Development of Analysis Methods for Therapeutic Monoclonal Antibodies Using Innovative Superficially Porous Particle Biocolumns

Anne Blackwell
Bio Columns Product Support Scientist

Suresh Babu
Senior Application Scientist

Agilent BioHPLC Columns
Outline of Talk

• Introduction – mAbs, Characterization
• Workflow Solutions
• Reversed-Phase Challenges
• RP Method Development/Optimization
• mAb Intact and Fragment Solutions
• Summary
Critical Quality Attributes and Analytical Methods

- Pyro- Glutamate Deamidation/Oxidation
- Fragmentation (Hinge)
- Glycosylation (G0, G1, G2)
- Truncation (Lys 0, 1, 2)
- Disulfide Shuffling

Analytical Methods:
- HILIC
- SEC
- RP
- IEX

For Research Use Only. Not for use in diagnostic procedures.
Comprehensive Portfolio of Analytical Instrumentation & Solutions for Biopharma & Biosimilars

Discovery > Development > QA/QC

Glycans
- CE/LIF/MS, CE/MS
- LC/FLD, LC/MS

Aggregation
- LC/UV Size Exclusion
- CE/UV Field-flow fractionation

Molecular Weight Determination
- CE/SDS-PAGE, CE/MS
- Microfluidic SDS-PAGE
- LC/UV or LC/MS

Charge Variants
- IEF analyzer (iCE 280)
- CE (cIEF), CE/MS
- Bio-LC/UV Ion Exchange

Peptide Mapping
- LC/UV LC/MS
- CE/UV, CE/MS

Oxidation
- CE/MS
- LC/UV LC/MS
- HIC and RP

Amino Acids
- LC/UV LC/MS
- CE, CE/MS

Protein PEGylation
- LC/UV SEC / Cation Exchange
- Microfluidic SDS-PAGE

For Research Use Only. Not for use in diagnostic procedures.
Characterization of Monoclonal Antibodies

- Titer determination and purification
 - Affinity Chromatography

- Protein identification and impurity profiling
 - Reversed-phase chromatography (RP)

- Glycan analysis
 - Hydrophilic interaction chromatography (HILIC)

- Charge variant analysis
 - Ion exchange chromatography (IEX)

- Aggregation analysis
 - Size exclusion chromatography (SEC)

For Research Use Only. Not for use in diagnostic procedures.
Agilent Bio-LC Column Portfolio

Reversed-Phase Columns: mAb Characterization

AdvanceBio RP mAb
Primary Structure Characterization Workflows

- **Intact mAb**
 - LC/MS

- **Reduction / alkylation**
 - Heavy / Light Chains
 - LC/MS, LC/UV

- **Enzymatic digestion**
 - Fab / Fc Regions
 - LC/MS, LC/UV

- **Enzymatic digestion**
 - Peptides
 - LC/UV

For Research Use Only. Not for use in diagnostic procedures.
The Challenges

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Disadvantage</th>
<th>Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insufficient Resolution</td>
<td>Poor accuracy and precision for results</td>
<td>Lack of confidence in analysis results</td>
</tr>
<tr>
<td>Long analysis times</td>
<td>Low number of samples run per day</td>
<td>Low throughput</td>
</tr>
<tr>
<td>Short column lifetimes</td>
<td>Must purchase new columns often</td>
<td>Poor use of resources</td>
</tr>
<tr>
<td>Method transfer to multiple columns</td>
<td>Different columns for UV and MS</td>
<td>Time consuming</td>
</tr>
</tbody>
</table>
Particle
- 3.5 μm SP particle
- 0.25 μm porous layer depth
- 450Å pore diameter

Bonded Phases
- C4
- SB-C8
- Diphenyl

The optimum large molecule resolution for use with both HPLC and UHPLC systems

The most popular phases for proteins, plus a unique selectivity
Method Development: Factors Affecting the Protein Separation

AdvanceBio RP-mAb

- Column packing (silica type and bonded phase)
- Column dimension
- Mobile phase
- Column temperature
- Linear velocity
- Gradient profile
- Sample
Choose The Initial Bonded Phase: C18, C8, C4

Buy Them All and Try Them All.....

