검출기 4개의 Agilent 8890 GC를 이용한 과일과 채소의 유기인 및 유기염소계 농약 분석

개요

본 응용 자료는 China Standard NY/T 761-2008에 따른 과일과 채소의 유기인 및 유기염소계 진류 농약 분석에 대한 효과적이고 믿을 수 있는 분석 방법을 설명합니다. Unpurged two-way Capillary Flow Technology(CFT) 장치를 사용하여 시료를 1:1로 분할하여 두 개의 컬럼, 그리고 2개의 검출기로 보내는 NY/T 761-2008에 기술된 기존의 전처리 절차 대비, 이 응용 자료에서는 간소화된 '빠르고 쉽고 경제적이며 효과적이고 견고하고 안전한(QuEChERS)' 분석법을 사용하였으며, 저농도 분석물질의 검출은 유지하면서 충분한 시료 메트릭스의 cleanup을 제공하였습니다. 검출기 4개의 Agilent 8890 GC 시스템으로 유기인 및 유기염소계 농약 모두에 대한 면적 반복성, 직선성 및 회수율을 평가하였습니다.
서론

농약의 사용은 해충 예방 및 관리와 그로 인한 농업 생산량 개선에 중요한 역할을 해 왔습니다. 농업 처리에 사용하는 두 가지 일반적인 농약 종류는 유기인 및 유기염소계 화학 구조를 가집니다.

과일과 채소의 유기인 및 유기염소계 전류 농약 분석을 위해, 가스 크로마토그래피 (GC), 가스 크로마토그래피/질량 분석기 (GC/MSD)와 가스 크로마토그래피/탱덤 질량 분석기(GC/QQQ) 분석법이 널리 사용됩니다. 이에 따라, 중국은 이러한 농약 분석을 위해 일련의 표준 분석법을 발표했습니다. NY/T 761-2008은 전자 포획 검출기(ECD)와 불꽃 광도 검출기(FPD)를 이용한 GC 분석법에 대해 설명합니다. GB/T 19648-2006은 500종 농약 분석에 대한 GC/MSD 분석법을 설명하며, GB 23200.113-2018은 208종 농약 분석에 대한 GC/QQQ 분석법을 설명합니다. 질량 분석법은 정성 분석에 분명한 이점을 가지며, 높은 효율로 수십 또는 수백 종의 잔류 농약을 동시에 분석할 수 있습니다. 따라서, 기기도 비교적 고가입니다. 가스 크로마토그래피는 MS에 비해 정성 능력은 떨어지지만, 선택적 검출기와 낮은 검출 비용으로 여전히 많은 실험실에서 사용되고 있습니다. ECD는 양소에 대한 선택성이 우수하여 유기염소계 농약 분석에 좋은 선택입니다. FPD는 황과 인에 대한 선택성이 높아, 유기인계 농약 분석에 좋은 선택입니다. NY/T 761 분석법에서는 1차 컬럼과 확인 컬럼을 함께 사용하여 정확한 정성 분석을 달성하고 위양성 결과를 방지합니다. 이 드릴 컬럼 접근법은 또한 FPD 2개와 ECD 2개를 사용하여 유기인 및 유기염소계 농약 모두에 대한 정량 결과를 제공합니다. 일반적으로, NY/T 761 분석법을 정확히 따르자면 실험실에는 2대의 GC 시스템이 필요합니다. 그러나, 8890 GC는 하나의 기기에 FPD 2개와 ECD 2개를 설치할 수 있어, 다른 실험실 GC에 비해 매우 뛰어난 유연성을 제공합니다. 유기인 및 유기염소계 농약 분석을 위한 실험실은 하드웨어 변경 없이, 서로 다른 검출기에 다른 컬럼을 재설치하기만 하면 됩니다.

시료 전처리는 다양한 농약 분석에 중요한 과정이며, 이는 작업 효율과 감도에 직접적인 영향을 미칩니다. NY/T 761 분석법은 시료 전처리에 기존의 노동집약적 추출과 cleanup 절차를 사용합니다. 유기염소 및 유기인계 농약의 cleanup 절차는 상이합니다. 이는 유기인 및 유기염소계 농약 모두를 시험할 때, 동일한 시료에 두 종류의 다른 전처리가 필요하다 것을 의미합니다. 인기 있는 QuEChERS 시료 전처리 분석법은 높은 처리량의 시료 분석을 위한 최적의 분석법입니다. 가장 중요한 것은, 동일한 시료 전처리 과정을 유기인 및 유기염소계 농약 모두에 사용할 수 있어 분석 효율을 크게 향상한다는 점입니다.

시료 전처리는 다성분 잔류 농약 분석에 중요한 과정이며, 이는 작업 효율과 감도에 직접적인 영향을 미칩니다. NY/T 761 분석법은 시료 전처리에 기존의 노동집약적 추출과 cleanup 절차를 사용합니다. 유기염소 및 유기인계 농약의 cleanup 절차는 상이합니다. 이는 유기인 및 유기염소계 농약 모두를 시험할 때, 동일한 시료에 두 종류의 다른 전처리가 필요하다 것을 의미합니다. 인기 있는 QuEChERS 시료 전처리 분석법은 높은 처리량의 시료 분석을 위한 최적의 분석법입니다. 가장 중요한 것은, 동일한 시료 전처리 과정을 유기인 및 유기염소계 농약 모두에 사용할 수 있어 분석 효율을 크게 향상한다는 점입니다.
실험

