Forensics

Increased Thermal Stability of the DB-5Q GC Column

Increased signal-to-noise for trace level concentrations of controlled substances

Authors

Vanessa Abercrombie and Frans Biermans Agilent Technologies, Inc.

Abstract

The use of gas chromatography/mass spectrometry (GC/MS) for the analysis of controlled substances requires a high level of data accuracy for identification. The Agilent J&W 5Q series of GC columns with increased thermal stability, decreased spectral interference at upper temperature limits, and maintains a constant baseline, allowing for accurate spectral comparison. This study illustrates the improved data accuracy and response due to increased thermal stability of the Agilent J&W DB-5Q for the analysis of controlled substances by GC/MS.

Introduction

The analysis of controlled substances by gas chromatography/mass spectrometry (GC/MS) requires a high level of confidence and thus requires a method that provides optimal data quality. Identification of controlled substances relies heavily on comparison of mass spectra to commercially available spectral libraries, and increased column bleed can cause spectral interference at high temperatures. These interferences can lead to poor library matching probabilities.¹⁻³ The Agilent J&W 5Q series of gas chromatography columns provide the most thermally stable columns available, which helps to decrease spectral interference due to column bleed and improves data accuracy.

Poor thermal stability will cause an increase in the slope of the baseline as the oven temperature is increased, leading to difficult peak integrations and inaccurate quantitation. Additionally, sloped or elevated baselines can lead to a decreased response and a loss of sensitivity for analytes eluting during the oven ramp or at the method's upper temperature limits. Several commercially available 5ms type columns were compared to the Agilent J&W DB-5Q GC column to examine the impact thermal stability has on response at upper temperature limits.

Experimental

An Agilent 8890 GC system coupled with an Agilent 5977B mass selective detector (GC/MSD) with an inert extractor ion source was used for acquisition of data and MassHunter 10.0 Quantitative and Qualitative Analysis software was used for data analysis.

A representative toxicology mixture, the Agilent GC/MS forensic toxicology checkout mixture (part number 5190-0471) was used to monitor analytical performance. Calibration standards were prepared in methanol (MeOH) at concentrations ranging from 0.1 to 3.0 μ g/mL. An internal standard mix was prepared at 10 μ g/mL from individual stocks of methamphetamine-d3, diazepam-d5, and hydrocodone-d6 all purchased from Millipore Sigma (St. Louis, MO).

The acquisition method was locked using retention time locking, for the analyte phencyclidine at a retention time of 11.0 minutes, using ions 200, 242, 91 for peak confirmation.

Table 1. GC parameters for the Agilent 8890 GC.

Parameter	Value				
8890					
Inlet	300 °C, Split 10:1				
Injection Volume	0.5 mL				
Inlet Liner	Ultra Inert, split, low pressure drop (part number 5190-2295)				
Gas Saver	On, 20 mL/min after 3 min				
Septum Purge Flow	3 mL/min				
Oven	95 °C (1.5 min), ramp 12 °C/min to 275 °C, ramp 30 °C/min to 300 °C (11 min)				
Column					
Carrier Gas	Helium, 1.3 mL/min, constant flow				
Column	DB-5Q, 30 m × 0.25 mm, 0.25 μm (p/n 122-5532Q) 5ms Type G 5ms Type X 5ms Type Z				
Inlet Connection	Split/splitless inlet (S/SL)				
Outlet Connection	MSD				

Table 2. MS parameters for the Agilent 5977B GC/MSD.

Parameter	Value			
Model	5977B			
Source	XTR			
Mode	Scan (40 to 400 amu)			
Solvent Delay	2.5 min			
Source Temperature	300 °C			
Quad Temperature	175 °C			
Gain	1.0			

Table 3. Agilent GC/MS forensic toxicology checkout mixture compounds and retention times in elution order, and identification ions, with quantitation ions in bold.

Peak	Compound	RT		lons			
1	d-Amphetamine	3.716	44	91			
2	Phentermine	3.846	58	91 134			
3	Methamphetamine	3.846	58	91			
*	Methamphetamine-d3	4.025	94	138	44	77	
4	Nicotine	5.633	84	133 161		51	
5	MDA	6.941	136	77			
6	MDMA	7.900	58	135			
7	MDEA	8.078	72	135			
8	Meperidien	9.736	71	172	91	247	
9	Phencyclidine	11.043	200	242	91	186	
10	Methadone	13.025	72	294			
11	Cocaine	13.545	82	182			
12	Proadifen	14.293	86	99			
13	Oxazepam	14.528	205	233	33 267		
*	Diazepam-d5	14.934	261	287			
15	Lorazepam	14.959	239	274			
14	Codeine	14.975	299	162			
*	Hydrocodone-d6	15.007	305	209 245			
16	Diazepam	15.284	256	283			
17	Hydrocodone	15.389	299	242 185			
18	THC	15.470	299	314	231	271	
19	Oxycodone	15.852	315	230			
20	Tempazepam	16.145	271	300	256		
21	Flunitrazepam	16.258	312	285	266		
22	Heroin	16.348	327	369	268		
23	Nitrazepam	17.241	253	234			
24	Clonazepam	17.794	314		280		
25	Alprazolam	18.565	204	273	279	308	
26	Verapamil	20.564	303	151			
27	Strychnine	20.832	334	120			
28	Trazodone	23.342		205			

