Troubleshooting
Symptoms and Solutions

Daron Decker
Chromatography Technical Specialist
Troubleshooting Tips

1. Isolate the problem.
 (Blank Runs, Inject Un-retained Compound, Know what it is not)

2. Change only one variable at a time.

3. Compare before/after chromatograms.
 (Peak shape, response, retention, baseline rise, background, look for trends, etc.)
Symptoms and Reasons (Cheat Sheet)

Solution = Get Rid of the Reason

- Peak Tailing – Flow Path or Activity
- Bonus Peaks – In Sample or Back Flash (Carry Over)
- Split Peaks – Injector Problems, Mixed Solvent, Cold Spots
- Broad Peaks – Injection Problems, Temperature/Flow, Solubility Problems
- No Peaks – Wasn’t Introduced, Wasn’t Detected
- Response Changes – Activity, Injector Discrimination, Detector Problem
- Peak Fronting – Overload or Solubility Mismatch, Injector Problems
- Shifting Retention – Leaks, Column Aging, Contamination or Damage
- Loss of Resolution – Separation Decreasing, Peak Broadening
- Baseline Disturbances – Column Bleed, Contamination, Electronics
- Noisy or Spiking Baseline – Electronics or Contaminated Detector
- Quantitation Problems – Activity, Injector or Detector Problems
Peak Tailing

INJECTOR or COLUMN is Active
- Reversible adsorption of active compounds
 (-OH, -NH, -SH)

FLOW problem
- dead volume, obstruction, poor installation, or severe column contamination

Miscellaneous – temperature issues for late eluters, overloading of PLOT columns, co-elution, polarity mismatch between phase, solute or solvent, and some compounds always tail

*Tip = Inject a light hydrocarbon, should not tail unless flow path problem.
Symptom – Tailing of Active Compounds

Sample: 0.5 ng on column loading with ISTD
Column: 20m 0.18mm 0.18µm
Carrier: Helium 37cm/sec, Ramped flow; 0.7ml/min (0.1min) to 1.3ml/min (15ml/min²)
Oven: 35°C (2.5 min) to 80°C (40°C/min), 15°C/min to 200°C, 8°C/min to 275°C (2 min)
Injection: 0.5µl, Splitless, 280°C, purge flow 30ml/min at 0.75 min
MSD: Transfer Line 290°C, Source 300°C, Quad 180°C

1. n-Nitrosodimethylamine
2. Aniline
3. 1,4-Dichlorobenzene-d4
4. Benzoic Acid
5. Naphthalene-d8
6. Acenaphthene-d10
7. 2,4-Dinitrophenol
8. 4-Nitrophenol
9. 2-Me-4,6-dinitrophenol
10. 4-Aminobiphenyl
11. Pentachlorophenol
12. Phenanthrene-d10
13. Benzidine
14. Chrysene-d12
15. 3,3'-Dichlorobenzidine
16. Benzo[b]fluoranthene
17. Benzo[k]fluoranthene
18. Perylene-d12
Solution – Ultra Inert GC Column

Sample: 0.5 ng on column loading with ISTD
Column: 20m 0.18mm 0.18µm
Carrier: Helium 37cm/sec, Ramped flow; 0.7ml/min (0.1min) to 1.3ml/min (15ml/min²)
Oven: 35°C (2.5 min) to 80°C (40°C/min), 15°C/min to 200°C, 8°C/min to 275°C (2 min)
Injection: 0.5µl, Splitless, 280°C, purge flow 30ml/min at 0.75 min
MSD: Transfer Line 290°C, Source 300°C, Quad 180°C

1. n-Nitrosodimethylamine
2. Aniline
3. 1,4-Dichlorobenzene-d4
4. Benzoic Acid
5. Naphthalene-d8
6. Acenaphthene-d10
7. 2,4-Dinitrophenol
8. 4-Nitrophenol
9. 2-Me-4,6-dinitrophenol
10. 4-Aminobiphenyl
11. Pentachlorophenol
12. Phenanthrene-d10
13. Benzidine
14. Chrysene-d12
15. 3,3'-Dichlorobenzidine
16. Benzo[b]fluoranthene
17. Benzo[k]fluoranthene
18. Perylene-d12
Symptom - Tailing is Worse as Retention Increases

