HPLC Column Troubleshooting

What Every HPLC User Should Know

Agilent Technologies

Slide 4

HPLC Components

- Pump
- Injector/Autosampler
- Column
- Detector
- Data System/Integrator

All of these components can have problems and require troubleshooting.

Categories of Column Problems

A. Pressure

B. Peak shape

C. Retention

Slide 6

Column Observations

High pressure

Potential Problems

Plugged frit Column contamination Plugged packing

Agilent Technologies

Determining the Cause and Correcting High Back Pressure

• Check pressure with/without column - many pressure problems are due to blockages in the system or at the guard

If Column pressure is high:

- Wash column Eliminate column contamination
 - and plugged packing
 - high molecular weight/adsorbed compounds
 - precipitate from sample or buffer
- Back flush column Clear plugged frit
- Change frit Clear plugged frit

Column Cleaning

Flush with stronger solvents than your mobile phase.

Reversed-Phase Solvent Choices in Order of Increasing Strength

Use at least 25 mL of each solvent for analytical columns

- Mobile phase without buffer salts
- 100% Methanol
- 100% Acetonitrile
- 75% Acetonitrile:25% Isopropanol
- 100% Isopropanol
- 100% Methylene Chloride*
- 100% Hexane*

* When using either Hexane or Methylene Chloride the column must be flushed with Isopropanol before returning to your reversed-phase mobile phase.

Column Cleaning

Normal Phase Solvent Choices in Order of Increasing Strength

- Use at least 50 mL of each solvent
- 50% Methanol : 50% Chloroform
- 100% Ethyl Acetate

How to Change a Frit

Preventing Back Pressure Problems

- Use column protection
 - Guard columns
 - In-line filters
- Sample Preparation
- Appropriate column flushing
- Filter buffered mobile phases

Preventing Back Pressure Problems: In-Line Devices

Preventing Back Pressure Problems: Sample Preparation

- Solvent/Chemical Environment
- Particulate/Aggregate Removal
 Filter samples
 Centrifugation
- Solid Phase Extraction (S.P.E.)
 - •Cartridges or Plates
 - •Disks or Membranes

Break Number 1

- For Questions and Answers
- Press *1 on Your Phone to
- Ask a Question

Peak Shape Issues

- Split peaks
- Peak tailing
- Broad peaks
- Poor efficiency

Many peak shape issues are also combinations - i.e. broad and tailing or tailing with increased retention

Split Peaks

Can be caused by:

- Column contamination
- Partially plugged frit
- Column void
- Injection solvent effects

Split Peaks Column Contamination

Column: StableBond SB-C8, 4.6 x 150 mm, 5 μm Mobile Phase: 60% 25 mM Na₂HPO₄, pH 3.0 : 40% MeOH Flow Rate: 1.0 mL/min Temperature: 35°C Detection: UV 254 nm Sample: Filtered OTC Cold Medication: 1. Pseudoephedrine 2. APAP 3. Unknown 4. Chlorpheniramine

Slide 18

Split Peaks Injection Solvent Effects

Slide 19

Determining the Cause of Split Peaks

- 1. Complex sample matrix or many samples analyzed likely column contamination or partially plugged frit
- 2. Mobile phase $pH \ge 7$ likely column void due to silica dissolution (unless specialty column used)
- 3. Injection solvent stronger than mobile phase likely split and broad peaks, dependent on sample volume

Peak Tailing, Broadening and Loss of Efficiency

Can be caused by:

- Column "secondary interactions"
- Column void
- Column contamination
- Column aging
- Column loading
- Extra-column effects

Peak Tailing Column "Secondary Interactions"

• Peak tailing eliminated with mobile phase modifier (TEA) at pH 7

Slide 22

Peak Tailing Column "Secondary Interactions"

• Reducing the mobile phase pH reduces interactions with silanols that cause peak tailing.

Peak Tailing Column Contamination

Agilent Technologies

Peak Tailing/Broadening Sample Load Effects

Columns: 4.6 x 150 mm, 5μm Mobile Phase: 40% 25 mM Na₂HPO₄ pH 7.0 : 60% ACN Flow Rate: 1.5 mL/min Temperature: 40°C Sample: 1. Desipramine 2. Nortriptyline 3. Doxepin 4. Imipramine 5. Amitriptyline 6. Trimipramine

Peak Broadening, Splitting Column Void

• Multiple peak shape changes can be caused by the same column problem. In this case a void resulted from silica dissolved at high pH.

