

Filtration Approaches to Sample Preparation and Cleanup

Alexander Ucci
Application Engineer
Sample Preparation Products
spp-support@agilent.com

Today's Agenda

How does filtration work – a brief overview

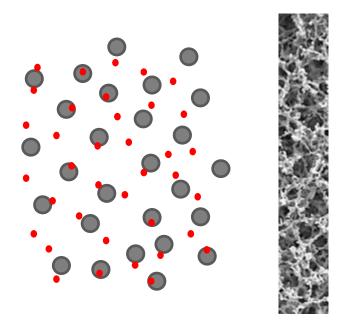
Why filter – benefits of filtration, including applications

Introduction to Agilent filtration products

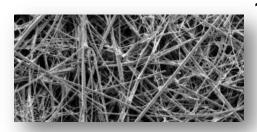
Selecting the right filtration product

Questions and wrap up

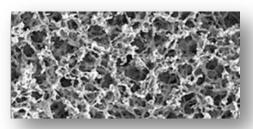
MECHANISMS OF FILTRATION: A BRIEF OVERVIEW


Filtration

Filtration – How does it work?


Filtration: separating substances based on particle size

- Solid particles in liquids (suspension)
- Insoluble droplets in liquids (emulsion)


Microfiltration

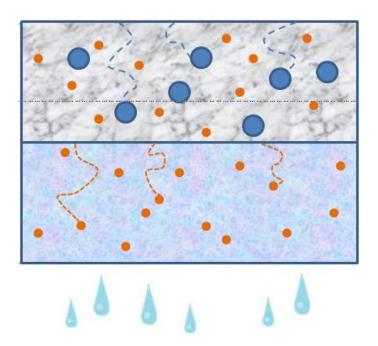
Two types of membranes

 Depth filters: for heavily particle-laden samples, ideal for pre-filtration

Glass Fiber

2. Microporous filters: high safety against breakthrough, for complete removal of particles

CA : Cellulose Acetate RC : Regenerated Cellulose

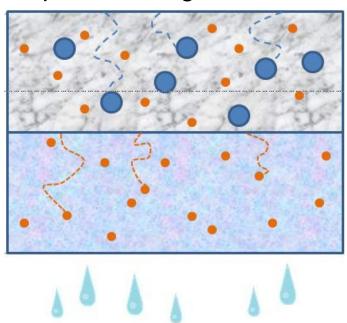

PES : Polyethersulfone PP: Polypropylene

PTFE: Polytetraflourethylene Nylon

Dual-Depth Filter

Captiva Dual-Depth Filtration

- 1) First layer is a larger-porosity membrane. It traps larger particles, which travel in non-linear path, thereby preventing clogging and creating more surface area in which to capture the particulates
- 2) The second, smaller-porosity membrane, traps smaller particles resulting in all unwanted particles being removed from sample



(Close-up of filter layers)

Mechanical Combined with Functional Filtration

Captiva ND Lipids Filtration

 Combines a depth-filter for mechanical filtration with a functional component designed to remove lipids from samples

Dual-depth filter schematic showing the differences in sizes between the two layers. A proprietary product offers a combination of mechanical and functional filtration for effective lipid removal.

WHY FILTRATION?

Filtration

Filtration and Other Sample Preparation Techniques: An Overview

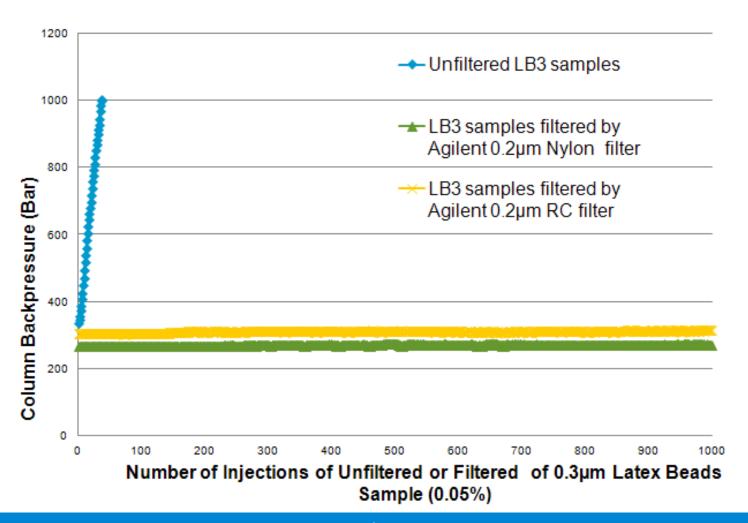
	More Speci	ific	← Ir	nstrument Sep	ificity	← Less Specific				
	Less Specific	с	→ Sample Preparation Specificity			pecificity	→	М	More Specific	
Sample Prep Technique Interference Removed	Dilute & Shoot	Filtration	Liquid/Liquid Extractions	Supported Liquid Extractions (SLE)	Dried Matrix Spotting	Precipitation filtration	QuEChERS	Precipitation- Lipid Removal 'Hybrid' Filtration	Solid Phase Extraction	
Lipids	No	No	No	Some	No	No	Yes	Yes	Yes	
Oligomeric Surfactants	No	No	No	No	No	No	No	Yes	Yes	
Particulates	No	Yes	No	Some	No	Yes	Yes	Yes	Yes	
Pigments	No	No	No	Some	No	No	Yes	No	Yes	
Polar Organic Acids	No	No	Yes	Yes	No	No	Yes	No		
Proteins	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Salts	No	No	Yes	Yes	No	No	No	No	Yes	
	Filt	ration is suc	gaested wit	h any LC or C	GC method (of sample pi	reparation			