PAHs

Column:
- J&W P/N: 123-1522
- Test Temperature:
 - 80°C for 0.8 min
 - 80-325°C at 15°C/min
 - 325°C for 2 min
- Carrier Gas: Helium at 40 cm/sec
- Injector: Splitless, purge on at .8 min, 300°C
- Liner: Focus liner (w/glasswool)
- Detector:
 - Transfer line 325°C
 - Source 200°C
 - Quad 150°C

DB-1ms
- 30 m x 0.25 mm I.D., 0.25 µm
Solution - Increase Injector Temperature

From 300°C to 350°C

Oven: 80°C for 0.8 min, 80-325°C at 15°C/min, 325°C for 2 min
Carrier Gas: Helium at 40 cm/sec
Solution - Increase Detector Temperatures

Transfer line: remains 325°C
Source: from 200°C to 250°C
Quad: from 150°C to 200°C

Oven: 80°C for 0.8 min, 80-325°C at 15°/min, 325°C for 2 min
Carrier Gas: Helium at 40 cm/sec
Bonus Peaks or Ghost Peaks

Contamination in INJECTOR or FLOW (carrier gas)
- Contaminated consumables
- Carryover from a backflash or previous sample
- Bad tank of gas or traps have expired
- Septum bleed

*TIP = Run a blank run…it should be blank!
Symptom – Bonus Peaks in Blank Run (MSD spectra says siloxanes)

Column: HP 5MS
30mx0.25mmx0.25um

Oven:
80 to 160C at 25 C/min,
160 to 320 C at 3 C/min(4),
320 to 325 C at 20C/min(4)

Injection: split 100:1; 1ul of 100ng/ul

Detector: MSD (HP-5973)
run at max sensitivity- full scan

Peak height approx. equiv. to 5 ppb of PAH
(actually impurities)
Solution – Change Septum

Septa Bleed vs Column Bleed (MSD)

Source of peaks from outside of the column *ELIMINATED*

- **Columns:** HP 5 MS
 - 30mx0.25mmx0.25um
- **Oven:** 80 to 160 C at 25 C/min,
 - 160 to 320 C at 3 C/min(4)
 - 320 to 325 C at 20C/min(4)
- **Injection:** split 100:1; 1ul of 100ng/ul
- **Detector:** MSD (HP-5973)
 - Run at max sensitivity- full scan

HP Advanced Green Septa
- P/N 5183-4594 (11 mm)
Affect of Column Dimensions/Phase Type on Bleed

- **DB-624 30M x .53mm I.D., 3.0µm**
 - 24 pA / 260°C

- **DB-1 30m x .32mm I.D., .25µm**
 - 12 pA / 320°C
Symptom – Bonus Peaks in Blank Runs (Contaminated Vial Inserts from Plastic Bag)
Solution - Rinse Insert with Hexane
Symptom - Bonus Peaks (Ferrule Contamination)

Solution – Agilent Ferrules in Touchless Packaging
Symptom - Bonus Peaks (O-Ring Contamination)

Head Space Analysis
Vial equilibrium time: 60 minutes
Vial equilibrium temperature: 150°C

Solution – Agilent Non-Stick O-Ring in Touchless Packaging
“Touchless” Packaging is the Future
Split Peaks

INJECTOR (poor sample introduction)
- Injecting the sample twice (some how?)
- Mixed sample solvent (polarity difference)
- Sample in syringe needle (manual inject)

INJECTOR (activity)
- Breakdown (not really a split peak, 2 peaks)
- Sample degradation in injector

VOLATILITY
- High boilers dropping out on Cold Spots
- Transfer line temps
- Unions or fittings not tracking column temp
Symptom – Split Peaks After Installation

PAH’s in Toluene

Column: DB-1ms
30 m x 0.25 mm I.D., 0.25 µm

J&W P/N: 123-1522
Test Temperature: 80°C for 0.8 min
80-325°C at 15°/min
325°C for 2 min

Carrier Gas: Helium at 40 cm/sec
Injector: Splitless, purge on at .8 min, 300°C
Detector: Transfer line 325°C
Source 200°C
Quad 150°C

1. Phenanthrene
2. Anthracene
3. Fluoranthene
4. Pyrene
5. Benzo(a)anthracene
6. Chrysene
7. Benzo(b)fluoranthene
8. Benzo(k)fluoranthene
9. Benzo(a)pyrene
10. Dibenz(a,h)anthracene
11. Benzo(g,h,i)perylene
Solution – Re-install and Optimize Oven Conditions

