Guidelines for Trouble Shooting and Maintenance of ICP-OES Systems

Eric Vanclay
Product Manager
Spectroscopy Consumables
May 2, 2012
Today’s Agilent: Atomic Spectroscopy
World’s best, most complete atomic spectroscopy portfolio!

ICP-OES
Flame AAS

ICP-MS
Graphite Furnace AAS

ICP-QQQ
4100 MP-AES
Agilent’s Atomic Spectroscopy Portfolio - Features

Flame AA
- Lowest price
- Single element
- DLs typically ~100’s ppb
- Fast (for 1 element)
- Good elemental coverage
- Low running cost

MP-AES
- Lowest running cost
- Multi element
- DLs typically single to 10’s ppb
- Faster
- Broader elemental coverage
- Lowest running cost

Furnace AA
- Trace levels at lowest price
- Single element
- DLs typically 10’s to 100’s ppt
- Very slow
- Limited elemental coverage
- Moderate running cost

ICP-OES
- Fastest measurement
- Multi element
- DLs typically single ppb
- Very fast
- Can measure most elements
- High running cost

ICP-MS
- Broadest coverage
- Multi element
- DLs typically single or sub-ppt
- Fast
- Can measure almost all elements
- Highest running cost
Common ICP-OES Problems Reported by Users

Sensitivity:
- Sensitivity is worse than it used to be
- I have a new application and I can’t get the sensitivity I need
- How come I can’t get the instrument to meet published detection limits?

Precision
- Sensitivity is acceptable but precision is terrible

Accuracy
- Instrument does not give the “right” results.

Poor Sample Throughput
- The instrument throughput needs to improve
- Nebulizer and/or Injector of the Torch blocks too quickly
ICP-OES Sensitivity - What Impacts This?

4 areas of the instrument can affect sensitivity:

- **Sample introduction system**
- **Method parameters**
- **Cleanliness**
- **Quality of standards used for calibration**

Remember – **SMCQ**

Or

“**System Must Create Quality**”
Sensitivity – Quality of Standards

– What concentration are they?
 • Low concentration standards have a finite life
 – Prepare ppb (ug/L) concentration standards daily from high conc. stock
 – Prepare low ppm (mg/L) concentration standards weekly

– How are they prepared?
 • Ensure purchased standards are still within “Use By” date when used
 • Use calibrated pipettes and class ‘A’ volumetric flasks for dilutions
 • Use de-ionized water (Type I - conductivity ≥ 18 MΩ/cm³) – lower grades may have contamination
 • Please don’t do that 1:100,000 dilution

– How are they stored?
 • Plastic vessels ensure better stability
 • Stabilize with acid – low pH ensures better stability
Sensitivity – Contamination Sources

Anything that touches sample during prep., dilution, transfer, analysis and storage

- **Acid purity**
 - Buy only what you need to do the job
 - Check the certificate of analysis
 - Don’t insert pipette tips into your acids
 - Use contaminated acid for cleaning

- **Pipette tips**
 - Colors add interest – but increase contamination (Cu, Fe, Zn, Cd)

- **Gloves**
 - Powder free, unless you like Zn
ICP-OES Sensitivity – Sample Intro.

What to Check?

– Torch type and alignment
 • Torch alignment required after removing/replacing the torch
 • Ensures optics viewing highest emission signal from the plasma
 • Can also provide a quick performance check – monitor max. sensitivity

– Spray chamber
 • Spray chamber type changes sensitivity
 – Single pass gives best sensitivity (not suitable for all samples)
 – Double pass gives best precision (best for organics & high % TDS samples)
 • Features an internal baffle to ensure a finer aerosol
It’s a good idea to keep a log of the intensities whenever you run the Torch Alignment routine.
Low ICP-OES Sensitivity

What to Check?

