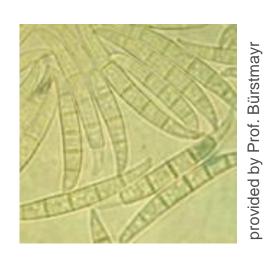


Accurate Quantitation of Regulated Mycotoxins by UHPLC/MS/MS

Dr. Thomas Glauner
Senior LC/MS
Applications Scientist
EMEA Market
Development Team

Agenda

- Mycotoxins
- EU Regulations
- Stable isotope dilution assay (SIDA) for the mycotoxins regulated in the European Union
 - Reasons
 - Approaches
 - Sample Preparation and Method
 - Results
- Summary



Mycotoxins Background

```
myces (Greek) = fungus
toxicum (Latin) = toxic
```

= Mycotoxin

- low molecular weight, toxic, secondary metabolites of fungi
- produced by e.g.:
 - Fusarium sp., Aspergillus sp., Penicillium sp.
- toxicity:
 - acute toxic, carcinogenic, mutagenic, teratogenic, estrogenic
 and immunotoxic effects

Mycotoxins How many mycotoxins are there?

- Hundreds of compounds
- 2 Main classes:

Major Mycotoxins

- Aflatoxins
- Ochratoxins (OTA)
- Trichothecenes
- Zearalenone
- Fumonisins
- Patulin

Minor Mycotoxins

- Ergot alkaloids
- Citrinin
- Cyclopiazonic acid
- Sterigmatocystin
- Monoliformin
- Gliotoxin
- Citreoviridin
- Tremorgenic mycotoxins
- Penicillic acid
- Roquefortine
- 3-Nitropropionic acid
- Fusaproliferin

Mycotoxins

Chemical diversity – a challenge for the sample prep

Enniatins

beauvericin enniatin A, A₁, B, B₁

APOLAR

Fumonisins

fumonisin B₁, FB₂, FB₃, hydrolyzed FB₁

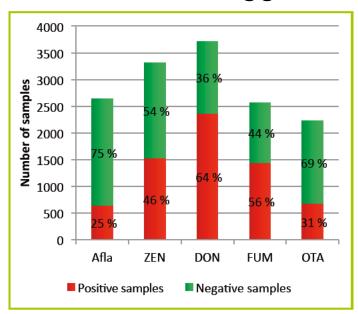
POLAR, ACIDIC

Ergot alkaloids

ergotamin, ergocornin, ergovalin, dihydroergosin

POLAR, BASIC

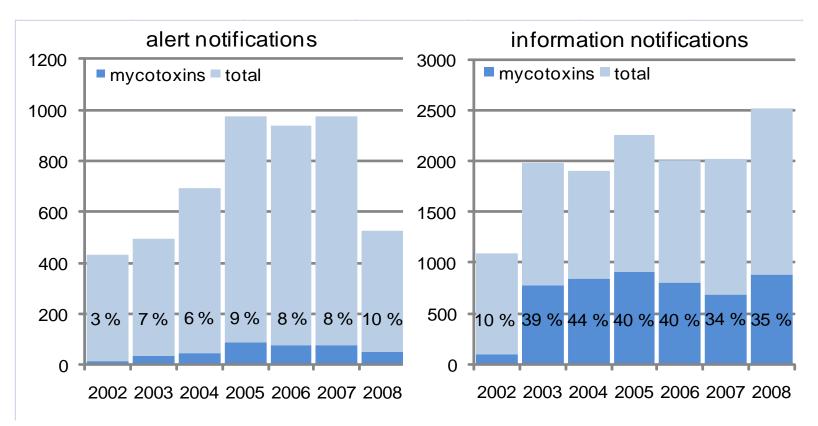
Mycotoxins Why are they an issue?