Oven: 100°C for 0.8 min, 100-325°C at 15°C/min, 325°C for 2 min
Carrier Gas: Helium at 40 cm/sec
Broad Peaks (peak distortion)

INJECTOR
- Poor Installation
- Change in injection solvent
- Change in settings (temps/flows)
- Poor sample focusing
- Large change in sample concentration
- Breakdown or adsorption

FLOW
- Change in gas velocity
- Constant Flow vs Constant Pressure

COLUMN
- Contamination
- Damaged/old stationary phase
- Breakdown or adsorption
- Reverse Solvent Effect
Influence of Injection Efficiency

Short Concentrated

Long Diffuse

Solute Bands

Same column, same chromatographic conditions
Splitless Injection
Reverse Solvent Effect

DB-1, 15 m x 0.25 mm I.D., 0.25 µm
50°C for 1 min, 50-210°C at 20°/min; Helium at 30 cm/sec
1. 1,3-DCP 2. 3-hexanol 3. butyl acetate 4. 1-heptanol 5. 3-octanone 6. 1,2-dichlorobenzene
Retention Gap
Also Called A Guard Column

Usually 2-10 meters long and same diameter as the column (or larger if needed)
Fixing the Reverse Solvent Effect
3 m x 0.25 mm I.D. Retention Gap

Hexane

Methanol

DB-1, 15 m x 0.25 mm I.D., 0.25 µm
50°C for 1 min, 50-210°C at 20°/min; Helium at 30 cm/sec
1. 1,3-DCP 2. 3-hexanol 3. butyl acetate 4. 1-heptanol 5. 3-octanone 6. 1,2-dichlorobenzene
Ultimate Union and Retention Gap
No Peaks

DETECTOR (not on or not operational)

INJECTOR (not working)

- Plugged syringe/plunger not moving

- Wrong injector (or detector)

- Huge leak/no carrier gas flow (older systems)

NOT the COLUMN Unless…

- Broken column

- No column
Symptom – No Peaks
Peak Response
All Change in Size

INJECTOR
- Leaky syringe
- Split ratio set incorrectly
- Wrong purge activation time
- Septum purge flow too high
- Injector temperature too low*

DETECTOR (response problem)
- Settings or flows changed
- Electronics failing

*Tip = Ask is it all of them or some of them, if all then injector or detector
Response Changes with Inlet Conditions
Multimode Injection LVI of Triazine Herbicides

1µL Cold Splitless injection

1µL Hot Splitless injection

1, 2, 3 and 4 µL Cold splitless injections (ethyl acetate)
Compare cold to hot splitless S/N using the new Multimode Inlet on a 7890-5975 GC/MSD system

<table>
<thead>
<tr>
<th>Compound</th>
<th>RT</th>
<th>Mass</th>
<th>Cold S/N : Hot S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorene</td>
<td>11.152</td>
<td>166</td>
<td>1.36</td>
</tr>
<tr>
<td>Aldrin</td>
<td>15.205</td>
<td>66</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>263</td>
<td>1.33</td>
</tr>
<tr>
<td>Mevinphos</td>
<td>9.338</td>
<td>127</td>
<td>1.33</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>12.989</td>
<td>266</td>
<td>2.19</td>
</tr>
<tr>
<td>Endrin</td>
<td>17.600</td>
<td>263</td>
<td>1.48</td>
</tr>
<tr>
<td>p,p'-DDT</td>
<td>18.600</td>
<td>235</td>
<td>1.51</td>
</tr>
</tbody>
</table>

Most “active” compound gives largest improvement.
Response Changes with Inlet Conditions

MMI, N-nitrosodimethylamine, earliest eluter at 3.83 min

1 Hot Splitless
2 Pulsed Hot Splitless
3 Pulsed Hot Splitless with SPC
4 Hot Splitless with SPC

5 Cold Splitless
6 Pulsed Cold Splitless
7 Pulsed Cold Splitless with SPC
8 Cold Splitless with SPC

Data intentionally offset on y-axis
Response Changes with Inlet Conditions
MMI, Pentachlorophenol, 10.8 min

1 Hot Splitless
2 Pulsed Hot Splitless
3 Pulsed Hot Splitless & SPC
4 Hot Splitless & SPC
5 Cold Splitless
6 Pulsed Cold Splitless
7 Pulsed Cold Splitless & SPC
8 Cold Splitless & SPC

Data intentionally offset on y-axis
Peak Response
Some Change in Size

- INJECTOR or COLUMN is active/contaminated
- Irreversible adsorption of active compounds (-OH, -NH, -SH)
- Decomposition of sample

*Tip = If only some change, then ask which ones? If active compounds then activity. If tracks volatility then cold spots or inlet discrimination.