Broad Peaks Unknown "Phantom" Peaks

Column: Extend-C18, 4.6 x 150 mm, 5 μmMobile Phase: 40% 10 mM TEA, pH 11 : 60% MeOHFlow Rate: 1.0 mL/minTemperature: R.T.Detection: UV 254Sample: 1. Maleate2. Pseudoephedrine3. Chlorpheniramine

• The extremely low plates are an indication of an extremely late eluting peak from the preceding run.

Peak Tailing Injector Seal Failure

• Overdue instrument maintenance can cause peak shape problems.

Peak Tailing Extra-Column Volume

Column: StableBond SB-C18, 4.6 x 30 mm, 3.5 μmMobile Phase: 85% H2O with 0.1% TFA : 15% ACNFlow Rate: 1.0 mL/minTemperature: 35°CSample: 1. Phenylalanine2. 5-benzyl-3,6-dioxo-2-piperazine acetic acid3. Asp-phe4. Aspartame

Slide 29

Determining the Cause of Peak Tailing

- Evaluate mobile phase effects alter mobile phase pH and additives to eliminate secondary interactions
- Evaluate column choice try column with high purity silica or different bonding technology
- Reduce sample load
- Eliminate extra-column effects
- Flush column and check for aging/void

Break Number 2

- For Questions and Answers
- Press *1 on Your Phone to
- Ask a Question

Retention Issues

- Retention time changes (t_r)
- Capacity factor (retention) changes (k')
- Selectivity changes (α)

Changes in Retention Same Column, Over Time

May be caused by:

- Column aging
- Column contamination
- Insufficient equilibration
- Poor column/mobile phase combination
- Change in mobile phase
- Change in flow rate
- Other instrument issues

Mobile Phase Change Causes Change in Retention

- Volatile TFA evaporated/degassed from mobile phase.
- Replacing it solved problem.

Column Aging/Equilibration Causes Retention/Selectivity Changes

- The primary analyte was sensitive to mobile phase aging of the column.
- The peak shape was a secondary issue resolved by flushing the column.
- Retention and peak shape were as expected after cleaning.

Determining the Cause of Retention Changes Same Column

- 1. Determine k', α , and t_r for suspect peaks
- 2. Wash column
- 3. Test new column note lot number
- 4. Review column equilibration procedures
- 5. Make up fresh mobile phase and test
- 6. Check instrument performance

Change in Retention/Selectivity Column-to-Column

- Different column histories (aging)
- Insufficient/inconsistent equilibration
- Poor column/mobile phase combination
- Change in mobile phase
- Change in flow rate
- Other instrument issues
- Slight changes in column bed volume (t_r only)

Example Change in Retention/Selectivity

Column-to-Column

Mobile Phase Variation

"I have experimented with our mobile phase, opening new bottles of all mobile phase components. When I use all fresh ingredients, the problem ceases to exist, and I have narrowed the problem to either a bad bottle of TEA or phosphoric acid. Our problem has been solved."

Determining the Cause of Retention Changes Column-to-Column

- 1. Determine k', α , and t_r for suspect peaks
- 2. Test new column note lot number
- 3. Determine column history of all columns
- 4. Review column equilibration procedures
- 5. Make up fresh mobile phase and test
- 6. Check instrument performance

Minimize Change in Retention/Selectivity Lot-to-Lot

Evaluate:

- All causes of column-to-column change*
- Method ruggedness (buffers/ionic strength)
- pH sensitivity (sample/column interactions)

*All causes of column-to-column change should be considered first, especially when only one column from a lot has been tested.

Lot-to-Lot Selectivity Change pH

- pH 4.5 shows selectivity change from lot-to-lot for basic compounds
- pH 3.0 shows no selectivity change from lot-to-lot, indicating silanol sensitivity at pH 4.5

Experimental Conditions for Classifying Column Selectivity Changes

 α value changes of >10% suggest changes in bonded-phase or silica

Evaluate Retention Changes Lot-to-Lot

- Eliminate causes of column-to-column selectivity change
- Re-evaluate method ruggedness modify method
- Determine pH sensitivity modify method
- Classify selectivity changes
- Contact manufacturer for assistance

Conclusions

HPLC column problems are evident as:

- High pressure
- Undesirable peak shape
- Changes in retention/selectivity

Often these problems are not associated with the column and may be caused by instrument and experimental condition issues.

Wrap-up E-Seminar Questions

Slide 45