

Reduced Solvent Use and Analysis Time According to USP Methods

Method transfer to UHPLC conditions according to USP Chapter <621> requirements, using the Agilent 1260 Infinity II Prime LC System

Suitable for Agilent 1260 Infinity III LC

Authors

Edgar Naegele and Sonja Schipperges Agilent Technologies, Inc.

Abstract

This application note demonstrates gradient separation of a pharmaceutical compound from its impurities under standard conditions, according to United States Pharmacopeia (USP) requirements. Gradient separation is improved by method transfer to UHPLC conditions for smaller column i.d. and smaller particle size, while retaining the separation requirements listed in the respective USP method and the calculations given in USP <621>. This is demonstrated using the Agilent 1260 Infinity II Prime LC, which is capable of working up to 800 bar. In the first place, method transfer to UHPLC is beneficial for shorter analysis time with retained separation performance and reduction of analysis time and costs. As a result, this method transfer also helps you achieve your lab's sustainability goals and realize cost savings in quality control (QC).

This application note also features an interactive cost savings calculator. Use this tool to see how the Agilent 1260 Infinity II Prime LC System can help to save resources, translating into cost and solvent savings for your specific analysis.

Introduction

The USP provides general guidelines related to the tests and procedures described in monographs. Chapter <621> provides specialized guidelines on chromatography.¹ Changes recently made to USP chapter <621> now permit adjustments of chromatographic gradient conditions in liquid chromatography. With this revision of this chapter, changes in column dimensions, as well as the transfer from totally porous particle (TPP) columns to superficially porous particle (SPP) columns, are acceptable for gradient elution in liquid chromatography. Table 1 provides an overview of the permitted adjustments of chromatographic conditions for gradient systems.

This application note describes the method transfer from a USP monograph starting at standard HPLC conditions, to UHPLC conditions under the requirements according to USP <621>. These are provided for gradient elution liquid chromatography for quetiapine and its organic impurities. The original USP method is applied using a legacy Agilent 1100 Series LC equipped with a TPP column, and is transferred to the Agilent 1260 Infinity II Prime LC in combination with an SPP column. Analysis time, solvent consumption, and resulting cost per injection are compared for the original method and the analysis using UHPLC conditions.

Table 1. Adjustments of chromatographic conditions for gradient systems according to USP chapter <621>.

Parameter	Permitted Adjustments	
Column Length and Particle Size	Particle size and/or column length may be modified, provided that the ratio of column length (L) to particle size (dp) remains constant (or between -25% and +50% of the prescribed L/dp ratio).	
	System suitability criteria need to be fulfilled.	
Column Internal Diameter	The internal diameter of the column may be adjusted.	
Flow Rate	Flow rate is adjusted for the change in column diameter and particle size using the following equation:	
	$F_2 = F_1 \times [(dc_2^2 \times dp_1)/(dc_1^2 \times dp_2)]$	
Injection Volume	When the column dimensions are changed, the following equation may be used for adjusting the injection volume:	
	$V_{inj2} = V_{inj1} \times [(L_2 \times dc_2^2)/(L_1 \times dc_1^2)]$	
Gradient Times	The new gradient times are calculated from the original gradient times as follows:	
	$t_{G2} = t_{G1} \times (F_1/F_2) \times [(L_2 \times dc_2^2)/(L_1 \times dc_1^2)]$	
Column Temperature	±5 °C, where the operating temperature is specified, unless otherwise prescribed.	

 F_1 = Flow rate indicated in the monograph

F₂ = Adjusted flow rate

dc, = Internal diameter of the column indicated in the monograph

dc₂ = Internal diameter of the column used

dp, = Particle size of the column indicated in the monograph

dp₂ = Particle size of the column used

 V_{inj1} = Injection volume indicated in the monograph

V_{inj2} = Adjusted injection volume L₄ = Length of the column indicated in the monograph

L = Longth of the column wood

 L_2 = Length of the column used

 $t_{\rm G1}$ = Gradient time indicated in the monograph

t_{G2} = Adjusted gradient time

Experimental

Equipment

The Agilent 1100 Series LC System comprised the following modules:

