Application Brief Cannabis and Hemp Testing

Calibration of Pesticides and Mycotoxins on GC/TQ and LC/TQ

Author

Jennifer Sanderson Agilent Technologies, Inc.

Introduction

Legalization of recreation and medicinal cannabis around the world is the primary driver for regulating pesticides and mycotoxins previously determined to pose a threat to human health. Due to the various classes of pesticides that are regulated, a single analytical instrument is insufficient to meet the regulatory requirements set by governing bodies. Creating streamlined calibrations with standards that can be used across multiple analytical instruments can save time and money. Agilent offers a suite of pesticide and mycotoxin standards in various forms, including neat, single component, multicomponent mixtures, and standard kits that meet specific state and country target lists. These various standards are amenable to both liquid chromatography (LC) and gas chromatography (GC) instruments with their associated triple quadrupole mass spectrometer (TQ) detectors and can be used for cannabis and hemp analysis. This application brief demonstrates achieving calibration in hemp matrix on both chromatographic instruments using the Agilent California Cannabis Pesticide Kit and Agilent Cannabis Mycotoxin Mix.

Experimental

Hemp flower bud was obtained from AccuStandard, Inc. and prepared for analysis using the sample preparation workflow outlined in Figure 1. The sample preparation is suitable for both GC/TQ and LC/TQ analysis.

Initial prep	 Weigh out 500 mg of homogenized hemp flower into 50 mL tube Add 15 mL of acetonitrile Add two ceramic homogenizers
Extraction	 Mechanically shake samples for 5 minutes Centrifuge sample at 5,000 rpm for 5 minutes Decant supernatant into an Agilent SampliQ C18 EC SPE cartridge Gravity elute sample into clean 50 mL tube Repeat extraction and decanting with 5 mL of acetonitrile
Dilution	 Bring volume in the new 50 mL tube to 25 mL with acetonitrile (total dilution 1:25) Aliquot 5 mL of 1:25 dilution into clean 50 mL tube, bring to 25 mL with acetonitrile (total dilution 1:125)

Figure 1. Sample preparation workflow for extraction of hemp flower.

Calibrants were prepared in hemp extract matrix in the range of 100 ppt to 10 ppb. For internal standards (ISTDs), a QuEChERS solution containing alpha-BHC-d6 and parathion-d10 (diethyl-d10) was diluted and added to all calibrants at 1 ppb for analysis. The calibration was carried out on both an Agilent 8890 GC with an Agilent 7010B GC/TQ and an Agilent 1290 Infinity II LC with an Agilent 6470B LC/TQ. Parameters for each instrument are listed in Tables 1 to 4.

Table 1. GC method parameters.

GC Parameters	Agilent 8890 GC
Configuration	Midcolumn backflush
Inlet	Multimode inlet
Inlet Mode	Solvent vent
Inlet Temperature Program	70 °C (hold for 0.5 min), ramp at 600 °C/min to 300 °C (hold 14.8 min), ramp at 600 °C/min to 330 °C
Column 1	Agilent J&W HP-5ms Ultra Inert, 15 m × 0.25 mm × 0.25 µm
Column 2	Agilent J&W HP-5ms Ultra Inert, 15 m × 0.25 mm × 0.25 µm
Flow (Column 1)	He, 1.19 mL/min (postrun backflush 8.6 mL/min)
Flow (Column 2)	He, 1.39 mL/min (postrun backflush 9.02 mL/min)
Oven	60 °C (hold for 1 min), ramp at 40 °C/min to 170 °C, ramp at 10 °C/min to 330 °C (hold for 0.25 min)
Injection	2 µL
Injection Mode	Two-layer sandwich (L1, L2), 0.2 µL air gap
Plunger Speed	Variable

Table 2. GC/TQ method parameters.

GC/TQ Parameters	Agilent 7010B GC/TQ
Ion Source	High-efficiency ion source
Acquisition Mode	Dynamic MRM
Solvent Delay	3 min
Tune File	Atune
Gain	20
MS Source Temperature	300 °C
MS Quadrupole Temperature	150 °C
Transfer Line Temperature	330 °C

Table 3. LC method parameters.

LC Parameters	Agilent 1290 Infinity II LC
Flow Rate	0.5 mL/min
Mobile Phase A	5 mM ammonium formate + 0.1% formic acid in water
Mobile Phase B	0.1% formic acid in acetonitrile
Column Temperature	35 ℃
Injection	5 µL
Gradient	Time (min) % B 0.0 30 1.0 30 2.0 75 8.0 96 9.0 100 9.5 100 9.51 30

Table 4. LC/TQ method parameters.

LC/TQ Parameters	Agilent 6470B LC/TQ
Acquisition	Dynamic MRM
Polarity	Positive
Capillary Voltage	4,500 V
Drying Gas Flow	10 L/min
Drying Gas Temperature	200 °C
Nebulizer Pressure	35 psi
Sheath Gas Temperature	200 °C
Sheath Gas Flow	10 L/min
Nozzle Voltage	3,500 V
Q1 and Q2 Resolution	0.7 amu
Delta Emv Voltage	0

Results and discussion

The two analytical platforms both yielded excellent calibrations in matrix for the California pesticide list, which includes 66 pesticides and five mycotoxins. Extracted MRM chromatograms for each of the analytes are overlaid and shown for GC and LC in Figure 2.