Not really feasible, right?
How do you narrow it down?
Selection of Bonded Phase:

<table>
<thead>
<tr>
<th>Application</th>
<th>RP column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peptides and proteins, < 5000 MW</td>
<td>C18</td>
</tr>
<tr>
<td>Hydrophobic polypeptides and proteins, Antibodies, > 5000 MW</td>
<td>C8</td>
</tr>
<tr>
<td>Larger, hydrophobic peptides and proteins, Antibodies, > 5000 MW</td>
<td>C4</td>
</tr>
<tr>
<td>Proteins with aromatic sidechains, Antibodies, Fusion proteins, > 5000 MW</td>
<td>Diphenyl</td>
</tr>
</tbody>
</table>

Increasing protein size and hydrophobicity

C18 C8 C4 Diphenyl

For Research Use Only. Not for use in diagnostic procedures.
Pore size

- Generally speaking, the “go to” pore size for most protein applications using RP is > 300Å.

≤ 4000 MW → Use smaller pore size columns to maximize loading capacity and retention

4000 – 500,000 MW → Use > 300Å pore columns to maintain high efficiency. Increase column diameter to increase loading capacity
Mobile phase

- In order of increasing eluotropic force and decreasing polarity: Water, Methanol, Acetonitrile, isopropanol, THF
 - Acetonitrile: Low UV Cutoff, 190 nm
 - Volatile
 - Good solubilization, denaturant

- Selectivity differences and sample retention will vary significantly between mobile phases

- pH and ionic strength of the aqueous portion of mobile phases are important in developing rugged methods

- It is very important to control pH to stabilize retention and selectivity

- % of organic solvent – there is a pressure maximum and minimum for organic:aqueous mobile phases and it differs depending on the organic

- Use solvents that are compatible with the shipping solvent
Ion-pairing agent

TFA

- Most common ion pairing agent for reversed-phase analysis
- Low UV absorbance
- Volatile
- Good solubilization, denaturant
- Acidic - improves peak shape
- Mild anionic ion pair - more retention of Lys, other free amines

TFA / Water : TFA / ACN mobile phase

- Low pH (0.1% TFA, pH ≈ 1.9) suppresses silanol interactions
- Relatively low viscosity - high efficiency, low pressure

If LC/MS is used, can substitute Formic or Acetic acid
Column Temperature

- Higher column temperature can dramatically improve resolution and recovery
- Column temperature can be used to fine tune a separation by affecting both the retention k and selectivity α
- Check manufacturer specs for compatibility
- Agilent AdvanceBio RP-mAb columns are rated to 90 °C

- About a 1% increase in T leads to a 1 to 2% decrease in k.
- Increase in T leads to decrease in pressure due to decrease in mobile phase viscosity.
- Increase in T also leads to decrease in peak widths.
- Also, use of a thermostat column compartment improves retention time precision.
Impact of Column Temperature on Intact mAb Analysis

AdvanceBio RP-mAb

80 °C
70 °C
60 °C
50 °C
40 °C

• Temperature has a significant impact on run time, peak shape and recovery.

• Higher temperatures better with optimum at ~ 80 °C for this example

AdvanceBio RP-mAb SB-C4, 2.1 x 100 mm

For Research Use Only. Not for use in diagnostic procedures.
Impact of Temperature on mAb Fragment Analysis

AdvanceBio RP-mAb

- High resolution separation of different variant peaks at higher temperature

AdvanceBio RP-mAb C4, 4.6 x 50 mm
The smaller the plate height, the higher the plate number and the greater the chromatographic resolution
Linear Velocity/Flow Rate

- Key Chromatographic Parameters Affected by Flow Rate
 - Resolution
 - Efficiency
 - Peak shape
 - Pressure

- Shorten analysis time by:
 - Reduced column length
 - Increase flow rate
Impact of Linear Velocity on Intact mAb Analysis

AdvanceBio RP-mAb

- Linear velocity has an impact on peak shape and resolution
- Higher velocities better with optimum at ~ 1mL/min for 2.1 mm id for this example

AdvanceBio RP-mAb SB-C4, 2.1 x 100 mm
Impact of Linear Velocity on mAb Fragment Analysis

AdvanceBio RP-mAb

- Linear velocity has strong impact on resolution.
- Higher velocities better with optimum at ~ 1 mL/min for 2.1 mm id for this example

AdvanceBio RP-mAb SB-C8, 2.1 x 100 mm
Gradient Slope

- Gradient steepness affects retention (k^*) and resolution.

