Agilent Bond Elut Nexus

A collection of citations to advance your research

Table of contents

Environmental

Food testing and agriculture

Forensics and toxicology
Environmental

Analysis of nitroaromatic compounds in complex samples using solid-phase microextraction and isotope dilution quantification gas chromatography–electron-capture negative ionisation mass spectrometry

S. Jönsson, L. Gustavsson, B. van Bavel

Tags
Bond Elut ENV, Bond Elut NEXUS, 6890 GC, 5973 MSD, environmental, water analysis

Abstract
Agilent Bond Elut was among best performing SPE cartridges in an analysis of nitroaromatic compounds. Published by Elsevier B.V.

Development of a solid phase extraction method for agricultural pesticides in large-volume water samples

Talanta, 81, 1380-1386 (2010)
Georges-Marie Momplaisir *et al.*

Tags
Bond Elut PPL, Bond Elut C18, Bond Elut NEXUS, 6890A GC, 5973N MSD, environmental, water analysis

Abstract
Agilent Bond Elut NEXUS in bulk, i.e. 8 g for a 100 L water sample, was used to extract pesticides from large volumes of water. Agilent Bond Elut PPL and Bond Elut C18 were also used. Published by Elsevier B. V.
Food testing and agriculture

Application of ultrasound-assisted matrix solid-phase dispersion extraction to the HPLC confirmatory determination of cephalosporin residues

Eftichia G. Karageorgou, Victoria F. Samanidou

Tags
Bond Elut NEXUS, food testing and agriculture, veterinary drugs

Abstract
Agilent Bond Elut NEXUS outperformed a non-Agilent product for sample extraction in an examination of antibiotics in milk. Published by Elsevier B. V.

Development and Validation of an HPLC Confirmatory Method for the Determination of Seven Tetracycline Antibiotics Residues in Bovine and Porcine Muscle Tissues According to 2002/657/EC

Konstantina I. Nikolaidou, Victoria F. Samanidou, Ioannis N. Papadoyannis

Tags
Bond Elut NEXUS, food testing and agriculture, veterinary drugs

Abstract
An HPLC method with diode array detection, at 355 nm, was developed and validated for the determination of seven tetracyclines (TCs) in bovine and porcine muscle tissues. Examined tetracyclines include: minocycline (MNC), tetracycline (TC), oxytetracycline (OTC), methacycline (MTC), demeclocycline (DMC), chlortetracycline (CTC), and doxycycline (DC). These were extracted from tissues using oxalate buffer (pH 4). Samples were purified by SPE on Nexus cartridges, using MeOH/ACN/0.05 M C₂H₂O₄ (30:30:40 v/v/v) as elution solvent. The separation was achieved on a Kromasil C₁₈, 5 µm, 250 × 4 mm, analytical column, operating at ambient temperature. The mobile phase, a mixture of A: 0.01 M oxalic acid and B: CH₃CN, was delivered using a gradient program. The procedure was validated according to the Decision 2002/657/EC, by determining selectivity, stability, decision limit, detection capability, accuracy, and precision. Overall recoveries of TCs from bovine and porcine samples ranged from 89–114.1%. All RSD values were lower than 8.5%. The decision limits CCa in bovine tissues ranged from 103.2 to 111.1 µg/kg, while detection capability CCb from 105.2 to 114.9 µg/kg. Respective values in porcine tissues were 102.5–106.4 µg/kg for CCa and 105.3–108.7 µg/kg for CCb. © 2008 Taylor & Francis.
Identification of Anthocyanins in the Liver, Eye, and Brain of Blueberry-Fed Pigs

Wilhelmina Kalt et al.

Tags
Bond Elut NEXUS, ZORBAX Eclipse XDB-C18, ZORBAX SB-C18, 1100 Series, food testing and agriculture

Abstract
Dietary intervention with anthocyanins may confer benefits in brain function, including vision. Research to date indicates that animals have only a limited capacity to absorb anthocyanins, compared to other types of flavonoids. Pigs, which are a suitable model for human digestive absorption, were used to examine the deposition of anthocyanins in tissues including the liver, eye, and brain tissue. Pigs were fed diets supplemented with 0, 1, 2, or 4% w/w blueberries (*Vaccinium corymbosum* L. ’Jersey’) for 4 weeks. Prior to euthanasia, pigs were fasted for 18–21 h. Although no anthocyanins were detected in the plasma or urine of the fasted animals, intact anthocyanins were detected in all tissues where they were sought. LC-MS/MS results are presented for the relative concentration of 11 intact anthocyanins in the liver, eye, cortex, and cerebellum. The results suggest that anthocyanins can accumulate in tissues, including tissues beyond the blood–brain barrier. Reprinted with permission from the *Journal of Agricultural and Food Chemistry*. ©2008 American Chemical Society.

Liquid chromatographic method development for anabolic androgenic steroids using a monolithic column: Application to animal feed samples

Analytica Chimica, 611, 103-112 (2008)
R. Muñiz-Valencia et al.

Tags
Bond Elut NEXUS, food testing and agriculture, veterinary drugs

Abstract
The authors developed and validated an isocratic HPLC method to screen fluoxymesterone, boldenone, nortestosterone, metandrostenolone, norethindrone, methyltestosterone, and bolasterone, used as growth promoting agents, in finishing pig feeds. They used saponification prior to SPE to reduce extraction of oil in the sample. Agilent Bond Elut Nexus outperformed other sample prep methods. Published by Elsevier B. V.
Forensics and toxicology

Establishing a universal swabbing and clean-up protocol for the combined recovery of organic and inorganic explosive residues

Nopporn Song-im, Sarah Benson, Chris Lennard

Tags
Bond Elut ENV, Bond Elut NEXUS, ZORBAX Eclipse XDB-C18, 1100 Series, forensics and toxicology, criminalistics

Abstract
Pre-conditioned Agilent Bond Elut NEXUS was chosen as the preferred SPE technology in the development of a cleanup protocol for explosives. A ZORBAX Eclipse XDB-C18 LC column was used for the final analysis. Published by Elsevier B.V.

www.agilent.com/chem

Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material. Information, descriptions, and specifications in this publication are subject to change without notice.

© Agilent Technologies, Inc., 2014

Printed in the UK
29 October, 2014

5991-4508EN