

Agilent J&W PLOT GC カラムと選択性 チューニングによる揮発性有機炭化水素の 分離

著者

Neige Rudi, Yujuan Hua, Ronda Gras, Guangyu Liu, and Jim Luong Dow Chemical Canada, Analytical Science, Core R&D Fort Saskatchewan, Alberta, Canada

Vanessa Abercrombie Agilent Technologies, Inc. Folsom, CA, USA

概要

カラムの固定相として使用される多孔質ポリマーの選択性と極性は、官能基を結合させることで、さま ざまなアプリケーションに合わせて調整することが可能です。このアプリケーションノートでは、一連の ジビニルベンゼン系多孔質層オープンチューブラカラムの分離特性を評価した結果を紹介します。また、 選択性チューニングが、全体的な分離特性を変化させ、単一のカラムでは得られない分離能を達成す るために実行可能な戦略であることを例証します。多孔質ポリマーの製造プロセスの改善により、安定 性、堅牢性、不活性度に優れ、スパイクが生じにくいカラムが開発されました。今回の研究では、このカ ラムと従来の多孔質ポリマーカラムの性能の比較も行いました。

はじめに

揮発性有機化合物(VOC)は、炭化水素の製 造および処理においてしばしば遭遇する物質 です。原料のスクリーニング、製品の品質管 理、環境モニタリングなど、多様な産業アプリ ケーションでは、VOC の分離がきわめて重要 になります。揮発性化合物の分析には、ガス クロマトグラフィー(GC)が汎用分析法として 広く用いられています。GC のアプローチは、 その分離原理に応じて、気液クロマトグラフィー (GLC)と気固クロマトグラフィー (GSC)の 2 つに大きく分かれます^{1、2}。GLC は、不活性 な担体に付着させた液体またはキャピラリカ ラムの内壁に薄層状にコーティングした液体 を固定相とします。主に分配プロセスによっ て分離が行われることから、分配クロマトグラ フィーとも呼ばれます。一方、GSC では、固 体吸着剤が固定相として機能します。主な分 離メカニズムが吸着であることから、吸着ク ロマトグラフィーとも呼ばれます。 多くの GC アプリケーションでは GLC が一般的ですが、 これが万能の解決策というわけではありませ ん。特に多孔質層オープンチューブラ(PLOT) カラムが登場したことで、研究から産業アプリ ケーションまで、GSC への関心が高まってい ます。PLOT カラムでは、フューズドシリカキャ ピラリチューブの内壁に吸着剤の安定層が コーティングされています^{2、3}。これらの保持力 の高い固定相により、固定ガスや軽質炭化水 素などの気体分子および揮発性液体を室温よ り高い温度で効果的に分離することができま す。固相には、アルミナ、ゼオライト、モレキュ ラシーブ、有機多孔質ポリマーなどの無機材 料を使用することが可能です。

多孔質ポリマーは、保持力が高く、選択性に 優れていることから、普及が進んでいます。一 般には、ポリマー材料としてジビニルベンゼン (DVB) ポリマーまたは DVB 系共重合体が 使用され、これを基材にさまざまな官能基を 結合させることで、カラムの選択性を調整し、 分離能を最適化することが可能です。数種類 の多孔質ポリマーがそれぞれ異なる名称で市 販されています。そのうち最も広く知られてい るのが、Q型ポリマーです。Q型ポリマーはス チレン-ジビニルベンゼンで構成され、非極性 とみなされます。DVB-ビニルピリジン共重合 体は S 型に分類されます。また、U 型ポリマー で最も一般的なのは、DVB-メタクリル酸エチ レングリコール共重合体です4~6。今回の研 究では、官能基が炭化水素の分離および溶出 順序にどのように影響するのかを示すために、 一連の Agilent J&W PoraPLOT Q、S、およ び U GC カラムを選択しました。

固定相にはさまざまな種類がありますが、特定のアプリケーションでは、サンプルが複雑になるにつれ、または異性体の分離が必要な場合に、単一のカラムでは十分な選択性が得られないことがあります。GrobおよびSandraによって紹介された選択性チューニングは、独自の選択性を達成する効率的でコスト効果の高い戦略です^{7~9}。選択性チューニングは、それぞれ選択性の異なるカラムの連結、混合相の使用、特殊合成相の使用、温度依存の保持比の使用など、さまざまな方法で行えます^{9~11}。今回の研究では、J&W PoraPLOT GCカラムを使用して、カラムの連結による選択性チューニングの概念を示します。