기기
이 실험의 시험에는 SSL 주입구, ECD 2개 및 FPD 2개를 갖춘 8890 GC를 사용하였습니다. 두 개의 검출기로 검출하기 위해 컬럼 두 개에 시료를 1:1로 분할하되 Unpurged two-way CFT 장치를 사용했습니다. 유기인계 농약 분석의 1차 컬럼과 확인 컬럼으로 Agilent HP-50+와 Agilent HP-1을 사용했습니다. Agilent DB-5 1차 컬럼 및 Agilent DB-17 확인 컬럼의 유연 컬럼, 유연 ECD 시스템을 유기염소계 농약 분석에 사용했습니다. 유기인계 농약과 유기염소계 농약 분석은 온도 프로그램이 다르기 때문에 동시에 실행할 수 없습니다. 최대 3개의 검출기만 설치할 수 있는 Agilent 7890 GC에 비해, 8890 GC는 뛰어난 유연성을 동시에 4개의 검출기를 설치할 수 있습니다. 따라서, 실험실은 하드웨어 변경 없이, 몇몇 검출기에 적합한 컬럼을 재설치하기만 하면 됩니다. 그림 1은 기기 설정 구조의 도표입니다. 표 1은 이 분석에서 사용한 크로마토그래피 조건입니다.

시약 및 화학 물질

표 1. 크로마토그래피 조건

<table>
<thead>
<tr>
<th>유기인 분석법</th>
<th>GC</th>
<th>FPD 2개를 장착한 Agilent 8890 GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>주입구</td>
<td>분할/비분할</td>
<td>운도: 220°C 비분할 모드, 퍼지 유속 60mL/분, 0.75분</td>
</tr>
<tr>
<td>라이너</td>
<td>Agilent Ultra inert, splitless, single taper, glass wool(p/n 5190-2293)</td>
<td></td>
</tr>
<tr>
<td>주입량</td>
<td>2µL</td>
<td></td>
</tr>
<tr>
<td>머무름 간격</td>
<td>0.5m × 0.53mm id deactivated fused silica tubing (p/n 160-2535-5)</td>
<td></td>
</tr>
<tr>
<td>컬럼</td>
<td>혈압 1: Agilent HP-50+ 30m × 0.53mm, 1µm (p/n 1909SL-023)</td>
<td>혈압 1: Agilent HP-1 30m × 0.53mm, 1.5µm (p/n 1909SZ-323)</td>
</tr>
<tr>
<td>운반 가스</td>
<td>흐름 10mL/분, 정소 유속(혈압 1과 2, 동일한 컬럼 유속)</td>
<td></td>
</tr>
<tr>
<td>오븐</td>
<td>150°C (2분), 8°C(분으로 250°C까지) (12분)</td>
<td></td>
</tr>
<tr>
<td>FPD Plus 1 및 2</td>
<td>운도: 250°C 방출 온도: 150°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>수소: 60mL/분, 공기: 60mL/분</td>
<td></td>
</tr>
<tr>
<td></td>
<td>보충 가스(N2): 60mL/분</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>유기염소계 분석법</th>
<th>GC</th>
<th>ECD 2개를 장착한 Agilent 8890 GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>주입구</td>
<td>분할/비분할</td>
<td></td>
</tr>
<tr>
<td>라이너</td>
<td>Agilent Ultra inert, split, low pressure drop, glass wool (p/n 5190-2293)</td>
<td></td>
</tr>
<tr>
<td>주입량</td>
<td>2µL</td>
<td></td>
</tr>
<tr>
<td>머무름 간격</td>
<td>0.5m × 0.53mm id deactivated fused silica tubing (p/n 160-2535-5)</td>
<td></td>
</tr>
<tr>
<td>컬럼</td>
<td>혈압 1: Agilent DB-5 30m × 0.25mm, 0.25µm (p/n 122-5032)</td>
<td>혈압 2: Agilent DB-17 30m × 0.25mm, 0.25µm (p/n 122-1732)</td>
</tr>
<tr>
<td>운반 가스</td>
<td>흐름 1: 1mL/분, 정소 유속(혈압 1과 2, 동일한 컬럼 유속)</td>
<td></td>
</tr>
<tr>
<td>오븐</td>
<td>150°C (2분), 6°C(분으로 270°C까지 (12분, deltamethrin 분석시 23분간 유지))</td>
<td></td>
</tr>
<tr>
<td>ECD 1 및 2</td>
<td>온도: 320°C 보충 가스(N2): 25mL/분</td>
<td></td>
</tr>
</tbody>
</table>

그림 1. 보충 가스가 없는 Agilent capillary flow technology two-way splitter (p/n G3181B)와 단일 주입으로 1차 및 확인 컬럼의 동시 분석을 위한 기기 설정 다이어그램. (A) 인 검출을 위한 FPD, (B) 염소 검출을 위한 ECD
表 2. Agilent HP-50+ 컬럼의 유기인계 농약 분석 데이터 결과