- Agilent 1100 Series Degasser (G1322A)
- Agilent 1100 Series Quaternary Pump (G1311A)
- Agilent 1100 Series Autosampler (G1313A)
- Agilent 1100 Series Thermostatted Column Compartment (G1316A)
- Agilent 1100 Series Diode Array Detector (G1315B) with standard flow cell, 10 mm (G1315-60022)

The Agilent 1260 Infinity II Prime LC System comprised the following modules:

- Agilent 1260 Infinity II Flexible Pump (G7104C)
- Agilent 1260 Infinity II Vialsampler (G7129C)
- Agilent 1260 Infinity II Multicolumn Thermostat (G7116A)
- Agilent 1260 Infinity II Diode Array Detector HS (G7117C) with Agilent InfinityLab Max-Light cartridge cell 10 mm (G4212-60008)

Software

Agilent OpenLab CDS version 2.6

Columns

- Agilent ZORBAX Eclipse XDB-C8, 4.6 × 150 mm, 3.5 μm (part number 993967-906)
- Agilent InfinityLab Poroshell 120 EC-C8, 4.6 x 100 mm, 2.7 µm (part number 695975-906)
- Agilent InfinityLab Poroshell 120 EC-C8, 2.1 x 100 mm, 2.7 µm (part number 695775-906)

Table 2. Method for analysis of organic impurities of quetiapine as described in the USP monograph.²

Parameter	Value		
Column	Agilent ZORBAX Eclipse XDB-C8, 4.6 × 150 mm, 3.5 μm		
Solvent	Solution A: acetonitrile:buffer (75:25 v/v) Solution B: acetonitrile		
Gradient	Time (min) %B 0.00 0.00 25.00 0.00 60.00 77.7 60.01 0.00 68.00 0.00 Stop time: 68 min		
Flow Rate	1.50 mL/min 45 °C 250 nm/4 nm, reference 360 nm/100 nm, 10 Hz		
Temperature			
Detection			
Injection	Injection volume: 20.00 μL		

Table 3. Method for analysis of organic impurities of quetiapine: transfer to a 4.6×100 mm, $2.7 \mu m$ column.

Parameter	Value	
Column	Agilent InfinityLab Poroshell EC-C8, 4.6 × 100 mm, 2.7 μm	
Solvent	Solution A: acetonitrile:buffer (75:25 v/v) Solution B: acetonitrile	
Gradient	Time (min) %B 0.00 0.00 12.86 0.00 30.86 70.7 30.91 0.00 34.97 0.00 Stop time: 35 min	
Flow Rate	1.94 mL/min 45 °C 250 nm/4 nm, reference 360 nm/100 nm, 20 Hz	
Temperature		
Detection		
Injection	Injection volume: 13.33 μL	

Table 4. Method for analysis of organic impurities of quetiapine: transfer to a 2.1×100 mm, $2.7 \, \mu m$ column.

Parameter	Value	
Column	Agilent InfinityLab Poroshell EC-C8, 2.1 × 100 mm, 2.7 μm	
Solvent	Solution A: acetonitrile/buffer (75:25 v/v) Solution B: acetonitrile	
Gradient	Time (min) %B 0.00 0.00 12.86 0.00 30.86 70.7 30.91 0.00 34.97 0.00 Stop time: 35 min	
Flow Rate	0.41 mL/min 45 °C 250 nm/4 nm, reference 360 nm/100 nm, 20 Hz	
Temperature		
Detection		
Injection	Injection volume: 2.78 μL	

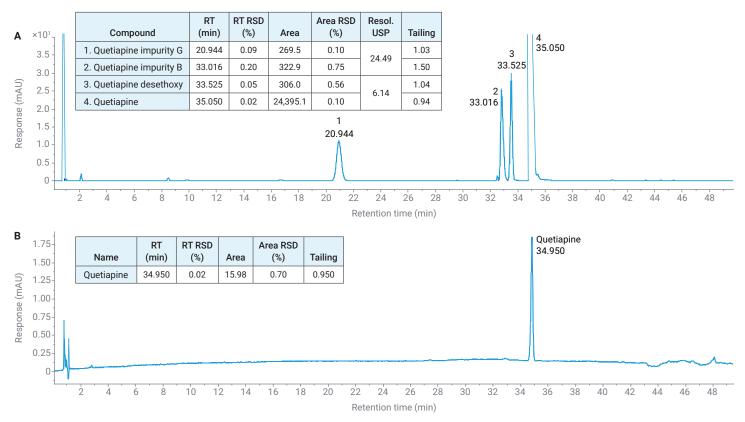
Buffer solution

Ammonium acetate (3.1 g/L) in water with 2 mL of 25% ammonium hydroxide per 1 L of solution. The pH of the resulting solution must not be lower than 9.2.