^{*} Indicates internal standard

Results and discussion

The testing evaluated the Agilent J&W DB-5Q GC column for the analysis of controlled substances by GC/MS. The increased thermal stability of the DB-5Q is seen in the decreased baseline at higher temperatures, as seen in Figure 1, and also provides a decrease in the slope during the oven ramping program.

An increase in the slope of the baseline will also decrease the signal-to-noise ratio (S/N) of an analyte but will also make integration more difficult and lead to less accurate quantitative results. Figure 2 demonstrates the comparison of the DB-5Q and the commercially available 5ms type G column, and the impact to chromatography during the oven ramp. The S/N for the analytes on the oven ramp slope are a factor of ten or greater for the DB-5Q in comparison to the 5ms type G column.

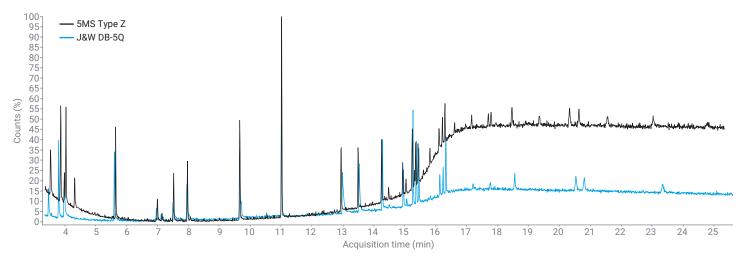


Figure 1. A standard of the Agilent GC/MS forensic toxicology checkout mixture (part number 5190-0471) at $5.0 \,\mu\text{g/mL}$ analyzed on an Agilent J&W DB-5Q (blue) and the 5ms type Z (black) column.

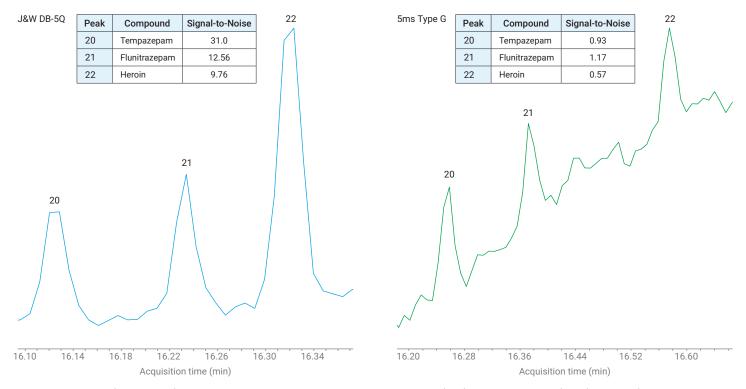


Figure 2. A standard of 3.0 μg/mL of the toxicology standard analyzed on an Agilent J&W DB-5Q (blue) and the 5ms type G (green) column, after 145 matrix injections.

As the baseline can increase at the maximum oven temperature for less thermally stable columns, this will decrease the S/N of the analyte and cause a decrease in sensitivity of the analytical method. Both the DB-5Q and 5ms type G columns were locked, using retention time locking, to ensure the analytes eluted at the same portion of the oven program. The S/N of nitrazepam is ten times greater on the DB-5Q column than it is on the 5ms type G column at the

highest calibration point of $3.0~\mu g/mL$ even after thermal and matrix stress, as shown in Figure 3. Additionally, when examining the analyte alprazolam at a lower concentration of $1.0~\mu g/mL$ after thermal and matrix stress, the DB-5Q has a S/N three times greater than the commercially available 5ms type X GC column, as seen in Figure 4.

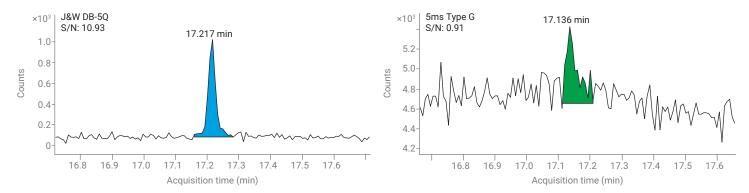


Figure 3. Extracted ion chromatogram (EIC) of nitrazepam (*m/z* 253) at a concentration 3.0 μg/mL after 145 matrix injections collected on an Agilent J&W DB-5Q and 5ms type G column.