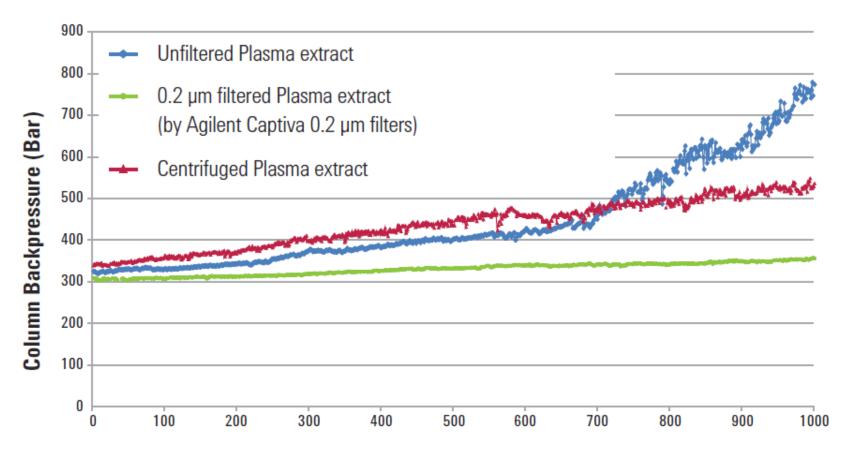
Why Filter?

Agilent recommends filtering prior to chromatographic analysis to remove particulates from the sample

Why Filter the Sample?

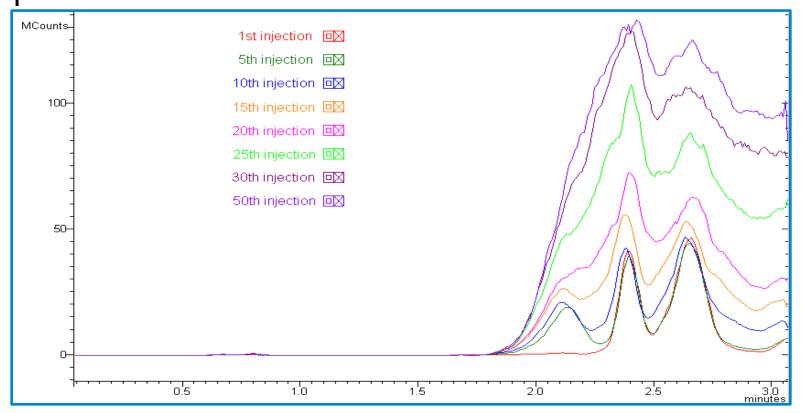
Extreme Performance Requires Better Sample "Hygiene"





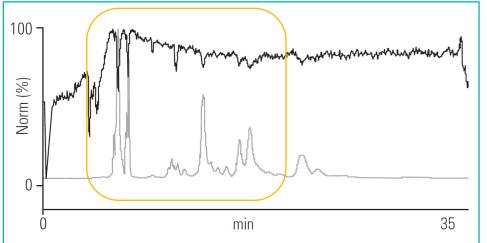
- Prevents blocking of capillaries, frits, and the column inlet (especially important for UHPLC)
- Results in less wear and tear on the critical moving parts of injection valves
- Results in less downtime of the instrument for repairs
- Produces improved analytical results by removing potentially interfering contamination
- "Functionalized" filtration can improve results over mechanical filtration by removing chemical interferences in addition to particulates

Syringe Filter Benefit: Improved sub-2-micron LC Column Lifetime – Standardized Sample


Syringe Filter Benefits: Improved sub-2 micron LC Column Lifetime – With Human Plasma Extract

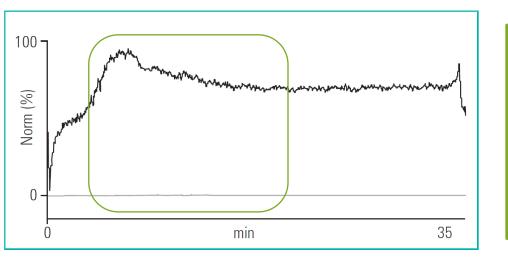
Number of Injections of Unfiltered, Centrifuged and Filtered Human Plasma PPT Extract

The Problem: Lipid Build-up and Ion Suppression in LC-MS Applications



If lipids are present in the sample and the gradient does not flush out lipids, they will build up as the injection number increases.

