Installation, Care and Maintenance of Capillary Gas Chromatography Columns

or....

"It's not what your column can do for you, but what you can do for your column"

Column Installation

"Getting off to a good start"

Column installation Procedure

- Install the column
- Leak and installation check
- Column conditioning
- Setting linear velocity or flow rate
- Bleed profile
- Test mix

Column Installation

What type of ferrule should I use?

- Graphite
- Graphite/Vespel

Cutting The Column

Gently scribe through the polyimide coating.

Do not attempt to cut the glass.

Recommended tools:

Diamond or carbide tipped pencil; or sapphire cleaving tool, ceramic wafer

Ocular

Do not use:

Scissors, file, etc.

Example of a Bad Cut

Examples of Column Cuts

Column Installation

Measuring the right distance

White out

Septa

Column Installation

How tight is tight?

Overtightened Ferrule

Column Installation

Leak Check

- Electronic leak detector
- IPA/Water
- Inject a non-retained peak

DO NOT USE SNOOP

Leak and Installation Check

Inject a non-retained compound vs DB-1

Detector	r Compound	
FID	Methane or Butane	
ECD	MeCl ₂ (headspace or diluted)	
NPD	CH ₃ CN (headspace or diluted)	
TCD	Air	
MS	Air or Butane	

The peak should be sharp and symmetrical

Non-Retained Peak Shapes

Check for: Injector or septum leak

Too low of a split ratio

Liner problem
(broken, leaking, misplaced)

Column position in injector and detector

Calculating Linear Velocity

Inject a non-retained compound and obtain the retention time:

$$\frac{L}{t_0}$$

 μ = Average linear velocity (cm/sec)
L = Column length (cm)

 t_0 = Retention time (sec)

He 35-40 cm/sec H₂ 45-60 cm/sec

 $\bar{\mu}$ is dependent on column temperature

Calculating Flow Rate

Inject a non-retained compound and obtain the retention time:

$$F = \frac{\pi r^2 L}{t_o}$$

 \overline{F} = Flow rate (mL/min)

r = Column radius (cm)

L = Column length (cm)

t_o= Retention time (sec)

F is dependent on column temperature
Measuring flow with a flow meter is often inaccurate

Column Conditioning

System must be leak free before conditioning column

Heat the column to the <u>lower</u> of:

Isothermal maximum temperature OR 20° to 30°C above highest operation temperature Temperature programming is not necessary

Stop conditioning when the stable baseline is obtained:

1 to 2 hours in most cases

Generating a Bleed Profile

Temperature program the column without an injection*

*DB-1 30m x .32mm I.D., .25 μ m Temperature program // 40°C, hold 1 min // 20°/min to 320°C, hold 10 min.

Test Mixes

Used to determine how "good" the column is

Column Performance Summary

PART NO: 1225032

COLUMN I.D. NO.: 3303121

LIQUID PHASE: DB-5

FILM THICKNESS: 0.25 μm

COLUMN DIMENSIONS:

30 m X 0.252 mm

TEMPERATURE LIMITS:

-60° C TO 325° C 350° C PROGRAM)

THEORETICAL PLATES/METER: MIN SPEC ACTUAL

PENTADECANE 3900 4389

COATING EFFICIENCY:

PENTADECANE 90.0 95.5

RETENTION INDEX: MIN SPEC MAX SPEC ACTUAL

1-UNDECANOL 1371.04 1372.04 1371.43

ACENAPHTHYLENE 1459.34 1460.34 1459.53

PEAK HEIGHT RATIO:

4-CHLOROPHENOL/ 0.83 METHYL NONANOATE

4-PROPYLANILINE/ METHYL NONANOATE 1.14

COMPOUND IDENTIFICATION	RFTFNTION TIME (R	PARTITION RATIO (k)	PFAK WIDTH (W 1/2)
1,6-HEXANEDIOL	2.51	0.9	0.019
4-CHLOROPHENOL	2.95	1.3	0.022
METHYL NONANOATE	3.21	1.5	0.022
4-PROPYLANILINE	3.81	1.9	0.026
TRIDECANE	4.20	2.2	0.027
1-UNDECANOL	5.52	3.3	0.036
ACENAPHTHYLENE	8.00	5.2	0.053
PENTADECANE	9.58	6.4	0.062
Approximately 5-10 ng on column			
. 0.	1.29		

Chromatographic Performance

Test Mixture Components

<u>Compounds</u> <u>Purpose</u>

Hydrocarbons Efficiency

Retention

Alcohols Activity

FAME's, PAH's Retention

Acids Acidic Character

Bases Basic Character

Own Test Mixture

- More specific
- Selective detectors
- Actual concentrations
- No conditions or instrument changes

Break Number 1

- For Questions and Answers
- Press *1 on Your Phone to
- Ask a Question

An Ounce of Prevention.....