OTHER
- Temperature Change – Discrimination
- Evaporation from sample
Symptom – Loss of Response of Active Compounds on SCD but not FID

Overlay of before (green) and after 2 x 2 uL neat toluene Injection (red)

1. Hydrogen Sulfide
2. Carbonyl Sulfide
3. Methyl Mercaptan
4. Ethyl Mercaptan

SCD: 10% drop in sensitivity

FID: No response changes

Data courtesy of Jim Luong, Ronda Gras, Myron Hawryluk of Dow Chemical Canada
Configuration to test SCD Quenching Issue

Inlet

Pulsed SCD 325 torr

CFT splitter

Pulsed SCD 4:5

FID 710 torr 1:5

Thick film PDMS type Column

Data courtesy of Jim Luong, Ronda Gras, Myron Hawryluk of Dow Chemical Canada
Solution - New DB-Sulfur SCD column
No Column Bleed Contamination of SCD

Data courtesy of Jim Luong, Ronda Gras, Myron Hawryluk of Dow Chemical Canada
Peak Fronting
Shark Fin Shaped or Just Slight

COLUMN (contaminated)
- Overload (More pronounced with large solute and phase polarity differences)

INJECTOR
- Poor efficiency (flow/temp)
- Column installation
- Compound very soluble in injection solvent (need retention gap)
- Mixed sample solvent

OTHER
- Co-elution
- Breakdown
Symptom – Fronting/Discrimination of Later Eluters

Column: DB-1
30 m x 0.45 mm I.D., 0.42 µm
J&W P/N: 124-1037
Oven: 35°C for 4 min
35-320°C at 10°C/min
320°C for 5 min
Carrier Gas: Helium at 9.5 mL/min
Injector: Megabore Direct, 300°C
.5 µL of C₈ - C₄₀ 500 ppm in CS₂/MeCl₂ mix 3:1
Detector: 320°C, FID

Detector: 320°C, FID
Solution - Large Glass Wool Plug Added to Liner

- Larger hot surface area
- Better transfer of thermal energy
- More efficient vaporization and transfer of later eluters
Retention Time Shift

INJECTOR
- Change in injection solvent
- Large change in sample concentration

FLOW
- Leak in the septum
- Change in gas velocity

COLUMN
- Contamination
- Damaged stationary phase
- Loss of stationary phase
- Change in temperature
Under constant pressure conditions, flow decreases as temperature increases. (viscosity of a gas increases as temperature increases)
Gas Viscosity vs Temperature

J.V. Hinshaw, Column Connections, LCGC Asia Pacific, 12(2), 1100 (2009).
Symptom - Retention Times Shift 4-5 sec

Fish Oil Sample - Overlay of first 10 runs
GC-FID Chromatogram of Fish Oil

1-µL splitless injection of 10% fish oil
GC oven was held at 290 °C for 30 min at the end of the run.
Fish Oil Sample Preparation is “Dilute and Shoot”

- Dilute 1:10 with isooctane
- Transfer to 2 mL vial
- Add ISTD
Two Blank Runs

GC oven temperature held at 320 °C for 30 minutes at end of each run

1st blank run

2nd blank run
Solution - Get High M.W. Fish Oil Off the Column After Every Run = No More Shifting Retention

Retention Time Precision with Backflushing
Overlay of 10 Runs
Post-Column Backflush

Injector

Detector

Transfer Line

Column

Purged Ultimate Union
Mid-Column Backflush

Injector

Front Half

Column

Purged Ultimate Union

Back Half

Detector
Without Backflush: **A Serious Problem**

Overlay of two chromatograms of a blank extract injected BEFORE (A) and AFTER (B) three injections without backflush.

Data provided by MSD user in Almeria, Spain.

After **only 3 10-µL injections**, the background is significantly higher (increase chemical noise is every spectrum).