More lipids → ion-suppression


Functional and Mechanical Filtration Benefit: Reduced Ion Suppression by Removing Lipids

Post-column infusion of albuterol (top trace)

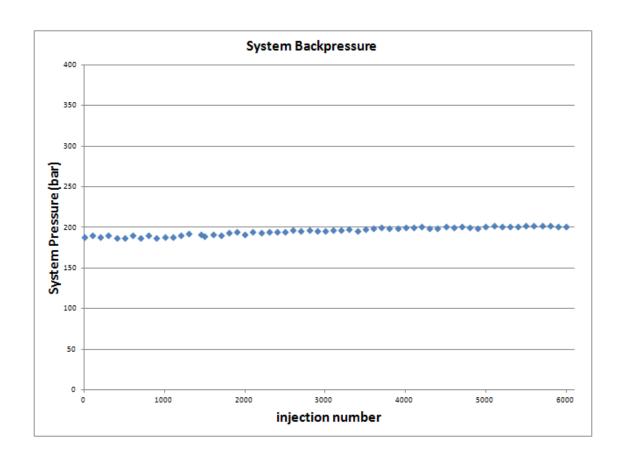
Plasma sample showing elution of phospholipids (bottom trace)

lon suppression events correspond to elution of phospholipids

Post-column infusion of albuterol (top trace)

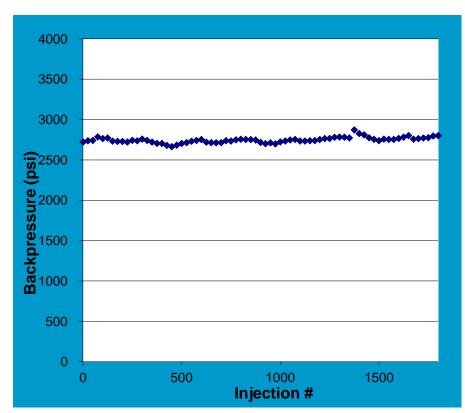
Sample prepared with Captiva ND Lipids to remove proteins, lipids, particulates (bottom trace)

Ion suppression events are nearly absent – better results


Functional and Mechanical Filtration Benefit: Reducing Backpressure Increases Over Time

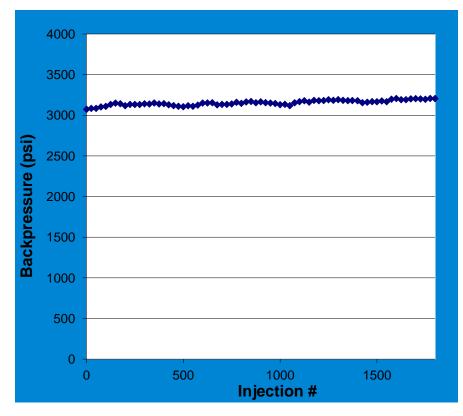
Conditions:

- 6,000 continuous injections
- Human plasma
- UHPLC instrument and column


Results:

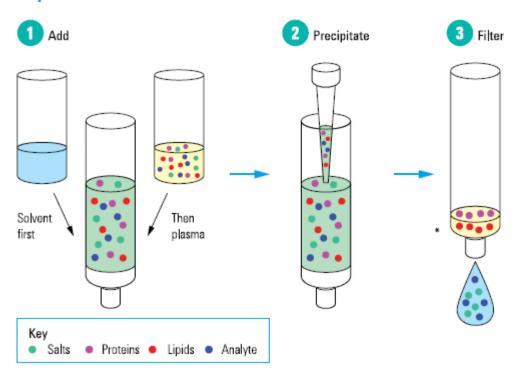
Filtration with Captiva ND Lipids led to minimal system backpressure build-up (~7% for entire 6,000 injections)

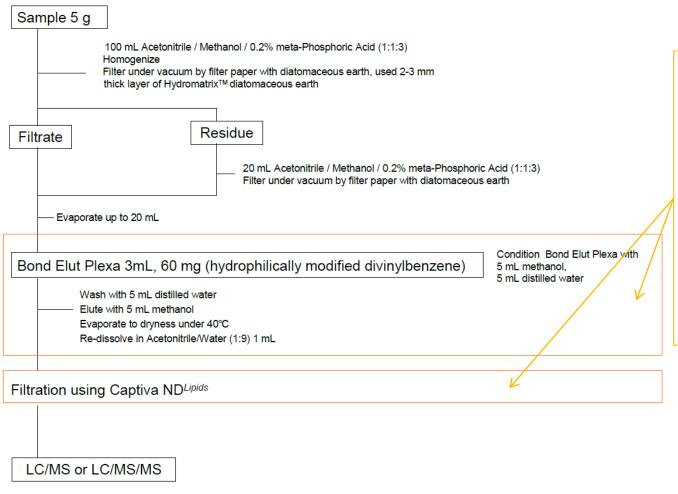
Backpressure Build-up Comparison


Captiva ND Lipids

Backpressure increase during 1800 injections was 60 psi.

→ <u>53% less backpressure increase than PPT-</u>centrifugation


PPT followed by centrifugation


- Starting backpressure is higher than Captiva ND Lipids
- Backpressure increase during 1800 injections was 92 psi.

