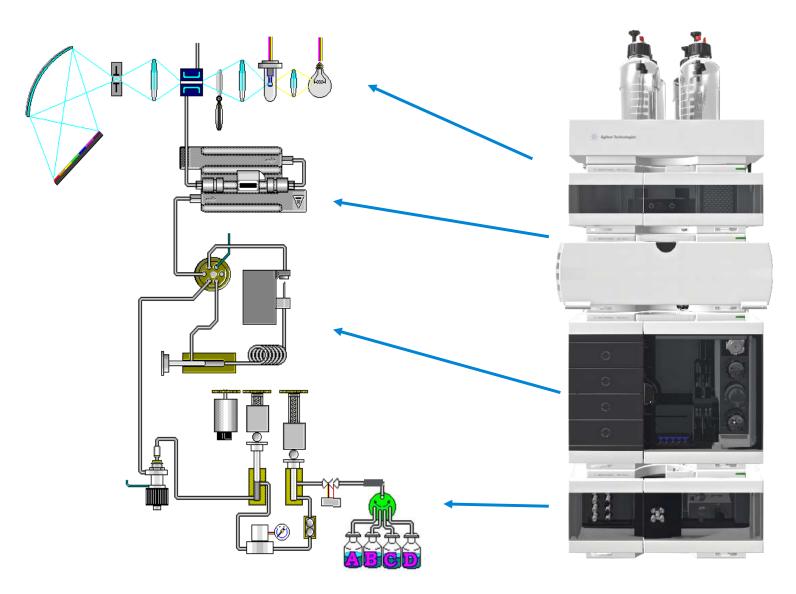
Troubleshooting Topics

System pressure

- Increased pressure
- Low pressure
- Pressure fluctuations

Separation

- Changing retention time
- Loss of resolution


Peak shape

- Tailing
- Broadening
- Fronting
- Peak splitting and doubling

Detection

- Noisy baseline
- Reduced intensity or sensitivity
- Drifting baseline

Understand Your LC System and Follow the Flow Path

Detector

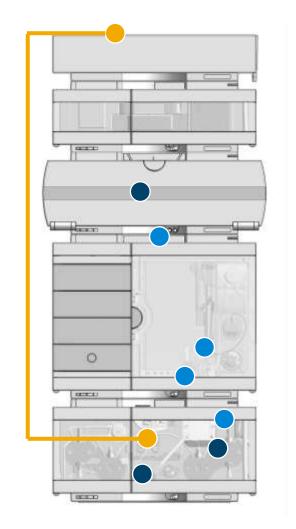
Column compartment

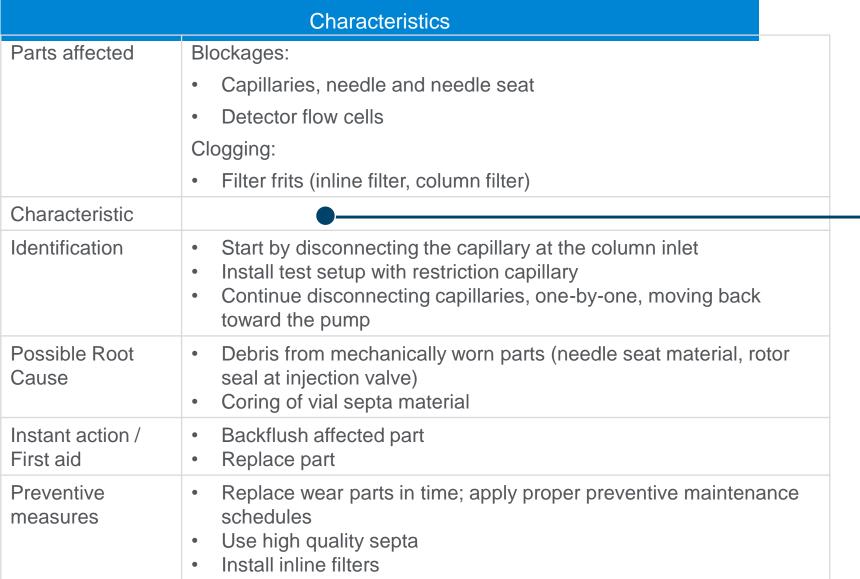
Autosampler

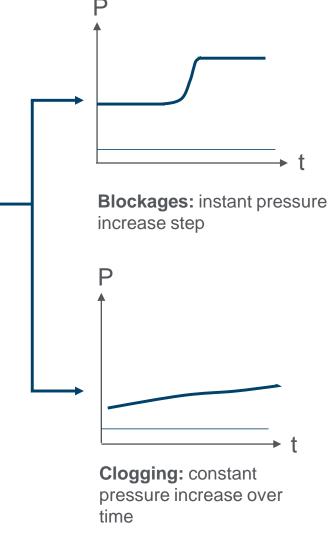
Pump

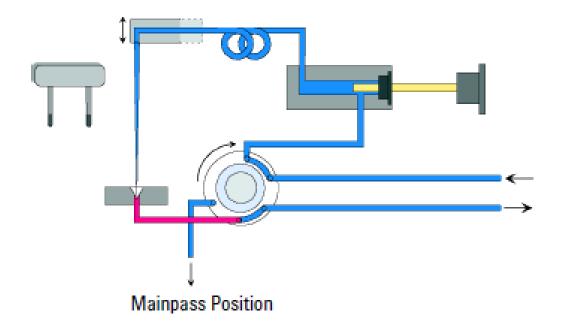
Agilent Lab Advisor

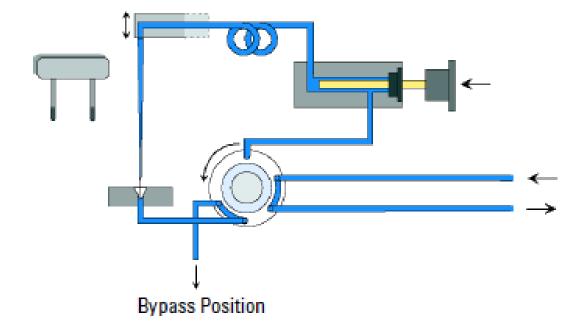
- Tools for calibration, diagnosis, and maintenance
- Daily instrument tests
- General calibration and maintenance procedures
- Advanced version also available for expert level troubleshooting
- EMF (Early Maintenance Feedback) shows the number of valve switches or pumped solvent, etc.


System Pressure

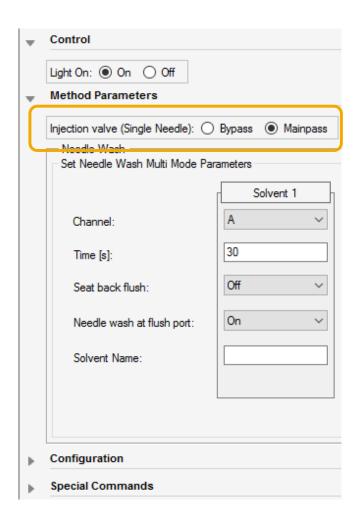

Changes in System Pressure


Increased Pressure / Overpressure and Blockages


	Potential cause	Recommended action
•	Clogging of filter frits in the high- pressure flow path	 Identify the culprit by logical elimination process and replace affected part. Use clean solvent (e.g. prefiltered
	Plugging of capillaries, needles and needle seats	solvent) • Prevent algae growth in water
	Wrong solvent	 Check for correct mobile phase Solvent reservoir and tube connections