• 100+ countries have regulations for the control of mycotoxins in food and feed

- >25% of all agricultural commodities are contaminated with mycotoxins
- annual losses of several hundred million tons of food worldwide
- annual economical losses: 1 billion USD (US only)

Mycotoxins Infected food products

- Found in cereals, dried fruits, spices, grape, coffee, cocoa, fruit juices
- Secondary contamination in milk, eggs, meat


Resistant to home cooking

BIOMIN's Mycotoxin Survey Program 2012 Percentage of positive and negative samples worldwide BIOMIN Newsletter, Vol. 11, No. 130

Mycotoxins Relevance for food control

- Notifications concerning mycotoxins
 - (RASFF-Annual reports 2002-2008)

Regulations for Mycotoxins European Commission Regulation 1881/2006 (EC)

Analytes	MLs μg/kg (EC Reg. No 1881/2006)	Commodities		
	0.1	processed cereal-based baby food		
Aflatoxin B ₁	2.0-12 sum of aflatoxins: 4.0-15.0	nuts and cereals		
Deoxynivalenol 200 500 - 1750		processed cereal-based baby food processed / unprocessed cereals, bread, pasta, breakfast cereals		
Fumonisin B ₁	200	processed maize-based baby food		
Fumonisin B ₂	800 1000 / 4000	maize-based breakfast cereals maize / unprocessed maize		
Patulin	10-50	fruit juices, apple products, baby food other than processed cereal-based foods		
	0.5	processed cereal-based baby food		
Ochratoxin A	3.0 / 5.0 10.0	processed / unprocessed cereals dried vine fruit		
	15 / 20 / 80	spices / liquorice root / extract		
	20	processed cereal-based baby food		
Zearalenone	50 75-350	bread, biscuits, breakfast cereals processed / unprocessed cereals		

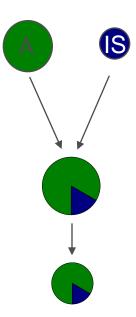
Regulations for Mycotoxins FDA Regulatory guidelines

Analytes	Limit µg/kg	Commodities		
Aflatoxins, sum	20 All foods except milk			
Patulin	50	Apple juice, apple juice concentrate, apple components in processed food		
Deoxynivalenol	1000 Finished wheat products			
	2000	degermed dry milled corn products (e.g. flaking grits, corn grits, corn mea		
Fumonisins sum of B ₁ , B ₂ , B ₃	3000	cleaned corn intended for popcorn		
01 D ₁ , D ₂ , D ₃	4000	whole of partially degermed dry milled corn products (e.g. flaking grits, corn grits, corn meal, corn flour		
Aflatoxin M ₁	0.5	milk		

Accurate quantitation of mycotoxins Reasons

- European Commission Regulation (EC) No 1881/2006
 - set maximum limits (ML) for mycotoxins
- Single target versus multi-target methods

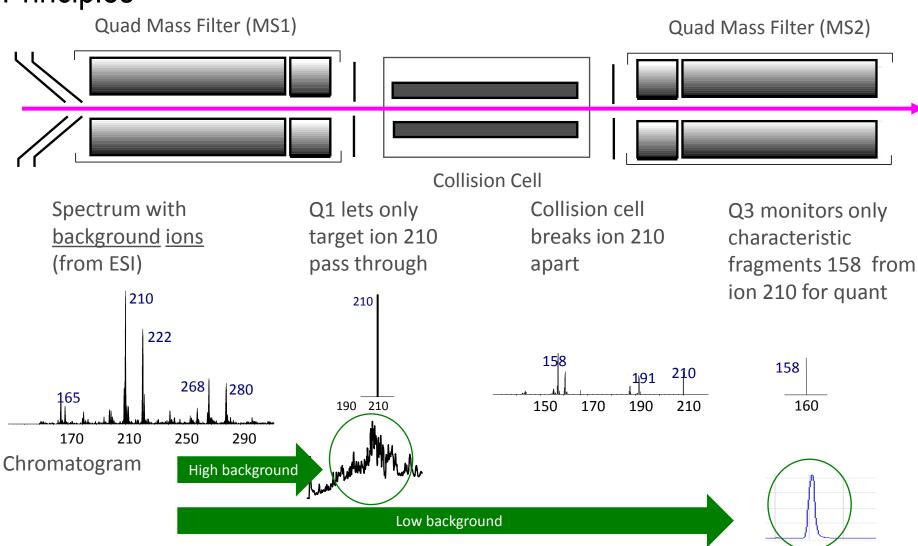
BUT:


- Electrospray ionisation (ESI)
 - matrix effects hamper accurate mass spectrometric quantification
- Quantification of regulated mycotoxins at a very high degree of accuracy is required

concentration of mycotoxin [µg/kg]

