

Updating Solid Phase Extraction Methods:

Tips and Tricks for Improving Existing and New SPE Methods using Method Development

Golnar Javadi

Application Engineer

Sample Preparation Products

Spp-support@agilent.com

Today's Agenda

- Updating Existing SPE methods- Why?
- How to Approach SPE Method Development/Optimization?
- Example 1: Solid Phase Extraction of Phencyclidine (PCP) in Urine by Mixed Mode-Bond Elut Certify
- Example 2: Solid Phase Extraction of Opiates in Urine by Mixed Mode-Bond Elut Certify
- Summary
- Questions and Wrap Up

UPDATING EXISTING SPE METHODS-WHY?

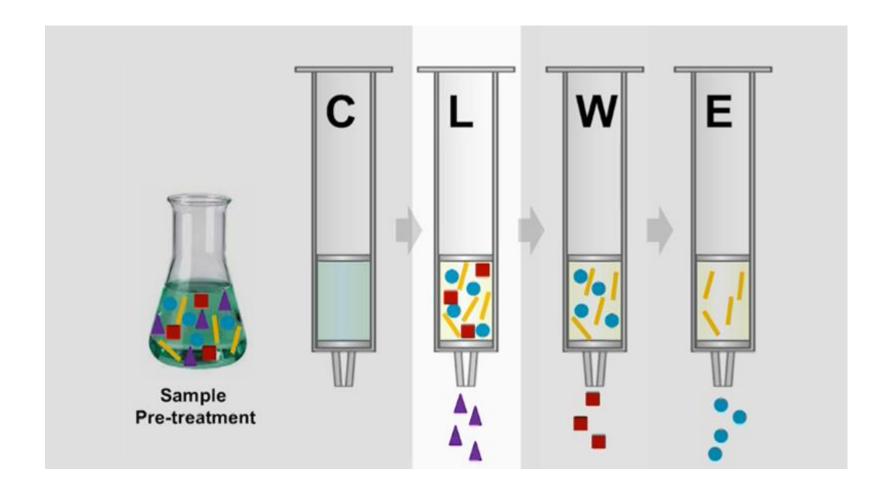
The Need for Updating Existing SPE Methods

- Requirements for lower detection limits
- Improved linearity in the lower or upper concentration range and calibration range extension
- Limited sample volume
- To improve the method to get cleaner samples in order to protect the high end analytical instruments and columns from sample contamination

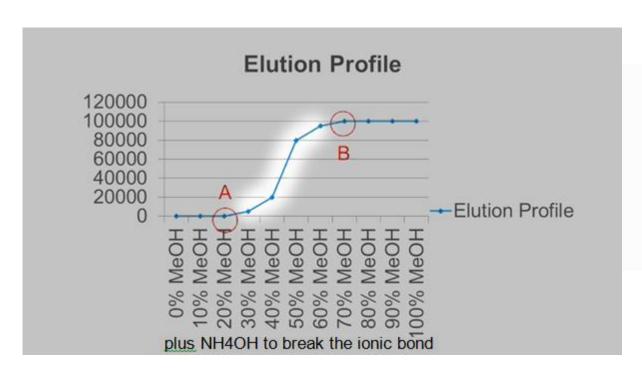
Bond Elut Certify

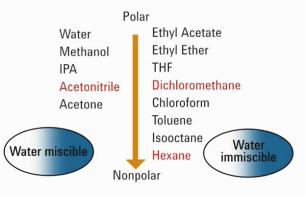
- Bond Elut Certify, Mixed Mode (nonpolar + SCX)
- Bond Elut Certify II, Mixed Mode (nonpolar + SAX)

Certify Methods Manual



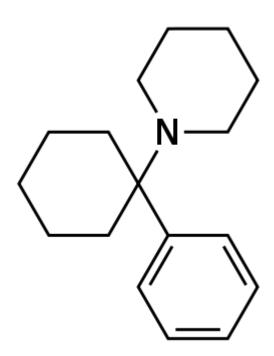
HOW TO APPROACH SPE METHOD DEVELOPMENT/OPTIMIZATION?