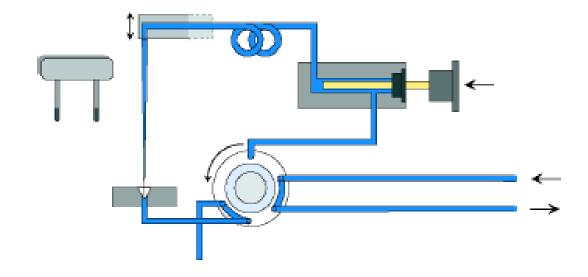


Blockages and Clogging



- Track the typical operating pressure for a given application
- To troubleshoot, create high pressure on the system by turning on flow
- While the pressure is climbing, move the sampler to the "Bypass" position
- Watch the pressure when the valve switches to "Bypass"
- If the pressure drops immediately, then the source of the high pressure is in the portion of the flow path specific to the bypass position.
 - Needle Seat
 - The most commonly clogged piece of tubing in the LC
 - Where sample first meets the separation solvent
 - Needle
 - Less commonly clogged
 - Watch for issues with septa

Loop

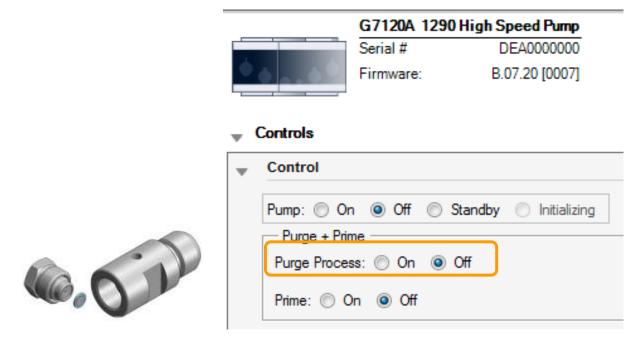

- not commonly clogged
- watch for issues with sample

Metering Head

- never exposed to sample
- consider solvent issues

Injection Valve

- most commonly the rotor seal
- look for scratches on stator face


- In well plate samplers, bottom sensing gives the most consistent position
- But this isn't recommended if there's debris in the bottom of the sample vial
- Driving the needle into debris may result in a clogged needle or seat

Needle height position without bottom sensing: G1367E/G4226A 54 vial tray = 4 mm G1367E/G4226A 100 vial tray = 2.5 mm G7167X 54 vial tray = 5 mm

For vialsamplers, a zero offset is approximately 2 mm from the bottom of a 2 ml vial

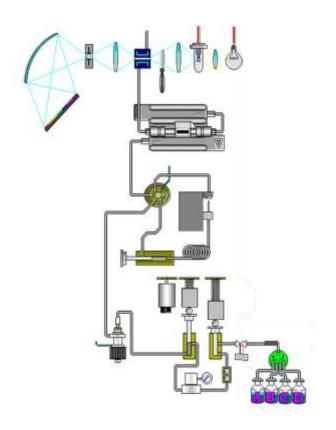
Locating a Clog

- If the pressure doesn't drop when the valve switches to "Bypass" the issue is likely outside the sampler
- Other easily accessible points in the flow path to check are:
 - With 1260 model pumps open the manual purge valve, the pressure should drop to between 0 and 5 bar. If the pressure is higher the PTFE filter may be clogged.
 - With 1290 model pumps purging is done through an automated valve activated through software. 1290 Binary pumps have the same PTFE filter, 1290 quaternary pumps have a 5 µm filter frit.

Locating a Clog

PTFE replacement on a 1260 pump:

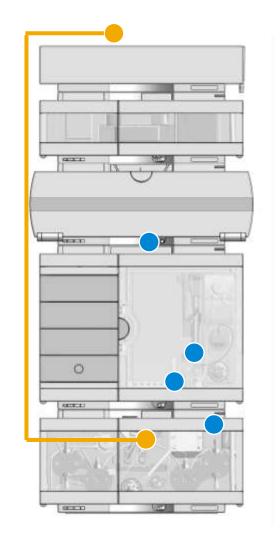
- 1. Remove pump outlet and purge waste tubing
- 2. Unscrew the purge valve using a 14mm wrench
- 3. Remove the gold seal cap
- 4. Remove the frit
- 5. Install the new frit, slot side up
- 6. Replace the gold seal cap
- 7. Reinstall the valve


Realign the waste tubing in the correct orientation during installation.

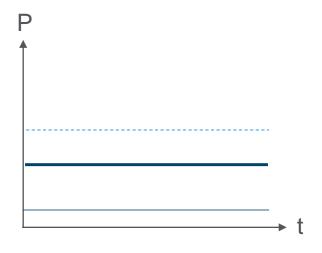
Locating a Clog

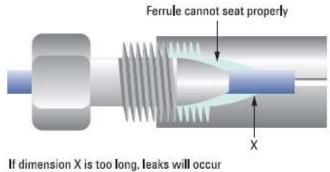
• If the pressure doesn't drop when the valve switches to "Bypass" the issue is likely outside the sampler

Other easily accessible points in the flow path to check are:

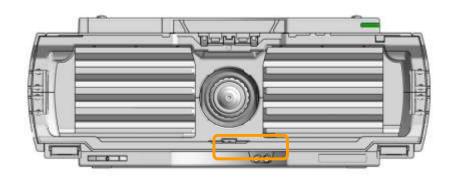

- Open the fitting at the inlet of the column. Pumping 1 ml/min of water through an Agilent LC with 0.17mm id tubing typically shows a pressure of 40 bar. If the pressure is much higher than this a capillary may be clogged. If the pressure appears "normal" the issue may be with the column.
- Clogs are located by opening a fitting, typically at most a half turn. If the pressure drops the clog is downstream from the fitting or towards the detector. If pressure remains high the clog is upstream or towards the pump.

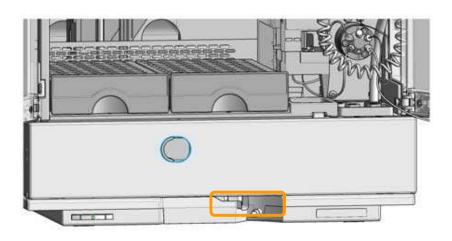
Changes in System Pressure

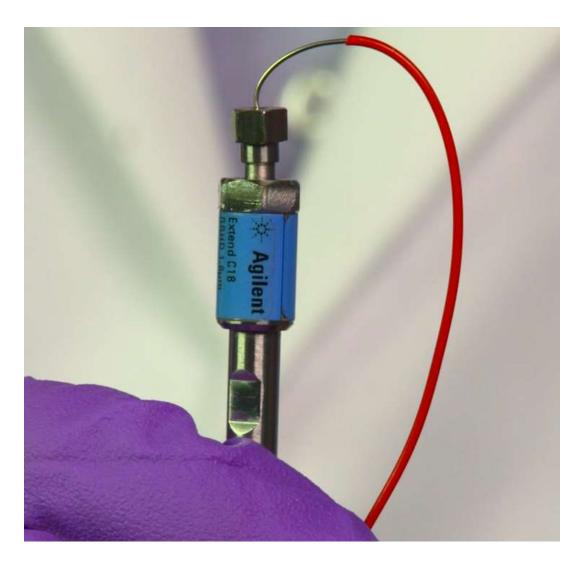

Low pressure


Potential cause	Recommended action
Leak in high-pressure flow path	Visual inspection of flow pathInstrument diagnostic tests
Wrong mobile phase	Check for correct mobile phaseSolvent reservoir and tube connections

Leaks


Characteristics		
Parts affected	 Potentially all parts in the flow path High potential at frequently operated fitting connections (e.g. column inlet) and parts with high mechanical stress (rotor seal, needle, and needle seat) 	
Characteristic	Lower pressurePotentially impacting retention times and peak shape	
Identification	Drops of solvent or residues of saltSystem diagnostic tests	
Possible root cause	Loose or bad fitting connectionsCracked capillariesWorn needle and needle seat	
Instant action/first aid	Replace affected partsRenew or redo fitting connection	
Preventive measures	Use proper fitting connectionsReplace fittings and wear parts in time	

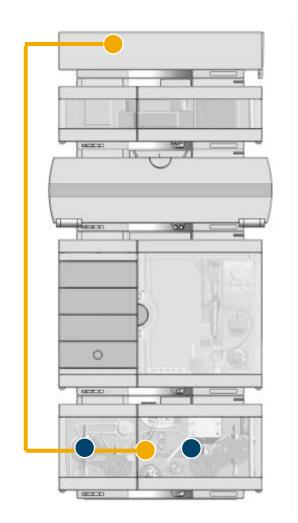



How do I Locate a Leak?