<table>
<thead>
<tr>
<th>번호</th>
<th>화합물명</th>
<th>전성분 범위 (mg/kg)</th>
<th>(R^2)</th>
<th>% RSD (n = 8) MDL (mg/kg)</th>
<th>회수율</th>
<th>그룹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dichlorvos</td>
<td>0.05~0.5</td>
<td>0.9982</td>
<td>2.8 1.5 1.5 0.004 108.9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Acephate</td>
<td>0.05~0.5</td>
<td>0.9989</td>
<td>4.6 3.1 1.6 0.007 97.7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Dicophos</td>
<td>0.05~0.5</td>
<td>0.997</td>
<td>4.3 2.3 1.6 0.007 105.3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Disulfoton</td>
<td>0.05~0.5</td>
<td>0.984</td>
<td>3.1 2.7 2.1 0.006 118.2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Dimethoate</td>
<td>0.05~0.5</td>
<td>0.981</td>
<td>0.6 1.6 1.3 0.002 111.4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Parathion-methyl</td>
<td>0.05~0.5</td>
<td>0.9984</td>
<td>1.6 2.1 1.6 0.003 116</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Chlorpyrifos</td>
<td>0.05~0.5</td>
<td>0.9982</td>
<td>2.7 1.7 1.3 0.003 151.1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Pirimiphos-ethyl</td>
<td>0.05~0.5</td>
<td>0.9885</td>
<td>2.6 1.4 1.4 0.003 111.8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Fenthion</td>
<td>0.05~0.5</td>
<td>0.99</td>
<td>3 2.4 1.6 0.005 111</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Phoxim</td>
<td>0.2~2.0</td>
<td>0.9922</td>
<td>4.4 2.8 3.6 0.005 110.9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Ditalimfos</td>
<td>0.05~0.5</td>
<td>0.994</td>
<td>2.6 1.6 1.1 0.004 70.4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Triazophos</td>
<td>0.05~0.5</td>
<td>0.992</td>
<td>3.6 2 2.4 0.007 104.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Phosmet</td>
<td>0.2~2.0</td>
<td>0.998</td>
<td>2.2 2.2 1.6 0.009 102</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Trichlorfon</td>
<td>0.2~2.0</td>
<td>0.999</td>
<td>3 3.5 2.2 0.045 115.4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Ethoprophos</td>
<td>0.05~0.5</td>
<td>0.987</td>
<td>1.2 1.5 1.9 0.004 98.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Phorate</td>
<td>0.05~0.5</td>
<td>0.988</td>
<td>2 1.2 1.9 0.004 97.4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Omethoate</td>
<td>0.05~0.5</td>
<td>0.992</td>
<td>4.5 3.7 1.8 0.008 102.5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Diazinon</td>
<td>0.05~0.5</td>
<td>0.998</td>
<td>2.5 1.5 1.9 0.006 95</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Fonofo</td>
<td>0.05~0.5</td>
<td>0.968</td>
<td>3.5 2.3 2.2 0.003 87.4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Chlorpyrifos-methyl</td>
<td>0.05~0.5</td>
<td>0.986</td>
<td>2.4 1.2 1.7 0.004 92.1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Paraoxon</td>
<td>0.05~0.5</td>
<td>0.991</td>
<td>3.5 2 1.1 0.007 97.2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Fenitrothion</td>
<td>0.05~0.5</td>
<td>0.992</td>
<td>2.9 2.8 1.4 0.005 97.4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Bromophos</td>
<td>0.05~0.5</td>
<td>0.986</td>
<td>3.6 3.1 1.1 0.009 100.2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Bromophos-ethyl</td>
<td>0.05~0.5</td>
<td>0.999</td>
<td>2.2 1.6 0.9 0.007 101</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Profenofos</td>
<td>0.05~0.5</td>
<td>0.995</td>
<td>3.4 2.7 0.8 0.008 104.7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Ethion</td>
<td>0.05~0.5</td>
<td>0.995</td>
<td>1.6 1.7 0.8 0.004 111.6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Pyrazophos</td>
<td>0.2~2.0</td>
<td>0.998</td>
<td>2.4 3.1 2.4 0.02 108.6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Coumaphos</td>
<td>0.2~2.0</td>
<td>0.997</td>
<td>4.2 2.6 2.6 0.02 107.1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Methamidophos</td>
<td>0.05~0.5</td>
<td>0.999</td>
<td>3.5 3.2 2.9 0.004 107.7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Sulfofep</td>
<td>0.05~0.5</td>
<td>0.999</td>
<td>2.1 1.2 1.7 0.001 94.1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Terbufos</td>
<td>0.05~0.5</td>
<td>0.999</td>
<td>2.2 2.1 2.2 0.003 94</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Monocrophos</td>
<td>0.05~0.5</td>
<td>0.995</td>
<td>3.2 0.8 1.6 0.004 93.4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Diclofenthion</td>
<td>0.05~0.5</td>
<td>0.999</td>
<td>3.4 1.7 1.4 0.003 93.2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Fenchlorphos</td>
<td>0.05~0.5</td>
<td>0.999</td>
<td>2.2 1.4 1.5 0.003 94.7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Pirimiphos-methyl</td>
<td>0.05~0.5</td>
<td>0.999</td>
<td>2.8 2 1.5 0.004 94.2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Parathion</td>
<td>0.05~0.5</td>
<td>0.997</td>
<td>3.2 1.5 1.3 0.003 93.9</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Isofenphos</td>
<td>0.05~0.5</td>
<td>0.999</td>
<td>3.9 3 2.1 0.005 93.5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Methidathion</td>
<td>0.05~0.5</td>
<td>0.998</td>
<td>2.7 1.7 1.3 0.004 93.6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Phosfolan-methyl</td>
<td>0.05~0.5</td>
<td>0.998</td>
<td>2.3 2.9 1.7 0.001 102</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Fampyros</td>
<td>0.05~0.5</td>
<td>0.999</td>
<td>2.7 2.6 3.2 0.02 102</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Phosalone</td>
<td>0.2~2.0</td>
<td>0.993</td>
<td>2.9 3.1 2.3 0.008 102</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Azinphos-ethyl</td>
<td>0.2~2.0</td>
<td>0.996</td>
<td>2.8 2.3 1.7 0.02 116.5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Naled</td>
<td>0.1~1.0</td>
<td>0.999</td>
<td>2.6 3.3 1.9 0.02 95.5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Mevinphos</td>
<td>0.05~0.5</td>
<td>0.998</td>
<td>3.9 2.6 1.3 0.005 118.1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Propetamphos</td>
<td>0.05~0.5</td>
<td>0.995</td>
<td>4 2.8 1.4 0.007 101.5</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
표 3은 3개의 그룹으로 분류한 유기염소계 농약 41종입니다. 동일 그룹인 단일 농약 표준 용액의 일정 부피를 정확하게 추가하고 hexane으로 희석했습니다. 유기염소계 농약 혼합물을 원액을 3개 그룹으로 제조하는데 동일한 방법을 사용했습니다. 검량 표준물질은 메트릭스 바탕시료로 희석했습니다(시료 전처리 참조).