Preparation of solutions for system suitability

USP Quetiapine System Suitability RS (1 mg/mL) in diluent (solution A and solution B (86:14)).

Preparation of standard solution


Standard solution: 0.001 mg/mL of USP quetiapine fumarate RS in diluent.

Chemicals and solvents

All solvents were LC grade. Acetonitrile was purchased from Merck (Darmstadt, Germany). Fresh, ultrapure water was obtained from a Milli-Q Integral system equipped with a 0.22 µm membrane point-of-use cartridge (Millipak, EMD Millipore, Billerica, MA, USA). All chemicals (ammonium acetate, ammonia solution 25%) and USP standards (Quetiapine Fumarate RS and Quetiapine System Suitability RS) were purchased from Sigma-Aldrich (Steinheim, Germany).

Results and discussion

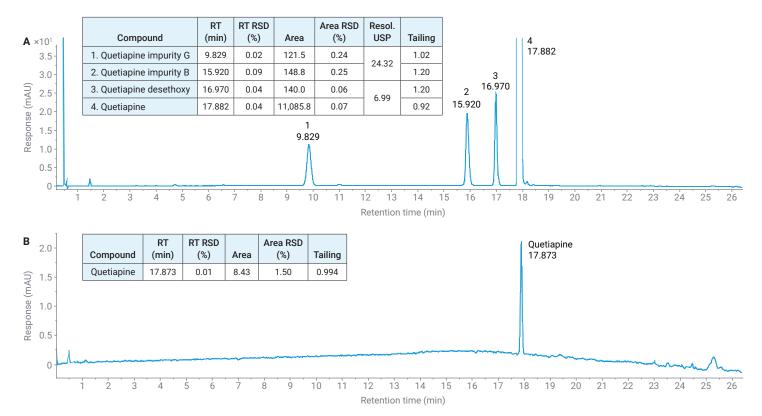

In the USP monograph for the determination of quetiapine and its organic impurities, the use of a C8 reversed-phase column, 4.6×150 mm, $3.5~\mu m$ packing, L7, is mandated. The chromatographic conditions are described in Table $2.^2$ Figure 1 shows the results from the analysis of the system suitability solution and the standard solution on a legacy 1100 Series LC system. The requirements of the USP monograph regarding resolution and tailing factors are fulfilled. They require a resolution not lower than (NLT) 4.0 between quetiapine desethoxy and quetiapine, and NLT 3.0 between quetiapine-related compound B and quetiapine-related compound G in system suitability solution. The required tailing factor is not more than (NMT) 2 and the RSD is NMT 5% from quetiapine standard solution.

Figure 1. Analysis of organic impurities of quetiapine as described in the USP monograph. (A) System suitability solution; (B) standard solution. 1. Quetiapine-related compound G; 2. Quetiapine-related compound B; 3. Quetiapine desethoxy; 4. Quetiapine. N = 6 for calculation of RSDs.

To use the 1260 Infinity II Prime LC, the method for the analysis of organic impurities of quetiapine is transferred to UHPLC conditions. The method transfer to an InfinityLab Poroshell EC-C8, 4.6×100 mm, $2.7~\mu m$ column results in a 14% decrease of the L/dp ratio compared to the original column, which is permitted according to USP chapter <621>. The chromatographic conditions applied for this column are shown in Table 3.

The results from the analysis of the system suitability solution and the standard solution using the InfinityLab Poroshell EC-C8, 4.6×100 mm, $2.7 \mu m$ column are shown in Figure 2.