- Each Agilent LC module is equipped with a leak sensor
- If liquid is detected the entire LC stack will shut down
- The LC will not start up again until the sensor has been dried and returned to temperature

Overtightened Fittings

Changes in System Pressure

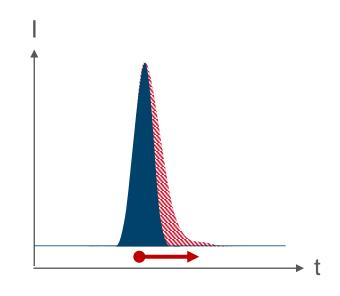

Pressure fluctuations

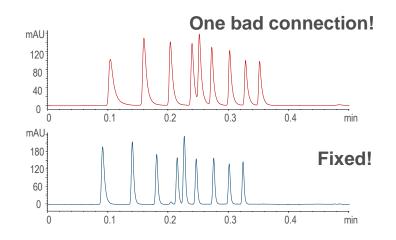
Potential Caus	е	Recommended Action
Air in the system		 Prime and flush instrument Check for sufficient solvent supply Check for correct plumbing (SSV/MCGV) Check for correct degassing
Malfunctions at pump he	ead	 Perform pump head diagnostic tests LA Replace defective parts Implement proper maintenance schedule
Cavitation effects		 Check for flow restrictions (solvent bottle to pump head inlet) Clean or replace parts Verify that solvent supply is positioned above pump inlet

Important to know

Pressure fluctuations typically also will impact the UV-signal due to refractive index effects.

Peak Shape




20

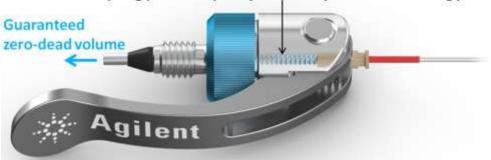
Peak Tailing

If applicable to some peaks	Recommended Action
Secondary interactions	Change pHChange stationary phase
Small peak eluting on tail of larger peak	 Change selectivity (column, mobile phase) Switch to methods with higher resolution (UHPLC, 2D-LC)

If applicable to all peaks	Recommended Action
Poor tubing connections; high dispersion volume	 Minimize number of connections check connections / fitting condition and proper seat of fittings use fittings with spring-load function
Column damage	Use specialty, polymeric or sterically protected columnColumn cleaning

InfinityLab Quick Connect and Quick Turn Fittings

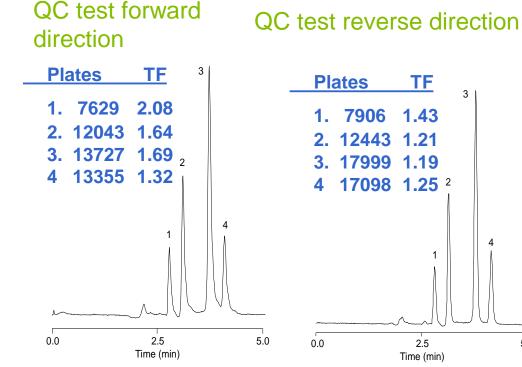
- Spring loaded design
- Easy! No tools needed
- Works for all column types
- Reusable
- Consistent ZDV connection

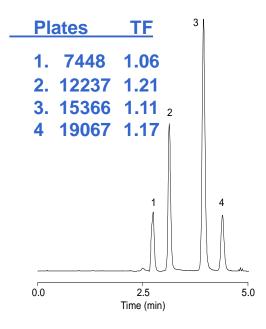

Quick Connect Fitting

- Finger tight up to 1300 bar
- Hand tighten the nut, then depress the lever

Quick Turn Fitting

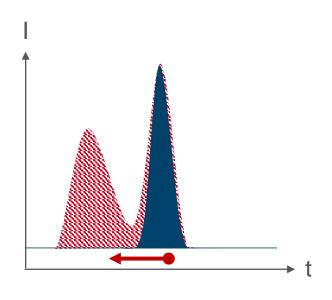
- Finger tight up to 400 bar
- Up to 1300 bar with a wrench
- Compact design



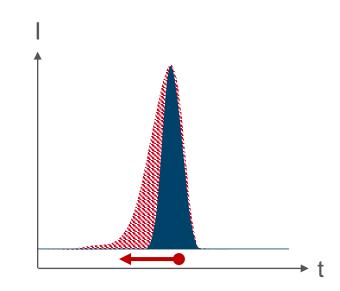

Peak Tailing Column Contamination

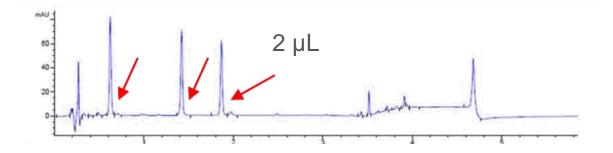
Column: StableBond SB-C8, 4.6 x 250 mm, 5 mm Mobile phase: 20% H2O: 80% MeOH Flow rate: 1.0 mL/min Temperature: R.T. Detection: UV 254 nm Sample: 1. Uracil 2. Phenol 3. 4-Chloronitrobenzene 4. Toluene