표 2. Agilent HP-50+ 컬럼의 유기인계 농약 분석 데이터 결과(계속)

<table>
<thead>
<tr>
<th>번호</th>
<th>화합물명</th>
<th>작성성 범위 (mg/kg)</th>
<th>R²</th>
<th>% RSD (n=8)</th>
<th>MDL (mg/kg)</th>
<th>% 회수율</th>
<th>그룹</th>
</tr>
</thead>
<tbody>
<tr>
<td>46-1</td>
<td>Phosphamidon-1</td>
<td>0.1~1.0 0.9999</td>
<td>3.6</td>
<td>1.9 0.9</td>
<td>0.02</td>
<td>107.7</td>
<td>4</td>
</tr>
<tr>
<td>46-2</td>
<td>Phosphamidon-2</td>
<td>0.1~1.0 0.9999</td>
<td>3.6</td>
<td>1.9 0.9</td>
<td>0.02</td>
<td>107.7</td>
<td>4</td>
</tr>
<tr>
<td>47</td>
<td>Trichloronate</td>
<td>0.05~0.5 0.9999</td>
<td>2.3</td>
<td>2.7 1.1</td>
<td>0.004</td>
<td>97.5</td>
<td>4</td>
</tr>
<tr>
<td>48</td>
<td>Malathion</td>
<td>0.05~0.5 0.9999</td>
<td>1.9</td>
<td>1.9 1</td>
<td>0.005</td>
<td>98.1</td>
<td>4</td>
</tr>
<tr>
<td>49</td>
<td>Isocarboxphos</td>
<td>0.05~0.5 0.9999</td>
<td>2.6</td>
<td>1.8 1</td>
<td>0.004</td>
<td>96.9</td>
<td>4</td>
</tr>
<tr>
<td>50</td>
<td>Quinalphos</td>
<td>0.05~0.5 0.9999</td>
<td>2.8</td>
<td>1.6 1</td>
<td>0.004</td>
<td>97</td>
<td>4</td>
</tr>
<tr>
<td>51</td>
<td>Tetrachlorvinphos</td>
<td>0.05~0.5 0.9998</td>
<td>2.1</td>
<td>2.4 0.8</td>
<td>0.007</td>
<td>97.9</td>
<td>4</td>
</tr>
<tr>
<td>52</td>
<td>Phosfolan</td>
<td>0.05~0.5 0.9999</td>
<td>2.7</td>
<td>3.3 2.5</td>
<td>0.02</td>
<td>97.2</td>
<td>4</td>
</tr>
<tr>
<td>53</td>
<td>EPN</td>
<td>0.05~0.5 0.9993</td>
<td>2.8</td>
<td>3.8 1.8</td>
<td>0.009</td>
<td>100.4</td>
<td>4</td>
</tr>
<tr>
<td>54</td>
<td>Azinphos-methyl</td>
<td>0.2~2.0 0.9995</td>
<td>2</td>
<td>3.7 1.5</td>
<td>0.02</td>
<td>91.3</td>
<td>4</td>
</tr>
</tbody>
</table>