– Standards prepared correctly and fresh
– Check for blockage of nebulizer (easier with the glass cyclonic s/chamber)
 • If required, remove nebulizer and check liquid flow/aerosol formation
– Check for blockage in the injector of the torch
 • Aspirate a Y solution
 • Check the position of “bullet” in the plasma
 • Should be stable
– Check the pump tubing (see tips on later slide)
– Check your method conditions (see tips on later slide)
– Check gas left in argon cylinder – low nebulizer gas flow
ICP-OES Sensitivity - Peristaltic Pump Tubing

- Selection of tubing used for an application based on 2 key factors
 - Resistance to the solvent in use
 - ID of the tubing required (indicated by the coloured tabs)
- Users’ usually know what size they need
 - Axial ICP – white/white for sample and blue/blue for drain
 - Radial ICP – grey/grey for sample and blue/blue for drain
- Smaller sizes used when application demands it
 - Black/black tubing used for organics/high %TDS samples
 - Orange/orange used for Int. Standard/Ionization Suppressant

<table>
<thead>
<tr>
<th>Tubing</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard PVC tubes</td>
<td>Suitable for all aqueous solutions, medium-concentrated acids and bases</td>
</tr>
<tr>
<td>Solvent Flexible (Solvaflex)</td>
<td>Suitable for kerosene, white spirit, alcohols, medium-highly concentrated acids and bases</td>
</tr>
<tr>
<td>Viton</td>
<td>Suitable for gasoline, naptha, toluene, xylene (aromatic hydrocarbons), highly concentrated acids and bases</td>
</tr>
<tr>
<td>Marprene</td>
<td>Suitable for ketone-based solvents including MIBK and DIBK</td>
</tr>
</tbody>
</table>
Potential Pump Tube Problems

What to Check?

– Tubing diameters
 • Want tubing used for waste to be larger ID than sample ID

– Chemical compatibility
 • Ensure tubing is resistant to the solvent being used

– Tube lifetime
 • Typical lifetime is 1-2 weeks based on normal 8 hour working day
 – Detach from tube holder after use – allows tube to “relax”
 • Check 2 key things on pump tubing
 – Roundness of tube – should not be any “flat” spots
 – Tubing should still be elastic – replace if obviously stretched
 • Using “old” tubing can lead to problems with precision and stability
 • Installation and tensioning critical
 – Don’t overtighten – just need smooth and even sample flow

– Remember to check other tubing for wear, leaks and crimps
ICP Sensitivity – Method Parameters

What to Check?

– Wavelength selection
 • Using the most sensitive line?

– Pump speed
 • Use the default speed as guide – 12-15 rpm recommended for most samples
 • Change pump tubing to give resistance to the solvent – and to control sensitivity (by changing tubing ID)

– Interferences?
 • Check for spectral interferences – change wavelength first! (if required)
 – Otherwise, use FACT or IEC correction
 • Physical interferences can affect aerosol formation
 – Use internal standard, matched standards or standard additions
 • Chemical interferences can reduce atom formation
 – Use higher RF power, optimize neb. flow + appropriate matrix modifiers
• **Automatic optimization** of power, nebulizer flow and if applicable, viewing height (on Radial ICP models only)
ICP Sensitivity – System Cleanliness

What to Check?

– Sample Introduction System
 • Deposits in nebulizer can reduce sample uptake rate
 – Soak in aqua regia or use a nebulizer cleaning tool to back flush
 • Solid material in torch injector affects aerosol introduction into plasma and increases noise
 • Contamination in spray chamber impacts on aerosol formation – increases noise
 • If beading in spray chamber
 – Soak in 25% detergent solution overnight (preferably for 24 hours)
Precision - Why is This Important?

What does “Precision” mean?

- Ability to get the same result for the same sample when measured multiple times
- Usually measured as % RSD or sometimes, SD
 \[
 \text{% RSD} = \left(\frac{\text{SD}}{\text{Mean Result}} \right) \times 100
 \]
- Low values indicate good precision
 - For ICP-OES, expect 1-2% RSD

Why is this important?