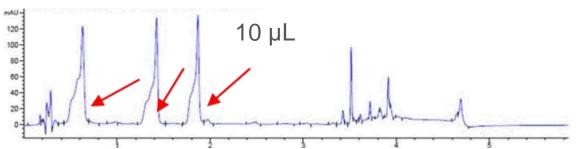
5.0



QC test after cleaning 100% IPA, 35°C

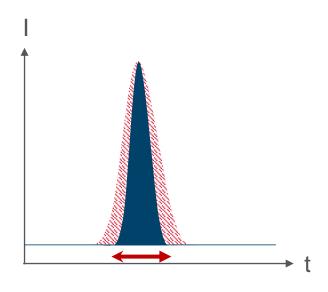

Peak splitting / doubling

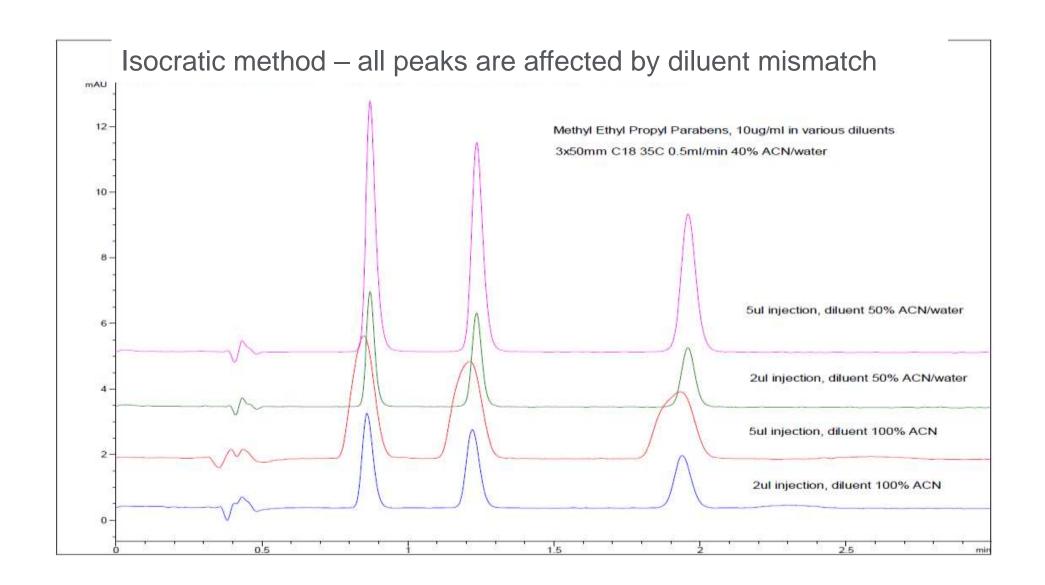

Potential Cause	Recommended Action
Partially plugged column frit	Backflush column (if applicable)use inline filteruse guard column
Column void	 Replace column use guard column use less aggressive mobile phase conditions
Sample volume overload	Use smaller injection volume
Sample solvent incompatibility with mobile phase	 Use mobile phase or weaker miscible solvent as injection solvent
Issues with injection valve	Check injector valve partsreplace worn parts



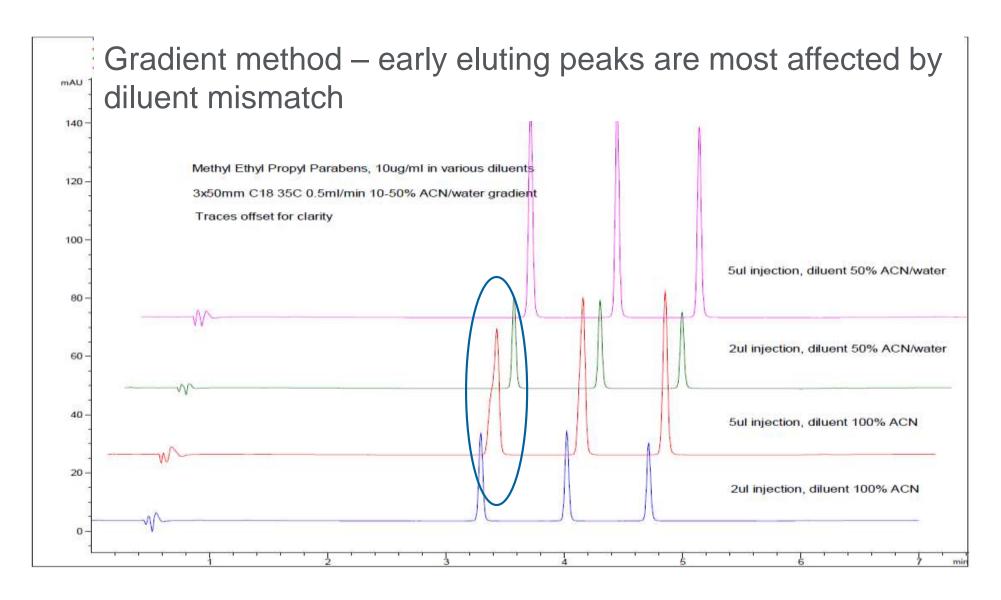
Fronting

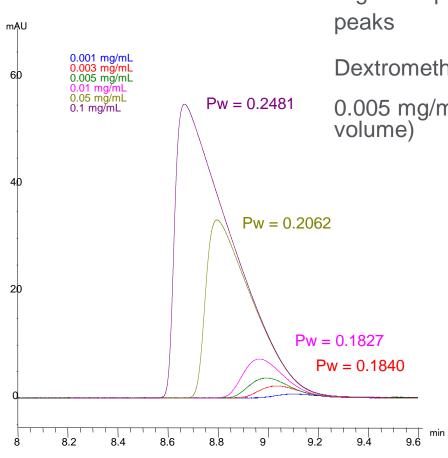
Potential Cause	Recommended Action
Channeling in column	Replace columnuse guard columns
Column overload	 Use higher capacity column (increase length, diameter or change to high-capacity material) decrease sample amount





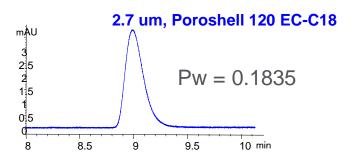
Peak broadening


Potential Cause	Recommended Action
Injection volume too large	Decrease injection volume
Long retention times	 Use gradient elution or stronger mobile phase
System settings	 Check data collection rate: Adjust the detector setting and / or time constant to the fastest possible value without compromising signal-to-noise.
Viscosity of mobile phase too high	 Increase column temperature
Detector cell volume too large	 Use smallest possible cell volume
Improper fittings / connections	 Ensure that your fitting connections are made correct
Extra tubing volume on system	 Ensure that the tubing is narrow and as short as possible to avoid extra volume.
Sample diluent too strong	Reduce diluent strength


Strong Diluents can Disrupt Equilibration – Isocratic Method

Strong Diluents can Disrupt Equilibration – Gradient Analysis

Comparison of Peak Shape at Low and High Loads Broadening and Tailing

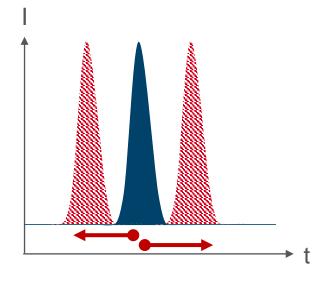


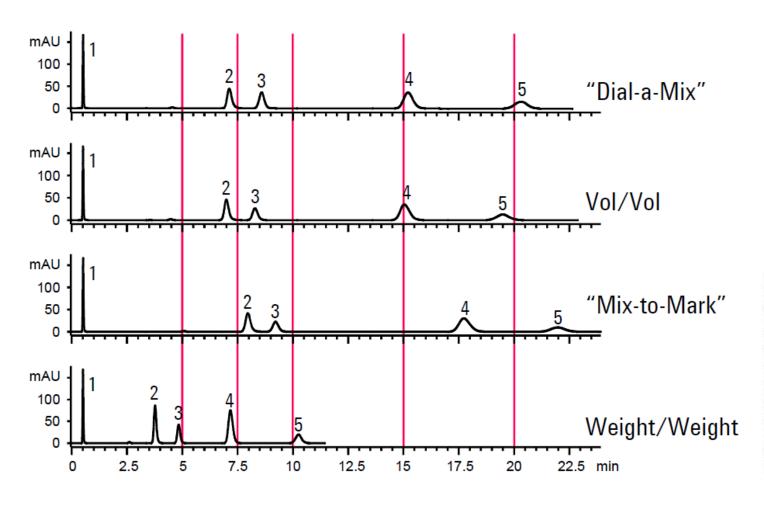
High Sample Loads give broad or broad and tailing peaks

Dextromethorphan is 35% broader at high load

0.005 mg/mL dextromethorphan (4.1 uL injection volume)

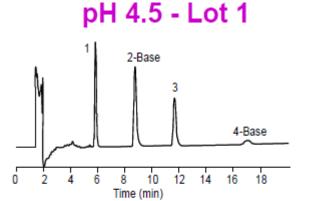
Low sample loads provide symmetrical, non-tailing peaks with narrow peak widths