표 3. Agilent DB-5 컬럼의 유기인계 농약 분석 데이터 결과

<table>
<thead>
<tr>
<th>번호</th>
<th>화합물명</th>
<th>작성성 범위 (mg/kg)</th>
<th>R²</th>
<th>% RSD (n=8)</th>
<th>MDL (mg/kg)</th>
<th>% 회수율</th>
<th>그룹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>α-BHC</td>
<td>0.05~0.5 0.9996</td>
<td>1.1</td>
<td>1.2 1</td>
<td>0.00003</td>
<td>98.6</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Simazine</td>
<td>0.05~0.5 0.9931</td>
<td>1</td>
<td>2.4 2</td>
<td>0.002</td>
<td>88.1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Atrazine</td>
<td>0.05~0.5 0.9912</td>
<td>2.1</td>
<td>0.9 1</td>
<td>0.002</td>
<td>78.3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>δ-BHC</td>
<td>0.05~0.5 0.9991</td>
<td>8.6</td>
<td>10.3 1</td>
<td>0.00003</td>
<td>93.7</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Heptachlor</td>
<td>0.05~0.5 0.9996</td>
<td>8.8</td>
<td>11.2 0.8</td>
<td>0.00003</td>
<td>118.6</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Aldrin</td>
<td>0.05~0.5 0.9997</td>
<td>9.6</td>
<td>10.2 0.8</td>
<td>0.00004</td>
<td>108.5</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>α,p’-DDE</td>
<td>0.05~0.5 0.9997</td>
<td>11.1</td>
<td>10.2 0.7</td>
<td>0.00004</td>
<td>101.7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>p,p’-DDE</td>
<td>0.05~0.5 0.9998</td>
<td>7.1</td>
<td>11.2 0.9</td>
<td>0.00005</td>
<td>106.6</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>α,p’-DDD</td>
<td>0.05~0.5 0.9996</td>
<td>1.2</td>
<td>1.1 0.8</td>
<td>0.00004</td>
<td>77.3</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>p,p’-DDT</td>
<td>0.05~0.5 0.9997</td>
<td>9.9</td>
<td>0.5 0.5</td>
<td>0.00006</td>
<td>111</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Iprodione</td>
<td>0.05~0.5 0.9974</td>
<td>1</td>
<td>1.3 1.7</td>
<td>0.00007</td>
<td>113.5</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Bifenthrin</td>
<td>0.05~0.5 0.9998</td>
<td>1</td>
<td>1.7 0.8</td>
<td>0.0002</td>
<td>116</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>cis-Permethrin</td>
<td>0.05~0.5 0.9999</td>
<td>1.6</td>
<td>2.2 0.8</td>
<td>0.0004</td>
<td>114</td>
<td>1</td>
</tr>
<tr>
<td>14-1</td>
<td>Cyfluthrin-1</td>
<td>0.05~0.5 0.9982</td>
<td>2.8</td>
<td>1.8 1.1</td>
<td>0.0005</td>
<td>114.8</td>
<td>1</td>
</tr>
<tr>
<td>14-2</td>
<td>Cyfluthrin-2</td>
<td>0.05~0.5 0.9982</td>
<td>2.8</td>
<td>1.4 0.7</td>
<td>0.0005</td>
<td>105</td>
<td>1</td>
</tr>
<tr>
<td>14-3</td>
<td>Cyfluthrin-3</td>
<td>0.05~0.5 0.9998</td>
<td>1</td>
<td>2.2 0.8</td>
<td>0.0005</td>
<td>105</td>
<td>1</td>
</tr>
<tr>
<td>14-4</td>
<td>Cyfluthrin-4</td>
<td>0.05~0.5 0.9999</td>
<td>2</td>
<td>1.4 0.7</td>
<td>0.0005</td>
<td>97.8</td>
<td>2</td>
</tr>
<tr>
<td>15-1</td>
<td>tau-Fluvalinate-1</td>
<td>0.05~0.5 0.9999</td>
<td>2.8</td>
<td>1.4 0.7</td>
<td>0.0005</td>
<td>97.8</td>
<td>2</td>
</tr>
<tr>
<td>15-2</td>
<td>tau-Fluvalinate-2</td>
<td>0.05~0.5 0.9999</td>
<td>2.8</td>
<td>1.4 0.7</td>
<td>0.0005</td>
<td>97.8</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>α-BHC</td>
<td>0.05~0.5 0.9998</td>
<td>1</td>
<td>2.2 0.8</td>
<td>0.0005</td>
<td>97.8</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>γ-BHC</td>
<td>0.05~0.5 0.9999</td>
<td>1.4</td>
<td>0.3 0.9</td>
<td>0.0003</td>
<td>94.7</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>Pentachloronitrobenzene</td>
<td>0.05~0.5 0.9999</td>
<td>1.2</td>
<td>0.2 1.6</td>
<td>0.0003</td>
<td>91.6</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>Propanil</td>
<td>0.05~0.5 0.9999</td>
<td>4.1</td>
<td>1.1 1</td>
<td>0.0002</td>
<td>98.7</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>Vinlozolin</td>
<td>0.05~0.5 0.9999</td>
<td>1.9</td>
<td>1.3 0.8</td>
<td>0.00009</td>
<td>89.4</td>
<td>2</td>
</tr>
<tr>
<td>21-1</td>
<td>Endosulfan-1</td>
<td>0.05~0.5 0.9984</td>