- Adjust gradient slope to optimize resolution - accomplished by changing:
 - gradient time t_G (most common way to change gradient steepness)
 - % change in organic modifier over time
Impact of Gradient Profile on mAb Fragment Analysis

AdvanceBio RP-mAb

• Gradient profile has impact on selectivity and resolution

• Steeper gradient better with optimum 5 – 50% for this example

AdvanceBio RP-mAb SB-C8, 2.1 x 100 mm
Column Robustness

- High Reproducibility
- Low Carry-over
- Long Column Lifetime
Reproducibility
AdvanceBio RP-mAb

- Injection to injection repeatability supports consistent column performance

<table>
<thead>
<tr>
<th>Analysis of intact mAb</th>
<th>Average</th>
<th>%RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>4.5404</td>
<td>0.09</td>
</tr>
<tr>
<td>Area</td>
<td>4521.294</td>
<td>0.09</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>4.8494</td>
<td>0.05</td>
</tr>
<tr>
<td>Area</td>
<td>158.43</td>
<td>0.80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis of reduced mAb</th>
<th>Average</th>
<th>%RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>3.234</td>
<td>0.06</td>
</tr>
<tr>
<td>Area</td>
<td>496.162</td>
<td>0.91</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>4.6574</td>
<td>0.04</td>
</tr>
<tr>
<td>Area</td>
<td>909.85</td>
<td>0.69</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>5.0118</td>
<td>0.02</td>
</tr>
<tr>
<td>Area</td>
<td>127.028</td>
<td>1.10</td>
</tr>
</tbody>
</table>

AdvanceBio RP-mAb SB-C4, 4.6 x 50 mm
No Carry-Over

AdvanceBio RP-mAb

- No protein carry-over between runs

- Injection of 3 production batches of intact mAb each followed by 1 blank injection, shows no carry-over

- Injection of 3 production batches of reduced mAb each followed by 1 blank injection shows no carry-over

AdvanceBio RP-mAb SB-C4, 4.6 x 50 mm
Long Column Lifetime
AdvanceBio RP-mAb

- Stable over 1,000 injections = 40,000 column volumes

<table>
<thead>
<tr>
<th>Peak</th>
<th>Compound</th>
<th>RT_1st Injection</th>
<th>RT_1003 Injection</th>
<th>RT change (min)</th>
<th>RT change%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ribonuclease A</td>
<td>0.957</td>
<td>0.942</td>
<td>0.015</td>
<td>1.57%</td>
</tr>
<tr>
<td>2</td>
<td>Lysozyme</td>
<td>1.872</td>
<td>1.86</td>
<td>0.012</td>
<td>0.64%</td>
</tr>
<tr>
<td>3</td>
<td>Cytochrome C</td>
<td>2.111</td>
<td>2.097</td>
<td>0.014</td>
<td>0.66%</td>
</tr>
<tr>
<td>4</td>
<td>α-Lactalbumin</td>
<td>2.909</td>
<td>2.899</td>
<td>0.014</td>
<td>0.34%</td>
</tr>
<tr>
<td>5</td>
<td>Catalase</td>
<td>3.994</td>
<td>3.981</td>
<td>0.013</td>
<td>0.33%</td>
</tr>
<tr>
<td>6</td>
<td>Carbonic Anhydrase</td>
<td>3.994</td>
<td>3.981</td>
<td>0.013</td>
<td>0.33%</td>
</tr>
</tbody>
</table>

AdvanceBio RP-mAb SB-C8

For Research Use Only. Not for use in diagnostic procedures.
Excellent Batch-to-Batch Reproducibility
AdvanceBio RP-mAb (different column batches)

• Reproducible retention time and peak shapes over 6 different column batches

Samples
1. Ribonuclease A 13.7 kDa
2. Cytochrome C 12 kDa
3. Holo-Transferrin 80 kDa
4. α-Lactalbumin 14.2 kDa
5. Catalase 240 kDa
6. Carbonic Anhydrase 29 kDa

AdvanceBio RP-mAb SB-C4, 2.1 x 100 mm
Fast Intact mAb Analysis

AdvanceBio RP-mAb

- AdvanceBio RP-mAb C4 provides a sharp peak and resolves fine detail in less than two minutes
- AdvanceBio RP-mAb Diphenyl resolves additional fine detail - the Diphenyl phase is unique to Agilent

All phases provides good separation of intact mAb with AdvanceBio RP-mAb Diphenyl resolves additional fine detail.