Solid Phase Extraction Sorbents


- Nonpolar
- Polar
- Cation exchange
- Anion exchange
- Mixed mode
- Specialty phases

Four Steps of Solid Phase Extraction

10 Bottle Optimization



EXAMPLE 1: SOLID PHASE EXTRACTION OF PCP IN URINE BY MIXED MODE BOND ELUT CERTIFY

Target compound: Phencyclidine (PCP)

pKa: 8.29

Log P: 4.69

PCP: Sample pre-treatment

- Spiked urine pre-treatment:
 - Spike 50 uL of ISTD and STD to 5 mL of urine to have concentration in urine of 100 and 50 ng/mL for PCP and PCP-D5, respectively
 - Add 2 mL of 100 mM KH_2PO_4 (pH = 5.81)
- Blank urine pretreatment:
 - Add 100 uL of water to 5 mL of urine
 - Add 2 mL of 100 mM KH_2PO_4 (pH = 5.81)
- STD sample preparation:
 - Spike 50 uL of ISTD and STD to 7 mL of ACN

PCP:SPE Protocol (BE Certify 130 mg, 3 mL, Part number 12102051)- investigation of wash and elution solvents

Condition: 2 mL MeOH

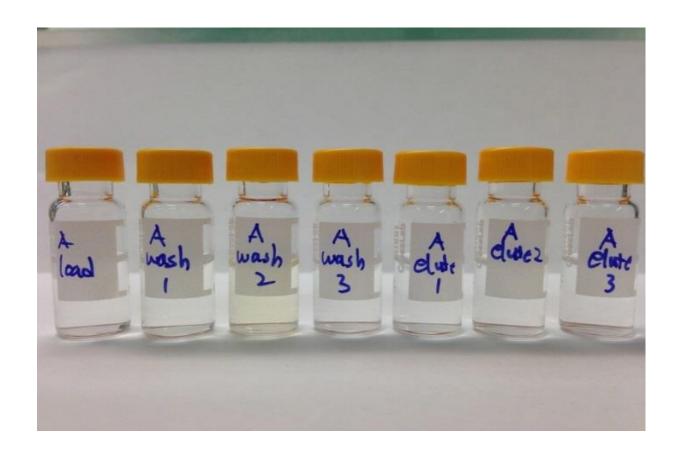
Equilibrate: 2 mL 100 mM KH₂PO₄

Load: 1 mL of pretreated urine sample (spiked, blank)

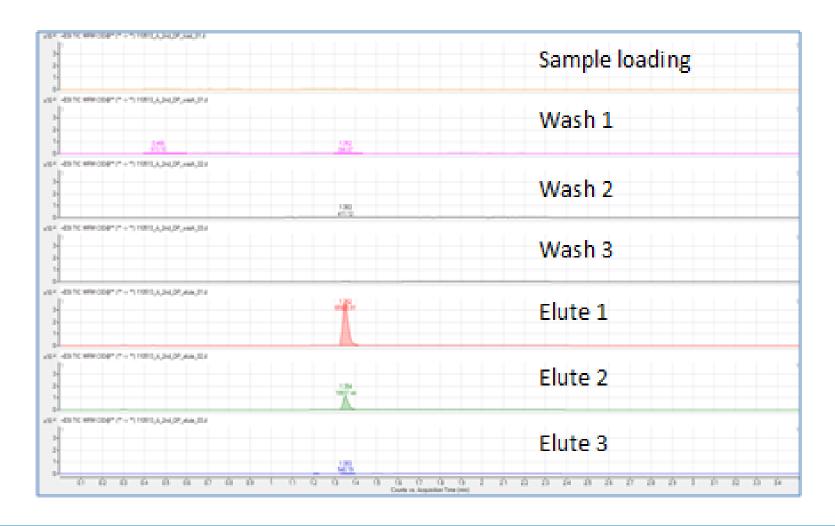
Wash 1: 1 mL 5% acetic acid

Wash 2: 1 mL MeoH

Wash 3: 1 mL MeOH


Elute1,2,3: 3 mL ACN + 2% NH₄OH (3X1 mL aliquots, collect each aliquot separately)

Evaporate under nitrogen @ 35 C


Reconstitute in 0.5 mL EtOAc and 0.5 mL of 10% MeOH for GC and LC samples, respectively

For solvent STD sample, transfer 1 mL of STD mix in ACN to autosampler vials → Evaporate → Reconstitute in 0.5 mL EtOAc and 0.5 mL of 10% MeOH for GC and LC samples, respectively.