Simple Methodology - Captiva ND Lipids

Operating Instructions and tips for Captiva ND^{Lipids} 96 -Well Plates

Filtration Benefit: Pair Filtration with Other Sample Preparation Approaches to Improve Results

5 g of animal samples analyzed for veterinary drugs using a multi-step approach to sample cleanup incorporated classical SPE with functional/mechanical filtration (Captiva ND Lipids) for improved results

Filtration Plus SPE – Improved Results and Cleaner

Samples

Milk

Without

Without Captiva

Filtered by

Fish (baked Eel)

Without

Fish (Yellowtail)

Without

Filtered by Captiva ND^{Lipids}

Sample clarity comparison – with and without Captiva ND Lipid filtration

Retentio Captiva Captiva Captiva Captiva Captiva Captiva Captiva Captiva Veterinary Drug 8.88 92.6 Sulfapyridine 9.53 67.9 74.3 75.8 94.9 96.0 38.2 60.5 9.60 76.5 89.0 91.9 103.3 99.3 Sulfachlorpyridazine 9.70 70.0 87.0 9.74 85.4 83.6 94.8 Sulfamethoxypyridazine 10.32 66.0 85.1 68.4 86.5 23.7 80.0 22.3 88.4 154.5 117.1 72.3 135. 32.7 101.2 10.55 71.7 97.6 87 32.0 Sulfadovine 10.66 85.3 79.9 96.8 11.20 66.4 89.3 81.1 31.3 88.1 26.8 11.24 68.0 79.1 72.8 90.8 92.8 21.8 5-Propvisulfonvi-1 Henzimidazole-2-amine 12.73 70.8 12.83 69.9 82.2 24.8 9.2 8.7 49.5 16.8 12.87 54.1 87.5 82.7 108.1 104.4 12.99 58.4 69.2 48.1 78.7 22.5 66.2 20.9 33.3 Trimethoprim 13.02 61.0 85.9 86.4 99.3 38.5 95.1 39.3 63. 13,70 56.2 82.6 75.0 88.9 90.3 27.1 54.2 16.10 56.3 72.6 38.5 81.9 20.9 21.1 Thiabendazol 16.19 37.7 56.5 39.5 17.5 53.4 12.1 76.4 78.6 17.8 38.0 16.48 55.3 49.0 28.9 70.9 19.91 17.8 33.2 11.3 6.0 17.8 9.0 19.2 beta-Trenbolon 20.39 30.6 19.5 34.7 10.0 28.6 9.6 21.2 20.60 31.5 61.0 22.8 50.1 14.3 38.7 21.2 43.9 62.6 86.4 90.5 15.2 Melengestrol Acetate 23 00 35.6 24.4 55.3 Average Improvement 21.5% Eel Pork

Pork

Without

Filtered by

Filtered by

Adding the functionalized filtration step improves recoveries dramatically

Recovery as % response versus neat standard in 10% Acetonitrile (10ppb level), n=6.

Key: 0 - 30% 30 - 70% 70 - 120% > 120%

Filtration Benefits – Summary

- Filtration produces improved analytical results by removing potentially interfering contamination
- Functional filtration can improve results over mechanical filtration by removing chemical interferences in addition to particulates
- Protecting the instrument and maximizing analytical performance and uptime is straightforward with both mechanical and functional filtration approaches

FILTRATION OPTIONS

Filtration

Agilent Captiva Filtration Products:

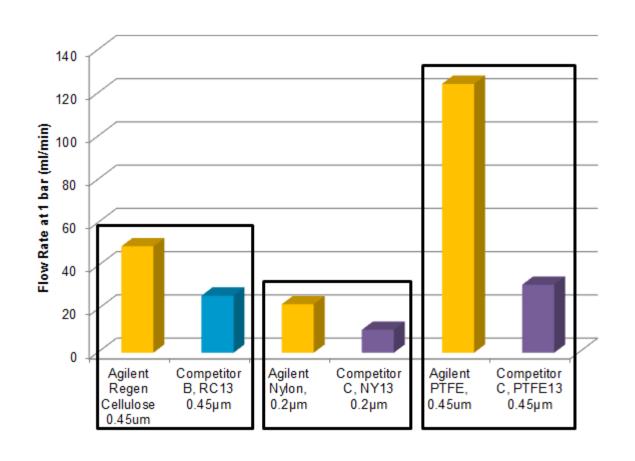
Setting a New Standard in Filtration

Captiva Premium Syringe Filters

- Certified to be free of UV detectable extractables on HPLC
 - PES & Glass Fiber also certified for LC/MS
- Color-coded boxes for easy identification
- Comprehensive portfolio to meet your application needs

Premium Syringe Filters										
Membrane		Diameter / Pore size								
	4	4 mm		15	mm	25 mm (* 28 mm)				
	0.2 μm	n 0.	45 µm	0.2 µm	0.45 µm	0.2 μm	0.45 µm			
PTFE	*		*	•	*	*	♦			
Nylon				*	*	*	♦			
PES	*		*	*	*	*	♦			
Regenerated Cellulose	*		♦	*	*	*	*			
Cellulose Acetate						*	*			
Glass Microfiber				*		* *				
Depth filters: Glass / PTFE				•	*	*	* *			
Depth filters: Glass / Nylon				*	*	*	*			
Cellulose Nylon Acetate	Glass Fiber/ PTFE	Glass Fiber	PES	PTFE	Regenerated Cellulose	Glass Fiber/ Nylon				