- User loses confidence in the system

What impacts on precision?

- Nebulizer/plasma stability
- Sample introduction system
- Method parameters
ICP-OES Precision – What to Check?

- System stabilized?
 - Allow 10 mins. for plasma warm-up before analysis
 - Optics purge stabilized – only required when measuring < 190 nm
 - Allow > 20 mins purge before analysis (from stand-by mode)

- Plasma status
 - “Bullet” in the plasma should be stable
 - Check for deposits in the injector of the torch

- Method parameters
 - Appropriate times set for sample uptake delay and stabilization times?
ICP-OES Precision – Sample Intro.

What to Check? – Nebulizer

• Nebulizer type used can impact on sensitivity and precision
 – **Inert OneNeb gives the best precision and handles all sample types**
 – Glass concentric best for aqueous samples
 – K style nebulizer (concentric type) best for organics
 – V-groove gives poorer precision - best for aggressive acids (HF) and high %TDS samples

• Check nebulizer condition regularly
 – Chips in the nebulizer tip impact on aerosol formation – poor precision (use a magnifying glass if necessary)
 – Check for deposits or blockage in the tip

• Sample uptake or flow rate
 – Lower pump speed or using narrow bore pump tubing will reduce uptake rate
 - better for high %TDS samples
ICP-OES Precision – What to Check?

- Sample Introduction
 - Contamination in the spray chamber:
 - Any visible droplet formation?
 - Any blockages in the nebulizer injector?
 - Check for stable aerosol formation
 - Air leaks in connecting tubes
 - Are they in good condition with tight connections?
 - Damaged pump tubes?
 - When did you check the pump tubes?
 - Is the pump speed too slow?
 - Low pump speeds may cause signal pulsation
 - If required, use narrower bore pump tube and increase pump speed
 - Samples have a high %TDS content
 - Measuring at an appropriate concentration
 - Close to the detection limit, noise is high and precision/accuracy is impacted
ICP-OES Precision – What to Check?

– Memory effects?
 • Can occur when measuring high concentrations of selected analytes
 • Usually see high intensity for first replicate – subsequent replicates are more consistent
 • Common culprits:
 – Ag, Au, B, Hg, Mo, Si, Sn, W, Zn, Zr
ICP-OES Precision – What to Check?

– Memory effects?
 • If possible, avoid running high concentrations of these analytes
 – Maybe necessary to pre-dilute samples
 (if known to be high in concentration)

 • Ensure an adequate rinse time
 – Should be at least equal to the sample uptake delay
 (30-40 seconds typical)

 • May require an acidified rinse solution between samples
 (2 % HNO₃)

 • Other strategies to minimize memory effects
 – Use a spray chamber with small internal volume (smallest surface area)
 – Use a Switching Valve to improve wash-out characteristics
 – Use “SmartRinse” to optimize rinse time, based on actual intensity
Accuracy - Why is This Important?

What does “Accuracy” mean?
- Ability to get the “right” answer for the sample
- Heavily dependent on operator’s skill

Why is this important?
- User loses confidence in the system
- Your reputation…
 - Customer’s question the results
 - Poor performance in “round robin” comparisons

How do You Confirm Accuracy?
- Check the result for a prepared standard
- Measure a certified reference material
- Use other quality control checks to check analysis
Accuracy – What to Check?

– Calibration standards properly prepared?
 • See earlier recommendations – important to match to samples, prepare accurately and use them “fresh”

– Any interferences impacting on results?
 – Use matched standards or standard additions
 – Ensure wavelength selected has no spectral interferences

– Precision optimized
 • Optimum signal to noise performance improves accuracy
 • Measuring at an appropriate concentration
 – Close to the detection limit, noise is high and precision/accuracy is impacted

ICP-OES Maintenance & Trouble Shooting
May 2012
Accuracy – What to Check?