For Research Use Only. Not for use in diagnostic procedures.
Fast Intact mAb Analysis

AdvanceBio RP-mAb

- AdvanceBio RP-mAb C4 provides better resolution than protein columns from competitors.
High Resolution Separation of Intact mAb

AdvanceBio RP-mAb

- AdvanceBio RP-mAb C4 provides superior peak shape at a lower pressure than a UHPLC protein column from a competitor.
Fast & High Efficiency Separation of Intact mAb

AdvanceBio RP-mAb

- AdvanceBio RP-mAb provides superior peak shape

Width = 0.219
Width = 0.187
Width = 0.227

AdvanceBio RP-mAb C4, 450Å, 3.5 μm
AdvanceBio RP-mAb Diphenyl, 450Å, 3.5 μm
Brand A, C4, 300Å, 3.5 μm

For Research Use Only. Not for use in diagnostic procedures.
High Resolution mAb Fragments: LC/UV

AdvanceBio RP-mAb

• AdvanceBio RP-mAb provides superior peak shape and high resolution than competitor protein column

Reduced mAb

\[\text{AdvanceBio RP-mAb C4, 450Å, 3.5 μm} \]
\[\text{Brand A , C4, 300Å, 3.5 μm} \]

Rs = 2.0
Rs = 0.6
Rs = 3.4
Rs = 0.8

For Research Use Only. Not for use in diagnostic procedures.
High Resolution ADC Fragments: LC/UV

AdvanceBio RP-mAb

- Separation of different drug conjugated species

Reduced ADC

Papain digested ADC

AdvanceBio RP-mAb C4, 450Å, 3.5 μm

Brand A, C4, 300Å, 3.5 μm

ADC: Lys conjugated

For Research Use Only. Not for use in diagnostic procedures.
High Resolution ADC Fragments: LC/UV

AdvanceBio RP-mAb

- Separation of different drug conjugated species

Reduced ADC

- Lys-conjugated ADC
- Cys-conjugated ADC

For Research Use Only. Not for use in diagnostic procedures.
High Resolution mAb Fragments: LC/UV

AdvanceBio RP-mAb

- Separation of stressed-induced antibody variants

Stressed variants

- mAb
- pH stressed mAb
- Oxidized mAb

AdvanceBio RP-mAb C4, 4.6 x 50 mm
Fast, High Resolution mAb Fragment Analysis

AdvanceBio RP-mAb

- AdvanceBio RP-mAb provides superior peak shape and resolution than other columns designed for protein separations

Papain digestion

Intact

2 * Fab

Fc

AdvanceBio RP-mAb C4, 450Å, 3.5 μm

Brand A C4, 400Å, 3.4 μm

Brand B C4, 200Å, 3.6 μm

Brand C C4-30, 300Å, 2.6 μm

For Research Use Only. Not for use in diagnostic procedures.
Fast, High Resolution mAb Fragment Analysis

AdvanceBio RP-mAb

- Separation of mAb subunits with superior peak shape and resolution
Benefits of AdvanceBio RP-mAb Columns

<table>
<thead>
<tr>
<th>Pain</th>
<th>Features and Advantages</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insufficient resolution</td>
<td>Superficially porous particles of smaller particles (3.5 µm) with wide pore (450Å) increase resolution for mAb but maintain compatibility with all LC instruments</td>
<td>Improved confidence in analysis results (accuracy)</td>
</tr>
<tr>
<td>Long analysis times</td>
<td>Due to Poroshell technology, analysis time of mAb characterization has been shown to decrease significantly over fully porous particles of the same size</td>
<td>Improved throughput - reduced costs</td>
</tr>
<tr>
<td>Short column lifetime</td>
<td>Column with robust Poroshell packed bed and with 2 µm frit decreases chances of bed-collapse or inlet blockage</td>
<td>Improved resource use - reduced costs</td>
</tr>
</tbody>
</table>
Summary
AdvanceBio RP-mAb

- AdvanceBio RP-mAb columns - analyzing monoclonal antibodies for biopharma discovery, development, and QA/QC applications

- **Improved accuracy**: Superficially porous particles (3.5 μm) with wide pores (450Å) increase mAb resolution while maintaining compatibility with all LC instruments

- **Speed**: Shorter analysis times compared to columns packed with fully porous particles of the same size

- **Lower costs**: The robust Poroshell packed bed and 2 μm inlet frit extend column lifetime by helping prevent inlet blockage

- **Flexible method development**: Range of chemistries – SB-C8, C4, and Diphenyl
Q & A