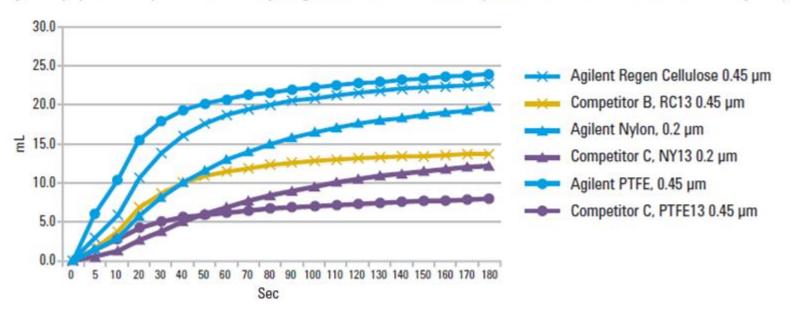
Captiva Premium Syringe Filters: Advantages



Feature	Advantages	Benefits		
	Cleanliness; certified to be free of UV-detectable extractables	 Minimizes introduction of contamination by the filter Reduce need for retesting Accuracy 		
Unique Syringe Filter	Fastest flow rates	Productivity / throughput		
construction	High loading capacity	• Productivity		
	Minimal analyte adsorption	Maximum target analyte recoveryAccuracyReproducibility		
Ultrasonic weld and reinforced membrane	Withstands high pressure and force	RuggedReliable		

Captiva Premium Syringe Filters: Fastest Flow Rates

Agilent RC, Nylon and PTFE filters compared to competitors

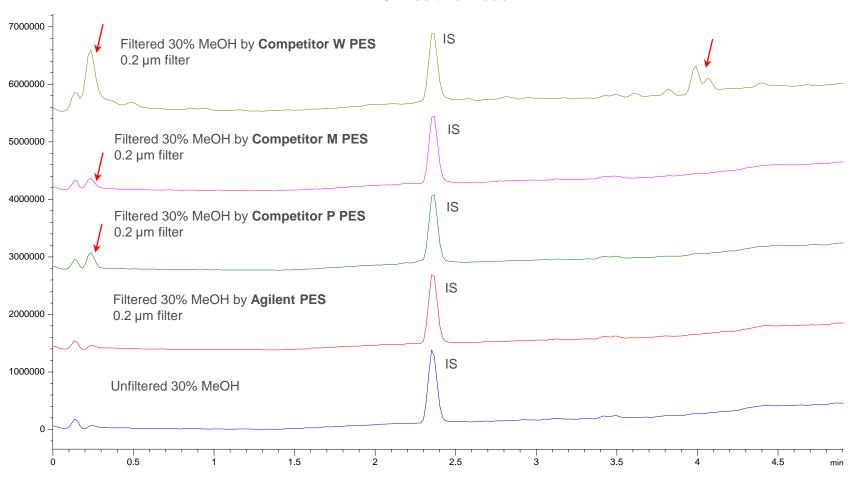


Captiva Premium Syringe Filters: High Loading Capacity

- ✓ Due to nature of membrane, there is less clogging by particulates
- ✓ Assures more sample will be filtered

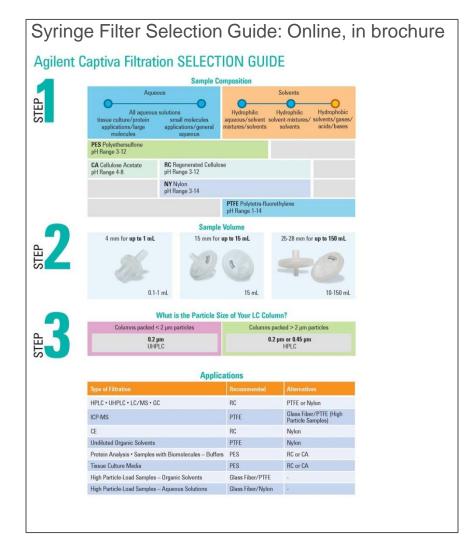
Capacity (volume) of 15 mm syringe filters over time (with Particulate-Laden Samples)

Captiva Premium Syringe Filters: Performance


Agilent Captiva Syringe Filters provide consistent and higher than 90% filtration efficiency on particulate removal