近年のカラム製造プロセスの進歩により、より 安定性と堅牢性に優れた PLOT 相が開発さ れました。それが PoraBOND です^{12~16}。例 えば、PoraBOND Q カラムは、PoraPLOT Q カラムより 50 ℃高い 300 ℃までの温度で使 用できます。また、結合技術の改良により、ポ リマーからの脱粒が低減しています。今回の 研究では、PoraBOND Q カラムと PoraPLOT Q カラムについて、選択性や不活性度などの カラム性能を比較します。

実験方法

GC/FID 実験には、スプリット/スプリットレス 注入口を装着した Agilent 7890B GC/FID および Agilent 7693 オートサンプラと、コン トロールソフトウェアとして Agilent OpenLab (ソフトウェアバージョン A.02.05.021)を使 用しました。気体サンプルは、1 mL ハミルト ンガスタイトシリンジ (Hamilton 社、米国 ネバダ州リノ)で 0.5 mL をマニュアル注入し ました。液体サンプルは、Agilent 7693 オー トサンプラで 10 μ L シリンジを使用して、注 入量 1 μ L を導入しました。選択性チューニ ングの試験では、2 本のカラムをウルトライ ナートプレスフィットカラムコネクタ(部品番 号 5190-6979)で連結しました。

ヘリウム、窒素、水素、空気などのキャリアガ スおよびユーティリティガスは、Linde 社(カ ナダ エドモントン)から入手しました。システ ム性能評価用のガス標準物質は、Air Liquide 社(カナダ エドモントン)から購入しまし た。また、化学物質および試薬は、Fisher Scientific 社(カナダ エドモントン)から購入 しました。

結果と考察

Agilent J&W PoraPLOT GC カラムの 選択性の比較

一連の PoraPLOT カラムは、ジビニルベンゼ ン (DVB) 系多孔質ポリマーカラムであり、極 性および無極性の揮発性化合物に対して特有 の保持特性を示します。各カラムの固定相に 結合されているさまざまな官能基により、そ れぞれ異なる極性と選択性を発揮し、目的と する分離能を達成します。PoraPLOT Q は、 100 % ポリスチレン-ジビニルベンゼンから成 る、最も極性が低いカラムです。PoraPLOT S は、ジビニルベンゼン/ビニルピリジン 共重合体で構成され、極性は中程度です。 PoraPLOT U は、ジメチルアクリル酸エチレ ングリコール (EGDMA) で構成され、3種 類のカラムの中で最も高い極性を備えていま す。 図 1 は、これら 3 種類のカラムで C1 ~ C₃の飽和および不飽和炭化水素を分離した 結果を比較したものです。図 1A に示すよう に、PoraPLOT Q カラムでは、エチレンとアセ チレンが共溶出していますが、プロピレンとプ ロパンはベースライン分離されています。より 極性の高い PoraPLOT S では、図 1B に示す ように、アセチレンがより強く保持され、エチ レンから分離されていますが、アセチレンが部 分的にエタンと共溶出しています。さらに極性 の高い PoraPLOT U カラムでは、C2 炭化水素 (エタン、エチレン、アセチレン) はベースラ イン分離されていますが、プロピレンとプロパ ンの共溶出が生じています。