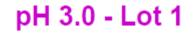

Changes in Separation

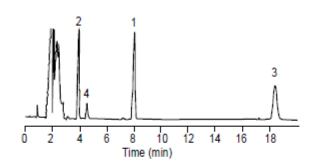

Changes in Separation

Retention time changing

Potential Cause	Recommended Action
Inconsistent on-line mobile phase mixing	Ensure gradient system delivering constant composition check vs. manual prep of mobile phase
Flow rate changing	Check 'Pressure fluctuation'
Column temperature varying	Thermostat column and ensure constant lab temperature
Equilibration time insufficient with gradient run or change in isocratic mobile phase	Flush with at least 10 column volumes after solvent change or gradient conclusion
Selective evaporation of mobile phase component	keep solvent reservoirs covered prepare fresh mobile phase
Buffer capacity insufficient	Use > 20 mM concentration of buffer
Contamination buildup	Occasionally flush column with strong solvent to remove contaminants
First few injections – adsorption on active sites	Condition column by initial injection of concentrated sample
Column overloaded with sample	Decrease injection volume or concentration
Mobile phase composition changing	Follow 'best practices'

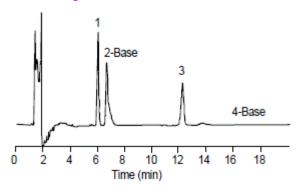

Mobile Phase Preparation

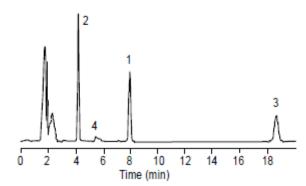



Agilent 1100 with quaternary pump ZORBAX Eclipse XDB-C8 Rapid-Resolution (3.5μm), 4.6 x 50 mm Agilent Part No. 935967-906 Dial-a-Mix= A: water B: MeOH, pump 50% B Vol/Vol=250 mL water + 250 mL MeOH, pump 100% Mix-to-Mark = 250 mL MeOH, fill to 500 mL with water, pump 100% Premixed (w/w) = 200 g MeOH + 200 g water, pump 100% UV 254 nm 1 mL/ min.

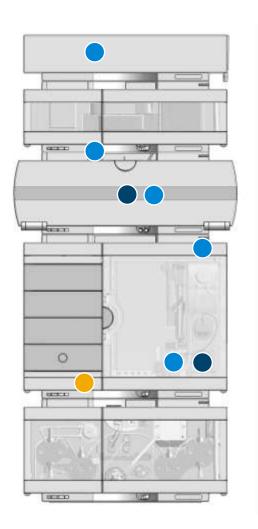
Retention Time Shift – Selectivity differences due to incorrect pH

pH 4.5 shows selectivity change from lot-to-lot for basic compounds





pH 3.0 shows no selectivity change from lot-to-lot

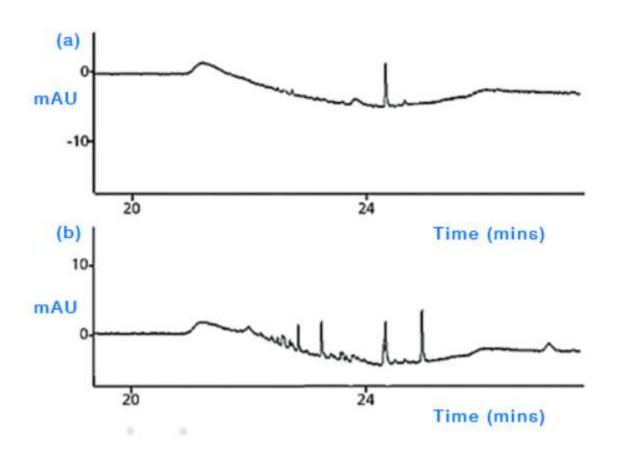

For Method Ruggedness
 ○Test 3 different column lots
 ○Compare R_s for the 3 lots
 •If △R_s is too large, modify method

Changes in Separation

Ghost peaks, carry over

	Potential Cause	Recommended Action
•	Peaks from previous injection	Flush column to remove contaminantsCheck with blank injection
	Specific interaction with metal surfaces	Passivate instrumentUse InfinityLab Deactivator AdditiveUse bio-inert LC equipment
	Contamination or unknown interferences in samples	Proper sample clean-up

Mobile Phase Hygiene


Contaminated mobile phases can cause:

- Lower sensitivity
- Rising/drifting baselines
- Higher noise
- Ghost peaks with gradient separations

Often the issue is confused with Autosampler carryover.

It can be identified by repeating the gradient run without sample injection and/or increasing the pre-run equilibration.

Always run multiple blanks before standards or samples to distinguish gradient artifacts from possible carryover.

Mobile Phase Hygiene: Glassware

Improper cleaning of solvent bottles can cause contamination of mobile phases and result in gradient artifacts

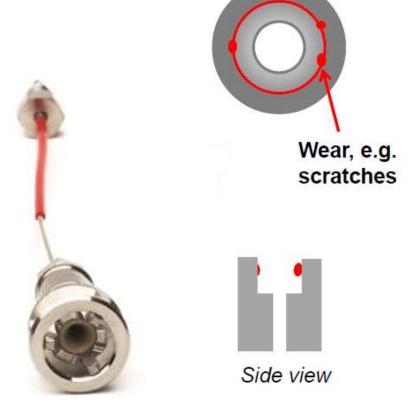
- Wash solvent bottles with hot water, deionized water, and organic solvent (IPA or acetonitrile).
- Leave glassware inverted on paper towels on bench or on clean pegboard dowels to dry.
- Avoid using detergents! If it is necessary to use detergents to get glassware clean, re-wash with plenty of hot water and cold water so that all detergent residues are removed. Follow with deionized water and organic (IPA or acetonitrile) rinses.

Store glassware inverted on shelves or in drawers, or cover openings

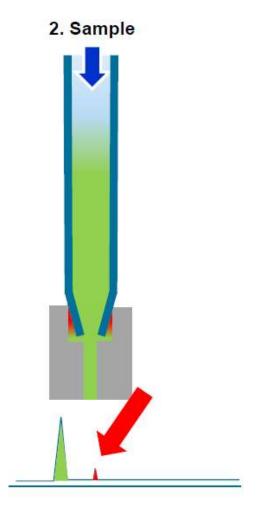
System blank injection, water/ACN gradient on a C18 column, PEG contamination

Mobile Phase Hygiene: Solvent Purity and Buffer Preparation

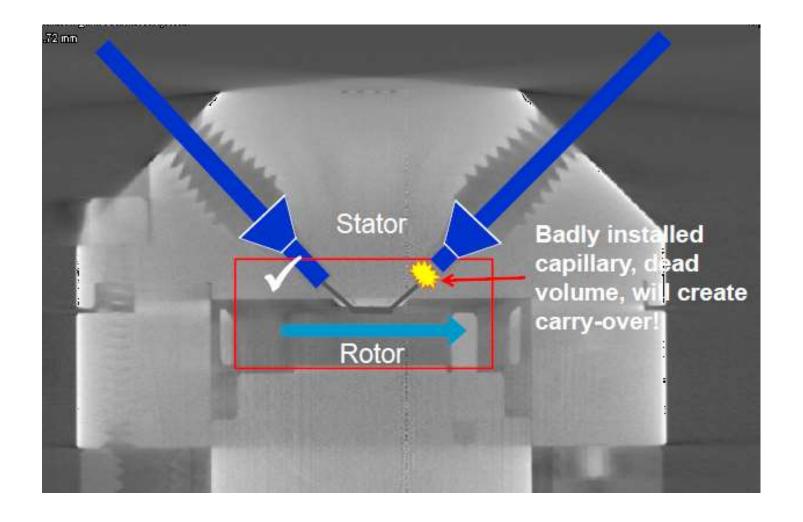
- Use HPLC grade Organic mobile phases
- Use HPLC grade water or Milli Q DI water
- Use HPLC grade reagents including salts, ion pair reagents, and base and acid modifiers
- Always rinse pH electrode thoroughly when measuring/adjusting pH of mobile phase
- Prepare fresh buffers to avoid contaminants from the growth of bacteria or algae
- Filter your mobile phase buffer with 0.45 µm filter before use
- Solvent filters installed at the end of solvent lines should be replaced periodically