	Agilent premium 0.2µm syringe filters							Agilent premium 0.45µm syringe filters					
	Nylon	PTFE	RC	PES	GF/NY	GF/PTFE	Nylon	PTFE	PES	CA	GF/NY	GF/PTFE	
1	96.0	92.3	89.8	92.1	99	99.4	95.2	97	93.6	92.4	96.8	98.4	
2	95.9	91.4	90.6	91.4	99	98.9	93.2	96.5	93.6	95.0	97.1	98.8	
3	94.5	93.3	90.3	89.5	99.2	99.0	95.5	97.5	93.5	96.3	96.4	97.7	
4	96.6	92.3	91.7	99.0	99.6	98.6	95.4	96.6	88.5	97.2	99.3	98.8	
5	95.4	91.2	92.4	96.3	98.8	98.8	94.9	96.0	88.2	96	99.0	99.7	
6	95.6	91.1	90.8	99.9	99.3	98.5	95.3	95.7	92.3	95.6	100	96.8	
7	99.9	91.1	98.2	99.0	99.4	99.4	99.5	95.2	94.9	96.7	98.2	97.6	
8	99.8	91.2	99.0	97.8	95.0	99.0	98.0	97.8	89.4	93.8	98.9	98.5	
9	99.7	90.9	96.4	95.2	95.9	99.9	97.7	94.9	87.3	92.5	100.2	98.0	
10	99.2	91.3	95.7	96.1	94.7	99.6	99.7	94.8	87.5	92.8	100.5	101.3	
Average Eff (%)	97.3	91.6	93.5	95.6	98.0	99.1	96.4	96.2	90.9	94.8	98.6	98.6	
RSD (%)	2.2	0.8	3.7	3.7	2.0	0.5	2.2	1.1	3.3	1.9	1.5	1.3	

Cleanliness of Agilent Captiva PES Filters



Additional Tools to Help You Select the Right Syringe Filter

Membrane compatibility: online, in each box, in brochul Chemical Compatibility

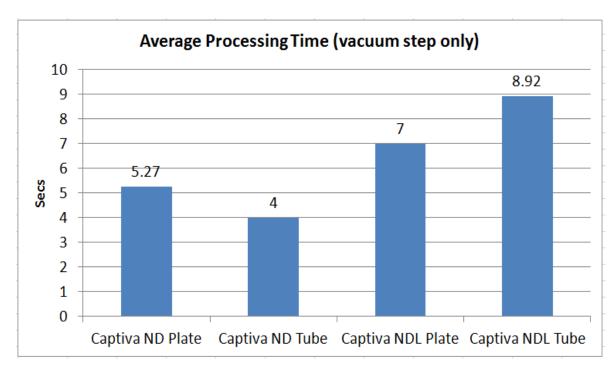
LEGEND										
Compatible	••									
Limited compatibility	•									
Not compatible					9	ose			age	
Not analyzed	N/A		e e	ate	th Xk	를			ene ene	
Contact time: 24 hours at 20 °C.		eue	Polyethersulfone membrane	Cellulose Acetate membrane	Polytetrafluorethylene membrane	Regenerated Cellulose membrane		٠.	Housing Methacrylate Butadiene Styrene	ene
hemical compatibilities can be infl herefore, we recommend that you	confirm compatibility with	ane la	ane	se /	ane all	erat	ane	Fiber	one ene	Di d
he liquid you want to filter by perfo refore you start your actual filtratio	orming a trial filtration run	Polypropylene membrane	Polyethers membrane	Cellulose Ac membrane	Polytetrafii membrane	Regenerat membrane	Nylon membrane	Glass Fiber membrane*	usir tadi	Housing Polypropylene
, , , , , , , , , , , , , , , , , , , ,		2 2	8 2	8 E	2 €	2 2	ŹĔ	15 E	포곱	¥ &
FILTER		PP	PES	CA	PTFE	RC	Nylon	GF		
Housing									MBS	PP
Solvents										
Acetone		••	-	-	••	••	••	••	-	••
Acetonitrile		•	-	-	••	••	N/A	••	-	••
Benzene		_	-	•	••	••	••	••	-	••
Benzyl alcohol		••	-	-	••	••	••	••	-	•
n-Butyl acetate		N/A	-	-	••	••	••	••	-	••
n-Butanol		••	•	•	••	••	••	••	••	••
Carbon tetrachloride		•	-	-	••	••	••	••	-	-
Chloroform		•	-	-	••	••	••	••	-	••
Cyclohexane		••	-	•	••	••	••	••	•	•
Diethylacetamide		••	-	-	••	••	••	••	-	••
Diethyl ether		•	-	•	••	••	••	••	-	••
Dimethyl formamide		••	-	-	••	•	•	••	-	•
Dimethylsulfoxide		••	-	-	••	••	••	••	-	••
Dioxane		•	-	-	••	••	••	••	-	••
Ethanol, 98%		••	••	•	••	••	••	••	-	•
Ethyl acetate		•	-	-	••	••	••	••	-	•
Ethylene glycol		••	••	•	••	••	••	••	••	••
Formamide		N/A	••	-	••	•	••	••	••	••
Gasoline		•	•	•	••	••	••	••	••	••
Glycerin		••	••	•	••	••	••	••	•	•
n-Heptane		-	••	•	••	••	••	••	•	••
n-Hexane		-	••	•	••	••	••	••	•	•
Isopropanol		••	••	•	••	••	••	••	-	••
Isopropyl acetate		N/A	-	-	••	••	••	••	-	••
Methanol, 30%		••	••	N/A	••	••	••	••	••	••
Methanol, 98%		••	•	-	••	••	••	••	••	•
Methyl acetate		•	-	-	••	••	••	••	-	•
Methylene chloride		•	-	-	••	••	••	••	-	••
Methyl ethyl ketone		•	-	-	••	••	••	••	-	•
Methyl isobutyl ketone		•	-	-	••	••	••	••	-	•

Captiva, Captiva ND, and Captiva ND Lipids Plate and Cartridge Formats

In addition to syringe filters, Captiva filtration products also include 96-well plates and 3 mL cartridge formats, to support a wide variety of filtration needs.