<td>2.1</td>
<td>0.5 0.8</td>
<td>0.00008</td>
<td>94.8</td>
<td>2</td>
</tr>
<tr>
<td>21-2</td>
<td>Endosulfan-2</td>
<td>0.05~0.5 0.9984</td>
<td>2.1</td>
<td>0.5 0.8</td>
<td>0.00008</td>
<td>94.8</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>p,p’-DDD</td>
<td>0.05~0.5 0.9995</td>
<td>3.8</td>
<td>2</td>
<td>1</td>
<td>0.00006</td>
<td>96.4</td>
</tr>
<tr>
<td>23</td>
<td>Dicofol</td>
<td>0.05~0.5 0.9982</td>
<td>2</td>
<td>2.8 3.3</td>
<td>0.0006</td>
<td>96.4</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>Lambda-cyhalothrin</td>
<td>0.05~0.5 0.9991</td>
<td>2.1</td>
<td>0.4 0.9</td>
<td>0.0001</td>
<td>94.1</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>Permethrin</td>
<td>0.05~0.5 0.9987</td>
<td>2.3</td>
<td>1.3 2.2</td>
<td>0.0005</td>
<td>107.5</td>
<td>2</td>
</tr>
<tr>
<td>번호</td>
<td>화합물 명</td>
<td>직선성 범위 (mg/kg)</td>
<td>R²</td>
<td>% RSD(n = 8)</td>
<td>MDL (mg/kg)</td>
<td>% 회수율</td>
<td>그룹</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>26-1</td>
<td>Flucythrinate-1</td>
<td>0.05~0.5</td>
<td>0.991</td>
<td>1.3 0.4 1</td>
<td>0.0005</td>
<td>92</td>
<td>2</td>
</tr>
<tr>
<td>26-2</td>
<td>Flucythrinate-2</td>
<td>0.05~0.5</td>
<td>0.9998</td>
<td>1.2 1.7 1.7</td>
<td>0.00006</td>
<td>80.1</td>
<td>3</td>
</tr>
<tr>
<td>27</td>
<td>Dicloran</td>
<td>0.05~0.5</td>
<td>0.9997</td>
<td>0.9 1.8 0.5</td>
<td>0.00004</td>
<td>85.2</td>
<td>3</td>
</tr>
<tr>
<td>28</td>
<td>Hexachlorobenzene</td>
<td>0.05~0.5</td>
<td>0.9996</td>
<td>1 0.3 0.4</td>
<td>0.00006</td>
<td>82.7</td>
<td>3</td>
</tr>
<tr>
<td>29</td>
<td>Chlorothalonil</td>
<td>0.05~0.5</td>
<td>0.9997</td>
<td>0.9 1.1 0.6</td>
<td>0.00007</td>
<td>87.4</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>Triadimefon</td>
<td>0.05~0.5</td>
<td>0.9995</td>
<td>0.6 0.5 0.6</td>
<td>0.0001</td>
<td>95.5</td>
<td>3</td>
</tr>
<tr>
<td>31</td>
<td>Procymidone</td>
<td>0.05~0.5</td>
<td>0.9997</td>
<td>0.7 0.5 0.5</td>
<td>0.0003</td>
<td>89.3</td>
<td>3</td>
</tr>
<tr>
<td>32</td>
<td>Butachlor</td>
<td>0.05~0.5</td>
<td>0.9997</td>
<td>0.7 0.7 0.6</td>
<td>0.00004</td>
<td>85.7</td>
<td>3</td>
</tr>
<tr>
<td>33</td>
<td>Endrin</td>
<td>0.05~0.5</td>
<td>0.9996</td>
<td>0.8 0.7 0.5</td>
<td>0.00004</td>
<td>84.6</td>
<td>3</td>
</tr>
<tr>
<td>34</td>
<td>Chlorobenzilate</td>
<td>0.05~0.5</td>
<td>0.9983</td>
<td>2.3 1.6 0.3</td>
<td>0.0003</td>
<td>89.5</td>
<td>3</td>
</tr>
<tr>
<td>35</td>
<td>α,β'-DDT</td>
<td>0.05~0.5</td>
<td>0.9998</td>
<td>1.1 0.8 0.5</td>
<td>0.00007</td>
<td>94.1</td>
<td>3</td>
</tr>
<tr>
<td>36</td>
<td>Tetramethrin-1</td>
<td>0.05~0.5</td>
<td>0.997</td>
<td>2.2 1.1 2.4</td>
<td>0.0003</td>
<td>86.7</td>
<td>3</td>
</tr>
<tr>
<td>37-2</td>
<td>Tetramethrin-2</td>
<td>0.05~0.5</td>
<td>0.9999</td>
<td>0.9 1.1 0.6</td>
<td>0.0002</td>
<td>90.72</td>
<td>3</td>
</tr>
<tr>
<td>38</td>
<td>Fenpropathrin</td>
<td>0.05~0.5</td>
<td>0.9997</td>
<td>1.9 0.8 1.1</td>
<td>0.0003</td>
<td>81.7</td>
<td>3</td>
</tr>
<tr>
<td>39-1</td>
<td>Cypermethrin-1</td>
<td>0.05~0.5</td>
<td>0.998</td>
<td>1.2 0.6 0.6</td>
<td>0.0003</td>
<td>93.9</td>
<td>3</td>
</tr>
<tr>
<td>39-2</td>
<td>Cypermethrin-2</td>
<td>0.05~0.5</td>
<td>0.9984</td>
<td>1.4 0.6 0.6</td>
<td>0.0002</td>
<td>86.6</td>
<td>3</td>
</tr>
</tbody>
</table>
시료 전처리
사과 시료는 지역 식료품점에서 구입했습니다. 균질 사과 시료 10g를 50mL 원심분리 투브에 청량하고, 시료에 세라믹 균질기 두 개를 추가했습니다. QC 시료에 적절한 양의 스파이크 용액을 첨가하여 정량 농도가 약 0.1mg/kg 인 QC 시료를 만들었습니다. Acetonitrile 10mL을 투브에 첨가했습니다. MgSO₄, sodium chloride 1g, Na-citrate 1g 및 disodium citrate sesquihydrate 0.5g를 함유한 Agilent QuEChERS 추출 염 패킷 (부품 번호 5982-5650)을 추출을 위해 각 원심분리 튜브에 추가했습니다. Agilent QuEChERS 일반 과일 및 채소 분산 SPE 15mL 튜브 (부품 번호 5982-5056)는 cleanup에 사용했습니다. 색소와 지방이 많은 과일과 채소의 경우, 추출 및 cleanup에 다른 종류의 QuEChERS 패킷이 필요합니다. 시료 전처리 절차의 상세는 그림 2와 같습니다.