GC 分析条件					
カラム	$ \begin{array}{l} \mbox{Agilent J&W PoraPLOT Q, 25 m \times 0.53 mm \times 20 \ \mbox{\mu}m \ (p/n \ CP7554) \\ \mbox{Agilent J&W PoraPLOT S, 25 m \times 0.53 mm \times 20 \ \mbox{\mu}m \ (p/n \ CP7574) \\ \mbox{Agilent J&W PoraPLOT U, 25 m \times 0.53 mm \times 20 \ \mbox{\mu}m \ (p/n \ CP7584) \\ \mbox{Agilent J&W PoraPLOT Q, 10 m \times 0.53 mm \times 20 \ \mbox{\mu}m \ (p/n \ CP7553) \\ \mbox{Agilent J&W PoraBOND Q, 25m \times 0.53 mm \times 10 \ \mbox{\mu}m \ (p/n \ CP7354) \\ \end{array} $				
キャリアガス	ヘリウム、定流量、5 mL/min				
オーブン	50 ℃(1.0 分)、10 ℃ /min で 200 ℃まで昇温(2 分) *J&W PoraPLOT U の場合は 180 ℃まで昇温				
注入口	SSL 注入口、スプリットモード、200 ℃、スプリット比 20:1				
注入ロライナ	ウルトライナート、スプリット、低圧力損失、ガラスウール(p/n 5190-2295)				
GC/FID	FID 搭載 Agilent 7890B GC				
サンプラ	Agilent 7693 オートサンプラ				
FID 条件					
温度	200 °C				
水素	30 mL/min				
空気	350 mL/min				
カラム + メークアップガス	25 mL/min				

図 1. (A) Agilent J&W PoraPLOT Q、(B) Agilent J&W PoraPLOT S、および (C) Agilent J&W PoraPLOT U に よる C₁ ~ C₃ の飽和および不飽和炭化水素の分離結果

システムの再現性

1,000 ppm v/v の C₁ ~ C₆ n-アルカン標準 物質を繰り返し注入して、システムの再現性 を評価しました。図2に、ガス標準物質を12 回注入して得られたクロマトグラムの重ね表 示を示します。この図から、マニュアル注入法 とこのクロマトグラフィープラットフォームで良 好な再現性が得られていることがわかります。 時間はかかりますが安定性の高いマニュアル 注入法を使用したのは、注入口が過加圧状態 になる可能性を回避するためです。過加圧状 態になると、サンプルがセプタムに接触した り、セプタムからベントに流れ込む可能性が あります。メタンからヘキサンまでのモデル化 合物について、リテンションタイムの相対標準 偏差は 0.2 % 未満 (n = 12)、面積カウント の相対標準偏差は5%未満でした。その結果 を表1にまとめます。

選択性チューニング

選択性チューニングの概念を示すため、固定 相の異なる2種類のPoraPLOTカラムを直 列に連結しました。試験は、全6通りの組み 合わせ(PoraPLOTQ+U、PoraPLOTU +Q、PoraPLOTU+S、PoraPLOTS+U、 PoraPLOTQ+S、PoraPLOTS+U、 PoraPLOTQ+S、PoraPLOTS+U、 C実施し、それぞれの結果を比較しました。カ ラムの連結による選択性チューニングでは、カ ラムの順序が全体的な選択性を大きく左右し ます。カラムにわたる圧力損失はカラムに沿っ て増加するため、最初のカラムを通過する直 線速度は予測どおりですが、2本目のカラム では予測より低くなります。その結果、相対的 な保持と選択性のチューニングにおいて、最 初のカラムがより大きな影響をおよぼします。

例えば、PoraPLOT Q カラムと PoraPLOT U カラムの組み合わせでは、図 3 に示すよう に特有の選択性が得られます。PoraPLOT U を 2 本目のカラムとして追加した場合(図 3A)、PoraPLOT Q カラム単独(図 1A)の ときよりもアセチレンが強く保持され、エチレ ンから分離されています。また、プロピレン とプロパンは引き続き分離されていますが、 PoraPLOT Q 単独では 4.4 だった分離度が、 PoraPLOT Q+Uでは 3.5 に低下しています。

図 2. Agilent J&W PoraPLOT Q カラムで 1,000 ppm v/v の $C_1 \sim C_6 n$ -アルカン標準物質を 12 回注入して 得られたクロマトグラムの重ね表示

表1. モデル n-アルカン化合物のリテンションタイムおよび面積カウン	ハトと
それぞれの相対標準偏差(RSD)	

化合物	t _R (分)	RSD (n = 12)	面積カウント	RSD (n = 12)
メタン	1.32	0.16 %	135.9	4.6 %
エタン	2.03	0.10 %	263.4	4.6 %
プロパン	4.43	0.04 %	396.0	4.6 %
n-ブタン	7.95	0.02 %	518.2	4.5 %
n-ペンタン	11.16	0.01 %	638.7	4.3 %
n-ヘキサン	13.98	0.01 %	762.6	4.6 %