PCP: Effluents of load, wash and elution steps

PCP: Chromatograms by LC-MS/MS for all eluates collected during SPE

PCP: SPE Protocol- Investigating different elution solvents

Take 6 cartridges

Condition: 2 mL MeOH

Equilibrate: 2 mL 100 mM KH₂PO₄

Load: 1 mL of pretreated urine sample (spiked, blank)

Wash 1: 1 mL 5% acetic acid

Wash 2: 2 mL MeOH

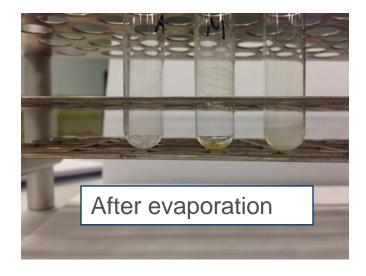
For each set of two cartridges use one of the following elution solvents. Use one cartridge for LCQQQ, another for GC-MS

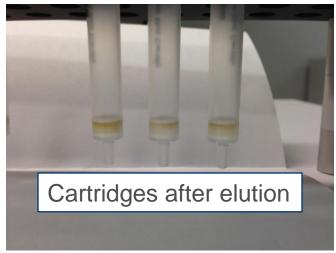
Elution 1: 2 mL DCM/IPA (78/20) + 2% /NH4OH -apply to first 2 cartridges

Elution 2: 2 mL of MeOH + 2% NH4OH- apply to the next 2 cartridges

Elution 3: 2 mL of ACN + 2% NH4OH- apply to the last 2 cartridges

Evaporate under nitrogen @ 35 C


Reconstitute in 0.5 mL EtOAc and 0.5 mL of 10% MeOH for GC and LC samples, respectively


For solvent STD sample, transfer 1 mL of STD mix in ACN to autosampler vials → Evaporate → Reconstitute in 0.5 mL EtOAc and 0.5 mL of 10% MeOH for GC and LC samples, respectively.

PCP: Comparison of Different Elution Solvents

In elution related pictures, from left to right, ACN + 2% NH₄OH, MeOH + 2% NH₄OH, DCM/IPA/NH₄OH 78/20/2 (v/v)

PCP:LC-MS/MS Conditions

Column: Pursuit XRs ULTRA DP 2.8 um, 2.0 X 50 mm

Flow rate: 0.4 mL/min

Gradient:

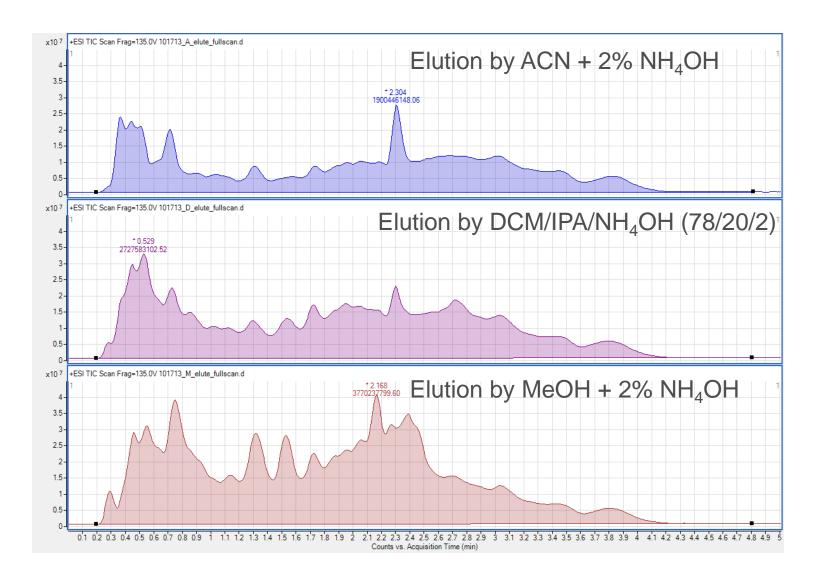
Inj. Vol.: 10 ι

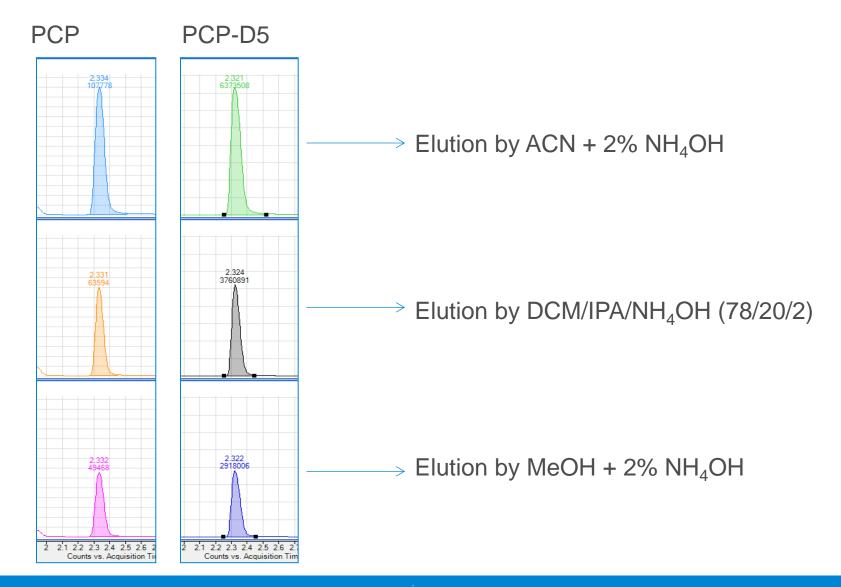
Fullscan: 100

MRM:

	1.5	90
	2.5	90
uL	2.6	10
	5	10
) – 550 m/z (positive)		

	Precursor	Product	MS2 Res	Dwell	Fragmentor	Col Eng	Polarity
PCP-D5	249.2	96.1	Unit	50	97	37	Pos
PCP-D5	249.2	86.1	Unit	50	97	9	Pos
PCP	244.2	91.1	Unit	50	102	37	Pos
PCP	244.2	86.1	Unit	50	102	9	pos


Time (min)


0

%B

10

PCP: LC-MS/MS fullscan of blank urine

PCP-Final SPE Method after optimization

SPE: Bond Elut Certify, 130 mg, 3 mL, 50/pk (p/n: 12102051)

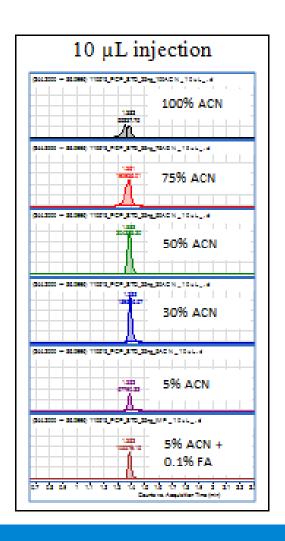
Condition 1 mL MeOH

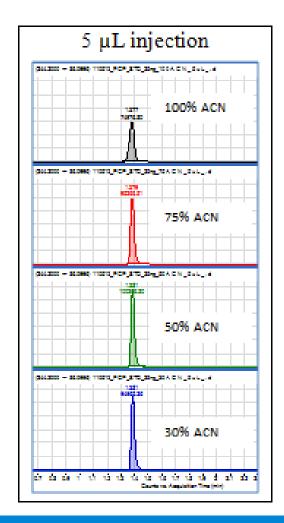
Equilibrate 1 mL 100 mM KH2PO4

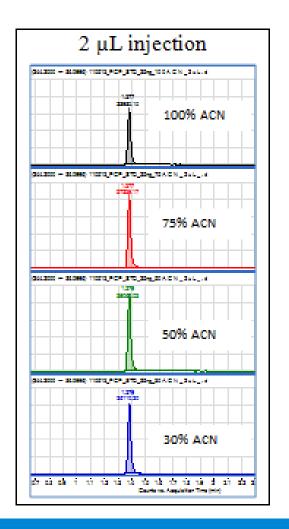
Load: 1 mL of pretreated urine sample (spiked, blank)