100% ACN

90%ACN+10% buffer (10mM phosphate)

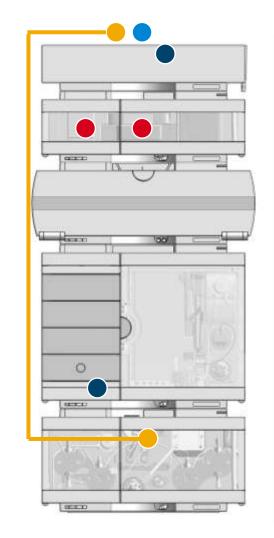

Autosampler Carryover

Common sources:

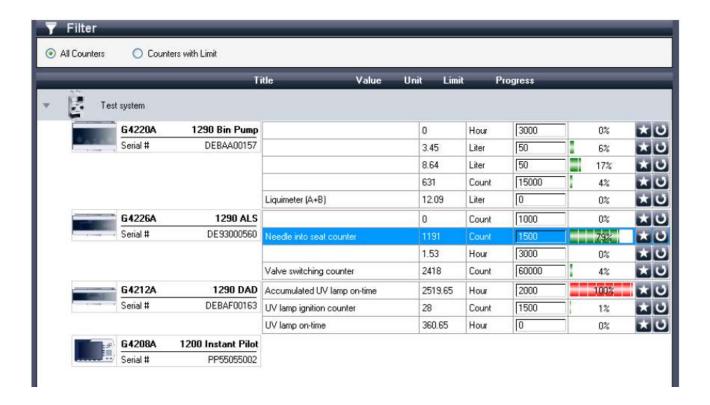

- Exterior of needle (use needle wash)
- Worn needle seat
- Worn rotor seal
- Poorly made fitting

Top view

Autosampler Carryover


Changes in Detection

Changes in Detection

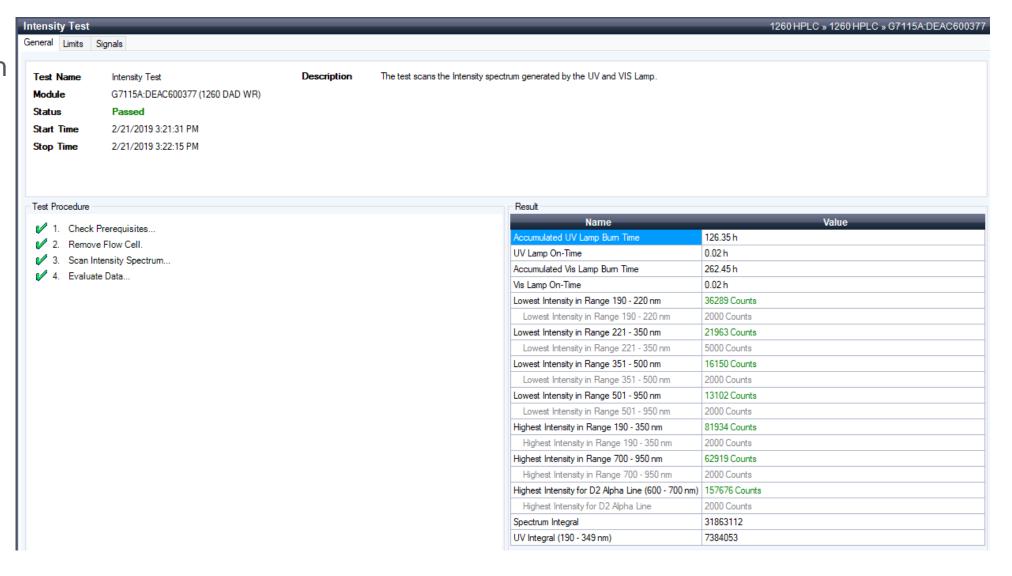

Noisy baseline

	Potential Cause	Recommended Action
	Gas bubbles in mobile phase	Apply degassingcheck degasser performance
	Low difference between sample and mobile phase absorbance	Check absorbance values of sample vs. mobile phase
•	Contamination	Use degassed HPLC-grade solventsflush systemClean up the sample
	Detector optics	 Perform intensity test Check signal with flow cell removed if possible Replace lamp
	Pressure instability	Check 'Pressure fluctuation'

How do I know if my UV lamp is good?

- Visual inspection of an equilibrated baseline
- Accumulated UV lamp on-time from RFI tag or Lab Advisor
- Lab Advisor intensity test
- Lab Advisor ASTM drift and noise test
- Lab Advisor cell test

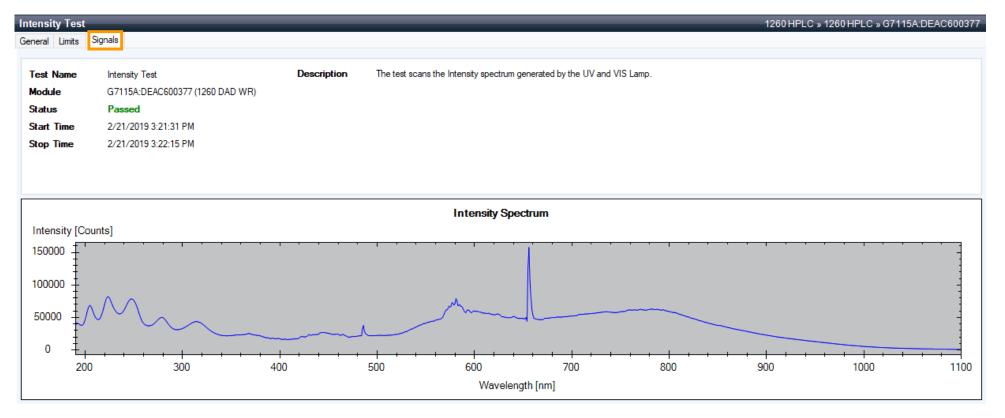
Diode array and multiple wavelength


Counters and hours

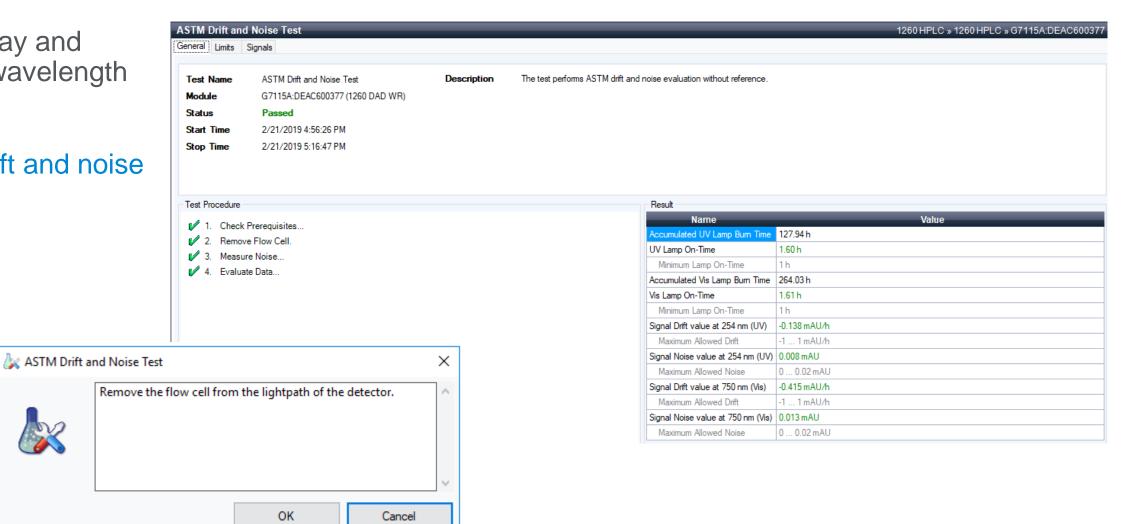
The useable lifetime of a deuterium lamp will depend on it's use:

- How many hours has it been on?
- How many times has it been ignited?
- What wavelength is being used?