図 3. (A) Agilent J&W PoraPLOT Q + U および (B) Agilent J&W PoraPLOT U + Q カラムによる C₁ ~ C₃の 飽和および不飽和炭化水素の分離結果

これに対し、PoraPLOT U を PoraPLOT Q の前に配置した場合は(図 3B)、PoraPLOT Q U が支配的に働きます。これにより、アセチレ ンがさらに強く保持され、 C_2 炭化水素(エタ ン、エチレン、アセチレン)がベースライン分 離されていますが、 C_3 炭化水素(プロピレン およびプロパン)は部分的に共溶出していま す。また、溶出順序の変化も観察され、アセチ レンがエタンの後に溶出しています。

図4は、全6通りのカラムの組み合わせで $C_1 \sim C_3$ の炭化水素を分離した結果を比較し たものです。また、表 2 に、 C_2 および C_3 炭 化水素の分離度の計算値をまとめます。カラ ムまたはカラムの組み合わせは、特定のアプ リケーションにおける分離要件に応じて選択 することができます。 例えば、PoraPLOT S + Q では、C₂ および C₃ の両方の炭化水素 に対して全体的に最善の分離能が得られま す。C2 炭化水素のみの分離を目的とする場合 は、PoraPLOT U、PoraPLOT U + Q、または PoraPLOT U + S を選択するのが適切でしょ う。つまり、特定のアプリケーションに最適な カラムを選択するためには、固定相に結合さ れている官能基、サンプルマトリックス、およ び目的とするターゲット化合物について理解 することが不可欠です。

2 本のカラムを連結する場合は、バンド幅が 広がることでクロマトグラフィー性能が損な われないように、低デッドボリュームの接続を 確保するよう細心の注意を払う必要がありま す。今回の実験では、低ボイドボリュームの プレスフィットコネクタで2本のカラムを接続 しました。

図 4. Agilent J&W PoraPLOT GC カラムの組み合わせによる C₁~C₃の飽和および不飽和炭化水素の分離結果: (A) PoraPLOT Q + U₂(B) PoraPLOT U + Q₂(C) PoraPLOT U + S₂(D) PoraPLOT S + U₂(E) PoraPLOT Q + S₂(F) PoraPLOT S + Q

	分離度						
PoraPLOT	エチレン - アセチレン	エチレン - エタン	アセチレン - エタン	プロピレン - プロパン			
Q	0.0	9.7	9.7	4.4			
S	6.9	5.7	1.1	1.6			
U	17.6	4.7	11.9	0.0			
Q + U	9.0	16.2	2.6	3.5			
U + Q	16.5	8.9	6.5	1.4			
U+S	19.4	6.7	11.4	0.0			
S+U	15.6	7.4	7.5	1.2			
Q+S	2.9	11.1	8.5	4.1			
S + Q	5.9	10.2	4.4	3.4			

アプリケーション - 軽質炭化水素と 芳香族化合物の分析

例として、図5に、18種類の飽和および不飽 和軽質炭化水素と芳香族化合物の分析により 得られたクロマトグラムを示します。この図か ら、−161 °C (メタン)から110 °C (トルエン) まで、幅広い沸点を持つ化合物が20分以内 に良好に分離できていることがわかります。