Wash 1 1 mL 5% acetic acid

Wash 2 2 mL MeOH


Elute 2 mL ACN + 2% NH4OH


Evaporate and reconstitute in 0.5 mL of 30% ACN + 0.1% FA


(Positive pressure was used for each step.)

PCP: LC-MS/MS Method optimization- Injection volume and injection solvent

PCP: GC-MS Conditions

Column: Agilent DB-5ms UI, 15 m, 0.25 mm, 0.25 um (p/n: 122-

5512UI)

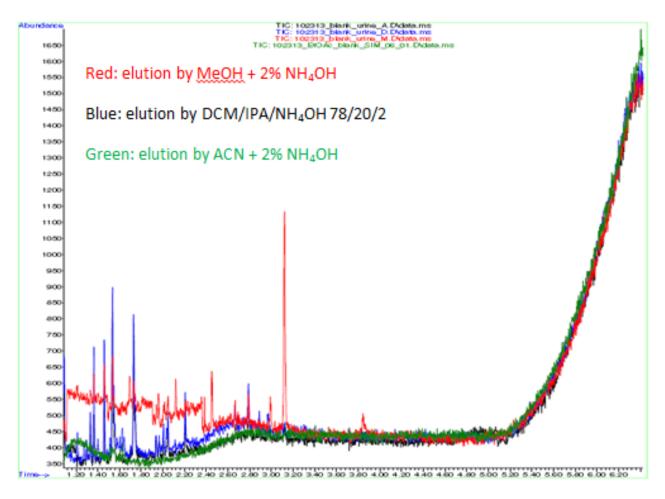
Flow rate: 2.5 mL/min

Inj. Vol.: 1 uL

Inlet: S 10:1 (temp: 250 C)

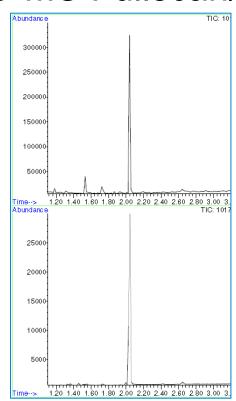
Oven temp: start from 140 C, ramp to 240 C @ 40 C/min, hold for 2.5 min, then to 285 C @ 40 C/min, hold for 0.3 min (6.435 min)

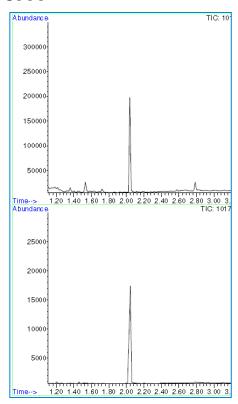
for 2.5 min, then to 285 C @ 40 C/min, hold for 0.3 min (6.425 min)


Aux heater: 250 C

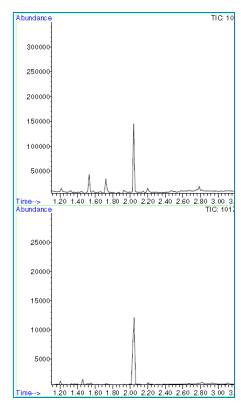
MS source: 230 C

MS quad: 150 C


PCP: Fullscan GC-MS chromatograms of blank urine prepared by Bond Elut Certify using different elution solvents