Abundance

- A: TIC: lettuce_blank.D\data.ms
- B: TIC: lettuce_blank3.D\data.ms

Time

- 0
- 2000000
- 4000000
- 6000000
- 8000000
- 1e+07
- 1.2e+07
- 1.4e+07
- 1.6e+07
- 1.8e+07
- 2e+07
- 2.2e+07
- 2.4e+07
- 2.6e+07
- 2.8e+07
- 3e+07
- 3.2e+07
- 3.4e+07
- 3.6e+07
- 3.8e+07
- 4e+07
- 4.2e+07
- 4.4e+07
- 4.6e+07

Overlay of two chromatograms of a blank extract injected BEFORE (A) and AFTER (B) three injections without backflush.
With Backflush: **No Increased Background (Less Spectral Noise) and Consistent Retention Times**

Data provided by user in Almeria, Spain

Stable retention times and baseline . . . less chemical noise

Overlay of three chromatograms of lettuce extract run with 2 min of back flush
Resolution is a function of separation and peak width
Loss of Resolution - Separation Decrease

COLUMN
- Different column temperature
- Contamination (more phase?)
- Matrix components co-eluting
- Different column phase?

Separation

Peak Width
Loss of Resolution - Peak Broadening

FLOW
- Change in carrier gas velocity
- Make-up gas

COLUMN
- Contamination
- Phase degradation

INJECTOR (efficiency)
- Settings, Liner, Installation, etc.
Baseline Disturbances
Sudden Changes, Wandering, or Drifting

WANDER

COLUMN or DETECTOR
- Not fully conditioned or stabilized (electronics)
- Contamination

FLOW
- Changes in carrier and/or detector gas flows
- Valves switching, leaks

DRIFT
Noisy Baseline

MILD

FLOW
- Contaminated gas
- Incorrect detector settings

COLUMN
- Bleed if at high temperature
- In detector flame (poor installation)

SEVERE

FLOW

DETECTOR
- Air leak - ECD, TCD
- Electronics malfunction
Symptom - Noisy Baseline Even at Low Temps

6890/5973 GC/MS
DB-624 20m x 0.18mm, 1.0um film.
Oven: 45C, 18C/min. to 190C
Inlet: 225C, Split 150:1, 2uL methanol
Headspace autosampler injection yields same results.

Gas supplier admitted they had contaminated helium tanks with argon.

Solution – Use Clean Gases
Spiking Baseline

DETECTOR
- Particles entering the detector
- Random: poor connection
- Regular: nearby "cycling" equipment (electronics)
Symptom – Spiking Baseline with PLOT Columns

- Temperature: 150°C + 20°C/min → 250°C; 15 times
- Pressure 3x optimum
- Each run switch off/on carrier gas 10 times

The unusual “chromatogram” shows the detector signal profile of the temp and pressure cycling

Solution – Integrated Particle Traps
NEW Integrated Particle Trap PLOT Column

2.5 meter integrated particle traps on both ends virtually eliminates the classical particle shedding problem of porous polymer PLOT columns

- No unions and fittings
- Compatible with capillary GC, GC/MS and valve switching GC systems, including Capillary Flow Technology (CFT)
- Very similar selectivity, plates and peak shape performance to existing Agilent porous polymer PLOT columns
- Another Agilent first
The Column and Integrated Particle Trap
No spikes at Fixed Gases Analysis on CP-Molsieve 5Å PLOT PT column

CP-Molsieve 5Å, 25m × 0.53mm, 50μm (30m total length)
Carrier: H2, 3mL/min
Oven: 80°C isothermal
Injection: 70°C, split ratio 5:1
Detector: TCD, 250°C
Sample: 100μL

CP-Molsieve 5Å showing spikes when particle traps are removed (Red trace). No spikes with manufacturer integrated particle trap (Blue Trace).
Quantitation Problems

DETECTOR
- Poor stability (electronics) or Baseline disturbances (contamination)
- Outside detector's linear range or wrong settings

Activity (adsorption) in INJECTOR or COLUMN

INJECTOR
- Technique, settings, conditions
- Syringe worn

OTHER
- Co-elution
- Matrix effects
- Sample evaporation – leaky vials
- Sample decomposition
Troubleshooting Tips

1. Isolate the problem.
 (Blank Runs, Inject Un-retained Compound, Know what it is not)

2. Change only one variable at a time.

3. Compare before/after chromatograms.
 (Peak shape, response, retention, baseline rise, background, look for trends, etc.)

TECHNICAL SUPPORT

1-800-227-9770, #3

1-972-699-6423 (Daron)
1-866-912-6701 (toll free)

E-mail:
Daron_Decker@Agilent.com