Agilent J&W PoraPLOT Q カラムと Agilent PoraBOND Q カラムの比較

PoraPLOT カラムは、揮発性化合物の分離に 有効です。ただし、従来の PLOT カラムでは、 内壁にコーティングされた多孔質層が安定性 に欠けることが、その全体的な利用の妨げと なってきました。このような多孔質層では、衝 撃圧により、またはカラムの輸送中に、自由粒 子が形成される可能性があります。多孔質層 からの脱粒は、リテンションタイムのドリフト、 カラムの詰まり、ランダムスパイクの原因にな ります。そのため、使用前に、分析時の流量よ り 50 % 高い流量でカラムをプレコンディショ ニングすることが推奨されます。また、検出器 側にパーティクルトラップを装着することによ り、検出器への粒子の侵入を防ぎ、スパイク を低減することができます。こういった制限が、 新たな化学結合型 PLOT カラムの開発の原動 力となりました。ここで重要な役割を果たした のが、カラム製造技術の進歩です。in-situ 重 合法を採用することで、PoraBOND と呼ばれ る、安定性と純度に優れた多孔質ポリマー相 が開発されました。PoraBOND では、結合技 術の改善により脱粒が大幅に低減し、機械的 安定性が高まっています。この粒子層の安定 化によって、優れた堅牢性と再現性が実現さ れます。また、ポリマー材料の高純度化により 不活性度が向上し、揮発性の極性化合物、含 酸素化合物や硫黄化合物などの活性化合物 の分析にも対応できるカラムとなっています。 さらに、より高温での使用が可能になったこと で、アプリケーションの幅も広がりました。

図 6. (A) Agilent J&W PoraBOND Q および (B) Agilent J&W PoraPLOT Q カラムによる $C_1 \sim C_3$ の 飽和および不飽和炭化水素の分離結果

今回の研究では、クラスの異なる多様なモ デル化合物を使用して、PoraPLOT Q と PoraBOND Q の性能を比較しました。図 6 に、これらの 2 種類のカラムによる C₁ ~ C₃ の飽和および不飽和炭化水素の分析結果を 示します。カラム製造プロセスの違いが、選 択性のわずかな違いとして現れています。 PoraBOND Q カラムではアセチレンとエチレ ンがほぼベースライン分離されていますが、 PoraPLOT Q では共溶出しています。また、 PoraPLOT Q では、膜厚がより厚いため、よ り強く保持されていることがわかります。

軽質硫黄化合物は、その高い活性と吸着性 がピークテーリングやレスポンスの低下につ ながり、分析が困難な場合があります。特に 微量濃度で存在する化合物を正確に定量する ためには、不活性なカラムが不可欠です。図 7は、4種類のメルカプタンを含む100 ppm v/v の硫黄化合物標準物質の分析結果を比 較したものです。図 7A から、PoraBOND Q カラムが備える優れた不活性度により、これ らの化合物について、よりシャープで対称な ピークが得られていることがわかります。一 方、PoraPLOT Q カラムでは、図 7B に示す ようにピークテーリングが生じ、レスポンスが 低下しています。同様に、図8に示すように、 PoraBOND カラムは含酸素化合物に対しても より優れた不活性度を発揮します。

図 8. (A) Agilent J&W PoraBOND Q および (B) Agilent J&W PoraPLOT Q カラムによるメタノール中の1% w/w 含酸素化合物の分析結果

アミン類などの強塩基性化合物は、活性表 面に対する反応性および吸着性が高いこと から、クロマトグラフィー分離が容易ではあ りません。図9に示すように、モノエタノー ルアミン (MEA) や n-メチルエタノールアミ ン (NMEA) など活性の高いアミン化合物を PoraBONDQカラムで分析すると、固定相と の相互作用によって深刻なピークテーリング が生じます。PoraPLOTQでは、1% w/wと いう高濃度であっても、MEAとNMEAを検 出できていません。以上から、活性の高いアミ ン化合物の分析には、どちらのカラムも適し ません。

結論

多孔質ポリマーは、高い保持力を備えたユ ニークな固定相であり、極性および無極性化 合物の分析に幅広く適用することができます。 揮発性化合物についても、クライオ冷却を用 いることなく分離することが可能です。これら のポリマーは、使用されているモノマーおよび 結合されている官能基に応じて Q 型、S 型、 U型に分類され、Q<S<Uの順に極性が高 くなります。今回の研究では、軽質炭化水素 の分離を例に、カラムの選択性の違いを示し ました。単一のカラムで十分な選択性が得ら れない場合は、選択性の異なるカラムの連結 による選択性チューニングが、目的とする分離 能を達成する実用的で低コストなアプローチ となります。ただし、多孔質ポリマーカラムは 幅広いアプリケーションに使用できる反面、脱 粒によってランダムスパイクが生じるなどの制 限があります。