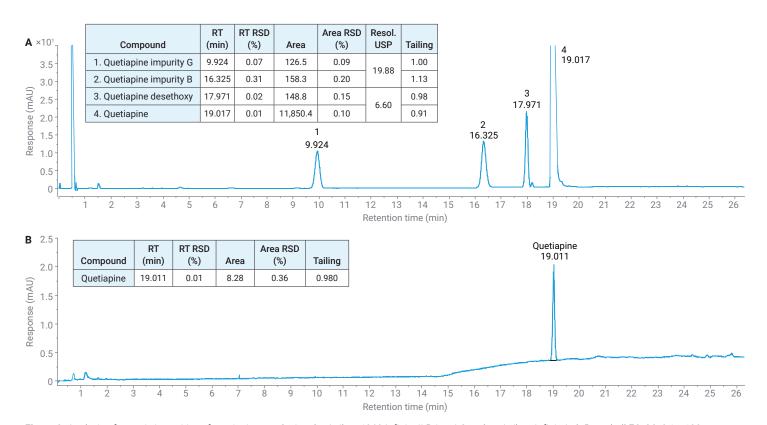


Figure 2. Analysis of organic impurities of quetiapine using the Agilent 1260 Infinity II Prime LC and an Agilent InfinityLab Poroshell EC-C8, 4.6 × 100 mm, 2.7 µm column. (A) System suitability solution; (B) standard solution. 1. Quetiapine-related compound G; 2. Quetiapine-related compound B; 3. Quetiapine desethoxy; 4. Quetiapine. N = 6 for calculation of RSDs.

For further solvent savings, the internal diameter of the column was reduced, remaining within the requirements described in USP chapter <621>. Figure 3 shows the results from analysis of system suitability solution and the standard solution using an InfinityLab Poroshell EC-C8, 2.1×100 mm, $2.7 \mu m$ column. The adjusted chromatographic conditions are described in Table 4.

The comparison of the analysis of organic impurities of quetiapine as described in the USP monograph and the two UHPLC analyses can be found in Table 5.

The method transfer from a 4.6×150 mm, $3.5~\mu m$ column to a 4.6 or 2.1×100 mm, $2.7~\mu m$ column results in a -14% decrease or a +9.3% increase in the L/dp ratio, and is permitted by the requirements described in USP chapter <621>. System suitability and standard solution criteria of the USP monograph on quetiapine are fulfilled by all methods. The transfer to a 4.6×100 mm, $2.7~\mu m$ column results in 33.5% less solvent consumption per injection, and a 48.5% reduction in analysis time. The transfer to a 2.1×100 mm, $2.7~\mu m$ column reduces the solvent consumption per injection by 85.9%.

Figure 3. Analysis of organic impurities of quetiapine employing the Agilent 1260 Infinity II Prime LC and an Agilent InfinityLab Poroshell EC-C8, 2.1 × 100 mm, 2.7 µm column. (A) System suitability solution; (B) standard solution. 1. Quetiapine-related compound G; 2. Quetiapine-related compound B; 3. Quetiapine desethoxy; 4. Quetiapine. N = 6 for calculation of RSDs.

Table 5. Comparison of the analysis of organic impurities of quetiapine as described in the USP monograph and the UHPLC analyses. Fulfillment of USP requirements is marked in green.

Column and Method				
	Agilent Eclipse XDB-C8, 4.6 × 150 mm, 3.5 μm	Agilent Poroshell EC-C8, 4.6 × 100 mm, 2.7 μm	Agilent Poroshell EC-C8, 2.1 × 100 mm, 2.7 µm	
L/dp	43,000	37,000 (-14%)	47,000 (+9.3%)	
Flow Rate	1.5 mL/min	1.97 mL/min	0.41 mL/min	
Solvent Consumption per Injection	102 mL	68.95 mL (-33.5%)	14.34 mL (-85.95%)	
Run Time	68.00 min	35.00 min (-48.5%)	35.00 min (-48.5%)	
System Suitability Requirements in Quetiapine Monograph				
Resolution Between Quetiapine Desethoxy and Quetiapine, NLT 4.0	6.14	6.99	6.60	
Resolution Between Quetiapine-Related Compound B and Quetiapine-Related Compound G, NLT 3.0	24.49	24.32	19.88	
Standard Solution Requirements in Quetiapine Monograph				
Tailing Factor Quetiapine, NMT 2.0	0.95	0.99	0.98	
RT RSD Quetiapine, NMT 5%	0.01	0.01	0.01	

Table 6 displays a cost savings calculator, considering the described scenarios for the analysis of organic impurities of quetiapine. You can add the costs, assumptions, and method settings for your own analysis to calculate potential savings when transferring your method to the 1260 Infinity II Prime LC System. For the conventional LC, employing the analysis of organic impurities of quetiapine as described in the USP monograph, the total cost per injection results in \$74.40. Replacement with the 1260 Infinity II Prime LC System and transfer of the method to the 2.1 × 100 mm, 2.7 µm column results in a total cost per injection of \$63.84.