Common Causes of Column Performance Degradation

- Physical damage to the polyimide coating
- Thermal damage
- Oxidation (O₂ damage)
- Chemical damage by samples
- Contamination

Physical Damage to The Polyimide Coating

Bending radius decreases with increasing tubing diameter

Avoid scratches and abrasions

 Immediate breakage does not always occur upon physical damage

Thermal Damage

Degradation of the stationary phase is increased at higher temperatures. Breakage along the polymer backbone.

Thermal Damage

What To Do If It Happens

- Disconnect column from detector
- "Bake out" overnight at isothermal limit
- Remove 10-15 cm from column end

Thermal Damage

Rapid degradation of the stationary phase caused by excessively high temperatures

Isothermal limit = Indefinite time

Programmed limit = 5-10 minutes

Temporary "column failure" below lower temperature limit

Oxidation (O2 Damage)

Oxygen in the carrier gas rapidly degrades the stationary phase. The damage is accelerated at higher temperatures. Damage along the polymer backbone is irreversible.

Oxygen Damage

What To Do If It Happens

- Rapid damage to the column
- Usually results in irreversible column damage

How to Prevent Column Damage by Oxygen

High quality carrier gas (4 nine's or greater)

Leak free injector and carrier lines

Change septa

Maintain gas regulator fittings

Appropriate impurity traps

Configurations for Carrier Gas Purifiers

High Capacity Oxygen Trap

Indicating Oxygen Trap

Configurations for Carrier Gas Purifiers

Chemical Damage

Bonded and cross-linked columns have excellent chemical resistance except for inorganic acids and bases

HCI
$$NH_3$$
 KOH NaOH H_2SO_4 H_3PO_4 HF etc.

Chemical damage will be evident by excessive bleed, lack of inertness or loss of resolution/retention

Chemical Damage

What To Do If It Happens

- Remove 1/2 1 meter from the front of the columns
- Severe cases may require removal of up to 5 meters

What is Normal Column Bleed

Normal background signal generated by the elution of normal degradation products of the column stationary phase

Column Bleed is Influenced by:

Mass Spectrum of Phenylmethylpolysiloxane Column Bleed (Normal Background)

Mass spectral library search is not always accurate

What is a Bleed Problem?

An abnormal elevated baseline at high temperature

IT IS <u>NOT</u>

A high baseline at low temperature

Wandering or drifting baseline at any temperature

Discrete peaks

Break Number 2

- For Questions and Answers
- Press *1 on Your Phone to
- Ask a Question

Column Contamination

Contamination

- Fouling of GC and column by contaminants
- Mimics nearly every chromatographic problems

Symptoms of Contamination

- Poor peak shape
- Loss of separation (resolution)
- Changes in retention
- Reduced peak size
- Baseline disturbances (semi-volatiles only)

Typical Samples That Contain a Large Amount of Residues

Biological (Blood, Urine, Tissue, Plants)

Soils Foods

Waste Water Sludges

All samples contain residues!!

Other Sources of Contamination

- Septum and ferrule particles
- Gas and trap impurities
- Unknown sources (vials, syringes, etc.)

Non-Volatile Residues

Any portion of the sample that does not elute from the column or remains in the injector.

SEMI-VOLATILE RESIDUES

Any portion of the sample that elutes from the column after the current chromatographic run.

Methods to Minimize Non-Volatile Residue Problems

Sample cleanup

Packed injection port liners

Guard columns

Guard Column

The guard column is 0.5 - 10 meters of deactivated fused silica tubing with the same diameter as the analytical column. It is connected with a zero dead volume union.

Non-Volatile Contamination

What To Do If It Happens

- Do not "bake out" the column
- Front End Maintenance
 - clean or change the injector liner
 - clean the injector
 - cut off 1/2 -1 meter of the front of the column
- Turn the column around
- Solvent rinse the column
- Cut the column in half

Rinse Kit

Semi-Volatile Contamination

What To Do If It Happens

- "bake out" the column
 - Limit to 1-2 hours
 - May polymerize some contamination
 - Reduces column life
- Solvent rinse the column

Column Storage

Place septa over the ends

Return to column box

Always Remember to:

- Start with a good installation
- Maintain an oxygen free system
- Avoid physical, thermal, and chemical damage
- Take steps to prevent contamination

J&W Scientific Technical Support

800-227-9770 (phone: US & Canada)*

302-993-5304 (phone)*

* Select option 4, then option 1.

916-608-1964 (fax)

www.agilent.com/chem

Final Wrap-up e-Seminar Questions Reference Information

For your reference, the following products described during this e-Seminar are available from Agilent Technologies. Visit our web site at www.agilent.com/chem or contact your local sales office.

 Column Cutter 	5183-4620
-----------------------------------	-----------

• Flow Tracker 2000 5183-4780

Electronic Leak Detector 5182-9646

• Rinse Kit 9301-0982

Gas Purification Systems Multiple Options

Gas Purifiers
 Multiple Options