Figure 2. Overlaid chromatograms of pesticides analyzed by GC/TQ (A) and LC/TQ (B). The GC chromatogram contains 27 analytes along with ISTDs parathion-d10 (diethyl-d10) and alpha-BHC-d6. The LC chromatogram contains the five mycotoxins, remaining 39 pesticides, and ISTDs parathion-d10 (diethyl-d10) and alpha-BHC-d6.

The total list of analytes from the California list, which is represented in the chromatograms, is shown in Table 5. For each analyte, the chromatographic method used to obtain the calibration is noted.

Sample calibrations obtained on the LC/TQ (Figure 3) and GC/TQ (Figure 4) are shown. Each calibration contained eight levels in the range of 100 ppt to 10 ppb, which were analyzed in triplicate.

Table 5. California pesticide list of monitored analytes with mycotoxins.

Parameter	Value
Aldicarb	LC
Carbofuran	GC
Chlordane	GC
Chlorfenapyr	GC
Chlorpyriphos	GC
Coumaphos	GC
Daminozide	LC
Dichlorvos	GC
Dimethoate	GC
Ethoprop	GC
Etofenprox	GC
Fenoxycarb	GC
Fipronil	LC
Imazalil	LC
Methiocarb	LC
Methyl parathion	GC
Mevinphos	GC
Paclobutrazol	GC
Propoxur	GC
Spiroxamine	LC
Thiacloprid	LC
Thiamethoxam	LC
Aflatoxin B1	LC
Aflatoxin B2	LC
Abamectin	LC
Acephate	LC
Acequinocyl	LC
Acetamiprid	LC
Azoxystrobin	LC
Bifenthrin	LC
Boscalid	GC
Captan	GC
Carbaryl	LC
Chlorantraniliprole	LC
Clofentezine	LC
Cyfluthrin	GC

Parameter	Value
Cypermethrin	LC
Diazinon	GC
Dimethomorph	LC
Etoxazol	LC
Fenpyroximate	LC
Bifenazate	LC
Fenhexamid	LC
Flonicamid	LC
Fludioxonil	GC
Trifloxystrobin	LC
Aflatoxin G1	LC
Aflatoxin G2	LC
Hexythiazox	LC
Imidacloprid	GC
Kresoxim-methyl	GC
Malathion	GC
Metalaxyl	GC
Methomyl	GC
Myclobutanil	GC
Naled	GC
Oxamyl	LC
Pentachloronitrobenzene	GC
Permethrins	GC
Phosmet	LC
Piperonyl butoxide	LC
Prallethrin	LC
Propiconazole	LC
Pyrethrins	GC
Pyridaben	LC
Spinetoram	LC
Spinosad	LC
Spiromesifen	LC
Spirotetramat	LC
Tebuconazole	GC
Ochratoxin	LC

Figure 3. Calibration curves for avermectin B1a (as abamectin) and azoxystrobin analyzed by LC/TQ.

Conclusion

Agilent California Cannabis Pesticide Kit and Agilent Cannabis Mycotoxin Mix were successfully used to calibrate on two analytical platforms, GC/TQ and LC/TQ, using a single sample preparation method.

Appendix

Table 6. Chemical standards referenced in this application.

Part Number	Agilent Cannabis Pesticide and Mycotoxin Standards
PST-CBS-CA	California Cannabis Pesticide Kit (2020)
PST-CBS-CAN	Canada Cannabis Pesticide Kit (2020)
PST-CBS-OR	Oregon Cannabis Pesticide Kit (2020)
PST-CBS-NV	Nevada Cannabis Pesticide Mix (2020)
PST-CBS-CO	Colorado Cannabis Pesticide Mix (2020)
TOX-CBS-Mix1	Cannabis Mycotoxin Mix

Agilent products and solutions are intended to be used for cannabis quality control and safety testing in laboratories where such use is permitted under state/country law.

www.agilent.com

DE38272742

This information is subject to change without notice.

© Agilent Technologies, Inc. 2022 Printed in the USA, September 23, 2022 5994-5292EN

Figure 4. Calibration curves for pentachloronitrobenzene and methyl parathion analyzed by GC/TQ.

Part Number	Agilent Cannabis Pesticide and Mycotoxin Standards
TOX-UNI-AflaM1	Aflatoxin M1 (1 ppm)
TOX-UNI-AflaM2	Aflatoxin M2 (1 ppm)
TOX-UNI-DON	Deoxynivalenol (100 ppm)
TOX-UNI-ZON	Zearalenone (100 ppm)
PPS-500X	QuEChERS triphenyl phosphate
TOX-UNI-FumoB1	Fumonisin B1 (50 ppm)
TOX-UNI-FumoB2	Fumonisin B2 (50 ppm)
TOX-UNI-HT2	HT-2 Toxin (100 ppm)
TOX-UNI-T2	T-2 Toxin (100 ppm)
TOX-UNI-AflaB1	Aflatoxin B1 (10 ppm)
TOX-UNI-AflaB2	Aflatoxin B2 (10 ppm)
TOX-UNI-AflaG1	Aflatoxin G1 (10 ppm)
TOX-UNI-AflaG2	Aflatoxin G2 (10 ppm)
TOX-UNI-OchrA	Ochratoxin A (100 ppm)
PPS-610-1	QuEChERS IS standard no. 6

To see the complete lists of lab supplies for cannabis and hemp workflows, please visit www.agilent.com/chem/ cannabis-workflow-ordering-guide.