Diode array and multiple wavelength


Intensity test

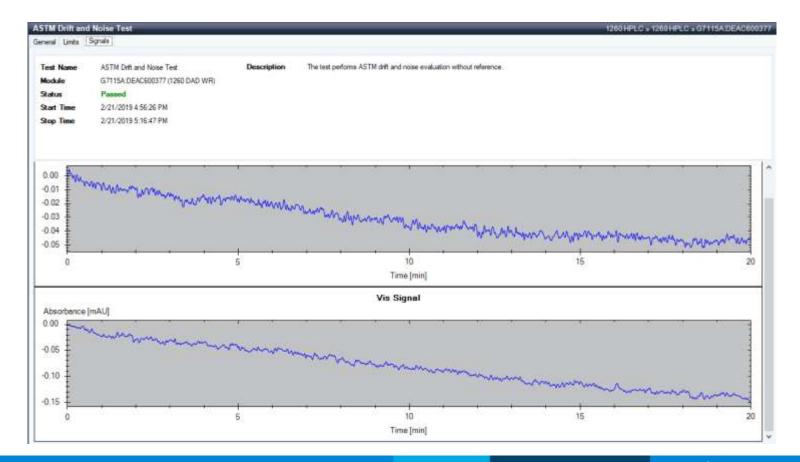
Diode array and multiple wavelength


Intensity test

The profile of the intensity scan changes as a lamp ages

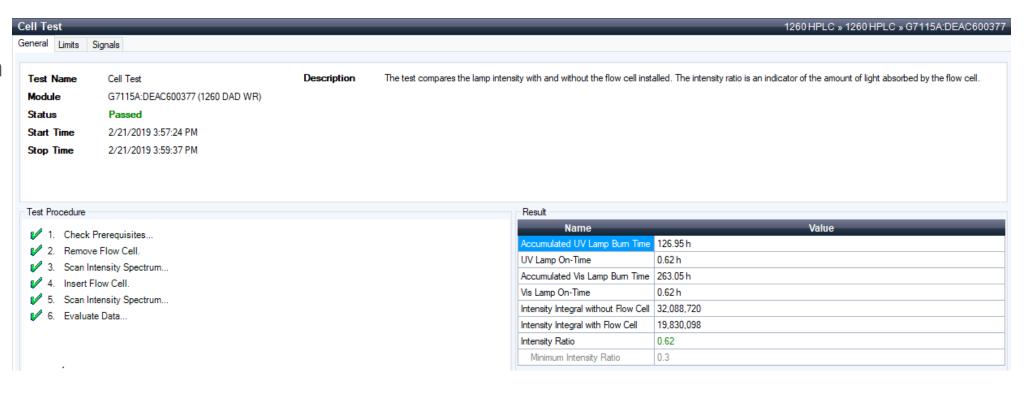
Diode array and multiple wavelength

ASTM drift and noise



Diode array and multiple wavelength

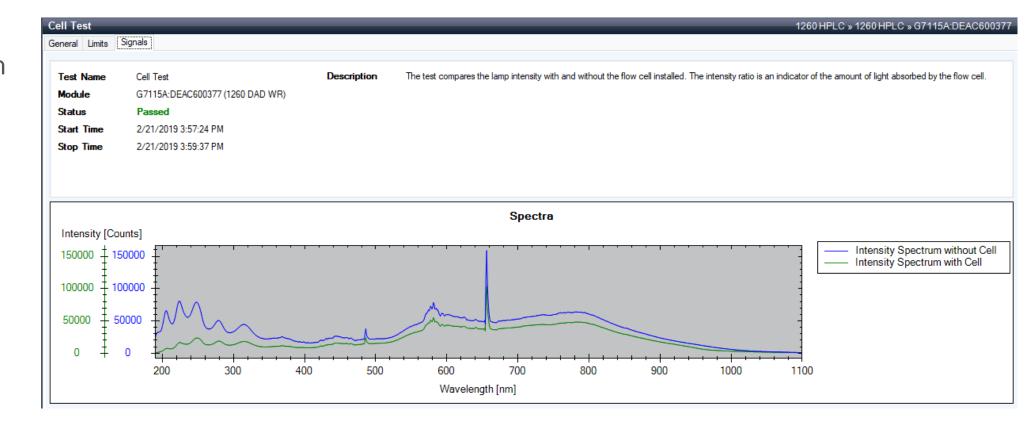
Name	Value		Description
Minimum Lamp On-Time	1 h The n	ninimum lamp on-time	e to perform a noise check.
Name	Lower limit	Upper limit	Description
		oppor	Bootipaon
Maximum Allowed Noise	0 mAU		The maximum allowed Signal noise in mAU.


ASTM drift and noise

Run on a monthly basis this test can help track the natural decline of the lamp and perhaps raise awareness of a dirty cell.

Diode array and multiple wavelength

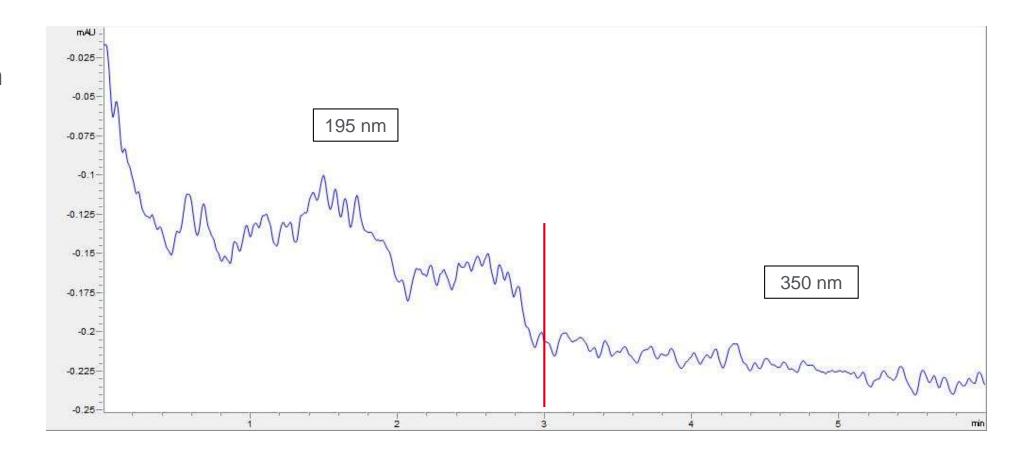
Cell test



Diode array detectors with the fiberoptic style flow cell require a Max Light test cell for this test - part number G4212-60011.

Diode array and multiple wavelength

Cell test


Example of scans with and without cell installed.

How do I know if my UV lamp is good?