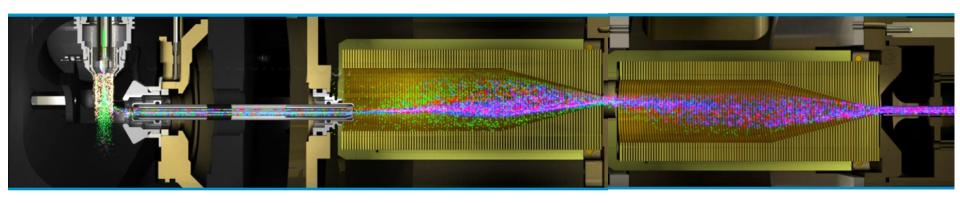
Matrix effects in ESI-MS and quantitation Approaches

- Dilution of the sample
 - method less sensitive
- Matrix matched calibration
 - tedious
 - differences within one commodity not compensated
- Standard addition to each sample
 - more runs
 - more costs (time and standards)
- Internal calibration
 - similar compounds (ZAN for ZEN)
 - deuterium or ¹³C-labelled compounds
 - In the past: only single analyte or group analyte IS-addition
 - usually associated with rather high costs



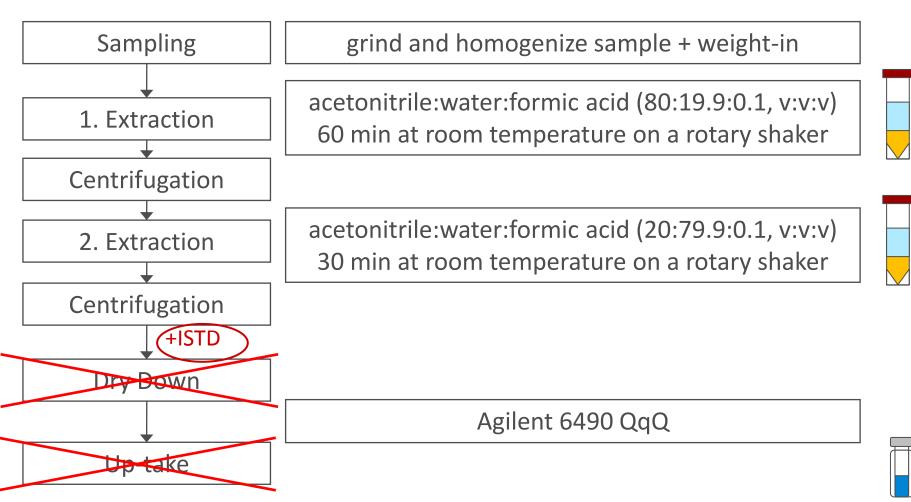
Stable Isotope Dilution Assay (SIDA) Aims

- Development of a method fulfilling:
 - covering all regulated mycotoxins in solid food matrices
 - providing best possible accuracy
 - easy to handle
 - cost effective
- Stable isotope dilution assay (SIDA) for LC-MS/MS
 - 11 mycotoxins
 - 13C-labelled compounds as internal standards
 - validation of the method for maize


Multiple Reaction Monitoring Principles

iFunnel Technology Revolutionizes Ion Sampling Proven Sensitivity Breakthrough

Agilent Jet Stream Hexabore Capillary


Dual Stage Ion Funnel

10X Higher Gas Sampling

Sample preparation Universal extraction procedure

Stable Isotope Dilution Assay (SIDA) HPLC method

Agilent 1290 Infinity LC system consisting of:

- binary pump
- wellplate sampler
- column compartment

HPLC method

Separation column: ZORBAX Eclipse Plus C-18 RRHD column,

100 x 2.1 mm, 1.8 µm @ 30°C

Mobile phase: A: 5 mM HCOONH₄+ 0.1% formic acid

B: methanol + 5 mM HCOONH₄ + 0.1% formic acid

Flow: 0.35 ml/min

Gradient: 0.00 min 30 % B

0.50 min 30 % B 8.00 min 100 % B

9.50 min 100 % B 9.60 min 30 % B

Inj.Vol.: 3 µl

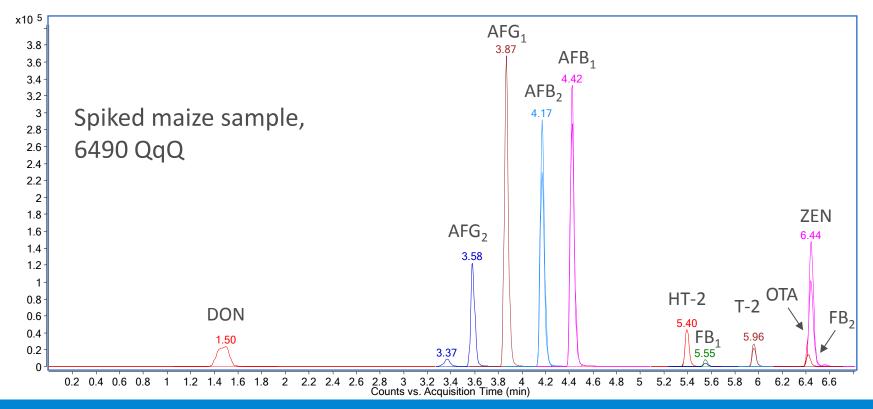
Stable Isotope Dilution Assay (SIDA) MS method

Spray chamber conditions:

Gas temp.: 140°C
Dry gas: 16 l/min
Nebulizer: 25 psi
Sheath gas temp: 350°C
Sheath gas flow: 11 l/min

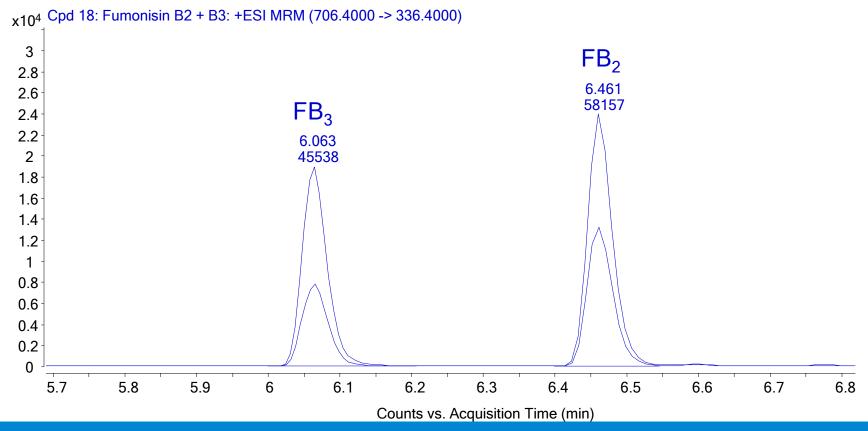
	Apher bahelagin 666 Topic Court COVS	
_	10	

Positive Negative

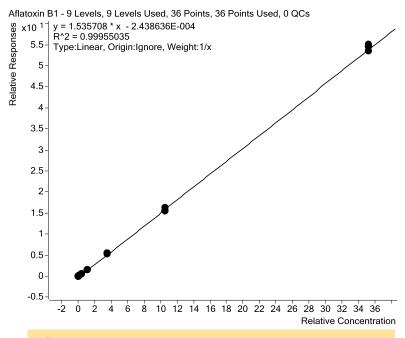

CapVoltage: 4000 V 3000 V Nozzle voltage 0 V 0 V

Automatic setup of MRM tables based on selected cycle time, retention times and retention time windows for the individual compounds

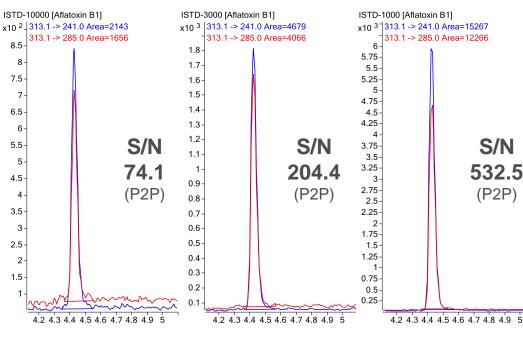
•	Cycle time	400 ms
•	Interscan delay	3.5 ms
•	Total No. of MRMs	33
•	Maximum No. Of concurrent MRMs	12
•	Minimum Dwell time	39.8 ms
•	Maximum Dwell time	196.5 ms