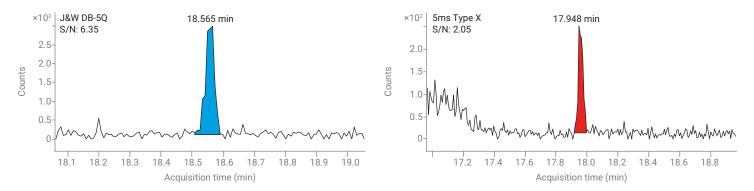


Figure 4. Extracted ion chromatogram (EIC) of alprazolam (m/z 204) at a concentration of 1.0 μ g/mL after 145 matrix injections collected on an Agilent J&W DB-5Q and 5ms type X column.

Adsorption of basic drug compounds will cause chromatographic issues, such as poor peak symmetry and loss in response, both of these will contribute to the decreased sensitivity of the analytical method. Early eluting basic compounds, such as amines, are especially susceptible to activity, which is why it is important to optimize the method and flow path supplies for optimal peak performance and sensitivity. As shown in Figure 5, the extracted ion

chromatograms (EICs) for MDA, MDMA, and MDEA were analyzed on a DB-5Q and a commercially available 5ms type X GC column at a concentration of 1.0 μ g/mL. The improved peak shape of the early eluting basic compounds on the DB-5Q helps to improve the analyte response in comparison to the 5ms type X column, indicating that the DB-5Q provides good inertness for low concentrations of difficult analytes even after stressed with a heavy matrix.

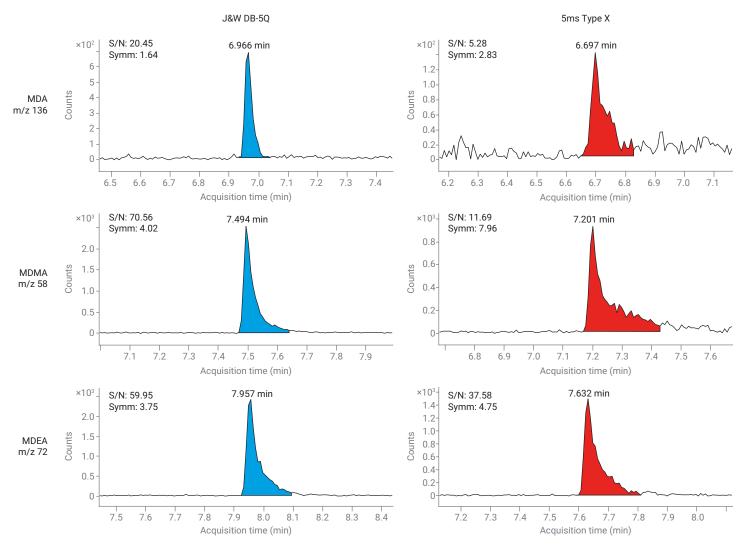


Figure 5. Extracted ion chromatogram (EIC) of amphetamines at a concentration of 1.0 μg/mL after 145 matrix injections collected on an Agilent J&W DB-5Q and 5ms type X column.

Conclusion

The increased thermal stability of the Agilent J&W DB-5Q GC column demonstrated in this application note provides a decreased baseline at higher temperatures, which allows for an increased response for later eluting compounds at trace level concentrations. The baseline of the DB-5Q remains more consistent as the temperature is increased. This consistency allows for more accurate integration and quantitation for analytes eluting during oven ramping, in comparison to other commercially available 5ms-type columns. The robust DB-5Q column phase maintained peak shape for trace level basic compounds even when stressed with a heavy matrix and is an excellent choice for the analysis of controlled substance analysis.

References

- 1. How Does Bleed Impact My GC/MS Data and How Do I Control It? *Agilent Technologies technical overview*, publication number **5994-7586EN**, **2024**.
- Abercrombie, V.; Biermans, F.; Gerardi, A.; Lake, R. Improved Thermal Stability Leads to Retention Time Stability and Data Accuracy for the Analysis of Pesticides. Agilent Technologies application note, publication number 5994-8447EN, 2025.
- Smith, A. Analysis of Drugs of Abuse by GC/MS
 Using Ultra Inert Universal Sintered Frit Liners. Agilent
 Technologies application note, publication number
 5994-1012EN, 2019.

www.agilent.com

For Forensic Use.

RA250821.463

This information is subject to change without notice.