– Sample preparation
 • Is the most appropriate digestion being used?
 • Are all of the analytes being quantitatively (and reproducibly) extracted and dissolved?
 – Many digestions are only partial extracts – efficiency will vary with the sample matrix
 – Some volatile analytes may be “lost” during digestion
 • Confirm by taking a solid certified reference material through your preparation and analysis procedure
 • Is the digest stable – or are you seeing any precipitates or a suspension?
 • Do you see any potential contamination from either reagents or the digestion equipment? e.g. especially with Si, B or Ca
 • Include a “Reagent Blank” with every sample batch to monitor
ICP-OES – Potential Autosampler Issues

– More customers use autosamplers with ICP for automation

– Issues to consider:
 • Long transfer tube between sampler and ICP-OES
 – May need to program a longer sample uptake delay
 – May exacerbate problems with memory effects
 – Use “Fast Pump” during sample uptake delay

 • Caution! – not always possible. Not recommended with high %TDS samples and organics

 • Ensure probe diameter is appropriate for sample matrix
 – Use wider bore for high % TDS or viscous samples

 • Sample stability - potential for sample changes while uncovered in racks – impacts accuracy
 – Dust ingress can introduce contamination
 – Sample evaporation may occur during long unattended runs
 – Sediment in the sample may settle out, esp. with wear metals or suspensions

 • Ensure transfer line to ICP-OES is in good condition
 – Kinks in the line may cause poor uptake, or pulsing in the sample
 – Impacts on precision and accuracy
Laboratory Environment

Laboratory environment can have direct impact on quality of results

- Clean, uncluttered work area
- Proper ventilation
- Safety considerations
- Instrument lifetime consideration
Sample Throughput – What to Check?

– Samples fully digested?
 • No excess particulates in the sample that may cause blockage

– Sample Introduction System optimized?
 – Capable of handling the %TDS levels in the sample
 – Torch/Nebulizer cleaned and ready for analysis?

– Method parameters optimized
 • Sample uptake delay and stabilization times are appropriate – optimized
 • Integration time is appropriate for the expected concentration
 – Use a longer integration time at low concentrations
 • Rinse time is appropriate
 – Use “Smart Rinse” or Switching Valve for faster washout
Agilent ICP-OES Performance - Benefits

Robust, stable analysis

- Copes easily with difficult sample matrices such as organic solvents
- Continuous wavelength coverage ensures flexibility and gives you confidence in your results:
 - Extend the linear range by using λ of different sensitivities (in the same run) – no time penalty
 - Eliminate interferences
- One view, one step measurement of major, minor and trace elements for highest productivity
 - Fastest warm-up time
 - Fastest measurement speed

Superb Long Term Stability

Agilent 720 ICP-OES Long-term precision over 8 hours: < 1 % RSD Max.
ICP-OES – Recommended Maintenance Schedule

Daily:

• Inspect torch for injector blockage/other damage
• Check nebulizer for blockage/pulsation
• Inspect peristaltic pump tubing for stretching or flatness
• Check exhaust system operating (smoke test?)
• After analysis is complete:
 – Aspirate rinse solution for 5-10 mins. before shutting down
 • Minimizes sample deposits in spray chamber, nebulizer tip and torch injector
 – Release pressure bar and detach peristaltic pump tubes from holder
 – Empty waste vessel
 – Wipe down exterior surfaces of your ICP-OES (esp. sample compartment)
 – Leave ICP-OES in stand-by mode (gas and power on; software shutdown)
ICP-OES – Recommended Maintenance Schedule

Weekly:

- Clean torch (or earlier if required)
- Check the other sample introduction tubing and O-rings
 - Look for excessive wear, poor sealing or kinks and replace as necessary
 - Especially look at the transfer tube from spray chamber to torch and the spray chamber waste outlet
- Inspect cone (axial ICP) or snout (radial ICP)
 - If cleaning required, sonicate in dilute detergent solution, rinse and dry
- Inspect torch bonnet (radial ICP) for cracks or sample deposition
ICP-OES – Recommended Maintenance Schedule