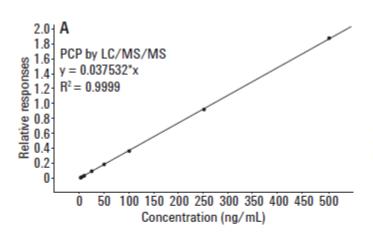

PCP: GC-MS Fullscan/SIM

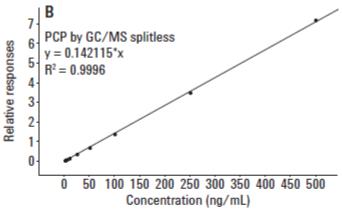
Fullscan →

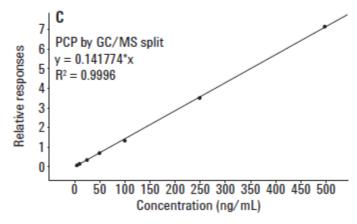

 $SIM \rightarrow$

Elution by ACN + 2% NH₄OH

Elution by MeOH + 2% NH₄OH




Elution by DCM/IPA/NH₄OH 78/20/2 (v/v)


Y-axis scale is fixed.

PCP: Calibration curves for PCP in urine, 1-500 ng/mL LC-MS/MS and GC-MS

PCP: Summary of LC-MS/MS and GC-MS accuracy and precision data

LC/MS	/MS data									
R ²	L00	Accura	Accuracy (% recovery)*(ng/mL)				Precision (% RSD)*(ng/mL)			
0.9999	1 ng/mL	5	10	25	500	5	10	25	500	
		101%	92.9%	100%	100%	2.6%	0.7%	0.4%	0.2%	
GC/MS	data (pulse	d splitles	s injectio	n mode)						
R ²	L00	Accura	Accuracy (% recovery)*(ng/mL)			Precision (% RSD)*(ng/mL)				
0.9996	5 ng/mL	10	25	500		10	25	500		
		95.2%	96.0%	97.4%		3.6%	1.6%	2.6%		
GC/MS	data (pulse	d split inj	ection m	ode)						
R ²	L00	Accura	Accuracy (% recovery)*(ng/mL)			Precision (% RSD)*(ng/mL)				
0.9996	5 ng/mL	10	25	500		10	25	500		
		101%	99.0%	101%		2.5%	4.4%	3.9%		

^{*} Accuracy and precision data are based on six data points.

EXAMPLE 2: SOLID PHASE EXTRACTION OF OPIATES IN URINE BY MIXED MODE-BOND ELUT CERTIFY

Opiates and metabolites

Codeine, pKa 8.2

Norcodeine, pKa 9.2

Morphine, pKa 8.2

Hydrocodone, pKa 8.6

Hydromorphone, pKa 8.6

Oxymorphone, pKa 8.2

Opiates: Sample pre-treatment: acid hydrolysis with pH adjustment after hydrolysis

Acid Hydrolysis – urine spiked with STD, ISTD, INT:

Add 5 mL urine to a 20 mL vial.

Spike 0.5 mL STD, mix.

Spike 0.5 mL ISTD, mix.

Spike 0.5 mL Interference, mix

Add 1 mL concentrated HCI.

Transfer 0.75 mL of spiked urine to 2 mL vials.

Heat at 100 C for 30 min.

Cool down.

Add 0.5 mL 100 mM KH2PO4.

Adjust pH with 10 M KOH.

Opiates: double blank urine pre-treatment: acid hydrolysis with pH adjustment after hydrolysis

<u>Acid Hydrolysis – double blank urine:</u>

Add 5 mL urine to a 20 mL vial.

Add 1.5 mL H2O.

Add 1 mL concentrated HCl.

Transfer 0.75 mL of spiked urine to 2 mL vials.

Heat at 100 C for 30 min.

Cool down.

Add 0.5 mL 100 mM KH2PO4.

Adjust pH with 10 M KOH.