Diode array and multiple wavelength

Baseline inspection

A number of factors contribute to the specific amplitude and pattern of baseline noise and drift, including the specific wavelength, mobile phase, room temperature and data rate.

How do I know if my UV lamp is good?

Diode array and multiple wavelength

Baseline inspection

Long cycle wave

This is a rhythmic change in the baseline where the periodicity may be hours.

environmental influences

Short cycle wave

This is a rhythmic change in the baseline where the periodicity may be seconds or minutes.

- solvent mixing noise
- mechanical issue in pump

If the cycle of the wave does not appear to be mixing noise, evaluate the health of the lamps through Lab Advisor intensity and noise and drift tests. Also, the cleanliness of the flow cell through the cell test.

Excessive drift

In a UV baseline light scattering shows up as drift. If the baseline is drifting more than expected, empty and rinse the solvent bottles, refilling with fresh solvent. Perform a cell test to check the cleanliness of the flow cell.

Useful parts

Parts that address potential issues and help to ease your daily tasks

Part Description	Information	Part number
InfinityLab Stay Safe caps	Prevents solvent evaporation; changes in mobile phase concentration	Various www.agilent.com/chem/staysafecaps
InfinityLab Quick Connect and Quick Turn fittings	With spring-load function for optimized dead volume reduction	Various www.agilent.com/chem/infinitylabfittings
Blank nut, long, 10-32	Blank nut, PEEK with steel core; for system diagnostic tests; finger tight up to 1300 bar, easy to use and gentle to receiving port	5043-0277
Agilent Captiva syringe filters	Solve issues like inlet clogging, increased backpressure, and retention time shift by filtering your samples	Various www.agilent.com/chem/filtration
InfinityLab Poroshell 120 columns	High efficiency and high resolution; available in 18 chemistries	Various www.aglient.com/chem/discoverporoshell

InfinityLab Stay Safe cap on solvent bottle

InfinityLab Quick Connect fitting

InfinityLab Quick Turn fitting

Blank nut, 5043-0277

LC Troubleshooting Poster Available

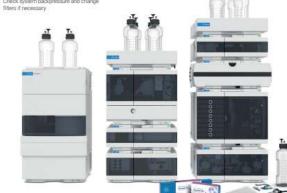
LC Troubleshooting Guide

Your guide to solving common problems and staying productive

Infinity Lab

Places to Start

Solvents


- Use brown borosilicate bottles to avoid algae growth
- Prepare solvent volume to be used up within 1 to 2 days. - Use only HPLC-grade solvents filtered through 0.2 µm filters.
- Preparing and powering up the pump
- Inspect solvent bottles and inlet filters for damage or coloring.
- Always use seal wash when installed and purge the pump Use the appropriate system conditioning method
- Daily tasks

- Replace aqueous and organic mobile phases every second day

- Check seal wash solvent
- Flush the system with the composition of your application

Weekly tasks

- Change seal wash solvent and bottle and inspect solvent filters
- Check system backpressure and change

Maintenance

Agilent Lab Advisor software helps you manage your Agilent LC instruments to achieve high-quality chromatographic results in the most efficient way by ensuring high instrument performance, productivity, and reliability. It is available free-of-charge.

- Diagnostic tests to evaluate performance
- Easier maintenance of all Agrient LC modules
- Comprehensive reports generated to ease communication with Aglent service

Pump shutdown

- Flush all channels to remove salt deposits and particulate matter
- Flush the system with appropriate storage solvent and power

Handling of acetonitrile

face pro

- If possible, use 5 to 10% of water in your mobile phase
- Be sure to avoid ACN evaporation
- Don't leave ACN on the system for more than 2 to 3 days

n a periodic warm water wash (60 to 70 °C) if you obterns	Selective evaporation of reable phase component	Less vigonous helium spanging, he solvent reservoirs covered, prepar fresh mobile phase
	Contamination buildup	Occasionally flush column with altrong solvent

High Column

selth sample	or concentration

MM		or replace check valve; replace pump seals
	Buildup of perticulates	Filter sample and mobile phase
	TEMPORE IN COMMO	Reference to the state of the second second

constant composition; compare with

manual preparation of mobile phase

ensure constant lab temperature

Pressure Increase	Possible Cause	Solution
After Ante-Institute (a)	System blockage	Check flowpath (needle seat
DZA		capillaries, filter and frits)

Water/organic systems buffer precipitation	Test huffer organic mixtures to ensure compatibility
88W 1975 1970 1971	

Possible Course	Solution
Column blockage	Better sample cleanup; use guant column
Mobile phase viscosity too high	Use lower viscosity solvents or higher temperature
Perticle size too small	Use larger of, packing

gged inlet fift	Replace column	
nible Cause	Solution	
illve/negative direction: terminant huildup/elution	Flush column; clean up sample; use pare schients	

Cause	Solution
negative direction: next lisaktup/elution	Flush columy, clean up sample, use pure schents
negative: or in refractive index on solvent	Use mobile phase for sample solvent
tue changes	insulate and thermistal column

	1			
الما	لسا	L.	A	877

Check number of hours o replace UV lump or flow o
Solution
Flush column to remove contaminants, check with blank injection
Proper sample cleanup
Prepare sample in actual phase to minimize disturt

	Flat a month
Peak Tailling	Possible

A A A A A A	
$M \rightarrow M M$	Takana kana da kana da mara da
200000	Column perform

	replace column
Sikce-based column degradation	Use specially, polymeric, or sterically protected column
Silca-based basic interactions with stationary phase	Use stronger mubble phase or add appropriate base (e.g., TEA)

ensure injector seal is tight; ensure fittings are properly seated

strength of injection solvent use

	gradient methods.
Low sampling rate of data system	Persone data rate
Detector cell volume too large	Use smallest possible cell volume
English State of the Control of the	Barton Market and Control

Sensiti	vity F	roblems
·	Λ	\otimes

Λ	(2)	Pesi
. 1	0	Sam
السلا	0	_

à			
	r.		
Н	٦		
	1	1	1

oblems	Possible Cause	Solution
0	Peaks are outside of sensitivity range of detector	Distriction contrate sample to bring into linear region
0	Sample related losses during preparation	Use internal standard during sample preparation, optimize sample
(V)		preparation method

Loak	
	88
	[]
	[(0)]

Pexable Country	Solution
White powder at fitting/ loose fitting	Tighten fittings, replace capillaries
System leuk	triantify location checking leak sensors terrors, check flow cell

Discover more best practices for using an Agilent LC system.

Training courses are available at

Get answers. Share insights, Join the Agilent Community at:

For Lab Advisor software, please visit:

Request yours today at www.agilent.com/chem/troubleshootLC

Resources for Support

- New! LC Troubleshooting poster: 5994-0709EN
- Resource page: http://www.agilent.com/chem/agilentresources
 - Quick reference guides
 - Catalogs, column user guides
 - Online selection tools, how-to videos
- InfinityLab Supplies catalog: <u>5991-8031EN</u>
- LC handbook: <u>5990-7595EN</u>
- YouTube <u>Agilent channel</u> (maintenance videos)
- Agilent service contracts

Contact Agilent Chemistries and Supplies Technical Support

1-800-227-9770 Option 3, Option 3:

Option 1 for GC and GC/MS columns and supplies

Option 2 for LC and LC/MS columns and supplies

Option 3 for sample preparation, filtration and QuEChERS

Option 4 for spectroscopy supplies

Option 5 for chemical standards

Available in the USA & Canada 8-5 all time zones

gc-column-support@agilent.com

lc-column-support@agilent.com

spp-support@agilent.com

spectro-supplies-support@agilent.com

chem-standards-support@agilent.com