Monthly:

- Clean spray chamber (or earlier if “beading” visible)
- Clean nebulizer
- Inspect the state of the induction coil
- Clean/check the air filter for the cooling air inlet (behind chimney)
- Clean/check air filter on the water chiller/recirculator
- Check the water level in the water chiller/recirculator
 - Top up with water if required
 - Do not add any more algaecide without flushing the circulator
ICP-OES – Recommended Maintenance Schedule

6 Monthly:

- Clean the water particulate filter on back of instrument
- Replace the water in the water chiller/recirculator
 - Dose with algaecide as recommended by chiller manufacturer
- Change argon filters on argon gas inlet (if using gas cylinders for argon supply)

These functions (and more!) are completed as part of a Preventative Maintenance program by an Agilent Field Service Engineer.
Overview – Key Consumables for ICP-OES

Sample introduction:
- Peristaltic pump tubing
- Torches
- Nebulizers
- Spray chambers
- Transfer and drain tubing
- Application kits (adapt your instrument to a new application)
- ICP standard solutions
- Ionization suppressant / buffer solutions

Autosampling:
- Sample tubes, racks, probes and transfer tubing

Vapor generation systems:
- Peristaltic pump tubing
- Connecting tubing
ICP Sample Introduction

Key consumable items requiring frequent replacement:

- Pump tubing
- Transfer & connecting tubing
- Torches
- Nebulizers
- Spray chambers

Where can customers find ordering details?

- On-line help in the ICP Expert S/W
- Agilent Spectroscopy Supplies Catalogue
- Agilent website – dedicated webpage. Use this link:

SPS 3 Autosampler Consumables

- Peristaltic pump tubing
- Sample racks
- Sample tubes
- Spare probes
- Standard racks
- Connecting tubing

Where to find ordering details?

- On-line help in the ICP Expert S/W
- Agilent Spectroscopy Supplies Catalogue
- Agilent website – dedicated webpage. Use this link:

Where to Find the Right Consumable?

Analytical Consumables: Consumables & Supplies

1-800-227-9770 (Option 1,1)
www.agilent.com/chem/contactus

Agilent Assist: Instrument Sales & Services

1-800-227-9770 (Option 1,3)
www.agilent.com/chem/contactus

On-Line resources:

Atomic Absorption Supplies
ICP-OES Parts & Supplies Portfolio
ICP-MS Supplies
Instrument Parts & Supplies
Atomic Spec. Application Notes

Agilent Quick Reference Guide for Axial ICP (pub. # 5990-9475EN)
Agilent Quick Reference Guide for Radial ICP (pub. # 5990-9474EN)
Agilent Atomic Spec. Supplies Catalogue (pub. # 5990-8767EN)
Agilent Consumables Catalogue (pub. # 5990-6674EN)
Instrument User Manuals
Other Support Resources for Agilent ICP-OES Users

• Are you a member of Agilent’s PlasmaNet email forum?
 – This is a direct email link to other Agilent ICP-OES users worldwide

• PlasmaNet allows you to:
 – Ask a question and get responses from other users doing the same application and/or Agilent Specialists worldwide
 – Share your knowledge and experience with other users

• To register, use this link to the registration form on the Agilent website (or ask your Agilent representative):
Summary – To Achieve Quality Data

- Most “instrument” failures occur in the sample introduction area
 - Includes
 - Torch
 - Spray chamber
 - Nebulizer
 - All tubing
 - Drain Assembly

- Improper maintenance of this area can result in poor data quality

- Frequently less experienced analysts can fail to recognize problems resulting in productivity losses

- Establishing routine maintenance procedures can prevent problems before they occur
Questions?

The Market Leaders in Atomic Spectroscopy

Agilent MP-AES

Agilent AAS

Agilent ICP-OES

Agilent ICP-MS