Stable Isotope Dilution Assay (SIDA) Chromatogram

- due to same MRM transitions baseline separation required for:
 - aflatoxin G1 and ¹³C-aflatoxin B1
 - aflatoxin G2 and ¹³C-aflatoxin B2


Stable Isotope Dilution Assay (SIDA) Chromatogram

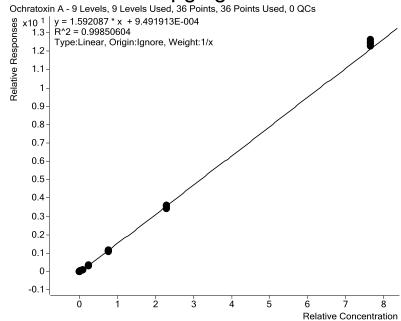
- due to same MRM transitions baseline separation required for:
 - fumonisin B2 and B3



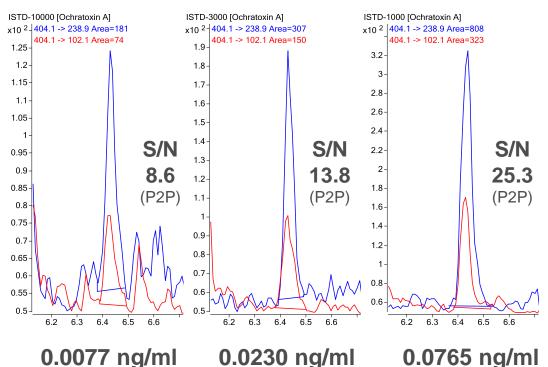
Internal calibration in solvent Aflatoxin B1

- Challenging compound due to low MLs
 - 0.1 µg/kg in processed cereal based baby food
 - 2 to 12 μg/kg in nuts and cereals

Overlay of 4 individual calibrations acquired within 45 hour worklist.


0.0225 ng/ml

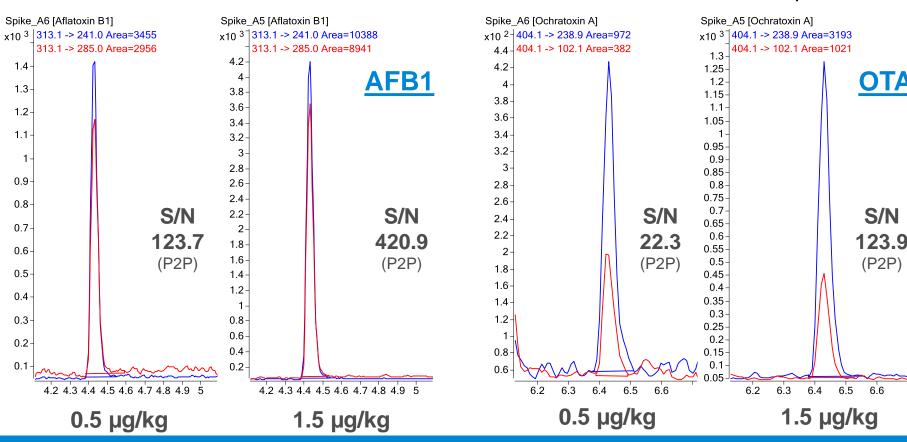
0.075 ng/ml


Internal calibration in solvent Ochratoxin A

- Challenging compound due to low MRLs
 - 0.5 µg/kg in processed cereal based baby food
 - 3.0 / 5.0 µg/kg in processed / unprocessed cereals

• 10.0 μg/kg in dried vine fruit

Overlay of 4 individual calibrations acquired within 45 hour worklist.



Validation of SIDA method Experimental setup and results

- Linear range (external calibration in solvent)
 - 4 orders of magnitude for all toxins, 5 orders for Aflatoxins, T-2, and ZEN
- Costs
 - Additional price per IS per sample is between US\$0.03 to 0.66
 - Price for all 11 IS per sample < US\$5.23
- Full validation for maize
 - Maize: matrix for which most mycotoxins are regulated
 - known for matrix effects and matrix interferences
 - Spiking with native mycotoxins before extraction
 - Six concentration levels with 3 replicates
 - Spiking with ¹³C-labelled mycotoxins before analysis to compensate matrix effects in ESI
 - No sample clean-up