메트릭스 바탕시료는 스파이크 용액을 첨가하지 않은 것을 제외하고 시료와 동일한 방법으로 제조하였습니다.

<table>
<thead>
<tr>
<th>QuEChERS 시료 전처리 워크플로</th>
</tr>
</thead>
<tbody>
<tr>
<td>50mL 원심분리 투브에 시료 10g(± 0.01g) 청량</td>
</tr>
<tr>
<td>스파이크 용액 추가 후 1분간 vortex*</td>
</tr>
<tr>
<td>ACN(10mL)과 세라믹 균질기(p/n 5982-9313) 2개 추가</td>
</tr>
<tr>
<td>Agilent QuEChERS 추출 염 패킷(p/n 5982-5650) 추가, 1분간 vortex</td>
</tr>
<tr>
<td>5분간 10°C에서 5,000rpm으로 원심분리</td>
</tr>
<tr>
<td>상층액 6mL를 분산 튜브(p/n 5982-5056)로 옮김</td>
</tr>
<tr>
<td>1분간 vortex, 5분간 10°C에서 5,000rpm으로 원심분리</td>
</tr>
<tr>
<td>상층액 1mL를 튜브로 옮긴 후 최종 상등액을 철소로 건조</td>
</tr>
<tr>
<td>재조성에 적절한 용액 1mL** 사용, 1분간 vortex, 5분간 10°C에서 5,000rpm으로 원심분리</td>
</tr>
<tr>
<td>추출물을 자동 시료 주입기 바이알로 옮기</td>
</tr>
</tbody>
</table>

* 회수율 시험을 위함. 메트릭스 바탕시료는 이 단계를 생략
** 유기인계 농약에는 acetone을, 유기염소계 농약에는 hexane을 사용

그림 2. 사과 시료의 QuEChERS 추출 절차 흐름도
결과 및 토의

유기인계 농약 분석
시료 매트릭스는 농약 분석 결과에 큰 영향을 미칩니다. 그림 3은 사과 매트릭스 바탕시료와 acetone에 대한 농약 크로마토그램의 비교입니다. 푸른색은 acetone으로 제조한 표준물질을, 빨간색은 사과 매트릭스 바탕시료로 제조한 표준물질을 나타냅니다. 이는 일부 화합물의 경우, 특히 acephate와 methamidophos와 같이 분석이 어려운 화합물에서 매트릭스 바탕시료로 작업용액을 희석하여 감도를 향상할 수 있습니다. 유기인계 농약, 특히 acephate 및 methamidophos와 같은 극성 농약은 넓은 피크 또는 테일링을 보이는 경향이 있습니다. 매트릭스 바탕시료의 피크 모양 또한 개선되었습니다.

듀얼 FPD GC 시스템을 이용한 단일 주입으로 1차 및 확인 분석을 동시에 수행했습니다. 이 시스템은 보충 가스가 없는 Agilent CFT 2-way splitter 장치를 사용했습니다. 쉽고 정확한 마무리 시간 측정을 위해 유기인계 농약 54종을 4개의 그룹으로 분류했습니다. 그림 4~7은 HP-50+와 HP-1 컬럼의 유기인계 농약 혼합물 그룹 1, 2, 3, 4에 대한 분석 결과입니다.
매트릭스 메치 검량 표준물질과 스파이크한 QC 시료는 적절한 표준 용액을 매트릭스 바탕 시료에 스파이크하여 제조했습니다. 분석한 화합물 44종의 직선성 범위는 0.05~0.5mg/kg이었습니다. Phoxim, phosmet, trichlorfon 및 pyrazophos 등과 같은 기타 화합물은 낮은 반응 계수를 가지며 직선성 범위는 0.2~2mg/kg였습니다. 표 2는 상세입니다. 연구 범위에서의 직선성은 모든 유기인계 농약에서 0.992의 \(R^2 \) 값을 가져갔습니다. 대부분 0.999 이상의 \(R^2 \) 값을 가져갔습니다. 표 2는 HP-50+ 컬럼에서 각 농약에 대한 상관 계수입니다.

사과 매트릭스의 모든 화합물에 대해 저농도, 중간 농도 및 고농도의 세 가지 수준으로 반복성을 평가했습니다. 농도는 0.05mg/kg, 중간 농도는 0.1mg/kg, 고농도는 0.5mg/kg이었습니다. Naled와 phosphamidon을 제외하고 반응 값이 낮은 화합물의 경우, 저농도, 중간 및 고농도는 각각 0.2, 0.4 및 2mg/kg이었습니다. 표 2는 모든 화합물에 대한 면적 RSD는 5% 미만으로 이 시스템의 정확, 정밀하며 안정적인 성능을 입증하였습니다.

분석법 검출 한계(MDL)를 계산하기 위해 신호 대 잡음비(S/N)를 사용하였습니다. 최저 검량 농도를 MDL 시험에 사용하였고, 모든 화합물의 값은 표 2와 같습니다.