Opiates: SPE Protocol - investigation of wash and elution solvents

Condition 1 mL MeOH

Equilibration 1 mL 100 mM KH2PO4

Load 1 mL hydrolyzed urine w/ AND w/o pH adjustment

Wash1 1 mL H2O

Wash2 1 mL 100 mM acetate buffer

 Wash3
 1 mL MeOH

 Wash4
 1 mL MeOH

 Wash5
 1 mL MeOH

For each sample, elute with 3X1 mL aliquots of an elution solvent:

Sample 1 Sample 2 Sample 3

Elution1 ACN + 2% NH4OH Elution1 MeOH + 2% NH4OH Elution1 DCM/IPA:78:20 + 2% NH4OH ACN + 2% NH4OH MeOH + 2% NH4OH DCM/IPA:78:20 + 2% NH4OH Elution2 Elution2 Elution2 ACN + 2% NH4OH Elution3 Elution3 MeOH + 2% NH4OH Elution3 DCM/IPA:78:20 + 2% NH4OH

Collect Wash1-5 and Elution1-3 individually.

Evaporate under nitrogen @35C to dryness.

Reconstitute in 0.5 mL 10:90 MeOH+0.1% FA:H2O+0.1% FA.

Run spiked samples by both MRM and fullscan, double blank urine samples by fullscan.

Opiates: Pictures from Washes and Elutions

Wash1 1 mL H2O

Wash2 1 mL acetate buffer

Wash3 1 mL MeOH Wash4 1 mL MeOH

Wash5 1 mL MeOH

Elution1:1 mL ACN + 2% NH4OH Elution2:1 mL ACN + 2% NH4OH Elution3:1 mL ACN + 2% NH4OH Elution1:1 mL DCM/IPA+ 2% NH4OH Elution2:1 mL DCM/IPA + 2% NH4OH Elution3:1 mL DCM/IPA + 2% NH4OH *DCM/IPA/NH4OH = 78/20/2 Elution1:1 mL MeOH + 2% NH4OH Elution2:1 mL MeOH + 2% NH4OH Elution3:1 mL MeOH + 2% NH4OH

Opiates: SPE Method work- in- progress

Condition 1 mL MeOH

Equilibration 1 mL 100 mM KH2PO4

Load 1 mL of hydrolyzed urine sample (pH=6.0 - 6.5)

Wash1 1 mL water

Wash2 1 mL 100 mM acetate buffer

Wash3 2 mL MeOH

Elution:

Elution 1 mL DCM/IPA/NH4OH:78/20/2 Elution 2 1 mL DCM/IPA/NH4OH:78/20/2 Elution 3 1 mL DCM/IPA/NH4OH:78/20/2

Collect eluates 1-3 separately

Evaporate under nitrogen @ 35 C to dryness

Reconstitute in 0.5 mL 10:90 MeOH +0.1% FA: H20 + 0.1% FA

Run spiked samples by both MRM and fullscan, double blank urine samples by fullscan

Opiates: investigation of how to apply the elution solvent

Condition 1 mL MeOH

Equilibration 1 mL 100 mM KH2PO4

Load 1 mL of hydrolyzed urine sample (pH=6.0 - 6.5)

Wash1 1 mL water

Wash2 1 mL 100 mM acetate buffer

Wash3 2 mL MeOH

Elution: Try the following three elution methods, collect each eluate separately

Method 1

Elution1 1 mL DCM/IPA/NH4OH:78/20/2 Elution2 1 mL DCM/IPA/NH4OH:78/20/2 Elution3 1 mL DCM/IPA/NH4OH:78/20/2

Method 2


Elution1 2 mL DCM/IPA/NH4OH:78/20/2 Elution2 1 mL DCM/IPA/NH4OH:78/20/2

Method 3

Elution1 3 mL DCM/IPA/NH4OH:78/20/2

Opiates: SPE Method - Elution Results

Compounds still coming out after 2 mL of elution solvent → Need stronger elution e.g. 5% NH4OH

Opiates SPE Method: work- in- progress elution solvent strength study

Condition 1 mL MeOH

Equilibration 1 mL 100 mM KH2PO4

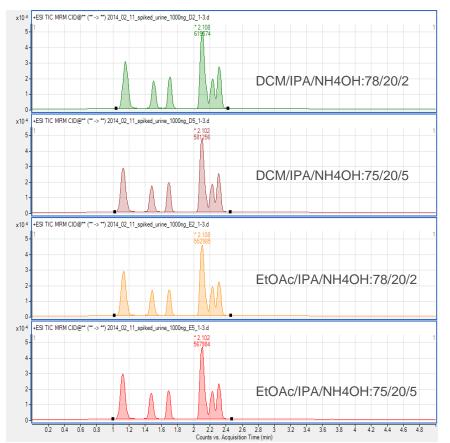
Load 1 mL of hydrolyzed urine sample (pH=6.0 - 6.5)