Validation of SIDA method in maize Extraction of spiked blank maize and reference materials

- Blank maize sample spiked with native mycotoxins before extraction
 - includes 10-fold dilution of matrix in the final extract due to extraction procedure

Validation of SIDA method Results – Sample preparation

- Extraction efficiency
 - Determined by spiking of blank samples before extraction
 - First extraction: 80% acetonitrile content (60 min)
 - recovery between 80 and 110% except for FB1 and FB2
 - Second extraction: 20% acetonitrile content (30 min)
 - improved extraction recovery for FB1 and FB2 to approx. 90%
- Matrix effects
 - Signal suppression
 - 50 to 60% aflatoxins
 - 50% DON
 - Signal enhancement
 - Fumonisins, HT-2, T2, OTA
 - Effectively compensated by ISTD

Validation of SIDA method Results for maize

Analyte	LOQ in µg/kg	R _A ** in % ± RSD in %	
Aflatoxin B ₁	0.04	105	6
Aflatoxin B ₂	0.04	100	4
Aflatoxin G ₁	0.05	101	5
Aflatoxin G ₂	0.24	101	8
Deoxynivalenol	2.5	99	9
HT-2 toxin	2.0	98	7
T-2 toxin	0.17	99	6
Ochratoxin A	0.23	93	7
Zearalenone	0.97	103	11
Fumonisin B ₁	2.5	101	10
Fumonisin B ₂	0.64	88	7

^{**} average for triplicate samples and 6 spiking levels

Validation of SIDA method Results for official test materials

No	Analyte	assigned value ^a ± STDEV [µg kg ⁻¹]	measured value ^b ± STDEV [µg kg ⁻¹]	Status ^c
TM_01	ZEN	83 ± 4.5	86 ± 10	ok
	Sum AFs	3.79 ± 1.67	4.6 ± 0.2	ok
	AFB ₁	1.87 ± 0.83	2.3 ± 0.1	ok
TM_02	AFB ₂	0.51 ± 0.23	0.6 ± 0.03	ok
	AFG ₁	0.96 ± 0.43	1.0 ± 0 1	ok
	AFG_2	0.52 ± 0.23	0.7 ± 0.1	ok
TM 02	FB ₁	1650 ± 53	1960 ± 198	+
TM_03	FB_2	461 ± 16	496 ± 32	ok
TM_04	DON	1714 ± 64	1660 ± 145	ok
TM OF	DON	901 ± 55	908 ± 79	ok
TM_05	ZEN	79 ± 13	84 ± 10	ok
TM OC	FB ₁	2630 ± 370	2300 ± 233	ok
TM_06	FB_2	690 ± 170	578 ± 38	ok
TM 07	FB ₁	270 ± 55	223 ± 23	ok
TM_07	FB ₂	< 80	55 ± 4	ok

Validation of SIDA method

Published in Anal. Bioanal. Chem, 402 (9) 2675-2686

Anal Bioanal Chem DOI 10.1007/s00216-012-5757-5

PAPER IN FOREFRONT

Stable isotope dilution assay for the according of mycotoxins in maize by UHPLC-MS/

Elisabeth Varga • Thomas Glauner • Robert Köppen • Katharina Mayer • Michael Sulyok • Rainer Schuhmacher • Rudolf Krska • Franz Berthiller

Received: 9 December 2011/Revised: 13 January 2012/Accepted: 16 January 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract A fast, easy-to-handle and cost-effective analytical method for 11 mycotoxins currently regulated in maize and other cereal-based food products in Europe was developed and validated for maize. The method is based on two extraction steps using different acidified acetonitrile—water mixtures. Separation is achieved using ultrahigh-performance liquid chromatography (UHPLC) by a linear water—methanol gradient. After electrospray ionisation, tandem mass spectrometric detection is performed in dynamic multiple reaction monitoring mode. Since accurate mass spectrometric quantification is hampered by matrix effects, uniformly [13 C]-

led to total 111% for a labelled int effects in e ies between The relativ between 4' method wa materials v sion, the o

Validation of a Stable Isotope Dilution Assay for the Accurate Quantitation of Mycotoxins in Maize Using UHPLC/MS/MS