그림 5. HP-50+와 HP-1 캐필러리 GC 컬럼의 듀얼 컬럼 시스템을 이용한 그룹 2 유기인계 농약 표준 용액 (약 0.1mg/kg)의 크로마토그램

그림 6. HP-50+와 HP-1 캐필러리 GC 컬럼의 듀얼 컬럼 시스템을 이용한 그룹 3 유기인계 농약 표준 용액 (약 0.1mg/kg)의 크로마토그램
시료 전처리 섹션에 기술한 대로, 정량 농도가 0.1mg/kg인 QC 시료를 만들기 위해 QC 시료에 적절한 양의 스파이크 용액을 첨가하였습니다(낮은 반응 값의 phoxim과 같은 화합물은 0.4mg/kg 농도에서 획득). HP-50+ 컬럼으로 회수율을 측정하였고, 모든 유기인계 농약의 결과는 70.4~118.2%이었습니다. 표 2는 각 농약의 회수율입니다. 대부분의 화합물, acephate 및 methamidophos와 같은 극성 화합물까지도, 그림 8과 같이 QuEChERS의 우수한 추출 및 cleanup 과정으로 뛰어난 회수율 데이터를 나타냈습니다.

그림 7. Agilent HP-50+와 HP-1 캐필리리 GC 컬럼의 유기인계 농약 표준 용액(약 0.1mg/kg)의 크로마토그램

그림 8. 유기인계 농약 회수율 데이터
유기염소계 농약 분석

유기인계 농약 분석과 마찬가지로, 유기염소계 농약 분석을 위한 듀얼 ECD GC 시스템을 사용한 단일 주입으로 1차 및 확인 분석을 동시에 수행하였습니다. 이 시스템은 보충 가스가 없는 CFT two-way splitter 장치를 사용했습니다. 유기염소계 농약 41 종을 3개의 그룹으로 분류했습니다. 그림 9~11은 DB-5와 DB-17 컬럼의 유기염소계 농약 혼합물 그룹 1, 2, 3에 대한 분석 결과입니다.

그림 9. DB-5와 DB-17 캐필러리 GC 컬럼의 듀얼 컬럼 시스템을 이용한 그룹 1 유기염소계 농약 표준 용액(약 0.1mg/kg)의 크로마토그램

그림 10. DB-5와 DB-17 캐필러리 GC 컬럼의 듀얼 컬럼 시스템을 이용한 그룹 2 유기염소계 농약 표준 용액(약 0.1mg/kg)의 크로마토그램
유기염소계 농약 분석에서 cyfluthrin 및 cypermethrin과 같은 일부 화합물은 이성질체를 가집니다. 이들 이성질체의 머무름 시간은 근접하여, 그림 12와 같은 베이스라인 분리 달성은 어려웠습니다. 이들 화합물 분석에서 적분 파라미터 설정은 특히 중요합니다. 공급업체에서 구입한 표준물질도 이성질체 혼합물이며, 이성질체 사이에 음리한 다른 화합물은 없으므로, 이 이성질체는 정량 분석에서 하나의 피크로 적분하였습니다. 그림 13은 OpenLab CDS 2.3 소프트웨어의 Area Sum 기능이 이성질체 적분에 도움이 될 수 있음을 보여줍니다.

그림 11. DB-5와 DB-17 캐필러리 GC 컬럼의 듀얼 컬럼 시스템을 이용한 그룹 3 유기염소계 농약 표준 용액 (약 0.1mg/kg)의 크로마토그램

그림 12. 적분을 위해 Area Sum 기능을 사용한 cyfluthrin 이성질체의 크로마토그램
매트릭스 매치 검량 표준물질과 스파이크한 QC 시료는 적절한 표준 용액을 매트릭스 바탕시료에 스파이크하여 제조하였습니다. 검량 표준물질의 스파이크 농도는 사과 매트릭스에서 0.05~0.5mg/kg였습니다. 데이터는 OpenLab CDS 2.3 소프트웨어로 처리했습니다. 표 3은 DB-5 컬럼의 결과로, 모든 유기염소계 농약에 대한 R^2 값이 0.991로 나타났습니다. 세 가지 농도의 8회 반복 분석에 대한 연관 RSD 값은 4% 미만이며, 일반적인 RSD는 2% 미만이었습니다. NY/T 761 분석법 대비, 스파이크한 시료를 0.1mg/kg 농도로 분석하여 최적화된 추출 및 cleanup 절차를 검증하였습니다. 대부분의 분석물질에서 허용 가능한 회수율을 달성하였습니다. 회수율은 77.3~118.6%였습니다. 표 3은 또한 화합물 41종에 대한 MDL 결과입니다. MDL 계산에는 S/N을 사용했습니다. 결과는 NY/T 761 분석법 참조 결과보다 우수했습니다.

그림 13. Cyfluthrin 이성질체 적분 표

그림 14. 유기염소계 농약 회수율 데이터
결론

검출기 4개(FPD 2개 및 ECD 2개)의 Agilent 8890 GC를 과일과 채소의 유기인 및 유기염소계 농약 스크리닝에 사용하였습니다. 2개의 서로 다른 컬럼, 그리고 2개의 검출기로 시료를 분할하는 것은, 각 추출물의 단일 주입으로 유기인 및 유기염소계 농약에 대한 선별성, 식별 및 확인을 용이하게 하여 실험실의 생산성을 향상합니다.

본 응용 자료는 유기인 및 유기염소계 농약 모두에 대한 타원한 감도, 면적 반복성, 피크 모양 및 분리능을 임증하며, 이 검출기 4개의 시스템이 NY/T 761-2008 분석법에 대한 최적의 플랫폼임을 나타냅니다.

참고문헌