- Plate formats suitable for automation platforms, small sample volumes, and high throughput
- 3 mL cartridges support larger sample volumes, automation (by vacuum/positive pressure manifolds), and lower throughput
- Available in Captiva filtration and in the "ND" Non-Drip configurations. Non Drip configuration allows for protein precipitation inside the cartridge/well. No dripping until vacuum/positive pressure applied
- "Functional" filtration with Captiva ND lipids supports lipid removal to provide cleaner samples

Captiva Average Processing Time:


Plates vs Cartridges

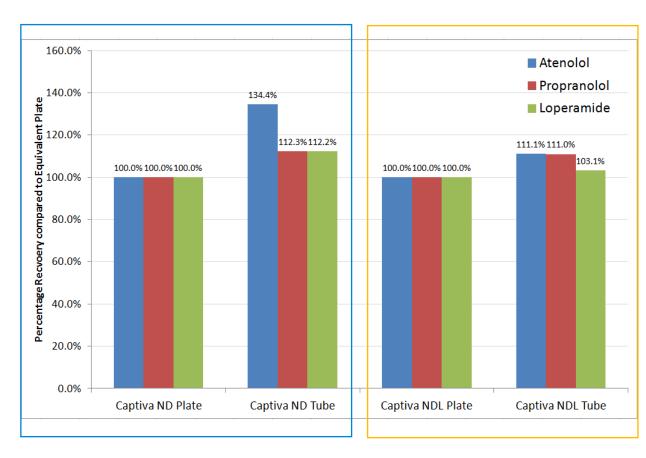
Conditions:

- •300 μL ACN + 100 μL plasma
- Vacuum step only
- •~15 in Hg

Results:

Average processing time of the Captiva products show good correlation, and supports the benefit of fast flow.

Captiva ND and ND Lipids - Recoveries



Conditions:

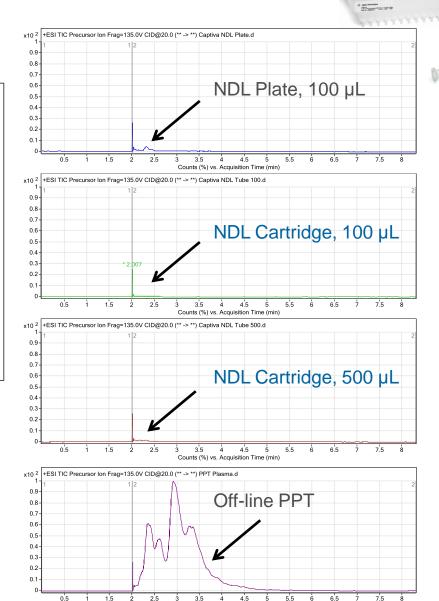
- Captiva Plates: 100 μL plasma
- Captiva Cartridges: 500
 µL plasma (contains 4X more lipid stripping sorbent than plate)
- Drugs: Atenolol,
 Propanolol, Loperamide

Results:

Cartridges showed comparable recovery of three drugs compared to plates. This demonstrates correlation

Captiva ND Lipids

Phospholipid-stripping performance


Conditions:

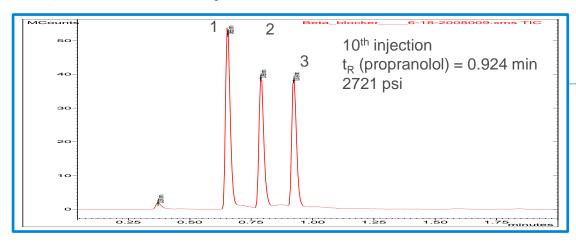
- Captiva NDL vs off-line protein precipitation
- Sample = plasma
- Tube tested with both 100 μL (same sample size as plate) and 500 μL (ideal for 3 mL tube)
- Instrument = Agilent 1260 LC module with a 6460 QQQ LC/MS/MS

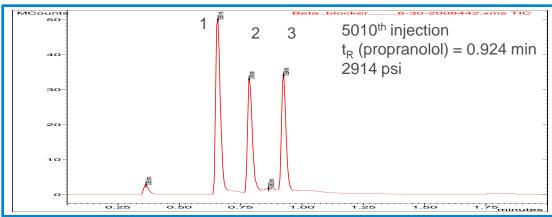
Results:

Compared to off-line PPT (no lipid stripping), we can see the effectiveness of the Captiva NDL products, and how completely they remove ion-suppressing phospholipids

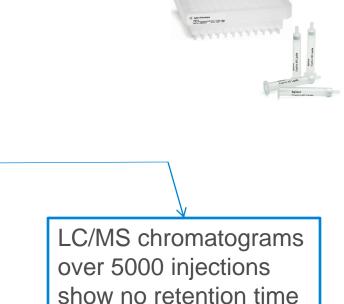
Technique	% phospholipid remaining in sample
PPT	100%
NDL plate	1.24%
NDL cartridge 100 μL	0.33%
NDL cartridge 500 μL	1.04%

Sample Preparation Time Comparison PPT (centrifugation) vs. Captiva ND Lipids




Captiva ND Lipids	Time (min)
Add 0.6 mL of MeOH and 0.2 mL of plasma sample to Captiva ND 96-well plate.	5
Mix each well with a pipette 5 times and apply vacuum for filtration.	
Directly transfer injection plate for analysis.	0
Total time required for sample preparation	5

This time comparison is based on the preparation of 96 samples.