Application Note

Authors

Elisabeth Varga, Katharina Mayer, Michael Sulyok, Rainer Schuhmacher, Rudolf Krska, and Franz Berthiller Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Austria

Abstract

This application note describes a fast, easy-to-handle, and cost-effective analytical method for the quantitation of all 11 mycotoxins regulated in Europe for cereal-based food products. Based on the method published by Varga et al. [1], this application note provides additional useful information to quickly establish the method in other labs. The method comprises a two-step solvent extraction, a UHPLC separation using the Agilent 1290 Infinity LC System, and tandem mass spectrometric detection using the highly sensitive Agilent 6490 iFunnel Triple Quadrupole LC/MS System. Matrix effects in the electrospray ionization are compensated through the use of uniformly [13°C)-labeled mycotoxins as internal standards for each of the 11 target compounds. Unlike with other approaches, here the cost and time associated with extract cleanup is eliminated. Additionally, there is no need to tediously prepare matrix-matched standards.

Implementation of SIDA method

Romer LC/MS Mycotoxin kit – developed to fit the application

Solutions and standards

A working solution of the unlabeled mycotoxins was prepared by adding 500 μL of the aflatoxin mix, 50 μL of the fumonisin mix, 50 μL of the Fusarium toxin mix, and 50 μL of the OTA solution to 350 μL ultrapure water resulting in the following concentrations:

- AFB₁, AFB₂, AFG₁, and AFG₂, 500 ng/mL
- DON, 5,000 ng/mL
- FB₁ and FB₂, 2,500 ng/mL
- HT-2, 5,000 ng/mL
- OTA, 500 ng/mL
- T-2, 500 ng/mL
- ZEN, 1,500 ng/mL

The working solution of the U-(13 C)-labeled mycotoxins was prepared by adding 20 µL of the labeled aflatoxin mix, 100 µL of the labeled fumonisin mix, 50 µL of the labeled Fusarium toxin mix, and 5 µL of the labeled OTA solution to 825 µL acetonitrile/water (1:1, v/v) resulting in the following concentrations:

- * ($^{13}\mathrm{C}_{17}$)-AFB $_1$, ($^{13}\mathrm{C}_{17}$)-AFB $_2$, ($^{13}\mathrm{C}_{17}$)-AFG $_1$ and ($^{13}\mathrm{C}_{17}$)-AFG $_2$, 10 ng/mL
- (13C₁₅)-DON, 500 ng/mL
- $(^{13}\mathrm{C}_{34})\text{-FB}_1$ and $(^{13}\mathrm{C}_{34})\text{-FB}_2$, 500 ng/mL
- (13C₂₂)-HT-2, 500 ng/mL
- $(^{13}C_{20})$ -OTA, 50 ng/mL
- (13C₂₄)-T-2, 50 ng/m
- (¹³C₁₈)-ZEN, 150 ng/mL.

Native mycotoxins:

- Mix 3 (fumonisins)
- Mix 9 (aflatoxins)
- Mix 8 (fusarium toxins)
- Ochratoxin
- ¹³C labelled mycotoxins:
 - Mix 12 (¹³C fumonisins)
 - Mix 11 (¹³C aflatoxins)
 - Mix 10 (¹³C fusarium toxins)
 - [¹³C₂₀]-Ochratoxin

Typical performance during method implementation

Aflatoxin B1

Chromatograms

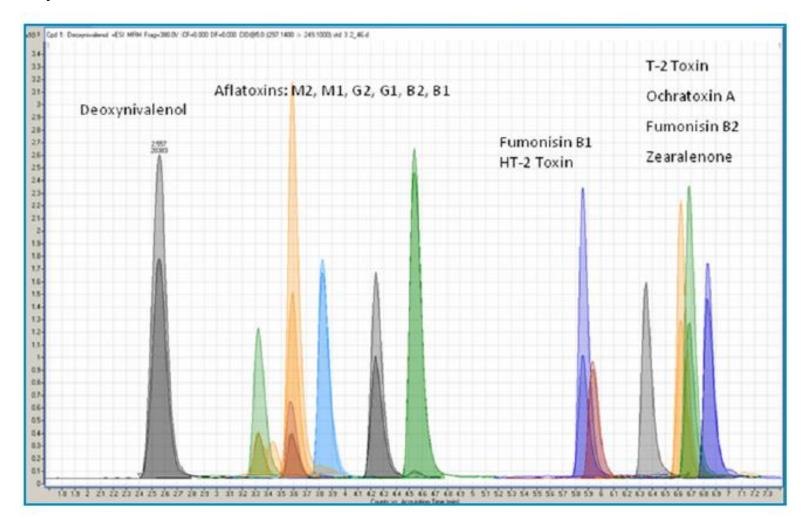
Typical results of the SIDA method for mycotoxins

