

Quantification of RNA Using Microplate-Based UV and Fluorescence Methods

Author

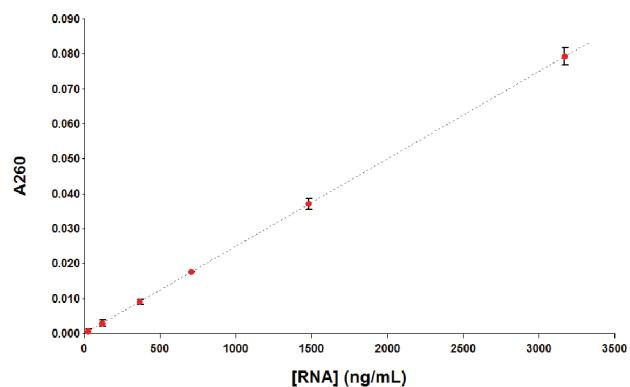
Peter J. Brescia, MSc.
Agilent Technologies, Inc.

Introduction

There has been a dramatic shift in the understanding of the role performed by various forms of ribonucleic acids (RNAs) recently. New activities are being discovered and performed by various RNAs across a variety of biological pathways in cell-based organisms, including regulatory RNAs such as miRNAs, siRNAs, piRNA, and CRISPR RNAs, as well as the more traditional RNAs associated with translation (mRNA, tRNA, and rRNA) and RNA processing (snRNA and snoRNA). There continues to be increased interest in research efforts to better understand the multifaceted roles RNAs play. One central requirement for many experimental systems is the quantification of RNA before use. Several methods to quantify RNA are available, including the use of the intrinsic absorption of light by RNA in the ultraviolet wavelength range, as well as enhancement reagents allowing greater sensitivity and specificity when contaminating species may be present.

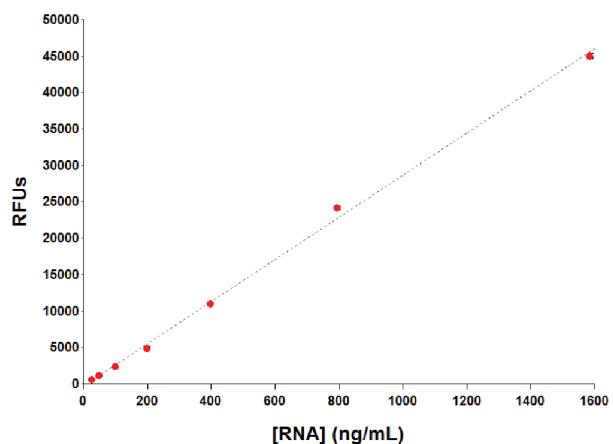
Methods

UV absorption


All ribosomal RNA standards were created by preparing a 1:2 serial dilution series of a concentrated stock in TE buffer (tris-EDTA, pH = 7.0). Absorbance measurements were performed at 260 nm in triplicate in a 100 μ L volume in a UV-transparent microplate.

Fluorescence assay

Quant-iT RiboGreen reagent (part number R11490) was purchased from Thermo Fisher Scientific (Waltham, MA). Solid 96-well black microplates (part number 3915) were from Corning (Corning, NY). Ribosomal RNA was diluted to 2 μ g/mL with TE (10 mM tris, 1 mM EDTA, pH 7.5) as the diluent. The final concentration was confirmed using 260 nm absorbance. A series of dilutions ranging from ~0.0 to 3,200 ng/mL or 0.0 to 100 ng/mL of purified RNA were made using TE and 100 μ L aliquots pipetted into microplate wells. Equal amounts (100 μ L) of working RiboGreen quantitation reagent were mixed and incubated for 10 minutes at room temperature, protected from light. Working RiboGreen reagent was prepared by diluting the concentrated DMSO-Ribo-Green stock solution 1:200 with TE according to the manufacturers' recommendations. Fluorescence was determined using an Agilent BioTek Synergy LX multimode reader with a GFP filter cube (Ex 485/20 nm, Em 528/25 nm, and 510 nm cutoff dichroic mirror). Concentrations are reported as those in the final assay volume.


Results and discussion

UV absorbance remains the most common method for estimation of nucleic acid concentration primarily due to ease of use. Of main concern is overestimation due to contaminating species with identical absorption peaks. Additionally, absorption methods can suffer elevated limits of detection that is most notable when working with samples in the submicrogram per milliliter range. However, UV absorbance provides a quick estimate of purified RNA across a relatively large range of concentrations commonly resulting from many laboratory preparations (Figure 1).

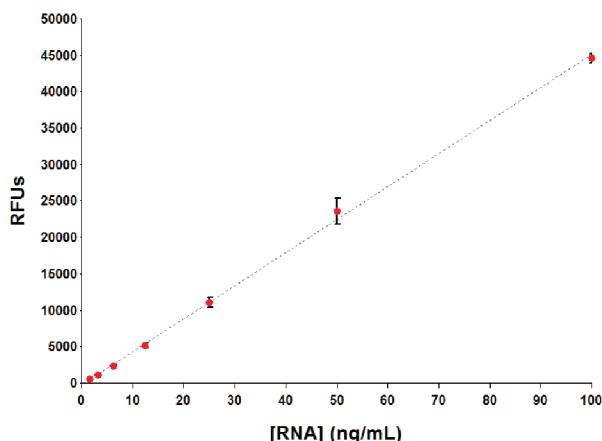


Figure 1. RNA absorbance measurements. A dilution series of ribosomal RNA was prepared ranging from 0 to 3,200 ng/mL in TE buffer. Standards were analyzed in triplicate at a volume of 100 μ L in a UV-transparent, 96-well microplate format.

The use of fluorescent intercalating dyes can effectively be used to accurately quantify lower concentration samples as shown below. These dyes were developed to discriminate between different biomolecules and, to some extent, different nucleic acid species. The RNA assay can be run in either a high- or low-range format by adjusting the reagent concentration to either a 200 or 2,000-fold dilution, respectively (Figures 2 and 3). The calculated limit of detection for the high- and low-range assays are nearly identical at 0.5 and 1.7 ng/mL, respectively.

Figure 2. High-range fluorescence measurements. A dilution series of ribosomal RNA was prepared ranging from 0 to 3,200 ng/mL in TE buffer. Standards were analyzed in triplicate at a volume of 100 μ L in a standard 96-well microplate format.

Figure 3. Low-range measurements. A dilution series of ribosomal RNA was prepared ranging from 0 to 100 ng/mL in TE buffer. Standards were analyzed in triplicate at a volume of 100 μ L in a standard 96-well microplate format.

Conclusion

The Agilent BioTek Synergy LX multimode reader provides the most common detection technologies used in biological research including absorbance, fluorescence, and luminescence detection. This application brief demonstrates its utility to quantify proteins using UV detection and various colorimetric assays to extend the dynamic range of measurable concentrations and possessing tolerance to many interfering compounds.

www.agilent.com/lifesciences/biotek

For Research Use Only. Not for use in diagnostic procedures.

RA44326.1306134259

This information is subject to change without notice.

© Agilent Technologies, Inc. 2018, 2022
Printed in the USA, March 31, 2022
5994-2771EN

 Agilent
Trusted Answers