With the costs and assumptions applied in Table 6, a break-even point of 990 injections, or 10 months, can be calculated, until the higher cost of investment in the 1260 Infinity II Prime LC System (compared to a conventional LC) will be paid off.

Achieving sustainable operations is another important factor that contributes to the profitability of any modern laboratory. With the newly revised USP <621> method, UHPLC—and the more efficient chromatography that it offers—can now even be applied to existing methods in the QC lab. Marked reductions of 85.9% of solvent and close to 50% of analysis times are brought within reach. Replacing legacy equipment can also reduce an analytical lab's instrument footprint and potentially have a positive effect on, for example, energy consumption.³

Conclusion

This application note describes the transfer of the USP method for the analysis of quetiapine and its organic impurities to UHPLC conditions according to USP chapter <621>. The newly developed UHPLC method saves up to 85.9% solvent and 48.5% analysis time. For the QC lab, this offers the possibility to maintain analytical certainty in chromatography while realizing the additional goals of lab operations: cost savings and the opportunity to contribute to company-wide sustainability goals.

The replacement of a legacy Agilent 1100 Series LC running under standard USP conditions with an Agilent 1260 Infinity II Prime LC System running under UHPLC conditions will pay off the new instrument after 990 injections. Further, the marked reduction of the environmental footprint through reduced solvent use and analysis time complies with the 12 principles of green chemistry, even under QC conditions.⁴

Table 6. Interactive cost savings calculator for the analysis of organic impurities of quetiapine. Enter your own costs, assumptions, and method settings into the cost savings calculator to see how the 1260 Infinity II Prime LC System can help you save money for your specific analysis.

General Settings	
Solvent Costs per Liter	
Waste Costs per Liter	
Labor Costs per Year and Operator	
Linear Depreciation in Years	
Additional Laboratory Costs per Year	
Daily Operating Hours	
Weekly Operating Days	
Yearly Operating Weeks	
Required Number of Injections per Year (Incl. Blanks, Standards, etc.)	

Instrument Settings	Conventional LC	Agilent 1260 Infinity II Prime LC
Instrument Costs		
Uptime per Year		
Maintenance Costs per Instrument and Year		
Costs per Column		
Column Lifetime: Number of Injections		
Operators per Instrument		
Consumables Costs per Injection (e.g., Vials, Caps, Filters, Syringes, etc.)		

Method Settings	Conventional LC	Agilent 1260 Infinity II Prime LC
Run Time (Incl. Column Wash and Equilibration)		
Flow Rate		

Injections and Instruments	Conventional LC	Agilent 1260 Infinity II Prime LC
Maximum Injections per Year		
Number of Instruments Required		

Financial View	Conventional LC	Agilent 1260 Infinity II Prime LC
Instrument Costs		
Maintenance Costs		
Column Costs		
Consumable Costs		
Solvent Costs		
Waste Costs		
Additional Laboratory Costs		
Operator Costs		
Total Annual Operation		
Total Cost per Injection		

Break-Even Calculations	Agilent 1260 Infinity II Prime LC
Injections	
Months	

Sustainability View	Conventional LC	Agilent 1260 Infinity II Prime LC
Solvent Volume Used		

References

- United States Pharmacopeia General Chapter <621> Chromatography. The National Formulary. Rockville, MD: United States Pharmacopeial Convention, Inc., 1 Dec 2020.
- 2. United States Pharmacopeia USP Monograph on Quetiapine. The National Formulary. Rockville, MD: United States Pharmacopeial Convention, Inc., 1 Jan **2023**.
- 3. Rieck, F. Do You Know the Environmental Impact of Your HPLC? *Agilent Technologies technical overview*, publication number 5994-2335EN, **2022**.
- 4. Anastas. P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press, **1998**.

www.agilent.com

DE41656484

This information is subject to change without notice.