Reproducibility:

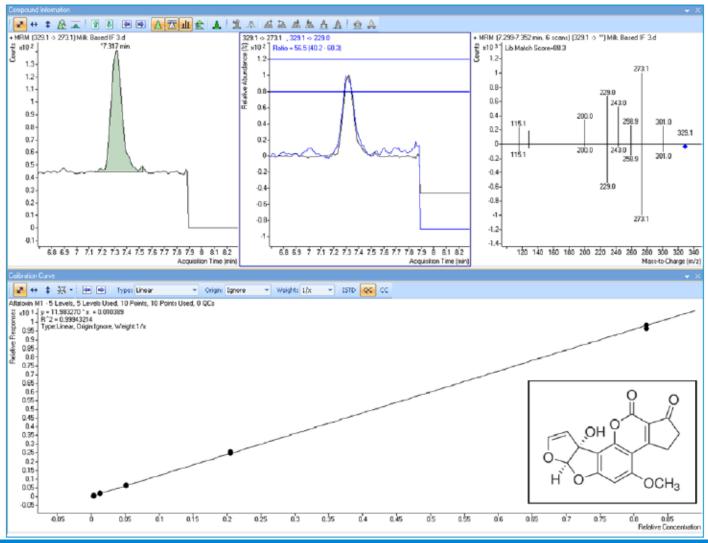
Table 1 Area a labele

Level	C
1 (n = 3)	
2 (n = 3)	
3 (n = 3)	
4 (n = 3)	
5 (n = 3)	
6 (n = 3)	
7 (n = 3)	
8 (n = 3)	
9 (n = 3)	
ISTD (n = 27)	

Potential compounds for method extension (selection)


NOTE

Compounds might be added by copying transitions and conditions to the method. It has to be mentioned that additional internal standards might be required to compensate for matrix effects. Though the instrument is capable to run many more compounds it should be noted that adding more compounds to the method might result in a different characteristic in terms of sensitivity, matrix effects and robustness.


Table 12 MRM transitions and conditions of compounds which might be added for method extension.

Compound	Precursor ion	Product ion	Collision energy	Cell Accelerator	Polarity
Aflatoxin M1	329.1	273.1	20	5	positive
		229.0	44	5	
Aflatoxin M2	331.1	273.1	24	5	positive
		229.0	48	5	
Neosolaniol	400.2	305.1	4	5	Positive
		185.1	16	5	
Fusarenone X	399.1	263.0	10	3	Negative
		44.0	28	3	
Nivalenol	357.1	281.0	12	3	Negative

Analysis of regulated mycotoxins in infant formula Poster presented at the NACRW 2013

Increased confidence by using triggered MRM Aflatoxin M1 in Infant Formula, fortified at 0.02 µg/kg

Summary

- UHPLC-MS/MS method
 - Improved chromatographic resolution
- Multiple extraction steps
 - Enhancement of extraction efficiency especially for fumonisins
- Dynamic MRM with fast polarity switching
 - Most abundant ionization mode and maximized dwell times within a single run
- Addition of internal standards after extraction
 - Compensation for matrix effects
 - Minimized costs
- Apparent recoveries of 88 to 105% for all mycotoxins
 - Evaluated by extraction of spiked maize samples
 - Validated by correct quantitation of 12 official test materials covering most toxins
- Sensitivity suitable for MRLs
 - Improved sensitivity of G6490 allows to omit sample concentration resulting in easier handling and improved robustness

Thanks!

thomas_glauner@agilent.com

Acknowledgements

- Elisabeth Varga
- Katharina Mayer
- Franz Berthiller
- Rainer Schuhmacher, Michael Sulyok, Rudolf Krska
- Biopure Reference Materials, Romer Labs Diagnostic GmbH, Tulln