Captiva ND Lipids Application: Reproducibility

- 2. Pindolol
- 3. Propranolol

shift.

Captiva Accessories

Captiva Disposable Syringes (5, 10, 20 mL)

 CaptiVac vacuum collar, Captiva deep-well collection plate, and pierceable plate covers

Vac Elut 20 and 12 port vacuum manifolds

Vac Elut SPS 24 vacuum manifold

Captiva plates and Cartridges: Advantages

Feature	Advantages	Benefits
Non-Drip Filtration Capabilities	In-cartridge or in-plate protein precipitation	AutomationReproducible recoveriesNo dripping without vacuum or positive pressure
Dual-depth Filter	Non-linear path with two layers	 High capacity for particulates More residence time for mechanical filtration and adsorption to occur for cleaner samples
Non-Drip Lipids Capability	Phospholipid removal	 Increased cleanup of samples through removal of lipids and phospholipids Longer instrument uptime Minimized ion suppression in LC-MSMS due to phospholipid interference

FILTRATION RECOMMENDATIONS & SUMMARY

Filtration

Filtration and Other Sample Preparation Techniques

	More Speci	ific	← Ir	strument Sep	← Less Specific				
	Less Specifi	c	→ Sample Preparation Specificity			→ More Specij			
Sample Prep Technique Interference Removed	Dilute & Shoot	Filtration	Liquid/Liquid Extractions	Supported Liquid Extractions (SLE)	Dried Matrix Spotting	Precipitation	QuEChERS	Lipid Removal 'Hybrid' Filtration	Solid Phase Extraction
Lipids	No	No	No	Some	No	No	Yes	Yes	Yes
Oligomeric Surfactants	No	No	No	No	No	No	No	Yes	Yes
Particulates	No	Yes	No	Some	No	Yes	Yes	Yes	Yes
Pigments	No	No	No	Some	No	No	Yes	No	Yes
Polar Organic Acids	No	No	Yes	Yes	No	No	Yes	No	
Proteins	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Salts	No	No	Yes	Yes	No	No	No	No	Yes
Suggested Agilent Product	Agilent Autosampler Vials	Captiva Syringe Filters		Chem Elut	Bond Elut DMS	Captiva ND	Bond Elut QuEChERS	Captiva ND LIPIDS	Bond Elut Silica and Polymeric SPE
A	gilent Capt	iva Filtratio	n Products (are recomme	ended for us	se with any	LC or LC-MS	method	

Captiva Filtration Product Recommendation

Filtration Needs/Situation

Agilent Captiva Product Format	Low Throughput	Vacuum processing	In-well protein precipitation	Particulate filtration only	Automation Friendly	Lipid removal	Larger sample size
Single cartridge	X	X		X	X		X
Single ND cartridge	Х	Х	Х	can be done	X		Х
Single ND Lipids cartridge	X	X	X		X	X	X
96-well plate		X		X	X		
96-well ND plate		Х	Х	can be done	X		
96-well ND Lipids plate		X	X		X	X	
Syringe filter	Х	can be done		Х	can be done		Х

Conclusions and Summary

- Filtration is a straightforward means of preparing samples when minimal cleanup is needed
- Mechanical filtration to remove particulates maximizes analytical uptime
- Functionalized filtration can further enhance standard sample preparation methods
- Combining filtration with other sample preparation processes can improve result quality and maximize analytical uptime
- Agilent offers a wide range of filtration products to suit your needs, from syringe filters through specialized filtration products

Additional Resources and Application Support

Reference Materials and Guides:

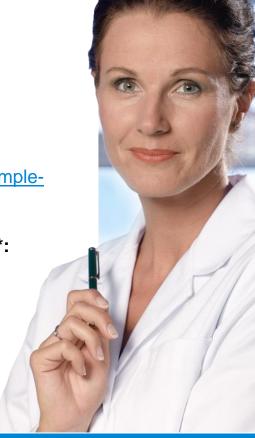
Agilent Captiva Plates and Cartridges Guide:

http://www.chem.agilent.com/Library/flyers/Public/5990-9061EN.pdf

Agilent Captiva Syringe Filter Interactive Selection Tool:

www.agilent.com/chem/SelectFilters

Agilent Captiva Syringe Filter Selection guide:


www.chem.agilent.com/en-US/products-services/Columns-Sample-Preparation/Sample-Preparation/Syringe-Filters/Pages/Selectionguide.aspx

Agilent Sample Preparation Products Technical Support Contact Information*:

Phone: 800-227-9770, Options 3, 3, 3

Email: spp-support@agilent.com

* North America

Acknowledgements

Agilent applications chemists, product managers, and technical support personnel who contributed to this presentation

Questions?