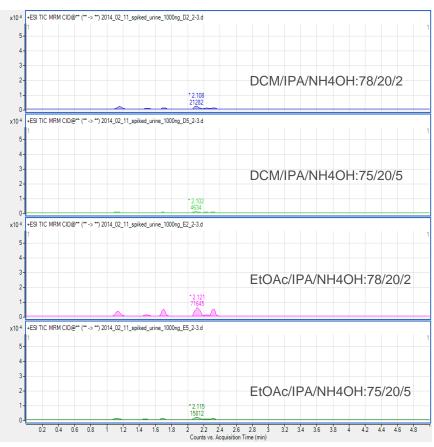
Wash1 1 mL water

Wash2 1 mL 100 mM acetate buffer

Wash3 2 mL MeOH

Elution 4 different elution solvents were used shown as below. 1st, 2nd, 3rd elution were


collected separately


Dry under nitrogen at 35C to dryness Reconstitute in 0.5 mL of 10% MPB.

	1 st elution	2 nd elution	3 rd elution
DCM/IPA/NH4OH:78/20/2	2 mL	2 mL	2 mL
EtOAc/IPA/NH4OH:78/20/2	2 mL	2 mL	2 mL
DCM/IPA/NH4OH:75/20/5	2 mL	2 mL	2 mL
EtOAc/IPA/NH4OH:75/20/5	2 mL	2 mL	2 mL

Opiates SPE Method: Elution Study Result

1st elution 2nd elution

- DCM vs. EtOAc → In general, EtOAc had slightly lower elution performance.
- 2% vs 5% NH4OH \rightarrow Did not show overall performance different, but 2% NH4OH had 2nd elution peaks 4 5 % of the 1st elution peaks. So 5% NH4OH is chosen.

Opiates-Final SPE Method after optimization

Condition 1 mL MeOH

Equilibration 1 mL 100 mM KH2PO4

Load 1 mL of hydrolyzed urine sample (pH=6.0 - 6.5)

Wash1 1 mL water

Wash2 1 mL 100 mM acetate buffer

Wash3 2 mL MeOH

Elution 2mL DCM/IPA/NH4OH:75/20/5

Dry under nitrogen at 35C to dryness

Reconstitute in 0.5 mL of 10% MPB.

Summary and Conclusions

- Systematic approach to method optimization can modify old methods to fit new requirements and different analytical techniques.
- Bond Elut Certify methods can be adjusted to be used with LC-MS/MS as well as GC-MS. The same Certify method can be used with both techniques.
- Bond Elut Certify is an ideal SPE product for analysis of basic drugs from biological samples with great linearity, LOD, accuracy, and precision.
- Many application notes are available in Certify Methods Manual.

Additional Resources and Application Support

 Bond Elut Certify Methods Manual: http://www.chem.agilent.com/Library/brochures/Bond%20Elut%20Certify%20MethodsManual.pdf

• Bond Elut Certify Video: <a href="http://www.chem.agilent.com/en-US/products-services/Columns-Sample-Preparation/Sample-Preparation/Solid-Phase-Extraction-(SPE)/Bond-Elut-Certify/Pages/certifyvideo.aspx

 Application note 5991-4695EN: http://www.chem.agilent.com/Library/applications/5991-4695EN.pdf

Application note 5991-4575EN:
 http://www.chem.agilent.com/Library/applications/5991-4575EN.pdf

Agilent Sample Preparation Products Technical Support Contact Information*

Phone: 800-227-9770, Options 3, 3, 3

Email: spp-support@agilent.com

* North America

Acknowledgements

Agilent applications chemists, product managers, and technical support personnel who contributed to this presentation

Questions?