図 9. (A) Agilent J&W PoraBOND Q および (B) Agilent J&W PoraPLOT Q カラムによるメタノール中の 1 % w/w アミン化合物の分離結果

in-situ 重合法を採用した最新の製造プロセス により、Agilent J&W PoraBOND シリーズな ど、安定性に優れ、スパイクが生じにくい多孔 質ポリマー相が実現しました。この種の PLOT カラムは不活性度にも優れているため、揮発 性の極性化合物や活性化合物の分析にも適し ています。

謝辞

本プロジェクトをご支援いただいた Tonya Stockman 博士、Wayde Konze 博士、Grace Yang 博士、および Scott Wills 博士に感謝の 意を表します。また、有意義な議論へのご協力 と激励をいただいた Agilent Technologies の Mike Zhang 氏および David Judd 氏に感謝 いたします。

(*) 著者1の現住所: National Technical Institute of the Deaf, Rochester Institute of Technology、米国ニューヨーク

参考文献

- de Zeeuw, J. Gas Solid-Gas Chromatography. Encyclopedia of Separation Science, 1st ed. Academic Press; 2000, pp. 481–489.
- Berezkin, V.; de Zeeuw, J. Capillary Adsorption Chromatography. Hüthig, Heidelberg, Germany, 1996.
- Ji, Z.; Major, R.; Guthrie, E. Porous Layer Open-Tubular Capillary Columns: Preparations, Applications, And Future Directions. J. Chromatogr. A 1999, 842, 115–142.
- de Zeeuw, J. et al. PoraPLOT Q: A Porous Layer Open Tubular Column Coated with Styrene -Divinylbenzene Copolymer. J. High Resolut. Chromatogr. 1988, 11(2), 162–167.
- Van Loon, R. C1-C3 Hydrocarbon Analysis Using the Agilent 490 Micro GC – Separation Characteristics for PoraPLOT U and PoraPLOT Q Channels. *Agilent Technologies*, publication number 5990-9165EN, 2012.

- Ji, Z.; Hutt, S. A New Bonded Porous Polymer PLOTU Column with Increased Polarity. *J. Chromatogr. Sci.* 2000, *38*, 496–502.
- 7. Grob, K. Gum Phases For Glass Capillary Columns; a Recommendation for Users, a Challenge for Polymer Scientists. *Chromatographia* **1977**, *10*, 625.
- Grob, K.; Grob, G. Practical Aspects of the Dependence of Polarity on Temperature. *Chromatographia* 1983, 17, 481–485.
- 9. Sandra, P. *et al.* Selectivity and Selectivity Tuning in Capillary Gas Chromatography. J. High Resolut. Chromatogr. **1985**, *8*, 782–798.
- Freeman, R.; Kukla, D. The Role of Selectivity in Gas Chromatography. *Journal of Chromatographic Science* 1986, 24, 392–395.
- Hinshaw Jr., J.; Ettre, L. Selectivity Tuning of Serially Connected Open-Tubular (Capillary) Columns In Gas Chromatography. Part I: Fundamental Relationships. *Chromatographia* 1986, *21*, 561–572.

- Cao, M.; Liu, Z.; Zou, Y. Agilent J&W PoraBOND Q PT Analyzes Oxygenates in Mixed C4 Hydrocarbon Streams by GC/FID and GC/MSD. Agilent Technologies application note, publication number 5991-1549EN, 2012.
- Hydrocarbons C1 C3. Agilent Technologies application note, publication number A01425, 2011.
- Sulfur compounds. Agilent Technologies application note, publication number A01458, 2011.
- Halogenated hydrocarbons, C1

 C2, hydrocarbons. C1 C6.
 Agilent Technologies application note, publication number A01429, 2011.
- Volatile chlorinated compounds, sulfur compounds. Agilent Technologies application note, publication number A01427, 2011.

ホームページ

www.agilent.com/chem/jp

カストマコンタクトセンタ

0120-477-111 email_japan@agilent.com

本製品は一般的な実験用途での使用を想定しており、 医薬品医療機器等法に基づく登録を行っておりません。 本文書に記載の情報、説明、製品仕様等は予告なしに 変更されることがあります。

アジレント・テクノロジー株式会社 © Agilent Technologies, Inc. 2021 Printed in Japan, April 21, 2021 5994-3485JAJP DE44299.5412384259

